JPH0320458B2 - - Google Patents

Info

Publication number
JPH0320458B2
JPH0320458B2 JP61295466A JP29546686A JPH0320458B2 JP H0320458 B2 JPH0320458 B2 JP H0320458B2 JP 61295466 A JP61295466 A JP 61295466A JP 29546686 A JP29546686 A JP 29546686A JP H0320458 B2 JPH0320458 B2 JP H0320458B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
temperature
bake
heating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61295466A
Other languages
Japanese (ja)
Other versions
JPS63149348A (en
Inventor
Takahisa Sawada
Koichi Hatanaka
Masanobu Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29546686A priority Critical patent/JPS63149348A/en
Publication of JPS63149348A publication Critical patent/JPS63149348A/en
Publication of JPH0320458B2 publication Critical patent/JPH0320458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は包装用アルミニウム合金の製造方法に
関し、さらに詳しくは、成形性、耐圧性、開缶
性、耐孔蝕性に優れ、かつ、平均結晶粒度を微細
にすることにより、張り出し性、リベツト成形
性、絞り性等の成形性に優れ、さらに、焼付塗装
により硬化し、耐圧性、剛性を向上させることが
でき、開缶性にも優れ、腐蝕性の激しい内容物に
対して耐孔蝕性に優れた包装用アルミニウム合金
の製造方法に関する。 [従来技術] 一般に、キヤンエンド用アルミニウム合金板
は、アルミニウム合金板に塗装印刷を施した後、 (1) シエル加工。 (2) 多段張り出し加工。 (3) スコア加工。 (4) リベツト加工。 等の加工が行なわれるが、この加工の中で最も重
要視される加工は多段張り出し加工であり、機械
的性質、金属間化合物の分布および結晶粒径等に
影響を受ける。 また、成形されたキヤンエンドは、 (1) 耐圧性。 (2) 開缶性。 (3) タブ抜け性。 (4) 耐蝕性。 等が要求され、特に、素材の薄肉化には耐圧性の
向上(高強度化)が必要である。 そして、近年、コストダウンの観点から素材の
薄肉化、高強度化が進んでいるが、素材の薄肉化
および高強度化は成形性の低下を招来し、素材の
薄肉化には高成形性と高強度化が要求される。 一方、生産性の向上のため成形スピードの高速
化が進み、さらに、加工性の低下につながつてい
る。しかし、従来から使用されている5052、
5058、5182等の素材では、塗装印刷後のベーキン
グにおいて強度が著しく低下するので、高強度と
するために固溶元素を含有させ、最終冷間圧延率
を上昇させることが必要である。 この場合、伸びの低下および結晶粒の長径化を
招いて張り出し性等の成形性を低下させる。ま
た、開缶性の向上を目的として開缶のための蓋に
圧入されているスコアの形状の種々の検討がなさ
れているが、例えば、スコア加工部の残厚の減少
は開缶性の向上に効果は認められるものの、減少
し過ぎるとスコア部に亀裂が発生し、内容物の漏
れる原因となり、残圧の減少には限界がある。 また、上記した従来使用されている、5052、
5082、5182等のアルミニウム合金では、内容物中
のC1イオンが数百ppm以上と多い場合等腐蝕性
の激しい場合等においては、アルミニウム合金の
保護酸化皮膜は容易に破壊され、局部的な溶解が
生じて孔蝕となり、容器として致命的な事故につ
ながる可能性があるので、その用途には自ずから
制限がある。 特に缶胴としてブリキ、チンフリースチール
(TFS)、スチール等アルミニウム或いはアルミ
ニウム合金より電気的に貴な材料を用いる場合に
は、内容物自体の腐蝕作用の他にガルバニツク作
用が付加されるため、アルミニウム或いはアルミ
ニウム合金の材料に発生する孔蝕の進行速度は増
大されるところとなり、内容物によるアルミニウ
ム或いはアルミニウム合金の材料の用途制限はさ
らに厳しくなる。 [発明が解決しようとする問題点] 本発明は上記に説明した従来の包装用アルミニ
ウム合金の種々の問題点に鑑み、本発明者が鋭意
研究を行い、検討を重ねた結果、塗装印刷時のベ
ーキングにおいて強度が殆ど低下させず、また、
強度が向上するベークハード型であつて、最終冷
間圧延率を小さくすることが可能となり、かつ、
最終冷間圧延前の結晶粒が微細であるから、成形
性に優れ、さらに、高強度化に伴う開缶性の向上
および耐孔蝕性の向上を一挙に行うことができる
包装用アルミニウム合金の製造方法を開発したの
である。 [問題点を解決するための手段] 本発明に係る包装用アルミニウム合金の製造方
法の特徴とするところは、 Cu0.05〜1wt%、Mn0.3〜1.5wt%、 Mg0.3〜2.8wt%、Cr0.03〜0.3wt% を含有し、残部A1および不可避不純物からなる
アルミニウム合金を溶解、鋳造後、500℃〜600℃
の温度で均熱処理を行い、熱間圧延を行つた後、
400〜600℃の温度に100℃/分以上の加熱速度で
加熱し、加熱後直ちに、または、10分以内保持し
た後、100℃/時間以上の冷却速度で200℃の温度
まで冷却し、平均結晶粒25μ以下とすると共に焼
付硬化に寄与する成分を固溶状態に保ち、さら
に、30%以上の冷間圧延を行うことにあり、特に
成形性、耐圧性、開缶性、耐孔蝕性に優れた焼付
硬化型包装用アルミニウム合金の製造方法であ
る。 本発明に係る包装用アルミニウム合金の製造方
法について以下詳細に説明する。 先ず、本発明に係る包装用アルミニウム合金の
製造方法において使用するアルミニウム合金の含
有成分および含有割合について説明する。 CuはMgと共存して強度を高める効果を有する
元素であり、かつ、アルミニウム合金を貴とする
ものであり、含有量が0.05wt%未満ではベークハ
ード効果は得られず、また、1wt%を越えて含有
されると含有された程のベークハード効果は期待
できず、かつ、粒界腐蝕感受性を増大させる。よ
つて、Cu含有量は0.05〜1wt%とする。 Mnはベークハード効果には直接影響を与えな
いが、強度の向上、結晶粒の微細化に効果があ
り、このMnはCuと同様にアルミニウム合金を電
気化学的に貴とし、さらに、耐蝕性を向上させ、
かつ、金属間化合物[Al6(Mn、Fe)]等の作用
により開缶性を向上させる元素であり、含有量が
0.3wt%未満ではこれらの効果が充分でなく、ま
た、1.5wt%を越えて含有されると粗大な金属間
化合物を生成し、特にキヤンエンドのような多段
張り出し加工により割れ発生の起点となる。よつ
て、Mn含有量は0.3〜1.5wt%とする。 Mgは強度向上に有効な元素であり、特にベー
クハード効果を得るためには必須であり、含有量
が0.3wt%未満では薄肉化するための高強度が得
られず、また、2.8wt%を越えて含有されると腐
蝕減量が大きくなり、耐蝕性が低下する。よつ
て、Mg含有量は0.3〜2.8wt%とする。 CrはMnと同様に電気化学的に貴とし、さら
に、耐蝕性を向上させ、かつ、金属間化合物の作
用により開缶性を向上させるための非常に重要な
元素であり、含有量が0.03wt%未満ではこの効果
は認められず、また、0.3wt%を越えて含有され
ると金属間化合物のサイズの成長を招き、成形性
が劣化する。よつて、Cr含有量は0.03〜0.3wt%
とする。 なお、上記以外に含有される元素は、通常市販
されている純アルミニウムに含有されている不純
物程度であれば、特に規制はないが、Siおよび
Feは少ないほど望ましく、ZnおよびTiはそれぞ
れ0.05wt%以下とすることが望ましい。 次に、本発明に係る包装用アルミニウム合金の
製造方法について説明する。 上記に説明した含有成分および含有割合のアル
ミニウム合金を通常の方法により溶解鋳造して鋳
塊とし、この鋳塊を500〜600℃の温度において均
熱処理するのであるが、この均熱処理は適正な熱
間圧延および張り出し性(特に小径の多段張り出
し性)を得るためのものであり、500℃未満の均
熱温度では熱間圧延時に耳割れが発生し易く、か
つ、微細析出物が多く生成し、張り出し性が低下
し、また、600℃を越える均熱温度ではバーニン
グおよびフクレを発生し、製品特性の加工性、表
面品質の低下につながる。よつて、均熱処理温度
は500〜600℃とする。 その後の熱間圧延では特に限定的な条件はない
が、250℃以上の温度において熱間圧延を終了す
るのがよい。この熱間圧延後に冷間圧延は行つて
も行わなくてもよいのである。 次に行う中間焼鈍であるが、これはベークハー
ド効果と成形性に優れた特性(微細結晶粒)を得
るために重要な工程であり、加熱温度を400〜600
℃とするのはベークハードに必要なMgとCuを固
溶するためであり、400℃未満の加熱温度では固
溶が充分のに行なわれず、その後のベークハード
効果が期待できず、また、600℃を越える加熱温
度ではこの効果は飽和してあまり期待できず、か
えつて、バーニング等を起こして特性の低下につ
ながる。よつて、加熱温度は400〜600℃とする。
この時の加熱速度は100/分以上とする必要があ
り、さらに加熱直後または10分以内保持後に100
℃/時間以上の冷却速度で200℃以下の温度まで
冷却する必要があり、これは成形性に有効な微細
結晶粒(25μm以下)とし、かつ、Mg、Cuを強
制固溶させることにあり、これらの範囲外におい
てはベークハード効果および微細結晶粒による高
成形性が得られない。なお、保持時間を10分以内
とするのは10分を越える時間保持してもベークハ
ード効果は向上せず、かえつて、結晶粒の成長と
エネルギーの無駄となり、また、200℃以下の温
度まで冷却するのはベーキングによる硬化を図る
ためである。 [実施例] 本発明に係る包装用アルミニウム合金の製造方
法の実施例を説明する。 実験 1 第1表に示す含有成分および含有割合のアルミ
ニウム合金鋳塊を590℃×4時間の均熱処理と熱
間圧延により4mmの熱間圧延板とし、次いで、厚
さ1mmに冷間圧延し、中間焼鈍は500℃×0秒
(800℃/分昇降温)で行つた。次に、冷間圧延を
行つて厚さ0.33mmとした。 なお、第1表における比較例の組成の場合は、
上記均熱処理条件(590℃×4時間)ではバーニ
ングを起こすため、均熱処理を510℃×4時間で
行つた。 第2表に機械的性質(圧延まま、ベーキング
後)、中間焼鈍後の結晶粒径、多段張り出し成形
性、開缶試験結果、耐蝕性評価結果を示す。 この第2表から、本発明に係る包装用アルミニ
ウム合金の製造方法によるアルミニウム合金(No.
1、No.2、No.3)は、Al−Cu−Mg系の微細析出
物によりベークハード現象を示し、ベーキングに
より引張強さが向上しており、また、結晶粒径は
本発明に係る包装用アルミニウム合金は全べて
25μm以下でなつており、多段張り出し性に優
れ、さらに、Mn、Crの共存により開缶性も優
れ、耐蝕性についても本発明に係る包装用アルミ
ニウム合金は非常に優れていることがわかる。 比較例のNo.6はベーキング現象を示し、結晶粒
が小さく成形性もよいが、Crを含有していない
ので開缶性および耐蝕性に問題がある。
[Industrial Field of Application] The present invention relates to a method for producing an aluminum alloy for packaging, and more specifically, to produce an aluminum alloy that has excellent formability, pressure resistance, can openability, and pitting resistance, and has a fine average grain size. It has excellent formability such as stretchability, riveting formability, and drawability, and can be hardened by baking coating to improve pressure resistance and rigidity. The present invention relates to a method for producing an aluminum alloy for packaging that has excellent pitting resistance. [Prior art] In general, aluminum alloy plates for can ends are produced by: (1) Shell processing after coating and printing are applied to the aluminum alloy plate. (2) Multi-stage overhang processing. (3) Score processing. (4) Rivet processing. Among these processes, the most important process is multi-stage stretching, which is influenced by mechanical properties, distribution of intermetallic compounds, crystal grain size, etc. Additionally, the molded can end has (1) pressure resistance. (2) Openability. (3) Tab removability. (4) Corrosion resistance. In particular, thinner materials require improved pressure resistance (higher strength). In recent years, materials have become thinner and have higher strength from the perspective of cost reduction, but thinner materials and higher strength have resulted in lower formability. High strength is required. On the other hand, molding speeds have been increasing in order to improve productivity, which has further led to a decline in workability. However, the conventionally used 5052,
With materials such as 5058 and 5182, the strength significantly decreases during baking after coating and printing, so in order to achieve high strength, it is necessary to contain solid solution elements and increase the final cold rolling rate. In this case, elongation is reduced and crystal grains are increased in length, resulting in a reduction in formability such as stretchability. In addition, various studies have been conducted on the shape of the score that is press-fitted into the lid for opening cans with the aim of improving can opening efficiency. Although the effect is recognized, if the residual pressure is reduced too much, cracks will occur in the score section, causing the contents to leak, and there is a limit to the reduction of the residual pressure. In addition, the conventionally used 5052,
For aluminum alloys such as 5082 and 5182, when the content is highly corrosive, such as when the C1 ions in the contents are high (several hundred ppm or more), the protective oxide film of the aluminum alloy is easily destroyed, causing local dissolution. This naturally leads to pitting, which can lead to fatal accidents as a container, so there are limits to its use. In particular, when a material more electrically noble than aluminum or aluminum alloy, such as tinplate, chin-free steel (TFS), or steel, is used for the can body, the galvanic effect is added in addition to the corrosive effect of the contents themselves. Alternatively, the rate of progress of pitting occurring in aluminum alloy materials will increase, and restrictions on the use of aluminum or aluminum alloy materials depending on the contents will become even more severe. [Problems to be Solved by the Invention] In view of the various problems of the conventional aluminum alloys for packaging explained above, the present inventor has conducted extensive research and repeated examinations. There is almost no loss in strength during baking, and
It is a bake-hard type that improves strength, makes it possible to reduce the final cold rolling reduction, and
Because the crystal grains before the final cold rolling are fine, this aluminum alloy for packaging has excellent formability, and can also improve can openability and pitting resistance due to high strength. They developed a manufacturing method. [Means for solving the problems] The method for producing an aluminum alloy for packaging according to the present invention is characterized by: Cu0.05-1wt%, Mn0.3-1.5wt%, Mg0.3-2.8wt% After melting and casting an aluminum alloy containing 0.03 to 0.3 wt% of Cr and the remainder A1 and unavoidable impurities, the aluminum alloy is heated to 500 to 600 degrees Celsius.
After soaking and hot rolling at a temperature of
Heating to a temperature of 400 to 600℃ at a heating rate of 100℃/min or more, immediately after heating, or after holding for less than 10 minutes, cooling to a temperature of 200℃ at a cooling rate of 100℃/hour or more, average The goal is to keep the crystal grain size to 25μ or less, keep components that contribute to bake hardening in a solid solution state, and perform cold rolling of 30% or more to improve formability, pressure resistance, can openability, and pitting resistance. This is a method for producing a bake-hardening aluminum alloy for packaging with excellent properties. The method for producing an aluminum alloy for packaging according to the present invention will be described in detail below. First, the components and content ratios of the aluminum alloy used in the method for producing an aluminum alloy for packaging according to the present invention will be explained. Cu is an element that coexists with Mg and has the effect of increasing strength, and also makes aluminum alloys noble.If the content is less than 0.05wt%, the bake-hard effect cannot be obtained, and if the content is less than 1wt%, If it is contained in excess, the bake-hardening effect cannot be expected to be as great as when it is contained, and susceptibility to intergranular corrosion increases. Therefore, the Cu content is set to 0.05 to 1 wt%. Although Mn does not directly affect the bake-hard effect, it is effective in improving strength and refining crystal grains. Like Cu, this Mn enriches aluminum alloys electrochemically, and also improves corrosion resistance. improve,
In addition, it is an element that improves can opening properties through the action of intermetallic compounds [Al 6 (Mn, Fe)], etc., and its content is
If the content is less than 0.3 wt%, these effects will not be sufficient, and if the content exceeds 1.5 wt%, coarse intermetallic compounds will be formed, which will become a starting point for cracking, especially in multi-step overhang processing such as can-end. Therefore, the Mn content is set to 0.3 to 1.5 wt%. Mg is an effective element for improving strength, and is especially essential to obtain a bake-hard effect. If the content is less than 0.3wt%, high strength for thinning the wall cannot be obtained, and if the content is less than 0.3wt%, If the content exceeds this amount, the corrosion loss will increase and the corrosion resistance will decrease. Therefore, the Mg content is set to 0.3 to 2.8 wt%. Like Mn, Cr is electrochemically noble, and is also a very important element for improving corrosion resistance and can opening properties through the action of intermetallic compounds.The content is 0.03wt. If the content is less than 0.3 wt%, this effect will not be observed, and if the content exceeds 0.3 wt%, the size of the intermetallic compound will grow and the formability will deteriorate. Therefore, the Cr content is 0.03~0.3wt%
shall be. There are no particular restrictions on the elements other than those listed above, as long as they are impurities normally contained in commercially available pure aluminum, but Si and
The smaller the amount of Fe, the more desirable it is, and it is desirable that each of Zn and Ti be 0.05 wt% or less. Next, a method for producing an aluminum alloy for packaging according to the present invention will be explained. An aluminum alloy with the above-mentioned components and content ratios is melted and cast using a normal method to form an ingot, and this ingot is soaked at a temperature of 500 to 600°C. This is to obtain good rolling and stretchability (particularly small-diameter multistage stretchability), and if the soaking temperature is less than 500°C, edge cracks are likely to occur during hot rolling, and many fine precipitates are generated. Stretchability decreases, and burning and blistering occur at soaking temperatures exceeding 600°C, leading to deterioration of product properties such as workability and surface quality. Therefore, the soaking temperature is set at 500 to 600°C. Although there are no particular conditions for the subsequent hot rolling, it is preferable to finish the hot rolling at a temperature of 250°C or higher. Cold rolling may or may not be performed after this hot rolling. The next step is intermediate annealing, which is an important step in order to obtain a bake-hard effect and excellent formability (fine crystal grains).
The temperature is set at 600°C to form a solid solution of Mg and Cu, which are necessary for bake-hardening.If the heating temperature is lower than 400°C, solid solution will not be achieved sufficiently, and the subsequent bake-hardening effect cannot be expected. At a heating temperature exceeding .degree. C., this effect is saturated and cannot be expected much, and instead causes burning and the like, leading to deterioration of characteristics. Therefore, the heating temperature is 400 to 600°C.
The heating rate at this time must be 100/min or more, and the heating rate must be 100/min or more immediately after heating or after holding for less than 10 minutes.
It is necessary to cool to a temperature of 200℃ or less at a cooling rate of ℃/hour or more, and this is to create fine crystal grains (25μm or less) that are effective for formability, and to force Mg and Cu into solid solution. Outside these ranges, bake hard effects and high formability due to fine crystal grains cannot be obtained. Note that holding the holding time within 10 minutes does not improve the bake-hard effect even if the holding time exceeds 10 minutes, instead causing crystal grain growth and wasting energy. The reason for cooling is to harden by baking. [Example] An example of the method for producing an aluminum alloy for packaging according to the present invention will be described. Experiment 1 An aluminum alloy ingot with the ingredients and content ratios shown in Table 1 was soaked at 590°C for 4 hours and hot rolled to form a 4 mm hot rolled plate, and then cold rolled to a thickness of 1 mm. Intermediate annealing was performed at 500°C for 0 seconds (temperature increase/decrease at 800°C/min). Next, it was cold rolled to a thickness of 0.33 mm. In addition, in the case of the composition of the comparative example in Table 1,
Since burning occurred under the above soaking conditions (590°C x 4 hours), soaking was performed at 510°C x 4 hours. Table 2 shows the mechanical properties (as rolled, after baking), grain size after intermediate annealing, multistage stretch formability, open can test results, and corrosion resistance evaluation results. From this Table 2, aluminum alloy (No.
1, No. 2, and No. 3) showed bake-hardening phenomenon due to Al-Cu-Mg-based fine precipitates, the tensile strength was improved by baking, and the crystal grain size was the same as that of the present invention. All aluminum alloys for packaging
It can be seen that the aluminum alloy for packaging according to the present invention has an excellent multi-stage elongation property with a diameter of 25 μm or less, and also has excellent can opening properties due to the coexistence of Mn and Cr, and also has excellent corrosion resistance. Comparative Example No. 6 shows a baking phenomenon and has small crystal grains and good moldability, but it does not contain Cr and therefore has problems in can openability and corrosion resistance.

【表】【table】

【表】【table】

【表】【table】

【表】 実験 2 実施例1における中間焼鈍を370℃×2時間、
加熱、冷却速度40℃/時間で実施した場合の、
0.3mm厚さの機械的性質、中間焼鈍後の結晶粒径、
多段張り出し成形性、開缶試験結果および耐蝕性
評価結果を第3表に示す。 この第3表からわかるように、中間焼鈍を従来
条件の370℃×2時間、加熱、冷却速度40℃/時
間で実施した場合、本発明に係る包装用アルミニ
ウム合金の製造方法において使用するアルミニウ
ム合金の含有成分および含有割合においても、ベ
ーキングによる軟化が大きく、高強度が得られ
ず、また、中間焼鈍後の結晶粒も25μm以上とな
り、現状の板厚では成形上問題はないが、薄肉化
した場合には問題がある。
[Table] Experiment 2 Intermediate annealing in Example 1 at 370°C for 2 hours.
When carried out at a heating and cooling rate of 40℃/hour,
Mechanical properties of 0.3mm thickness, grain size after intermediate annealing,
Table 3 shows the multi-stage stretch formability, can opening test results, and corrosion resistance evaluation results. As can be seen from Table 3, when intermediate annealing is carried out under the conventional conditions of 370°C x 2 hours and a heating and cooling rate of 40°C/hour, the aluminum alloy used in the method for producing an aluminum alloy for packaging according to the present invention Regarding the components and content ratios, the softening due to baking is large and high strength cannot be obtained, and the crystal grains after intermediate annealing are 25 μm or more. Although there is no problem in forming with the current plate thickness, it is difficult to obtain high strength. There is a problem in some cases.

【表】【table】

【表】【table】

【表】 実験 3 第1表に示すNo.1合金について、中間焼鈍を第
4表に示す条件で実施し、0.3mmの厚さの機械的
性質、中間焼鈍後の結晶粒を第4表に示す。な
お、到達温度(加熱温度)における保持時間は0
秒である。 この第4表から、到達温度(加熱温度)は400
℃以上が必要であり、バーニング等を考慮する
と、400〜600℃の加熱温度としなければならず、
また、加熱速度が100℃/分以下では微細な結晶
粒が得られず、冷却速度が100℃/時間(1.7℃/
分)以下ではベークハードに有効なCu、Mgが冷
却時に析出してベーキング時の硬化が得られな
い。
[Table] Experiment 3 For the No. 1 alloy shown in Table 1, intermediate annealing was performed under the conditions shown in Table 4, and the mechanical properties and crystal grains after intermediate annealing at a thickness of 0.3 mm are shown in Table 4. show. Note that the holding time at the reached temperature (heating temperature) is 0.
Seconds. From this table 4, the reached temperature (heating temperature) is 400
The heating temperature must be 400 to 600 degrees Celsius, considering burning, etc.
Furthermore, if the heating rate is less than 100℃/min, fine crystal grains cannot be obtained, and if the cooling rate is 100℃/hour (1.7℃/min), fine grains cannot be obtained.
minutes), Cu and Mg, which are effective for baking hard, precipitate during cooling and hardening during baking cannot be achieved.

【表】 [発明の効果] 以上説明したように、本発明に係る包装用アル
ミニウム合金の製造方法は上記の構成であるか
ら、製造されたアルミニウム合金は、塗装印刷時
のベーキング工程でベークハード効果を利用して
高強度を保持し、かつ、結晶粒の微細化により張
り出し性、リベツト性、絞り性等の成形性に優
れ、さらに、開缶性、耐孔蝕性にも優れており、
そして、 (1) ベークハード効果および結晶粒の微細化によ
り、高強度で各種成形性に優れ、しかも開缶
性、耐蝕性に優れるため、通常の飲料缶の蓋お
よび胴(DRD缶)に最適である。 (2) 耐孔蝕性に優れるため食塩を含む飲料その他
の食品用オールスチール缶の蓋をイージーオー
プン型の蓋に最適なアルミニウム材に変えるこ
とができる。 (3) オールアルミニウム缶においても本発明に係
る包装用アルミニウム合金板はその蓋材として
良好な性質を有している。 (4) 食品缶の缶胴(DRD缶)にも使用可能であ
る。 という効果を有しているものである。
[Table] [Effects of the Invention] As explained above, since the method for producing an aluminum alloy for packaging according to the present invention has the above configuration, the produced aluminum alloy has no bake-hard effect during the baking process during coating printing. It maintains high strength by utilizing this, and has excellent formability such as stretchability, rivetability, and drawability due to the refinement of crystal grains, and also has excellent can openability and pitting resistance.
(1) Due to the bake-hard effect and grain refinement, it has high strength and excellent formability in various forms, as well as excellent openability and corrosion resistance, making it ideal for the lids and bodies of regular beverage cans (DRD cans). It is. (2) Due to its excellent pitting resistance, the lids of all-steel cans for beverages and other foods containing salt can be changed to aluminum, which is ideal for easy-open lids. (3) The aluminum alloy plate for packaging according to the present invention has good properties as a lid material for all-aluminum cans as well. (4) Can also be used for food can bodies (DRD cans). It has this effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は荷重と伸びの関係を示す図、第2図単
体の耐蝕性試験方法を示す図、第3図はブリキと
の組み合わせによる耐蝕性試験方法を示す図であ
る。
FIG. 1 is a diagram showing the relationship between load and elongation, FIG. 2 is a diagram showing a corrosion resistance test method for a single product, and FIG. 3 is a diagram showing a corrosion resistance test method in combination with tinplate.

Claims (1)

【特許請求の範囲】 1 Cu0.05〜1wt%、Mn0.3〜1.5wt%、 Mg0.3〜2.8wt%、Cr0.03〜0.3wt% を含有し、残部A1および不可避不純物からなる
アルミニウム合金を溶解、鋳造後、500℃〜600℃
の温度で均熱処理を行い、熱間圧延を行つた後、
400〜600℃の温度に100℃/分以上の加熱速度で
加熱し、加熱後直ちに、または、10分以内保持し
た後、100℃/時間以上の冷却速度で200℃以下の
温度まで冷却し、平均結晶粒25μ以下とすると共
に焼付硬化に寄与する成分を固溶状態に保ち、さ
らに、30%以上の冷間圧延を行うことを特徴とす
る成形性、耐圧性、開缶性、耐孔蝕性に優れた焼
付硬化型包装用アルミニウム合金の製造方法。
[Claims] 1. An aluminum alloy containing 0.05 to 1 wt% of Cu, 0.3 to 1.5 wt% of Mn, 0.3 to 2.8 wt% of Mg, and 0.03 to 0.3 wt% of Cr, with the balance consisting of A1 and inevitable impurities. After melting and casting, 500℃~600℃
After soaking and hot rolling at a temperature of
Heating to a temperature of 400 to 600°C at a heating rate of 100°C/min or more, immediately after heating, or after holding for within 10 minutes, cooling to a temperature of 200°C or less at a cooling rate of 100°C/hour or more, Formability, pressure resistance, can openability, and pitting resistance are characterized by having an average grain size of 25 μ or less, keeping components that contribute to bake hardening in a solid solution state, and performing cold rolling of 30% or more. A method for manufacturing a bake-hardening aluminum alloy for packaging with excellent properties.
JP29546686A 1986-12-11 1986-12-11 Aluminum alloy for wrapping and manufacture thereof Granted JPS63149348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29546686A JPS63149348A (en) 1986-12-11 1986-12-11 Aluminum alloy for wrapping and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29546686A JPS63149348A (en) 1986-12-11 1986-12-11 Aluminum alloy for wrapping and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS63149348A JPS63149348A (en) 1988-06-22
JPH0320458B2 true JPH0320458B2 (en) 1991-03-19

Family

ID=17820956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29546686A Granted JPS63149348A (en) 1986-12-11 1986-12-11 Aluminum alloy for wrapping and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63149348A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198454A (en) * 1988-02-02 1989-08-10 Kobe Steel Ltd Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JP2599450B2 (en) * 1988-10-26 1997-04-09 古河電気工業株式会社 Manufacturing method of aluminum alloy plate for can end
DE102006045162A1 (en) 2006-09-25 2008-04-03 Robert Bosch Gmbh hydraulic block

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224736A (en) * 1984-04-21 1985-11-09 Kobe Steel Ltd Aluminum alloy having superior pitting corrosion resistance
JPS61207543A (en) * 1985-03-12 1986-09-13 Furukawa Alum Co Ltd Can end material having pitting corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224736A (en) * 1984-04-21 1985-11-09 Kobe Steel Ltd Aluminum alloy having superior pitting corrosion resistance
JPS61207543A (en) * 1985-03-12 1986-09-13 Furukawa Alum Co Ltd Can end material having pitting corrosion resistance

Also Published As

Publication number Publication date
JPS63149348A (en) 1988-06-22

Similar Documents

Publication Publication Date Title
JP5391234B2 (en) Aluminum alloy plate for PP cap
JPS626740B2 (en)
JPS6339655B2 (en)
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JPH0320458B2 (en)
JP3726893B2 (en) Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JP2525017B2 (en) Aluminum alloy material for can ends
JPH0331779B2 (en)
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
CN105658827B (en) Cover aluminium alloy plate and its manufacture method
US4502900A (en) Alloy and process for manufacturing rolled strip from an aluminum alloy especially for use in the manufacture of two-piece cans
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JP2783311B2 (en) Al alloy plate for negative pressure can stay tab type end with excellent openability and method of manufacturing the same
JP2004010941A (en) Aluminum alloy sheet for bottle-type beverage can
JP2773874B2 (en) Manufacturing method of aluminum alloy plate
JP5335189B2 (en) Aluminum alloy plate for cap and method for producing the same
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JP3411840B2 (en) Aluminum alloy plate for can end
JPH04107237A (en) Al alloy sheet for can end excellent in corrosion resistance and its manufacture
JPH09279281A (en) Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production
JP2895510B2 (en) Manufacturing method of aluminum alloy material for forming
JP2001032057A (en) Production of aluminum alloy sheet for can end excellent in blowup resistance
JPH04325659A (en) Manufacture of aluminum alloy hard sheet for forming excellent in tearing property
JPH0543778B2 (en)
JP3733566B2 (en) Manufacturing method of aluminum alloy coated tab material with excellent bending workability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees