JP3218099B2 - Method for producing aluminum alloy sheet with low ear ratio and excellent formability - Google Patents

Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Info

Publication number
JP3218099B2
JP3218099B2 JP27662292A JP27662292A JP3218099B2 JP 3218099 B2 JP3218099 B2 JP 3218099B2 JP 27662292 A JP27662292 A JP 27662292A JP 27662292 A JP27662292 A JP 27662292A JP 3218099 B2 JP3218099 B2 JP 3218099B2
Authority
JP
Japan
Prior art keywords
strength
annealing
temperature
aluminum alloy
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27662292A
Other languages
Japanese (ja)
Other versions
JPH06101002A (en
Inventor
伸二 照田
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP27662292A priority Critical patent/JP3218099B2/en
Publication of JPH06101002A publication Critical patent/JPH06101002A/en
Application granted granted Critical
Publication of JP3218099B2 publication Critical patent/JP3218099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耳率・強度及び成形加
工性に優れたアルミニウム合金硬質板の製造方法に関す
るものであり、更に詳しく述べるなら、DI缶、DR缶
およびDRD缶等の缶胴材に適したAl−Mn−Mg系
アルミニウム合金硬質板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy hard plate excellent in ear ratio, strength and formability, and more specifically, cans such as DI cans, DR cans and DRD cans. The present invention relates to a method for manufacturing an Al-Mn-Mg-based aluminum alloy hard plate suitable for a body material.

【0002】[0002]

【従来の技術】缶材に用いられるアルミニウム合金硬質
板は、近年薄肉化と高強度化が進められている。これ
は、より強度の高い薄板を利用することによる材料コス
トを低減させる等の経済的要望によるものである。JI
S3004合金硬質板は、強度を上げるために高圧延率
の冷間圧延を施した場合でも比較的良好な成形性を有す
ることから、従来より缶胴材に用いられることが多い。
このJIS3004合金硬質板は、均質化処理後、常法
に従って熱間圧延され、次いで、冷間圧延を施してか
ら、あるいは施さずに中間焼鈍を行なうことが多く、こ
の中間焼鈍は箱型焼鈍炉(バッチ炉)を用いて300℃
〜400℃の温度で30分〜3時間程度行うものであ
り、この場合の最終冷延率は70%以上ないと必要強度
が得られないが、この合金では比較的高い冷間圧延率で
あっても耳率はそれほど大きくはならない。一方、近年
連続焼鈍炉(CAL)の普及に伴い、このCALを用い
て中間焼鈍を行うにあたり到達温度の高温度化及び急速
冷却が可能となり、これによる溶体化効果を利用して、
最終冷間圧延率が少なくても高い強度が得られるプロセ
スも提案されている。しかしながらこの方式の場合、冷
間圧延率を多く取ると耳率は許容されないほど大きなも
のとなってしまう。
2. Description of the Related Art In recent years, aluminum alloy hard plates used for can materials have been reduced in thickness and strength. This is due to economic demands such as reducing material costs by using thinner plates having higher strength. JI
Since the S3004 alloy hard plate has relatively good formability even when cold-rolled at a high rolling ratio in order to increase the strength, it is often used as a can body material conventionally.
This JIS 3004 alloy hard plate is hot-rolled according to a conventional method after homogenization treatment, and then subjected to intermediate annealing with or without cold rolling in many cases. This intermediate annealing is performed by a box-type annealing furnace. 300 ° C using (batch furnace)
In this case, the required strength cannot be obtained unless the final cold rolling reduction is 70% or more. However, this alloy has a relatively high cold rolling reduction. However, the ear rate is not so large. On the other hand, with the spread of continuous annealing furnaces (CALs) in recent years, it has become possible to increase the ultimate temperature and rapid cooling when performing intermediate annealing using the CALs.
A process has been proposed in which high strength can be obtained even with a small final cold rolling reduction. However, in this method, if the cold rolling reduction is increased, the ear ratio becomes unacceptably large.

【0003】[0003]

【発明が解決しようとする課題】従来より行われている
バッチ焼鈍材の利点は耳率が低いことである。しかし、
バッチ焼鈍材の場合塗装焼付時の強度低下が大きく、従
って塗装焼付後の強度を確保するためにはDI成形前の
時点における缶胴材の強度を高いものにせざるを得ず、
その結果DI成形時における成形性が悪くなるという問
題が生じている。一方、CAL焼鈍材の利点は溶体化効
果により塗装焼付時の強度低下が少ないため、DI成形
前の缶胴材の強度はあまり高くなくとも塗装焼付後の強
度が十分得られるので、DI成形性はよくなることであ
る。しかしながら、中間焼鈍後の冷間圧延率を多く取る
と耳率が許容されないほど大きくなってしまうという問
題がある。本発明は、かかる問題を解決してCALによ
る中間焼鈍を施しても耳率が低く総合的な成形性を向上
させる材料を提供することを目的とするものである。
The advantage of the conventional batch annealing material is that the ear rate is low. But,
In the case of batch annealed materials, the strength decrease during baking is large, so in order to secure the strength after baking, the strength of the can body at the time before DI molding must be high,
As a result, there arises a problem that moldability during DI molding is deteriorated. On the other hand, the advantage of the CAL annealed material is that the strength of the can body before the DI forming is not so high because the strength after the paint baking can be sufficiently obtained even if the strength of the can body before the DI forming is small because the strength of the solution annealing effect is small. Is to be better. However, if the cold rolling reduction after the intermediate annealing is increased, there is a problem that the ear ratio becomes unacceptably large. An object of the present invention is to solve the above problem and to provide a material which has a low ear ratio and improves overall formability even when subjected to intermediate annealing by CAL.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に本発明者がバッチ焼鈍の耳率とCAL焼鈍の溶体化効
果とのどちらをも兼備えた製造法を鋭意検討した結果、
本発明をするに至った。
In order to achieve the above object, the present inventors have conducted intensive studies on a production method having both the ear ratio of batch annealing and the solution heat effect of CAL annealing.
The present invention has been made.

【0005】すなわち本発明は重量%でMg:0.5〜
2.0%、Mn:0.5〜1.8%、Fe:0.1〜
0.7%、組織微細化・安定化のためTi:0.005
〜0.20%を単独であるいはB:0.0001〜0.
05%とともに含有し、さらに、Si:0.05〜0.
5%、Cu:0.05〜0.5%、Cr:0.05〜
0.3%、Zn:0.1〜0.5%の一種または二種以
上を含有し、残部Alおよび不純物からなるアルミニウ
ム合金鋳塊を、常法に従って560〜620℃で均熱
し、その後熱間圧延を行い、その後冷間圧延を施し、次
いで0.5℃/s以上の加熱・冷却速度、290〜40
0℃の到達温度、この温度範囲に保持される時間を10
分以内とする焼鈍を行い、その後5〜30%の圧延率で
冷間圧延を施し、次いで1℃/s以上の加熱・冷却速度
で400〜600℃の到達温度で、かつ400〜600
℃の温度範囲に晒される時間を10分以内とする再結晶
焼鈍を行い、その後40%以上の圧延率の冷間圧延を施
すことを特徴とする、耳率が低く成形性に優れたアルミ
ニウム合金板の製造方法である。
That is, in the present invention, Mg: 0.5% by weight
2.0%, Mn: 0.5 to 1.8%, Fe: 0.1 to
0.7%, Ti: 0.005 for refining and stabilizing the structure
To 0.20% alone or B: 0.0001 to 0.1%.
0.05% to 0.5%.
5%, Cu: 0.05-0.5%, Cr: 0.05-
An aluminum alloy ingot containing one or more of 0.3% and Zn: 0.1 to 0.5% and the balance of Al and impurities is soaked at 560 to 620 ° C. according to a conventional method, and then heated. Cold rolling, and then a heating / cooling rate of 0.5 ° C./s or more, 290 to 40
A temperature of 0 ° C., and a period of time in this temperature range of 10 ° C.
Minutes, and then cold-rolled at a rolling rate of 5 to 30%, and then at a heating / cooling rate of 1 ° C / s or more, at an ultimate temperature of 400 to 600 ° C, and 400 to 600 ° C.
An aluminum alloy having a low ear rate and excellent formability, which is subjected to recrystallization annealing in which the time of exposure to a temperature range of 10 ° C. is within 10 minutes, and then to cold rolling at a rolling ratio of 40% or more. This is a method for manufacturing a plate.

【0006】[0006]

【作用】[Action]

【0007】先ず、本発明のアルミニウム合金圧延板に
おける成分限定理由について説明する。下記合金成分
は、アルミニウムの強度を高めると共に耳率や成形性の
制御を目的として添加するものである。 Mg:MgはSi・Cuとの共存によりMg2Siある
いはAl-Cu-Mgの析出による時効硬化が望め、本発
明のように溶体化効果をもたらす中間焼鈍を施す場合、
特に塗装焼付後の強度低下を抑えるのに効果が有る。更
にMg単独でも固溶強化の効果がある元素である。この
ように強度向上には不可欠な元素であるが、Mg量が
0.5%未満ではその効果が少なく、2%を超えて添加
した場合には絞り成形上は問題がないが加工硬化しやす
くなるために再絞り性やしごき性を悪くする。したがっ
て、Mg量は0.5〜2%の範囲とする。 Mn:Mnは強度向上に寄与するとともに成形性向上に
有効な元素である。特に本発明が目指す用途である缶胴
材ではしごき成形が施されるためにとりわけMnは重要
となる。アルミニウム合金板のしごき成形においては通
常エマルジョンタイプの潤滑剤が用いられている。Mn
系晶出物が少ない場合、同程度の強度を有していてもエ
マルジョンタイプ潤滑剤だけでは潤滑能力が不足し、ゴ
ーリングと呼ばれる擦り疵や焼付きといった外観不良が
発生する。このゴーリング現象は、晶出物の大きさ、
量、種類に影響されることが知られており、Mnはその
晶出物を適正に形成するのに不可欠な元素である。Mn
量が0.5%未満では、Mn化合物による固体潤滑的な
効果が得られず、また、1.8%を超えると、MnAl
6の初晶巨大金属間化合物が晶出し、成形性を著しく損
う。したがって、Mn量は0.5〜1.8%とする。 Fe:FeはMnの晶出や析出を促進し、アルミニウム
マトリックス中のMn固溶量やMn系不溶性化合物の分
散状態を制御するために必要な元素である。化合物等の
適正状態を得る必要条件はMn添加量に応じたFeの添
加である。Fe量が0.1%未満では適正な化合物分散
状態を得ることが難しく、Fe量が0.7%を超えると
添加されたMnとともに、初晶巨大化合物を生じやすく
なり成形性を著しく損う。したがって、Fe量は0.1
〜0.7%とする。また、(Fe+Mn)量が2%を超
えると初晶巨大化合物を生じやすくなり成形性を著しく
損うため、(Fe+Mn)量は2%以下が望ましい。 Ti、B:通常のアルミニウム合金においては、鋳塊結
晶粒の微細化・安定化のためにTi及びBを微量添加す
ることが行われており、本発明においてもTi:0.0
05〜0.20%を単独であるいはB:0.0001〜
0.05%とともに添加する。Ti量が0.005%未
満ではその効果が得られず、0.2%を超えると初晶T
iAl3が晶出して成形性を阻害する。したがってTi
量は0.005〜0.2%の範囲とする。またTiと共
にBを添加すると、この鋳塊結晶粒の微細化・安定化効
果が向上する。ただしB量は0.0001%未満ではそ
の効果がなく、0.05%を越えるとTiB2の粗大粒
子が混入して成形性を害することから、Tiと共に添加
するB量は0.0001〜0.05%の範囲とする。 Cu:本発明では、Cuの溶体化効果による強度向上が
期待できる。すなわち、Cuの添加により焼付け処理時
のAl−Cu−Mg系析出物の析出過程で起る時効硬化
を利用して強度向上をはかることができる。Cu量が
0.05%未満ではその効果は得られず、一方0.5%
を超えて添加した場合、時効硬化は容易に得られるもの
の硬くなりすぎて成形性を阻害する。したがって、Cu
量は、0.05〜0.5%とする。 Si:Siを添加することにより、Mg2Si系化合物
による時効硬化により強度向上が期待できる。Si量が
0.05%未満ではその効果は得られず、0.5%を超
えると時効硬化は容易に得られるものの材料が硬くなり
すぎて成形性を阻害する。したがって、Si量は0.0
5%〜0.5%とする。 Zn:Znの添加はMg2Zn3Al2の時効析出により
強度向上を望むものであり、Zn量が0.1%未満では
その効果はなく、0.5%を超えると耐食性を劣化させ
るためこの値以下に規制する必要がある。したがって、
Zn量は0.1〜0.5%とする。 Cr:Crは強度向上に効果的な元素であるが、0.0
5%未満ではその効果が少なく、0.3%を超えると巨
大晶出物生成により成形性の低下をまねき好ましくな
い。したがって、Cr量は0.05〜0.3%とする。 以上の各成分の残部はAl及び不可避不純物である。
First, the reasons for limiting the components in the rolled aluminum alloy sheet of the present invention will be described. The following alloy components are added for the purpose of increasing the strength of aluminum and controlling the ear ratio and formability. Mg: Mg is expected to undergo age hardening due to precipitation of Mg 2 Si or Al—Cu—Mg due to coexistence with Si · Cu, and is subjected to intermediate annealing that brings a solution effect as in the present invention.
In particular, it is effective in suppressing a decrease in strength after baking. Further, Mg alone is an element having the effect of solid solution strengthening. As described above, it is an indispensable element for improving the strength. However, when the Mg content is less than 0.5%, its effect is small, and when it is added more than 2%, there is no problem in drawing, but work hardening is easy. In order to become, the redrawability and the ironing property are deteriorated. Therefore, the Mg content is in the range of 0.5 to 2%. Mn: Mn is an element that contributes to improving strength and is effective for improving formability. In particular, Mn is particularly important in the can body material, which is an application aimed at by the present invention, because ironing is performed. In the ironing of an aluminum alloy plate, an emulsion type lubricant is usually used. Mn
In the case where the amount of the system crystallization is small, the lubricating ability is insufficient only with the emulsion type lubricant even if the emulsion type lubricant has the same strength, and poor appearance such as abrasion or galling called galling occurs. This galling phenomenon depends on the size of
It is known that the amount and type are affected, and Mn is an element indispensable for properly forming the crystallized product. Mn
If the amount is less than 0.5%, the solid lubrication effect of the Mn compound cannot be obtained, and if it exceeds 1.8%, MnAl
The primary crystal giant intermetallic compound of 6 is crystallized, and the formability is significantly impaired. Therefore, the amount of Mn is set to 0.5 to 1.8%. Fe: Fe is an element that promotes crystallization and precipitation of Mn, and is necessary for controlling the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based insoluble compound. A necessary condition for obtaining an appropriate state of a compound or the like is the addition of Fe according to the amount of Mn added. If the Fe content is less than 0.1%, it is difficult to obtain a proper compound dispersion state. If the Fe content exceeds 0.7%, a primary crystal giant compound is easily generated together with the added Mn, and the formability is significantly impaired. . Therefore, the amount of Fe is 0.1
To 0.7%. If the amount of (Fe + Mn) exceeds 2%, a primary crystal giant compound is likely to be generated, and the formability is significantly impaired. Therefore, the amount of (Fe + Mn) is desirably 2% or less. Ti, B: In ordinary aluminum alloys, a small amount of Ti and B is added for refining and stabilizing ingot crystal grains. In the present invention, Ti: 0.0
0.05 to 0.20% alone or B: 0.0001 to
Add with 0.05%. If the Ti content is less than 0.005%, the effect cannot be obtained, and if it exceeds 0.2%, the primary crystal T
iAl 3 is crystallized to inhibit the formability. Therefore Ti
The amount ranges from 0.005 to 0.2%. Also, when B is added together with Ti, the effect of refining and stabilizing the ingot crystal grains is improved. However, if the B content is less than 0.0001%, the effect is not obtained. If the B content exceeds 0.05%, coarse particles of TiB 2 are mixed and formability is impaired. Therefore, the B content added with Ti is 0.0001 to 0. 0.05%. Cu: In the present invention, an improvement in strength due to the solution effect of Cu can be expected. That is, the addition of Cu makes it possible to improve the strength by utilizing age hardening that occurs during the precipitation process of the Al-Cu-Mg-based precipitate during the baking treatment. If the Cu content is less than 0.05%, the effect cannot be obtained.
When added in excess of the above, age hardening is easily obtained, but becomes too hard to inhibit moldability. Therefore, Cu
The amount is 0.05-0.5%. Si: By adding Si, an improvement in strength can be expected by age hardening with a Mg 2 Si-based compound. If the Si content is less than 0.05%, the effect cannot be obtained. If the Si content is more than 0.5%, age hardening can be easily obtained, but the material becomes too hard and the moldability is impaired. Therefore, the amount of Si is 0.0
5% to 0.5%. The addition of Zn: Zn is intended to improve the strength by aging precipitation of Mg 2 Zn 3 Al 2. If the Zn content is less than 0.1%, there is no effect, and if it exceeds 0.5%, the corrosion resistance is deteriorated. It is necessary to regulate below this value. Therefore,
The amount of Zn is 0.1-0.5%. Cr: Cr is an element effective for improving the strength.
If it is less than 5%, the effect is small, and if it exceeds 0.3%, large crystallized substances are formed, resulting in a decrease in moldability, which is not preferable. Therefore, the amount of Cr is set to 0.05 to 0.3%. The balance of each of the above components is Al and inevitable impurities.

【0008】次に本発明における製造プロセスについて
説明する。 鋳造:前述の合金組成を有するアルミニウム合金鋳塊を
常法に従ってDC鋳造法(半連続鋳造法)により作製す
る。 均熱:次いでその鋳塊に対して、均質化処理を兼ねた熱
間圧延前の予備加熱を施すか、または均質化処理として
の加熱を施した後熱間圧延前の予備加熱を施す。この均
質化処理は最終板の強度・靱性・深絞り加工性の向上お
よび耳率のばらつき減少等のために有効な処理であり、
560℃未満では十分な均質化が得られず、また620
℃を超えると鋳塊表面に膨れが生じたりするため、均熱
温度は560〜620℃とする。また1時間未満の保持
では十分な均質化が得られないため、保持時間は1時間
以上とすることが望ましい。なお保持時間の上限は生産
性との兼ね合いで適宜設定ればよい。 熱間圧延:熱間圧延上りの条件は、特に規制しないが、
熱延性を考慮すると230℃以上の上り温度が好まし
い。また、上りの板厚は巻取性を考慮すると10mm以
下が好ましい。 冷間圧延:熱間圧延上りで再結晶している組織の場合は
次工程の焼鈍で均一な再結晶組織を得るために圧延率が
30%以上の冷間圧延が施されることが必要である。 1段目の焼鈍:(部分再結晶焼鈍)本発明においては、
この1段目の焼鈍においては完全再結晶させるのではな
く、部分再結晶にとどめ通常高耳成分のR方位の結晶化
を促進させることに特徴がある。本発明合金のようなA
l−Mn−Mg系合金では通常数μm程度の大きさの晶
出化合物が多数存在しており、冷間圧延によりこの晶出
物近傍に歪が蓄積され、そこが再結晶しやすくなる。し
たがって加熱・冷却速度が0.5℃/s以上、到達温度
290〜400℃、該温度域で保持される時間が10分
以内とする焼鈍を施すことにより、この晶出物近傍から
優先的にR方位を有する再結晶が開始する。なお再結晶
率は10〜80%が好ましい。加熱・冷却速度が0.5
℃/s未満の場合、昇温過程でMg2Si、Al2CuM
gおよびαAlMnSiまたはAl6Mnの析出が起こ
り、2段目の焼鈍時にCube方位を有する結晶の成長
が抑制されるので好ましくない。焼鈍温度は290℃未
満では十分に再結晶化が進まず、また400℃を超える
温度ではほとんど再結晶化してしまい好ましくない。し
たがって、焼鈍温度は290〜400℃、好ましくは3
20〜380℃とする。 冷間圧延:上記部分再結晶焼鈍後、5〜30%の圧延率
の冷間圧延を施し、1段目の焼鈍により再結晶した部分
に軽度の歪を加える。圧延率が5%未満では与える歪は
十分ではなく、また30%を超えると再結晶部分に強度
の歪が加わるために次工程の焼鈍によって、晶出物近傍
での再結晶化が再度R方位となりCube方位の優先生
成・成長が得られない。したがって圧延率は5〜30%
とする。 2段目の焼鈍:(完全再結晶焼鈍)1段目の焼鈍により
晶出物近傍の歪は少なくなっているために、この2段目
の焼鈍においては晶出物近傍は容易には再結晶核とはな
りえず、かわって前工程の冷間圧延により導入されたマ
トリックス中の転位の集積部から優先的に再結晶化が進
む。この部分より生成する結晶粒の方位はCube方位
と呼ばれ低耳成分を有している。すなわち2段目の焼鈍
によりCube方位の再結晶粒が優先生成して、再結晶
化しきれない晶出物近傍まで成長包含してしまい、その
結果全体的にCube方位の多い再結晶組織となる結
果、全体として耳率の低い組織となる。特公昭60−3
7186号公報においては、この2段目の焼鈍をバッチ
タイプで行うことが記載されているが、本発明において
はこの焼鈍をCAL(連続焼鈍炉)のように1℃/s以
上の速い加熱・冷却速度を有し、400〜600℃の到
達温度とすることにより、Cu、Mg、Si等の金属元
素の固溶による溶体化効果による強度向上を望むもので
ある。すなわち、DI成形時の強度はあまり強くは無い
が、塗装焼付け処理を施しても時効硬化により強度低下
が少ないアルミニウム合金板を得ることができる。従っ
て、DI成形時の強度はあまり高くないことから成形性
が良好であるとともに、塗装焼付後の強度低下が少ない
ことからDI成形時の強度はバッチタイプの焼鈍材より
低くともDI成形時の強度を維持するため最終的には十
分な強度を有するアルミニウム合金板が得られる。到達
温度が400℃未満では十分な再結晶組織が得られず、
また高温である方がより溶体化効果による強度向上が望
めるものの600℃を超えて高温になると共晶融解によ
る軟化等の製造上の不都合が生じ、また部分融解により
製品の外観を損なう恐れがある。したがって到達温度は
400〜600℃とする。冷却速度は1℃/sより遅い
と固溶した合金元素が冷却過程で析出してしまい、溶体
化効果による強度向上の程度が少なくなる。したがっ
て、1℃/s以上の冷却速度とする。また、400℃よ
り高温では表面酸化が著しく進行するため、400℃以
上の保持時間を少なくする必要がある。10分を超えて
長時間となると、表面に形成された酸化皮膜が焼鈍終了
後の冷間圧延性や製品外観を損ねる。従って加熱、保
持、冷却期間を合わせて400〜600℃の温度範囲に
晒される時間は10分以内とする。上記温度に到達後保
持無しで直ちに冷却してもよい。上記時間を短縮するた
めにもそのためにも加熱速度は速い方が良く、1℃/s
以上の加熱速度とする。 冷間圧延:上記焼鈍後、冷間圧延を施すが、圧延率は4
0%以上ないと必要な強度が得られない。なお、必要に
応じて100〜200℃程度の最終焼鈍を施すことによ
り、深絞り性の改善が望める。
Next, the manufacturing process according to the present invention will be described. Casting: An aluminum alloy ingot having the above-described alloy composition is produced by a DC casting method (semi-continuous casting method) according to a conventional method. Soaking: Next, the ingot is subjected to preheating before hot rolling also serving as a homogenizing treatment, or is subjected to heating as a homogenizing treatment and then to preheating before hot rolling. This homogenization treatment is an effective treatment for improving the strength, toughness, deep drawing workability of the final plate, reducing the variation in ear ratio, etc.
If the temperature is lower than 560 ° C., sufficient homogenization cannot be obtained.
If the temperature exceeds ℃, swelling may occur on the surface of the ingot, so the soaking temperature is 560 to 620 ° C. Also, if the holding time is less than 1 hour, sufficient homogenization cannot be obtained, so that the holding time is desirably 1 hour or more. The upper limit of the holding time may be appropriately set in consideration of productivity. Hot rolling: The conditions for hot rolling are not particularly limited.
Considering the hot ductility, a rise temperature of 230 ° C. or more is preferable. Further, the thickness of the upward plate is preferably 10 mm or less in consideration of the winding property. Cold rolling: In the case of a structure that has been recrystallized after hot rolling, it is necessary to perform cold rolling at a rolling ratio of 30% or more in order to obtain a uniform recrystallized structure by annealing in the next step. is there. First-stage annealing: (partial recrystallization annealing) In the present invention,
This first-stage annealing is characterized in that it is not completely recrystallized, but is only partially recrystallized and usually promotes the crystallization of the R direction of the high ear component. A such as the alloy of the present invention
In an l-Mn-Mg-based alloy, a large number of crystallized compounds usually having a size of about several μm are present, and strain is accumulated in the vicinity of the crystallized material by cold rolling, which tends to recrystallize. Therefore, by performing annealing in which the heating / cooling rate is 0.5 ° C./s or more, the ultimate temperature is 290 to 400 ° C., and the time maintained in the temperature range is within 10 minutes, preferentially from the vicinity of the crystallized material. Recrystallization with the R orientation starts. The recrystallization rate is preferably from 10 to 80%. Heating / cooling rate is 0.5
When the temperature is lower than ° C / s, Mg 2 Si, Al 2 CuM
g and αAlMnSi or Al 6 Mn are precipitated, which is not preferable because the growth of a crystal having a Cube orientation is suppressed during the second annealing. If the annealing temperature is lower than 290 ° C., recrystallization does not proceed sufficiently, and if the temperature exceeds 400 ° C., recrystallization hardly occurs, which is not preferable. Therefore, the annealing temperature is 290-400 ° C., preferably 3
20 to 380 ° C. Cold rolling: After the partial recrystallization annealing, cold rolling is performed at a rolling rate of 5 to 30%, and a slight strain is applied to a portion recrystallized by the first-stage annealing. If the rolling reduction is less than 5%, the strain to be imparted is not sufficient, and if it exceeds 30%, a strong strain is applied to the recrystallized portion. And preferential generation and growth of the Cube orientation cannot be obtained. Therefore, the rolling rate is 5-30%
And Second-stage annealing: (Complete recrystallization annealing) Since the strain in the vicinity of the crystallized material has been reduced by the first-stage annealing, the vicinity of the crystallized material is easily recrystallized in the second-stage annealing. It cannot be a nucleus, and instead, recrystallization proceeds preferentially from the dislocation accumulation portion in the matrix introduced by the cold rolling in the previous step. The orientation of the crystal grains generated from this portion is called the Cube orientation and has a low ear component. In other words, the recrystallization grains having Cube orientation are preferentially generated by the second annealing, and grow to include the vicinity of the crystallized substance which cannot be recrystallized, resulting in a recrystallized structure having many Cube orientations as a whole. As a whole, the tissue has a low ear rate. Tokiko Sho 60-3
No. 7186 describes that this second-stage annealing is performed in a batch type. However, in the present invention, this annealing is performed at a high heating rate of 1 ° C./s or more as in a CAL (continuous annealing furnace). It is desired to improve the strength by a solution effect by a solid solution of a metal element such as Cu, Mg, and Si by having a cooling rate and a reaching temperature of 400 to 600 ° C. That is, although the strength at the time of DI molding is not so strong, an aluminum alloy sheet with a small decrease in strength due to age hardening can be obtained even when paint baking is performed. Therefore, since the strength during DI molding is not so high, the moldability is good, and the strength during DI molding is lower than that of batch-type annealed material, so the strength during DI molding is lower than the batch type annealed material because the strength decrease after baking is small. Finally, an aluminum alloy plate having a sufficient strength can be obtained. If the ultimate temperature is less than 400 ° C., a sufficient recrystallized structure cannot be obtained,
In addition, although a higher temperature can be expected to improve the strength by the solution effect, if the temperature is higher than 600 ° C., there are disadvantages in production such as softening due to eutectic melting, and the appearance of the product may be impaired by partial melting. . Therefore, the ultimate temperature is set to 400 to 600 ° C. If the cooling rate is slower than 1 ° C./s, the solid solution alloy element will precipitate during the cooling process, and the degree of strength improvement due to the solution effect will be reduced. Therefore, the cooling rate is set to 1 ° C./s or more. If the temperature is higher than 400 ° C., the surface oxidation proceeds remarkably, and it is necessary to shorten the holding time at 400 ° C. or higher. If the time is longer than 10 minutes, the oxide film formed on the surface impairs the cold rolling property after the end of the annealing and the appearance of the product. Therefore, the time of exposure to the temperature range of 400 to 600 ° C. including the heating, holding, and cooling periods is set to 10 minutes or less. After reaching the above temperature, it may be cooled immediately without holding. In order to shorten the above-mentioned time and for that purpose, it is better that the heating rate is high, and 1 ° C./s
The above heating rate is set. Cold rolling: After the above-mentioned annealing, cold rolling is performed.
If not more than 0%, the required strength cannot be obtained. In addition, improvement of deep drawability can be expected by performing final annealing at about 100 to 200 ° C. as necessary.

【0009】[0009]

【実施例】表1に示す化学成分を有するアルミニウム合
金を表2に示す製造方法により圧延、熱処理し試料を作
成した。表2で均熱の欄は温度×保持時間を示し、熱
延、冷延の欄は板厚(mm)、中間焼鈍の欄は温度×保
持時間を示す。ただし保持時間が0となっているのは温
度到達後直ちに(保持無しで)冷却に移ったことを示
す。またCALの加熱・冷却速度は約20℃/s、バッ
チの加熱・冷却速度は約35℃/hであった。以下、各
々について説明する。No1は、焼鈍をCALで1回の
み行った従来例である。No2は、冷間圧延を行わずに
熱延後バッチ焼鈍を行った従来例である。No3は、1
段目をバッチ焼鈍とし、2段目もバッチ焼鈍で行った比
較例である。No4は、1段目をバッチ焼鈍とし、2段
目をCAL焼鈍で行った比較例である。No5は、1段
目を本発明の範囲より低温のCAL焼鈍とし、2段目も
CAL焼鈍で行った比較例である。No6は、1段目を
CAL焼鈍とし、2段目もCAL焼鈍で行った発明例で
ある。No7は、1段目を本発明の範囲より高温のCA
L焼鈍とし、2段目もCAL焼鈍で行った比較例であ
る。No8は、1段目と2段目のCAL焼鈍の間の冷間
圧延の圧延率が本発明の範囲より高い比較例である。N
o9は、本発明と同様の工程だが2段目の焼鈍を高温の
バッチ焼鈍で行い、400〜600℃の温度範囲に晒さ
れる時間を10分を超えるようにした比較例である。
EXAMPLES Aluminum alloys having the chemical components shown in Table 1 were rolled and heat-treated by the production methods shown in Table 2 to prepare samples. In Table 2, the column of soaking shows temperature × retention time, the column of hot rolling and cold rolling shows sheet thickness (mm), and the column of intermediate annealing shows temperature × retention time. However, a holding time of 0 indicates that cooling was started immediately (without holding) after the temperature reached. The heating / cooling rate of CAL was about 20 ° C./s, and the heating / cooling rate of the batch was about 35 ° C./h. Hereinafter, each will be described. No. 1 is a conventional example in which annealing was performed only once by CAL. No. 2 is a conventional example in which batch annealing was performed after hot rolling without performing cold rolling. No3 is 1
This is a comparative example in which the stage was batch annealing and the second stage was batch annealing. No. 4 is a comparative example in which the first step was performed by batch annealing and the second step was performed by CAL annealing. No. 5 is a comparative example in which the first stage was subjected to CAL annealing at a temperature lower than the range of the present invention and the second stage was also subjected to CAL annealing. No. 6 is an example of the invention in which the first step was CAL annealing and the second step was CAL annealing. In No. 7, the first stage was a CA having a higher temperature than the range of the present invention.
This is a comparative example in which L annealing was performed and the second step was also performed by CAL annealing. No. 8 is a comparative example in which the reduction ratio of the cold rolling during the first and second stages of CAL annealing is higher than the range of the present invention. N
o9 is a comparative example in which the same step as in the present invention was performed, but the second-stage annealing was performed by high-temperature batch annealing, and the time of exposure to a temperature range of 400 to 600 ° C. exceeded 10 minutes.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】得られた試料について元板ならびに塗装ベ
ーキング相当の200℃x20分の熱処理後の板の引張
強さ(TS:N/mm2)、耐力(YS:N/mm2)、
伸び(EL:%)を調べ、元板について38mmφ、肩
R2.5mmのポンチを用いて66mmφサークルをク
リアランス30%で深絞りを行って耳率を測定した。ま
た実際のDI成形を行って連続成形性およびDI缶の外
観を観察した。外観は缶側壁の圧延方向に沿ったフロー
ライン状の外観欠陥の有無で判定した。その結果を表3
に示す。
The tensile strength (TS: N / mm 2 ), proof stress (YS: N / mm 2 ) of the base plate and the plate after heat treatment at 200 ° C. for 20 minutes equivalent to coating baking,
The elongation (EL:%) was examined, and the ear ratio was measured by deep-drawing a 66 mmφ circle with a clearance of 30% using a punch of 38 mmφ and a shoulder R2.5 mm for the original plate. In addition, actual DI molding was performed to observe continuous formability and appearance of the DI can. The appearance was determined by the presence or absence of a flow line-like appearance defect along the rolling direction of the can side wall. Table 3 shows the results.
Shown in

【0013】[0013]

【表3】 [Table 3]

【0014】以下、各々について説明する。No1の焼
鈍をCALで1回のみ行った従来例では、元板ならびに
ベーキング後の強度は充分であるものの耳率が5%と高
くなっている。No2の冷間圧延を行わずに熱延後バッ
チ焼鈍を行った従来例では、耳率は3%と低いものの、
元板強度が高く成形しにくいとともにベーキングによる
強度の変化が引張強さで大きく13N/mm2強度低下
している。これに対して、No6の発明例はDI成形時
の元板の強さは引張強さで300N/mm2、耐力で2
82N/mm2と従来材No1と同程度で、成形しやす
くなっている。しかも、ベーキング後においては引張強
さは5N/mm2向上しており、本来強度が必要とされ
るベーキング後における強度が充分高いという良好な特
性を示している。耳率は従来例が3〜5%であるのに対
して、発明例では1.5%と極めて低い値を示してい
る。さらに、DI性においてもまったく問題なく、また
DI成形した缶の外観にも不良は認められない。以上の
ように、発明例は元板強度は柔らかく従って成形性が良
好であり、ベーキング後においては必要とする強度を十
分満たし、耳率は極めて低く、またDI性ならびに外観
不良の点においても優れている。No3の1段目をバッ
チ焼鈍とし2段目もバッチ焼鈍で行った比較例では、元
板の引張強さが高すぎて成形性が悪く、しかもベーキン
グ処理により引張強さが大幅に低下しており、強度面で
問題がある。No4の1段目をバッチ焼鈍とし2段目を
CAL焼鈍で行った比較例では、元板およびベーキング
後の強度ならびにDI性、DI缶外観においては発明例
とほぼ同じだか、耳率はやや大きい値を示している。N
o5の1段目を本発明の範囲より低温のCAL焼鈍とし
2段目もCAL焼鈍で行った比較例では、No4と同様
に耳率において発明例より劣っている。No7の1段目
を本発明の範囲より高温のCAL焼鈍とし2段目もCA
L焼鈍で行った比較例では、ベーキングによる強度向上
は発明例より大きいものの耳率では発明例より劣る値と
なっている。No8の1段目と2段目のCAL焼鈍の間
の冷間圧延の圧延率が本発明の範囲より高い比較例では
No5、No7と同様に耳率において発明例より劣る値
となっている。No9の本発明と同様の工程だが2段目
の焼鈍を高温のバッチ焼鈍で行い400〜600℃の温
度範囲に晒される時間を10分を超えるようにした比較
例では、耳率は従来例と同等だが、元板強度が高すぎ、
逆にベーキング後の強度低下が大きくて強度面において
問題があるとともに、DI成形においてフローライン状
の外観不良が発生している。
Hereinafter, each of them will be described. In the conventional example in which the annealing of No. 1 was performed only once by CAL, the strength of the base plate and the strength after baking were sufficient, but the ear ratio was as high as 5%. In the conventional example in which batch annealing was performed after hot rolling without performing cold rolling of No. 2, although the ear ratio was as low as 3%,
The strength of the base plate is high and it is difficult to form, and the change in strength due to baking is large in tensile strength, and the strength is reduced by 13 N / mm 2 . On the other hand, in the invention example of No. 6, the strength of the original plate at the time of DI molding was 300 N / mm 2 in tensile strength and 2 in proof stress.
It is 82 N / mm 2, which is about the same as that of the conventional material No. 1 and easy to mold. In addition, after baking, the tensile strength is improved by 5 N / mm 2 , indicating good characteristics that the strength after baking, which originally requires strength, is sufficiently high. The ear ratio is 3 to 5% in the conventional example, while the invention example shows an extremely low value of 1.5%. Further, there is no problem in the DI property, and no defect is observed in the appearance of the DI molded can. As described above, in the invention examples, the original plate strength is soft, so that the moldability is good, the required strength is sufficiently satisfied after baking, the ear ratio is extremely low, and the DI property and the appearance are poor. ing. In the comparative example in which the first step of No. 3 was batch-annealed and the second step was also batch-annealed, the tensile strength of the original plate was too high and the formability was poor, and the tensile strength was significantly reduced by baking. And there is a problem in strength. In the comparative example in which the first step of No. 4 was batch-annealed and the second step was CAL-annealed, the strength and DI properties after the base plate and baking, and the DI properties and DI can appearance were almost the same as those of the invention example, or the ear ratio was slightly large. Indicates the value. N
The comparative example in which the first step of o5 was CAL annealing at a lower temperature than the range of the present invention and the second step was also CAL annealing was inferior in ear ratio to No. 4 like No. 4. The first stage of No. 7 was subjected to CAL annealing at a higher temperature than the range of the present invention, and the second stage was also CA.
In the comparative example performed by L annealing, the strength improvement by baking is larger than that of the invention example, but the ear ratio is inferior to that of the invention example. In Comparative Examples in which the cold rolling reduction ratio between the first and second CAL annealings of No. 8 was higher than the range of the present invention, the ear ratios were inferior to those of the invention examples, like Nos. 5 and 7. In the comparative example in which the process of No. 9 is the same as that of the present invention, but the second-stage annealing is performed by high-temperature batch annealing, and the time of exposure to the temperature range of 400 to 600 ° C. exceeds 10 minutes, the ear ratio is different from that of the conventional example. Same, but the original plate strength is too high,
Conversely, the strength after baking is greatly reduced, and there is a problem in strength, and a flow line appearance defect occurs in DI molding.

【0015】[0015]

【効果】本発明により製造された成形加工用アルミニウ
ム硬質板は、特に、缶材などの塗装焼付け処理が施され
る用途に適しており、深絞り耳が低く、高強度が得ら
れ、成形性にも優れている。すなわち、詳述したよう
に、本発明によればDI成形時における強度はそれほど
高くなく従って成形性が良好であり、しかも塗装焼付け
処理により強度が向上するという成形加工用アルミニウ
ム合金として理想的な強度特性を示すとともに、耳率が
極めて低いアルミニウム合金板を提供することができ
る。従って、本発明の製造方法によればDI缶、DR缶
およびDRD缶等の缶胴材に好適なアルミニウム合金板
を得ることができるものである。
[Effect] The aluminum hard plate for forming manufactured by the present invention is particularly suitable for use in which a baking treatment is applied to a can material or the like, a low deep drawing ear, high strength is obtained, and formability is obtained. Is also excellent. That is, as described in detail, according to the present invention, the strength at the time of DI forming is not so high, so that the formability is good, and the strength is improved by paint baking treatment, which is an ideal strength as a forming aluminum alloy. It is possible to provide an aluminum alloy plate having characteristics and an extremely low ear ratio. Therefore, according to the production method of the present invention, an aluminum alloy plate suitable for a can body such as a DI can, a DR can and a DRD can can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 686 C22F 1/00 686Z 691 691A 691B 693 693A 693B ────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22F 1/00 686 C22F 1/00 686Z 691 691A 691B 693 693A 693B

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.5
〜2.0%、Mn:0.5〜1.8%、Fe:0.1〜
0.7%、組織微細化・安定化のためTi:0.005
〜0.20%を単独であるいはB:0.0001〜0.
05%とともに含有し、さらに、Si:0.05〜0.
5%、Cu:0.05〜0.5%、Cr:0.05〜
0.3%、Zn:0.1〜0.5%の一種または二種以
上を含有し、残部Alおよび不純物からなるアルミニウ
ム合金鋳塊を、常法に従って560〜620℃で均熱
し、その後熱間圧延を行い、その後冷間圧延を施し、次
いで0.5℃/s以上の加熱・冷却速度、290〜40
0℃の到達温度、この温度範囲に保持される時間を10
分以内とする焼鈍を行い、その後5〜30%の圧延率で
冷間圧延を施し、次いで1℃/s以上の加熱・冷却速度
で400〜600℃の到達温度で、かつ400〜600
℃の温度範囲に晒される時間を10分以内とする再結晶
焼鈍を行い、その後40%以上の圧延率の冷間圧延を施
すことを特徴とする、耳率が低く成形性に優れたアルミ
ニウム合金板の製造方法。
1. Mg: 0.5% by weight (hereinafter the same).
2.0%, Mn: 0.5-1.8%, Fe: 0.1-
0.7%, Ti: 0.005 for refining and stabilizing the structure
To 0.20% alone or B: 0.0001 to 0.1%.
0.05% to 0.5%.
5%, Cu: 0.05-0.5%, Cr: 0.05-
An aluminum alloy ingot containing one or more of 0.3% and Zn: 0.1 to 0.5% and the balance of Al and impurities is soaked at 560 to 620 ° C. according to a conventional method, and then heated. Cold rolling, and then a heating / cooling rate of 0.5 ° C./s or more, 290 to 40
A temperature of 0 ° C., and a period of time in this temperature range of 10 ° C.
Minutes, and then cold-rolled at a rolling rate of 5 to 30%, and then at a heating / cooling rate of 1 ° C / s or more, at an ultimate temperature of 400 to 600 ° C, and 400 to 600 ° C.
An aluminum alloy having a low ear rate and excellent formability, which is subjected to recrystallization annealing in which the time of exposure to a temperature range of 10 ° C. is within 10 minutes, and then to cold rolling at a rolling ratio of 40% or more. Plate manufacturing method.
JP27662292A 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability Expired - Fee Related JP3218099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27662292A JP3218099B2 (en) 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27662292A JP3218099B2 (en) 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Publications (2)

Publication Number Publication Date
JPH06101002A JPH06101002A (en) 1994-04-12
JP3218099B2 true JP3218099B2 (en) 2001-10-15

Family

ID=17572007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27662292A Expired - Fee Related JP3218099B2 (en) 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Country Status (1)

Country Link
JP (1) JP3218099B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164094B4 (en) * 2000-12-28 2006-03-16 Sumitomo Wiring Systems, Ltd., Yokkaichi Interconnects
JP3868839B2 (en) * 2002-03-29 2007-01-17 三菱アルミニウム株式会社 Method for producing aluminum alloy plate for bottle-type beverage can
DE102018215243A1 (en) * 2018-09-07 2020-03-12 Neumann Aluminium Austria Gmbh Aluminum alloy, semi-finished product, can, process for producing a slug, process for producing a can and use of an aluminum alloy

Also Published As

Publication number Publication date
JPH06101002A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
US5441582A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability
JPH086162B2 (en) Method for producing aluminum alloy material for baking coating
JPH0660366B2 (en) Aluminum alloy sheet for zinc phosphate treatment and method for producing the same
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JPH0734208A (en) Production of aluminum alloy sheet excellent in formability
JPH0860314A (en) Production of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees