JPH04107237A - Al alloy sheet for can end excellent in corrosion resistance and its manufacture - Google Patents

Al alloy sheet for can end excellent in corrosion resistance and its manufacture

Info

Publication number
JPH04107237A
JPH04107237A JP22386990A JP22386990A JPH04107237A JP H04107237 A JPH04107237 A JP H04107237A JP 22386990 A JP22386990 A JP 22386990A JP 22386990 A JP22386990 A JP 22386990A JP H04107237 A JPH04107237 A JP H04107237A
Authority
JP
Japan
Prior art keywords
rolling
cold
corrosion resistance
alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22386990A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneda
豊 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22386990A priority Critical patent/JPH04107237A/en
Publication of JPH04107237A publication Critical patent/JPH04107237A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al alloy sheet material for a can end excellent in corrosion resistance and stress corrosion cracking resistance by executing soaking treatment to an Al allay ingot obtd. by adding specified ratios of Mg, Mn or the like to Al and thereafter subjecting it to hot rolling and cold rolling under specified conditions. CONSTITUTION:As an Al alloy as a can-top material for beer and carbonated drinks, the one having a compsn. contg., by weight, 2.0 to 4.O% Mg and 0.5 to 1.2% Mn in such a manner that 3.0%<=Mg+Mn<=5.0% and Fe+Mn<=1.5% are satisfied or furthermore contg. at least one kind among <=0.6% Cu, <=0.3% Cr and <=0.5% Zn is melted. The ingot of this Al alloy is subjected to soaking treatment, is thereafter hot-rolled into a steel sheet, is successively cold-rolled at >=50% rolling ratio, is thereafter subjected to annealing treatment and is moreover cold-rolled at 50 to 80% rolling ratio into the shape of a thin sheet. The Al allay sheet material for a can end in which the areal occupancy ratio of crystallized products in the surface is regulated to <=1.5% and excellent in stress corrosion cracking resistance can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ビール及び炭酸飲料用などの缶蓋のAnQ金
板に係り、更に詳しくは、この種の用途に適する耐食性
、特に耐応力腐食割れ性に優れた陽圧(内圧)缶用An
合全合板びその製造方法に関するものである。 (従来の技術) 従来より、ビール及び炭酸飲料等の陽圧缶の蓋材として
番よ、AA5182或いはAA5082が用いられてい
る。 これらのAn合全合板材、塗装処理が行われて後にワッ
クスが塗布され、蓋として加工される。 ところで、An合合板の塗装方法としては、シート状で
塗装する方法とコイルを連続塗装する方法がある。 前者の場合、圧延上がりの板をそのまま塗装すると、塗
装時の熱影響による加工歪の緩和(板そり)が生じ、板
の保持部と材料が接触し、塗装欠陥が発生する場合があ
る。このため、シート塗装の場合は予め加工歪を除去す
ることを目的として100〜200℃の温度で歪み取り
焼鈍が実施されている。 (発明が解決しようとする課題) ところで、前述の如〈従来の製造工程で製造されたシー
ト塗装用材料は、耐食性に問題を生じる。 すなわち、加工歪みの除去を目的として100〜200
℃の温度で熱処理(歪み取り焼鈍)した場合、従来の5
182及び5082材はMgを多く含有するため、上記
熱処理時にMg原子が格子欠陥の多い結晶粒界に集り、
その部位にβ相(MgzAn、)が優先的に析出する。 このβ相は母材であるAnに比べて電位が卑なため腐食
環境に曝されると優先的に溶解し、粒界腐食、或いは応
力が負荷されている場合には応力腐食割れが生じる。 このような材料を飲料缶の蓋材として用いた場合、缶内
圧による引張り応力と腐食環境が重なった場合、応力腐
食割れによる内容物の漏れが生じる。 なお、飲料用缶蓋は、近年、薄肉高強度化によるコスト
ダウンが進められており、上記問題は今後更に重要とな
る。 このため、加工歪みの除去法として、β相を析出させな
い状態で加工歪みを除去する熱処理、すなわち、連続焼
鈍炉による高温短時間の熱処理が考えられるが、この場
合は、製品板厚が薄いために、設備能力上の規制を受け
ると共に、製品強度にバラツキが生じ易い等の問題を生
じ、また製品のコストアップにもつながる。 一方、200℃を超える温度で熱処理する方法によれば
、結晶粒内へもβ相が析出し、結晶粒内と粒界の電位差
が小さくなり、若干の改善効果は認められるものの、未
だ不充分である。なお、200℃を超える熱処理の場合
、圧延油の焼付き防止のために材料の洗浄工程が必要と
なり、コストアップとなる。 上述のように、素材の状態で粒界腐食或いは応力腐食割
れの生じない材料が要求されているのが実情である。 本発明は、かへる要請に応えるにくなされたものであっ
て、ビール及び炭酸飲料用などの缶蓋のAn合金板にお
いて、耐食性、特に耐応力腐食割れ性に優れたAl合金
板を提供し、及びその製造方法を提供することを目的と
するものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者らは、現行材と同等
の強度を有し且つ高耐食性のキャンエンド材を開発すべ
く鋭意研究を重ねた。 その結果、粒界腐食或いは応力耐食割れはMg添加量に
大きく影響を受け、実用上4.0%以下であれば殆ど問
題がないことが判明した。 しかし、Mg添加量の低下に伴って材料強度も低下する
が、これに対しては耐食性を低下させずに強度を上昇さ
せる元素としてMnが最も優れることを見出した。この
場合、Mn添加量が多くなると金属間化合物が多数形成
され、また強度が高すぎることによる加工割れを招くた
め、適度にコントロールする必要があることが判明した
。 これらの知見に基づき更に実験研究を重ね、ここに本発
明をなしたものである。 すなわち、本発明は、Mg:2.O〜4.0%及びMn
:0.5−1.2%を含み、且つ 3.0%≦Mg +Mn≦5.0% Fe十Mn≦1.5% を満足し、必要に応じて、更に、Cu≦0.6%、Cr
≦0.3%及びZn≦0.5%のうちの少なくとも1種
を含み、残部がAn及び不純物からなり、冷延板の板表
面における晶出物面積占有率が1゜5%以下であること
を特徴とする耐食性に優れたキャンエンド用An合金板
を要旨とするものである。 また、その製造方法は、上記化学成分を有するAn合金
鋳塊を均熱化処理した後、熱間圧延し、その後圧延率5
0%以上で冷間圧延を行い、更に中間焼鈍後、50〜8
0%で冷間圧延し、冷延板の板表面における晶出物面積
占有率が1.5%以下のものを得ることを特徴とするも
のである。 以下に本発明を更に詳細に説明する。 (作用) 先ず、本発明におけるAn金合金化学成分の限定理由に
ついて説明する。 Mgは強度を付与する重要な元素であり、少なくとも2
.0%以上を添加しない強度が低く、エンド材として使
用できない。一方、4.0%を超えると高強度材が得ら
れるものの、耐食性が著しく低下するため、Mgの添加
量は2.0〜4.0%の範囲とする。 Mnも強度を付与する重要な元素であり、少なくとも0
.5%以上を添加しないとエンド材としての強度が得ら
れない。一方、1.2%を超えると、金属間化合物生成
の増加に伴い加工割れが生じ易くなる。したがって、M
nの添加量は0.5〜1.2%の範囲とする。 但し、MgとMnの合計量(Mg+Mn)は強度及び成
形性に大きな影響を及ぼし、M g + M n量が3
゜0%未満ではエンド材として必要な強度が得られない
。一方、M g + M n量が5.0%を超えると高
強度化には有効であるものの、成形性が著しく低下する
。したがって、3.0%≦Mg+Mn≦5.0%の関係
を満たす必要がある。 また、FeとMnの合計量(Fe+Mn)も成形性に大
きな影響を及ぼし、Fe+Mn量が1.5%を超えると
、巨大晶出物の生成により成形性が著しく低下する。し
たがって、Fe+Mn≦1.5%の関係を満たす必要が
ある。 なお、必要に応じて、Cu、Cr及びZnの少なくとも
1種を適量にて添加することができる。 Cuは、強度向上に有効な元素であるものの、0.6%
を超えると耐食性が低下(全面腐食)するため、その添
加量は0.6%以下とする。 Crは、Cuと同様、強度向上に有効であると共に、組
織安定化にも有効であるが、0.3%を超えると巨大晶
出物が生成し、加工割れの原因となるため、その添加量
は0.3%以下とする。 Znは、晶出物の微細化に有効な元素であるが、0.5
%を超えると耐食性が低下(全面腐食)するため、その
添加量は0.5%以下とする。 次に本発明の製造法について説明する。 上記化学成分を有するAn金合金鋳塊は、常法により均
熱化処理を施した後、熱間圧延し、中間焼鈍を含む冷間
圧延を行う。 但し、中間焼鈍前の冷間圧延率は、結晶粒及び成形性に
影響を及ぼし、50%未満では後の中間焼鈍時の結晶粒
が大きくなり、成形性の低下を招くため、中間焼鈍前の
冷間圧延率は50%以上とする必要がある。 なお、中間焼鈍方法は特に規定しないが、完全再結晶粒
が得られることが必須であり、結晶粒の観点からすれば
、連続焼鈍(CAL)の使用が好ましい。 また、中間焼鈍後の冷間圧延率は、強度及び成形性に影
響を及ぼし、50%未満ではエンド材としての必要な強
度が得られない。一方、80%を超えると高強度化には
有効であるものの、強度が高すぎることによる加工割れ
を招くと共に、素材の異方性が大きくなるので好ましく
ない。したがって、中間焼鈍後の冷間加工率は50〜8
0%の範囲とする。 また、最終製品厚において板表面における晶出物分布は
、成形性及び開缶時の引き裂き性に影響を及ぼし、晶出
物の面積占有率が1.5%を超えると、引き裂き荷重が
低下し、開缶性に優れるものの、成形性が著しく低下す
るため、晶出物面積占有率は1.5%以下である必要が
ある。 なお、本発明材はシート塗装、コイル連続塗装のいずれ
も適用でき、シート塗装では歪み取り焼鈍を必要としな
い。 (実施例) 以下に本発明の実施例を示す。 大嵐叢圭 第1表に示す化学成分を有するAn合金鋳塊にに、均熱
化処理として500℃の温度で3時間保持の処理を施し
、その後、熱間圧延にて板厚4mmとした。 次いで、冷間圧延により1.O+amとした。その後、
CAL焼鈍(加熱冷却速度700℃/win、到達温度
450℃、保持時間2秒)を施し、更に冷間圧延にて製
品厚さ0.3麺肩とした。 また、エンド材は塗装後成形加工されるため、200″
Cx20分のベーキング処理を行い、塗装した場合と同
じ条件とした。 製品厚0.3■鵬のベーキング処理後の機械的性質、成
形性(リベット加工性)、耐食性の評価結果を第2表に
示す。また、晶出物面積占有率も併記する。 なお、リベット加工性は、第1図に示す加工性を用い、
限界張出し高さにて評価した。耐食性は、第2図に示す
U−Bend通電法にて応力腐食割れの割れ寿命にて評
価した。晶出物面積占有率は、表面研磨後、SEMIt
察による画像処理にて求めた。 第2表において、比較材NQIは、Mg量が少ないので
エンド材としての強度が得られず、またMg量が少ない
ためにリベット加工性の低下が生じている。 本発明材のNα2及び&3は強度、リベット加工性、耐
食性とも良好である。 比較材Na 4は、Mn量が少ないのでエンド材として
の強度が得られず、実用上問題がある。 本発明材Nc5は強度、リベット加工性、耐食性とも優
れている。 比較材&6は、晶出物面積占有率が本発明範囲より大き
いのでリベット加工性の著しい低下を招いている。 本発明材N1117は強度、リベット加工性、耐食性と
も優れている6 従来材のNα8及びに9は耐食性に問題がある。
(Industrial Application Field) The present invention relates to an AnQ metal plate for can lids for beer and carbonated beverages, and more specifically, it is suitable for this type of use and has excellent corrosion resistance, especially positive pressure corrosion cracking resistance. (Internal pressure) An for cans
The present invention relates to a method for manufacturing composite plywood. (Prior Art) Conventionally, AA5182 or AA5082 has been used as a lid material for positive pressure cans for beer, carbonated drinks, etc. These An composite plywood materials are painted, then waxed and processed into lids. By the way, there are two methods of painting An plywood: a method of painting in sheet form and a method of continuously painting coils. In the former case, if the rolled board is painted as is, processing distortion (board warpage) will be relaxed due to the thermal effect during painting, and the holding part of the board will come into contact with the material, which may cause coating defects. For this reason, in the case of sheet coating, strain relief annealing is performed in advance at a temperature of 100 to 200° C. for the purpose of removing processing strain. (Problems to be Solved by the Invention) By the way, as mentioned above, sheet coating materials manufactured by conventional manufacturing processes have problems in corrosion resistance. In other words, 100 to 200
When heat treated (strain relief annealing) at a temperature of ℃, the conventional 5
Since 182 and 5082 materials contain a large amount of Mg, Mg atoms gather at grain boundaries with many lattice defects during the heat treatment,
The β phase (MgzAn) preferentially precipitates at that site. Since this β phase has a base potential compared to the base material An, it preferentially dissolves when exposed to a corrosive environment, causing intergranular corrosion or stress corrosion cracking when stress is applied. When such a material is used as a lid material for a beverage can, if the tensile stress caused by the internal pressure of the can and the corrosive environment overlap, leakage of contents occurs due to stress corrosion cracking. In recent years, the cost of beverage can lids has been reduced by making them thinner and stronger, and the above problem will become even more important in the future. Therefore, as a method for removing machining strain, heat treatment that removes machining strain without precipitating the β phase, that is, heat treatment in a continuous annealing furnace at high temperature and for a short time, can be considered, but in this case, since the product plate is thin, In addition to being subject to restrictions on equipment capacity, this also causes problems such as easy variation in product strength, and also leads to increased product costs. On the other hand, according to the method of heat treatment at a temperature exceeding 200℃, the β phase also precipitates inside the crystal grains, and the potential difference between the inside of the crystal grains and the grain boundaries becomes smaller, and although a slight improvement effect is recognized, it is still insufficient. It is. In addition, in the case of heat treatment exceeding 200° C., a material cleaning step is required to prevent rolling oil from seizing, which increases costs. As mentioned above, the reality is that there is a demand for materials that do not undergo intergranular corrosion or stress corrosion cracking in their raw state. The present invention has been made in response to these demands, and provides an Al alloy plate with excellent corrosion resistance, particularly stress corrosion cracking resistance, for use in can lids for beer and carbonated beverages. The object of the present invention is to provide a method for producing the same. (Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted extensive research to develop a canned material that has strength equivalent to that of current materials and has high corrosion resistance. As a result, it was found that intergranular corrosion or stress corrosion cracking is greatly affected by the amount of Mg added, and practically there is no problem if it is 4.0% or less. However, as the amount of Mg added decreases, the strength of the material also decreases, and we have found that Mn is the most excellent element for increasing strength without decreasing corrosion resistance. In this case, it has been found that when the amount of Mn added increases, a large number of intermetallic compounds are formed, and the strength is too high, leading to processing cracks, so it is necessary to appropriately control it. Based on these findings, we have conducted further experimental research and have hereby accomplished the present invention. That is, the present invention provides Mg:2. O~4.0% and Mn
: Contains 0.5-1.2%, and satisfies 3.0%≦Mg +Mn≦5.0% Fe+Mn≦1.5%, and if necessary, further Cu≦0.6% ,Cr
Contains at least one of ≦0.3% and Zn≦0.5%, the remainder consists of An and impurities, and the area occupation rate of crystallized substances on the plate surface of the cold-rolled plate is 1°5% or less The object of the present invention is to provide an An alloy plate for can ends which is characterized by excellent corrosion resistance. In addition, the manufacturing method includes soaking an An alloy ingot having the above chemical components, hot rolling it, and then rolling it at a rolling rate of 5.
After cold rolling at 0% or more and further intermediate annealing, 50 to 8
It is characterized by cold rolling at 0% to obtain a cold-rolled sheet with an area occupation rate of crystallized substances on the plate surface of 1.5% or less. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical composition of the An-gold alloy in the present invention will be explained. Mg is an important element that imparts strength, and at least 2
.. If 0% or more is not added, the strength is low and it cannot be used as an end material. On the other hand, if it exceeds 4.0%, although a high-strength material can be obtained, the corrosion resistance will be significantly reduced, so the amount of Mg added should be in the range of 2.0 to 4.0%. Mn is also an important element that imparts strength, and at least 0
.. Unless 5% or more is added, strength as an end material cannot be obtained. On the other hand, if it exceeds 1.2%, processing cracks are likely to occur due to increased formation of intermetallic compounds. Therefore, M
The amount of n added is in the range of 0.5 to 1.2%. However, the total amount of Mg and Mn (Mg+Mn) has a large effect on strength and formability, and when the amount of Mg + Mn is 3
If it is less than 0%, the strength required for the end material cannot be obtained. On the other hand, if the amount of M g + M n exceeds 5.0%, although it is effective for increasing the strength, the moldability is significantly reduced. Therefore, it is necessary to satisfy the relationship 3.0%≦Mg+Mn≦5.0%. Furthermore, the total amount of Fe and Mn (Fe+Mn) also has a large effect on the moldability, and when the Fe+Mn amount exceeds 1.5%, the moldability is significantly reduced due to the formation of giant crystallized substances. Therefore, it is necessary to satisfy the relationship Fe+Mn≦1.5%. Note that, if necessary, at least one of Cu, Cr, and Zn can be added in an appropriate amount. Although Cu is an effective element for improving strength, 0.6%
If the amount exceeds 0.6%, the corrosion resistance will decrease (general corrosion), so the amount added should be 0.6% or less. Like Cu, Cr is effective in improving strength and stabilizing the structure, but if it exceeds 0.3%, giant crystallized substances will be generated and cause processing cracks, so its addition is not recommended. The amount shall be 0.3% or less. Zn is an effective element for making crystallized substances finer, but at 0.5
%, the corrosion resistance decreases (general corrosion), so the amount added should be 0.5% or less. Next, the manufacturing method of the present invention will be explained. The An gold alloy ingot having the above chemical composition is subjected to a soaking treatment by a conventional method, then hot rolled, and then cold rolled including intermediate annealing. However, the cold rolling ratio before intermediate annealing affects the crystal grains and formability, and if it is less than 50%, the crystal grains during subsequent intermediate annealing will become larger, resulting in a decrease in formability. The cold rolling rate needs to be 50% or more. Although the intermediate annealing method is not particularly specified, it is essential to obtain completely recrystallized grains, and from the viewpoint of crystal grains, continuous annealing (CAL) is preferably used. Further, the cold rolling rate after intermediate annealing affects the strength and formability, and if it is less than 50%, the strength required as an end material cannot be obtained. On the other hand, if it exceeds 80%, although it is effective for increasing the strength, it is not preferable because the strength is too high, leading to processing cracks, and the anisotropy of the material increases. Therefore, the cold working rate after intermediate annealing is 50~8
The range is 0%. In addition, the distribution of crystallized substances on the plate surface in the final product thickness affects the formability and tearability when opening the can, and when the area occupation rate of crystallized substances exceeds 1.5%, the tearing load decreases. Although the can-openability is excellent, the moldability is significantly reduced, so the area occupancy of the crystallized matter needs to be 1.5% or less. The material of the present invention can be applied to either sheet coating or continuous coil coating, and sheet coating does not require strain relief annealing. (Example) Examples of the present invention are shown below. An alloy ingot having the chemical composition shown in Table 1 was subjected to soaking treatment at a temperature of 500° C. for 3 hours, and then hot rolled to a plate thickness of 4 mm. Then, by cold rolling 1. It was set to O+am. after that,
CAL annealing (heating/cooling rate 700° C./win, final temperature 450° C., holding time 2 seconds) was performed, and the product was further cold rolled to a product thickness of 0.3 noodle shoulders. In addition, the end material is molded after painting, so the length of 20"
Cx was subjected to baking treatment for 20 minutes under the same conditions as when painting. Table 2 shows the evaluation results of mechanical properties, formability (riveting workability), and corrosion resistance after baking for a product with a thickness of 0.3 mm. In addition, the area occupancy rate of crystallized substances is also listed. Note that the riveting processability is determined using the processability shown in Figure 1.
Evaluation was made based on the limit overhang height. Corrosion resistance was evaluated by the cracking life of stress corrosion cracking using the U-bend energization method shown in FIG. The area occupancy rate of crystallized substances is determined by SEMIt after surface polishing.
It was determined through image processing by the inspector. In Table 2, the comparison material NQI has a small amount of Mg, so it cannot have the strength as an end material, and also has a low rivet workability because of the small amount of Mg. Nα2 and &3 of the present invention materials have good strength, riveting workability, and corrosion resistance. Comparative material Na 4 has a small amount of Mn, so it does not have enough strength as an end material, and has a practical problem. The material Nc5 of the present invention is excellent in strength, riveting workability, and corrosion resistance. Comparative material &6 had a crystallized substance area occupation rate greater than the range of the present invention, resulting in a significant decrease in riveting workability. Inventive material N1117 is excellent in strength, riveting workability, and corrosion resistance.6 Conventional materials Nα8 and Nα9 have problems in corrosion resistance.

【以下余白] ス11」里 実施例1の第1表中の)&15の化学成分(本発明範囲
内)を有する熱延板について、第3表に示す圧延率条件
にて冷間圧延を行った。 なお、中間焼鈍は実施例1の場合と同じ条件とし、また
最終板厚も実施例1の場合と同一とした。 更に、エンド材は塗装後成形加工されるため、200’
CX20分のベーキング処理を行い、塗装した場合と同
じ条件とした。 製品厚0.3mmのベーキング処理後の機械的性質、成
形性(リベット加工性)、耐食性の評価結果を第3表に
示す。また、異方性、晶出物面積占有率も併記する。 なお、リベット加工性及び耐食性の評価要領並びに晶出
物面積占有率の測定法は実施例1の場合と同様であり、
異方性は40%絞りカップにて次式で求めた絞り率(%
)で評価した。 間焼鈍前圧延率が少ないため、結晶粒粗大化によるリベ
ット加工性の低下が生じ、エンド材として使用できない
。 比較材魔3は、中間焼鈍後の圧延率が少ないため、エン
ド材としての強度が得られず、使用できない。 本発明材のNα4及びNα5は強度、リベット加工性、
耐食性とも良好であり、また異方性も良好である。 比較材翫6は、中間焼鈍後の圧延率が大きく、高強度が
得られているものの、リベット加工性の低下及び異方性
の増大により実用上問題がある。 比較材Na 7は、比較材Nα3と同様、中間焼鈍後の
圧延率が少なく、リベット加工性は最も優れているもの
の、エンド材としての強度が得られていない。 N118及びNa 9の本発明材は強度、リベット加工
性、耐食性、異方性とも良好である。 【以下余白】 第3表において、比較材のNc 1及び&2は、中(発
明の効果) 以上詳述したように、本発明によれば、ビール及び炭酸
飲料缶用のエンド材において、耐応力腐食割れ性の向上
に大きく寄与し、また適度な強度が得られるので、薄肉
高強度化においても本発明材を用いることにより充分対
応できるものである。 また製造面(安定性、コスト)でも優れている。
[Left below] A hot-rolled sheet having chemical components (within the scope of the present invention) of (11) and 15 in Table 1 of Example 1 was cold-rolled under the rolling rate conditions shown in Table 3. Ta. Note that the intermediate annealing was performed under the same conditions as in Example 1, and the final plate thickness was also the same as in Example 1. Furthermore, since the end material is molded after painting, the 200'
CX was subjected to baking treatment for 20 minutes under the same conditions as when painting. Table 3 shows the evaluation results of mechanical properties, formability (rivet workability), and corrosion resistance after baking treatment for a product with a thickness of 0.3 mm. In addition, anisotropy and area occupancy of crystallized substances are also listed. The evaluation procedures for riveting workability and corrosion resistance and the method for measuring the area occupancy of crystallized substances were the same as in Example 1.
The anisotropy is the reduction rate (%) obtained using the following formula using a 40% reduction cup.
) was evaluated. Since the rolling rate before inter-annealing is low, the rivet workability deteriorates due to coarsening of crystal grains, and it cannot be used as an end material. Comparative material Ma 3 has a low rolling rate after intermediate annealing, so it cannot be used as an end material because it does not have the strength. Nα4 and Nα5 of the present invention material are strength, riveting workability,
It has good corrosion resistance and also good anisotropy. Comparative material 6 has a large rolling reduction after intermediate annealing and has high strength, but has practical problems due to decreased riveting workability and increased anisotropy. Comparative material Na 7, like comparative material Nα3, has a low rolling reduction after intermediate annealing and has the best riveting workability, but does not have the strength as an end material. The N118 and Na9 materials of the present invention have good strength, riveting workability, corrosion resistance, and anisotropy. [Blank below] In Table 3, Nc 1 and &2 of the comparative materials are medium (effects of the invention). Since it greatly contributes to improving corrosion cracking resistance and provides appropriate strength, the use of the material of the present invention is sufficient to meet the requirements for thin walls and high strength. It is also superior in terms of manufacturing (stability, cost).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、 (C)はリベット加工性を評
価する加工法を説明する図で、(a)は第1段目、(b
)は第2段目、(c)は第3段目を示し、第2図はU−
Bend通電法の要領を説明する図である。 (Q) ?st 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 (b) 2引d (C) rd
Figures 1 (a), (b), and (C) are diagrams explaining the processing method for evaluating rivet workability, where (a) is the first stage, (b)
) shows the second stage, (c) shows the third stage, and Fig. 2 shows the U-
It is a figure explaining the point of the Bend energization method. (Q)? st Patent applicant: Kobe Steel, Ltd. Patent attorney Hisashi Nakamura (b) 2nd draw d (C) rd

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Mg:2.0〜4.0
%及びMn:0.5〜1.2%を含み、且つ3.0%≦
Mg+Mn≦5.0% Fe+Mn≦1.5% を満足し、残部がAn及び不純物からなり、冷延板の板
表面における晶出物面積占有率が1.5%以下であるこ
とを特徴とする耐食性に優れたキャンエンド用Al合金
板。
(1) In weight% (the same applies hereinafter), Mg: 2.0 to 4.0
% and Mn: 0.5 to 1.2%, and 3.0%≦
It satisfies Mg+Mn≦5.0% Fe+Mn≦1.5%, the remainder consists of An and impurities, and the area occupation rate of crystallized substances on the plate surface of the cold-rolled plate is 1.5% or less. Al alloy plate for can ends with excellent corrosion resistance.
(2)更に、Cu≦0.6%、Cr≦0.3%及びZn
≦0.5%のうちの少なくとも1種を含む請求項1に記
載のAl合金板。
(2) Furthermore, Cu≦0.6%, Cr≦0.3% and Zn
The Al alloy plate according to claim 1, containing at least one of ≦0.5%.
(3)請求項1又は2に記載の化学成分を有するAl合
金鋳塊を均熱化処理した後、熱間圧延し、その後圧延率
50%以上で冷間圧延を行い、更に中間焼鈍後、50〜
80%で冷間圧延し、冷延板の板表面における晶出物面
積占有率が1.5%以下のものを得ることを特徴とする
耐食性に優れたキャンエンド用Al合金板の製造方法。
(3) After soaking an Al alloy ingot having the chemical composition according to claim 1 or 2, hot rolling is performed, and then cold rolling is performed at a rolling rate of 50% or more, and further after intermediate annealing, 50~
A method for producing an Al alloy plate for can ends having excellent corrosion resistance, characterized by cold rolling at a rolling rate of 80% and obtaining a cold rolled plate having an area occupancy of crystallized matter of 1.5% or less on the plate surface.
JP22386990A 1990-08-25 1990-08-25 Al alloy sheet for can end excellent in corrosion resistance and its manufacture Pending JPH04107237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22386990A JPH04107237A (en) 1990-08-25 1990-08-25 Al alloy sheet for can end excellent in corrosion resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22386990A JPH04107237A (en) 1990-08-25 1990-08-25 Al alloy sheet for can end excellent in corrosion resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH04107237A true JPH04107237A (en) 1992-04-08

Family

ID=16804982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22386990A Pending JPH04107237A (en) 1990-08-25 1990-08-25 Al alloy sheet for can end excellent in corrosion resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH04107237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813108A (en) * 1994-06-29 1996-01-16 Furukawa Electric Co Ltd:The Production of aluminum-manganese-magnesium alloy sheet for building panel
DE10231437B4 (en) 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product
KR20200043695A (en) * 2018-10-18 2020-04-28 삼성전자주식회사 Aluminum alloy
CN112643242A (en) * 2020-12-25 2021-04-13 镇江龙源铝业有限公司 Preparation method of aluminum alloy material for brazing without soldering flux gas protection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247544A (en) * 1988-03-29 1989-10-03 Furukawa Alum Co Ltd Aluminum alloy plate for ring-pull cap
JPH02170940A (en) * 1988-12-22 1990-07-02 Kobe Steel Ltd High strength aluminum alloy thin sheet for baking finish and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247544A (en) * 1988-03-29 1989-10-03 Furukawa Alum Co Ltd Aluminum alloy plate for ring-pull cap
JPH02170940A (en) * 1988-12-22 1990-07-02 Kobe Steel Ltd High strength aluminum alloy thin sheet for baking finish and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813108A (en) * 1994-06-29 1996-01-16 Furukawa Electric Co Ltd:The Production of aluminum-manganese-magnesium alloy sheet for building panel
DE10231437B4 (en) 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product
KR20200043695A (en) * 2018-10-18 2020-04-28 삼성전자주식회사 Aluminum alloy
CN112643242A (en) * 2020-12-25 2021-04-13 镇江龙源铝业有限公司 Preparation method of aluminum alloy material for brazing without soldering flux gas protection

Similar Documents

Publication Publication Date Title
AU761334B2 (en) Steel band with good forming properties and method for producing same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JPS6339655B2 (en)
JPH04107237A (en) Al alloy sheet for can end excellent in corrosion resistance and its manufacture
JP3726893B2 (en) Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JPH03100143A (en) Production of aluminum alloy fin material for brazing
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JPH01119637A (en) Aluminum alloy material for can end
KR101996353B1 (en) Steel sheet for can lid and method for producing the same
JP3222239B2 (en) Hard surface-treated original sheet with high BH property and excellent workability
JP2773874B2 (en) Manufacturing method of aluminum alloy plate
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH09279281A (en) Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production
JPH06316739A (en) Al alloy sheet for negative pressure can stay on tab type end, excellent in can openability, and its production
JPS6330969B2 (en)
JP2980488B2 (en) Method for producing steel sheet for low earring container
JPH06184632A (en) Production of ferritic stainless steel thin sheet
JP3733566B2 (en) Manufacturing method of aluminum alloy coated tab material with excellent bending workability
JP2942172B2 (en) Method of manufacturing aluminum alloy plate for PP cap
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JPS6330387B2 (en)
JPS6280256A (en) Manufacture of material for redrawn vessel
JPH09279320A (en) Production of resin-coated aluminum alloy sheet for can formed by deep drawing and ironing