JPH06101002A - Production of aluminum alloy sheet reduced in ear rate excellent in formability - Google Patents

Production of aluminum alloy sheet reduced in ear rate excellent in formability

Info

Publication number
JPH06101002A
JPH06101002A JP27662292A JP27662292A JPH06101002A JP H06101002 A JPH06101002 A JP H06101002A JP 27662292 A JP27662292 A JP 27662292A JP 27662292 A JP27662292 A JP 27662292A JP H06101002 A JPH06101002 A JP H06101002A
Authority
JP
Japan
Prior art keywords
annealing
strength
rolling
cold rolling
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27662292A
Other languages
Japanese (ja)
Other versions
JP3218099B2 (en
Inventor
Shinji Teruda
伸二 照田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP27662292A priority Critical patent/JP3218099B2/en
Publication of JPH06101002A publication Critical patent/JPH06101002A/en
Application granted granted Critical
Publication of JP3218099B2 publication Critical patent/JP3218099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide an aluminum allay sheet reduced in ear rate, excellent in formability, and most suitable for use in deep drawing, e.g. for can body material for DI can, DR can, DRD can, etc. CONSTITUTION:An ingot of an aluminum alloy having a composition consisting of 0.5-2.0% Mg, 0.5-1.8% Mn, 0.1-0.7% Fe, 0.005-0.20% Ti independently or together with 0.0001-0.05% B, further one or more kinds among 0.05-0.5% Si, 0.05-0.5% Cu, 0.05-0.3% Cr, and 0.1-0.5% Zn, and Al is subjected, by the ordinary method, to igniting at 560-620 deg.C and to hot rolling. Subsequently, the resulting alloy plate is cold-rolled and subjected to annealing at >=0.5 deg.C/s heating and cooling velocity under the condition where the length of time for holding at 290-400 deg.C ultimate temp. is regulated to <=10min. The resulting alloy sheet is further subjected to cold rolling at 5-30%, to recrystallization annealing at >=1 deg.C/s heating and cooling velocity while regulating the length of time where the alloy sheet is exposed to 400-600 deg.C ultimate temp. to <=10min, and then to cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耳率・強度及び成形加
工性に優れたアルミニウム合金硬質板の製造方法に関す
るものであり、更に詳しく述べるなら、DI缶、DR缶
およびDRD缶等の缶胴材に適したAl−Mn−Mg系
アルミニウム合金硬質板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an aluminum alloy hard plate having excellent earing rate, strength and moldability, and more specifically, cans such as DI cans, DR cans and DRD cans. The present invention relates to a method for manufacturing an Al-Mn-Mg-based aluminum alloy hard plate suitable for a body material.

【0002】[0002]

【従来の技術】缶材に用いられるアルミニウム合金硬質
板は、近年薄肉化と高強度化が進められている。これ
は、より強度の高い薄板を利用することによる材料コス
トを低減させる等の経済的要望によるものである。JI
S3004合金硬質板は、強度を上げるために高圧延率
の冷間圧延を施した場合でも比較的良好な成形性を有す
ることから、従来より缶胴材に用いられることが多い。
このJIS3004合金硬質板は、均質化処理後、常法
に従って熱間圧延され、次いで、冷間圧延を施してか
ら、あるいは施さずに中間焼鈍を行なうことが多く、こ
の中間焼鈍は箱型焼鈍炉(バッチ炉)を用いて300℃
〜400℃の温度で30分〜3時間程度行うものであ
り、この場合の最終冷延率は70%以上ないと必要強度
が得られないが、この合金では比較的高い冷間圧延率で
あっても耳率はそれほど大きくはならない。一方、近年
連続焼鈍炉(CAL)の普及に伴い、このCALを用い
て中間焼鈍を行うにあたり到達温度の高温度化及び急速
冷却が可能となり、これによる溶体化効果を利用して、
最終冷間圧延率が少なくても高い強度が得られるプロセ
スも提案されている。しかしながらこの方式の場合、冷
間圧延率を多く取ると耳率は許容されないほど大きなも
のとなってしまう。
2. Description of the Related Art In recent years, aluminum alloy hard plates used for cans have been made thinner and have higher strength. This is because of economical demands such as reduction of material cost by using a thin plate having higher strength. JI
The S3004 alloy hard plate has relatively good formability even when cold rolled at a high rolling rate in order to increase the strength, and thus is often used for a can body material from the past.
This JIS 3004 alloy hard plate is hot-rolled in accordance with a conventional method after homogenization treatment, and then is often subjected to intermediate annealing with or without cold rolling. This intermediate annealing is performed in a box-type annealing furnace. 300 ° C using (batch furnace)
It is carried out at a temperature of ~ 400 ° C for about 30 minutes to 3 hours. In this case, the required cold rolling rate cannot be obtained unless the final cold rolling rate is 70% or more, but this alloy has a relatively high cold rolling rate. However, the ear rate does not increase so much. On the other hand, with the widespread use of continuous annealing furnaces (CAL) in recent years, it is possible to raise the reached temperature and perform rapid cooling when performing intermediate annealing using this CAL, and by utilizing the solution treatment effect by this,
A process has also been proposed in which high strength can be obtained even if the final cold rolling rate is small. However, in the case of this method, the ear rate becomes unacceptably large when a large cold rolling rate is taken.

【0003】[0003]

【発明が解決しようとする課題】従来より行われている
バッチ焼鈍材の利点は耳率が低いことである。しかし、
バッチ焼鈍材の場合塗装焼付時の強度低下が大きく、従
って塗装焼付後の強度を確保するためにはDI成形前の
時点における缶胴材の強度を高いものにせざるを得ず、
その結果DI成形時における成形性が悪くなるという問
題が生じている。一方、CAL焼鈍材の利点は溶体化効
果により塗装焼付時の強度低下が少ないため、DI成形
前の缶胴材の強度はあまり高くなくとも塗装焼付後の強
度が十分得られるので、DI成形性はよくなることであ
る。しかしながら、中間焼鈍後の冷間圧延率を多く取る
と耳率が許容されないほど大きくなってしまうという問
題がある。本発明は、かかる問題を解決してCALによ
る中間焼鈍を施しても耳率が低く総合的な成形性を向上
させる材料を提供することを目的とするものである。
The advantage of the conventional batch annealed material is that the ear ratio is low. But,
In the case of a batch annealed material, the strength decreases greatly during coating baking, so in order to secure the strength after coating baking, it is unavoidable to increase the strength of the can body material before DI molding.
As a result, there arises a problem that the moldability during DI molding deteriorates. On the other hand, the advantage of the CAL annealed material is that the strength reduction during coating baking is small due to the solutionizing effect, so even if the strength of the can body material before DI molding is not very high, the strength after coating baking is sufficient, so DI formability is improved. Is to get better. However, if the cold rolling rate after the intermediate annealing is increased, the ear rate becomes unacceptably high. It is an object of the present invention to solve the above problems and provide a material having a low earring rate and improving the overall formability even if the intermediate annealing by CAL is performed.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に本発明者がバッチ焼鈍の耳率とCAL焼鈍の溶体化効
果とのどちらをも兼備えた製造法を鋭意検討した結果、
本発明をするに至った。
In order to achieve the above object, the present inventor diligently studied a production method having both the earring rate of batch annealing and the solution treatment effect of CAL annealing.
The present invention has been completed.

【0005】すなわち本発明は重量%でMg:0.5〜
2.0%、Mn:0.5〜1.8%、Fe:0.1〜
0.7%、組織微細化・安定化のためTi:0.005
〜0.20%を単独であるいはB:0.0001〜0.
05%とともに含有し、さらに、Si:0.05〜0.
5%、Cu:0.05〜0.5%、Cr:0.05〜
0.3%、Zn:0.1〜0.5%の一種または二種以
上を含有し、残部Alおよび不純物からなるアルミニウ
ム合金鋳塊を、常法に従って560〜620℃で均熱
し、その後熱間圧延を行い、その後冷間圧延を施し、次
いで0.5℃/s以上の加熱・冷却速度、290〜40
0℃の到達温度、この温度範囲に保持される時間を10
分以内とする焼鈍を行い、その後5〜30%の圧延率で
冷間圧延を施し、次いで1℃/s以上の加熱・冷却速度
で400〜600℃の到達温度で、かつ400〜600
℃の温度範囲に晒される時間を10分以内とする再結晶
焼鈍を行い、その後40%以上の圧延率の冷間圧延を施
すことを特徴とする、耳率が低く成形性に優れたアルミ
ニウム合金板の製造方法である。
That is, in the present invention, Mg: 0.5% by weight is used.
2.0%, Mn: 0.5 to 1.8%, Fe: 0.1
0.7%, Ti: 0.005 for microstructuring and stabilization
.About.0.20% alone or B: 0.0001 to 0.
0.05%, and further Si: 0.05-0.
5%, Cu: 0.05 to 0.5%, Cr: 0.05 to
An aluminum alloy ingot containing 0.3%, Zn: 0.1 to 0.5% of one kind or two kinds, and the balance of Al and impurities is soaked at 560 to 620 ° C. according to a conventional method, and then heated. Hot rolling, then cold rolling, then heating / cooling rate of 0.5 ° C / s or more, 290-40
The reached temperature of 0 ° C, the time to be kept in this temperature range is 10
Annealing is performed for no more than minutes, then cold rolling is performed at a rolling rate of 5 to 30%, then at a heating / cooling rate of 1 ° C./s or more, at an ultimate temperature of 400 to 600 ° C., and at 400 to 600
An aluminum alloy having a low earring ratio and excellent formability, which is characterized by performing recrystallization annealing for 10 minutes of exposure to a temperature range of ℃, and then performing cold rolling with a rolling rate of 40% or more. It is a method of manufacturing a plate.

【0006】[0006]

【作用】[Action]

【0007】先ず、本発明のアルミニウム合金圧延板に
おける成分限定理由について説明する。下記合金成分
は、アルミニウムの強度を高めると共に耳率や成形性の
制御を目的として添加するものである。 Mg:MgはSi・Cuとの共存によりMg2Siある
いはAl-Cu-Mgの析出による時効硬化が望め、本発
明のように溶体化効果をもたらす中間焼鈍を施す場合、
特に塗装焼付後の強度低下を抑えるのに効果が有る。更
にMg単独でも固溶強化の効果がある元素である。この
ように強度向上には不可欠な元素であるが、Mg量が
0.5%未満ではその効果が少なく、2%を超えて添加
した場合には絞り成形上は問題がないが加工硬化しやす
くなるために再絞り性やしごき性を悪くする。したがっ
て、Mg量は0.5〜2%の範囲とする。 Mn:Mnは強度向上に寄与するとともに成形性向上に
有効な元素である。特に本発明が目指す用途である缶胴
材ではしごき成形が施されるためにとりわけMnは重要
となる。アルミニウム合金板のしごき成形においては通
常エマルジョンタイプの潤滑剤が用いられている。Mn
系晶出物が少ない場合、同程度の強度を有していてもエ
マルジョンタイプ潤滑剤だけでは潤滑能力が不足し、ゴ
ーリングと呼ばれる擦り疵や焼付きといった外観不良が
発生する。このゴーリング現象は、晶出物の大きさ、
量、種類に影響されることが知られており、Mnはその
晶出物を適正に形成するのに不可欠な元素である。Mn
量が0.5%未満では、Mn化合物による固体潤滑的な
効果が得られず、また、1.8%を超えると、MnAl
6の初晶巨大金属間化合物が晶出し、成形性を著しく損
う。したがって、Mn量は0.5〜1.8%とする。 Fe:FeはMnの晶出や析出を促進し、アルミニウム
マトリックス中のMn固溶量やMn系不溶性化合物の分
散状態を制御するために必要な元素である。化合物等の
適正状態を得る必要条件はMn添加量に応じたFeの添
加である。Fe量が0.1%未満では適正な化合物分散
状態を得ることが難しく、Fe量が0.7%を超えると
添加されたMnとともに、初晶巨大化合物を生じやすく
なり成形性を著しく損う。したがって、Fe量は0.1
〜0.7%とする。また、(Fe+Mn)量が2%を超
えると初晶巨大化合物を生じやすくなり成形性を著しく
損うため、(Fe+Mn)量は2%以下が望ましい。 Ti、B:通常のアルミニウム合金においては、鋳塊結
晶粒の微細化・安定化のためにTi及びBを微量添加す
ることが行われており、本発明においてもTi:0.0
05〜0.20%を単独であるいはB:0.0001〜
0.05%とともに添加する。Ti量が0.005%未
満ではその効果が得られず、0.2%を超えると初晶T
iAl3が晶出して成形性を阻害する。したがってTi
量は0.005〜0.2%の範囲とする。またTiと共
にBを添加すると、この鋳塊結晶粒の微細化・安定化効
果が向上する。ただしB量は0.0001%未満ではそ
の効果がなく、0.05%を越えるとTiB2の粗大粒
子が混入して成形性を害することから、Tiと共に添加
するB量は0.0001〜0.05%の範囲とする。 Cu:本発明では、Cuの溶体化効果による強度向上が
期待できる。すなわち、Cuの添加により焼付け処理時
のAl−Cu−Mg系析出物の析出過程で起る時効硬化
を利用して強度向上をはかることができる。Cu量が
0.05%未満ではその効果は得られず、一方0.5%
を超えて添加した場合、時効硬化は容易に得られるもの
の硬くなりすぎて成形性を阻害する。したがって、Cu
量は、0.05〜0.5%とする。 Si:Siを添加することにより、Mg2Si系化合物
による時効硬化により強度向上が期待できる。Si量が
0.05%未満ではその効果は得られず、0.5%を超
えると時効硬化は容易に得られるものの材料が硬くなり
すぎて成形性を阻害する。したがって、Si量は0.0
5%〜0.5%とする。 Zn:Znの添加はMg2Zn3Al2の時効析出により
強度向上を望むものであり、Zn量が0.1%未満では
その効果はなく、0.5%を超えると耐食性を劣化させ
るためこの値以下に規制する必要がある。したがって、
Zn量は0.1〜0.5%とする。 Cr:Crは強度向上に効果的な元素であるが、0.0
5%未満ではその効果が少なく、0.3%を超えると巨
大晶出物生成により成形性の低下をまねき好ましくな
い。したがって、Cr量は0.05〜0.3%とする。 以上の各成分の残部はAl及び不可避不純物である。
First, the reasons for limiting the components in the rolled aluminum alloy plate of the present invention will be described. The following alloy components are added for the purpose of enhancing the strength of aluminum and controlling the ear ratio and formability. Mg: Mg is expected to age harden by precipitation of Mg 2 Si or Al-Cu-Mg due to coexistence with Si / Cu, and when performing intermediate annealing that brings about a solution treatment effect as in the present invention,
In particular, it is effective in suppressing the decrease in strength after baking. Furthermore, Mg alone is an element that has the effect of solid solution strengthening. As described above, it is an essential element for improving the strength, but when the Mg content is less than 0.5%, its effect is small, and when it is added in excess of 2%, there is no problem in draw forming, but work hardening is easy. Therefore, redrawability and ironing property are deteriorated. Therefore, the amount of Mg should be in the range of 0.5 to 2%. Mn: Mn is an element that contributes to the improvement of strength and is effective in improving the formability. In particular, Mn is particularly important in the can body material, which is the intended use of the present invention, because ironing is performed. Emulsion type lubricants are usually used in the ironing of aluminum alloy sheets. Mn
When the amount of crystallized substances is small, even if they have the same level of strength, the emulsion type lubricant alone lacks the lubrication ability, resulting in poor appearance such as scratches and seizure called galling. This goring phenomenon is due to the size of the crystallized substance,
It is known to be influenced by the amount and type, and Mn is an essential element for properly forming the crystallized substance. Mn
If the amount is less than 0.5%, the solid lubricating effect of the Mn compound cannot be obtained, and if it exceeds 1.8%, MnAl.
The primary crystal giant intermetallic compound of 6 crystallizes and the formability is significantly impaired. Therefore, the Mn content is 0.5 to 1.8%. Fe: Fe is an element necessary for promoting crystallization and precipitation of Mn and controlling the amount of Mn solid solution in the aluminum matrix and the dispersed state of the Mn-based insoluble compound. The necessary condition for obtaining the proper state of the compound or the like is the addition of Fe according to the amount of Mn added. When the Fe content is less than 0.1%, it is difficult to obtain a proper compound dispersion state, and when the Fe content exceeds 0.7%, a primary crystal giant compound is likely to be formed together with the added Mn, and the formability is significantly impaired. . Therefore, the Fe content is 0.1
~ 0.7%. Further, if the (Fe + Mn) amount exceeds 2%, a primary crystal giant compound is likely to be formed and formability is significantly impaired. Therefore, the (Fe + Mn) amount is preferably 2% or less. Ti, B: In an ordinary aluminum alloy, a small amount of Ti and B is added for refining and stabilizing the ingot crystal grains. In the present invention, Ti: 0.0
05 to 0.20% alone or B: 0.0001 to
Add with 0.05%. If the Ti content is less than 0.005%, the effect cannot be obtained, and if it exceeds 0.2%, the primary crystal T
iAl 3 crystallizes and hinders formability. Therefore Ti
The amount is in the range of 0.005 to 0.2%. When B is added together with Ti, the effect of refining and stabilizing the ingot crystal grains is improved. However, if the B content is less than 0.0001%, there is no effect, and if it exceeds 0.05%, coarse particles of TiB 2 are mixed to impair the formability, so the B content added with Ti is 0.0001 to 0. The range is 0.05%. Cu: In the present invention, strength improvement due to the solution treatment effect of Cu can be expected. That is, by adding Cu, the strength can be improved by utilizing the age hardening that occurs in the precipitation process of Al-Cu-Mg-based precipitates during the baking treatment. If the Cu content is less than 0.05%, the effect cannot be obtained, while 0.5%
If it is added in excess of 1, the age-hardening is easily obtained, but it becomes too hard and hinders the moldability. Therefore, Cu
The amount is 0.05 to 0.5%. By adding Si: Si, strength improvement can be expected by age hardening with a Mg 2 Si-based compound. If the Si content is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.5%, age hardening can be easily obtained, but the material becomes too hard and hinders the moldability. Therefore, the amount of Si is 0.0
5% to 0.5%. The addition of Zn: Zn is intended to improve the strength by aging precipitation of Mg 2 Zn 3 Al 2 , and if the Zn content is less than 0.1%, there is no effect, and if it exceeds 0.5%, the corrosion resistance deteriorates. It is necessary to regulate below this value. Therefore,
The Zn amount is 0.1 to 0.5%. Cr: Cr is an element effective in improving strength, but 0.0
If it is less than 5%, the effect is small, and if it exceeds 0.3%, the formation of huge crystallized substances may occur, resulting in deterioration of moldability, which is not preferable. Therefore, the Cr content is 0.05 to 0.3%. The balance of each of the above components is Al and inevitable impurities.

【0008】次に本発明における製造プロセスについて
説明する。 鋳造:前述の合金組成を有するアルミニウム合金鋳塊を
常法に従ってDC鋳造法(半連続鋳造法)により作製す
る。 均熱:次いでその鋳塊に対して、均質化処理を兼ねた熱
間圧延前の予備加熱を施すか、または均質化処理として
の加熱を施した後熱間圧延前の予備加熱を施す。この均
質化処理は最終板の強度・靱性・深絞り加工性の向上お
よび耳率のばらつき減少等のために有効な処理であり、
560℃未満では十分な均質化が得られず、また620
℃を超えると鋳塊表面に膨れが生じたりするため、均熱
温度は560〜620℃とする。また1時間未満の保持
では十分な均質化が得られないため、保持時間は1時間
以上とすることが望ましい。なお保持時間の上限は生産
性との兼ね合いで適宜設定ればよい。 熱間圧延:熱間圧延上りの条件は、特に規制しないが、
熱延性を考慮すると230℃以上の上り温度が好まし
い。また、上りの板厚は巻取性を考慮すると10mm以
下が好ましい。 冷間圧延:熱間圧延上りで再結晶している組織の場合は
次工程の焼鈍で均一な再結晶組織を得るために圧延率が
30%以上の冷間圧延が施されることが必要である。 1段目の焼鈍:(部分再結晶焼鈍)本発明においては、
この1段目の焼鈍においては完全再結晶させるのではな
く、部分再結晶にとどめ通常高耳成分のR方位の結晶化
を促進させることに特徴がある。本発明合金のようなA
l−Mn−Mg系合金では通常数μm程度の大きさの晶
出化合物が多数存在しており、冷間圧延によりこの晶出
物近傍に歪が蓄積され、そこが再結晶しやすくなる。し
たがって加熱・冷却速度が0.5℃/s以上、到達温度
290〜400℃、該温度域で保持される時間が10分
以内とする焼鈍を施すことにより、この晶出物近傍から
優先的にR方位を有する再結晶が開始する。なお再結晶
率は10〜80%が好ましい。加熱・冷却速度が0.5
℃/s未満の場合、昇温過程でMg2Si、Al2CuM
gおよびαAlMnSiまたはAl6Mnの析出が起こ
り、2段目の焼鈍時にCube方位を有する結晶の成長
が抑制されるので好ましくない。焼鈍温度は290℃未
満では十分に再結晶化が進まず、また400℃を超える
温度ではほとんど再結晶化してしまい好ましくない。し
たがって、焼鈍温度は290〜400℃、好ましくは3
20〜380℃とする。 冷間圧延:上記部分再結晶焼鈍後、5〜30%の圧延率
の冷間圧延を施し、1段目の焼鈍により再結晶した部分
に軽度の歪を加える。圧延率が5%未満では与える歪は
十分ではなく、また30%を超えると再結晶部分に強度
の歪が加わるために次工程の焼鈍によって、晶出物近傍
での再結晶化が再度R方位となりCube方位の優先生
成・成長が得られない。したがって圧延率は5〜30%
とする。 2段目の焼鈍:(完全再結晶焼鈍)1段目の焼鈍により
晶出物近傍の歪は少なくなっているために、この2段目
の焼鈍においては晶出物近傍は容易には再結晶核とはな
りえず、かわって前工程の冷間圧延により導入されたマ
トリックス中の転位の集積部から優先的に再結晶化が進
む。この部分より生成する結晶粒の方位はCube方位
と呼ばれ低耳成分を有している。すなわち2段目の焼鈍
によりCube方位の再結晶粒が優先生成して、再結晶
化しきれない晶出物近傍まで成長包含してしまい、その
結果全体的にCube方位の多い再結晶組織となる結
果、全体として耳率の低い組織となる。特公昭60−3
7186号公報においては、この2段目の焼鈍をバッチ
タイプで行うことが記載されているが、本発明において
はこの焼鈍をCAL(連続焼鈍炉)のように1℃/s以
上の速い加熱・冷却速度を有し、400〜600℃の到
達温度とすることにより、Cu、Mg、Si等の金属元
素の固溶による溶体化効果による強度向上を望むもので
ある。すなわち、DI成形時の強度はあまり強くは無い
が、塗装焼付け処理を施しても時効硬化により強度低下
が少ないアルミニウム合金板を得ることができる。従っ
て、DI成形時の強度はあまり高くないことから成形性
が良好であるとともに、塗装焼付後の強度低下が少ない
ことからDI成形時の強度はバッチタイプの焼鈍材より
低くともDI成形時の強度を維持するため最終的には十
分な強度を有するアルミニウム合金板が得られる。到達
温度が400℃未満では十分な再結晶組織が得られず、
また高温である方がより溶体化効果による強度向上が望
めるものの600℃を超えて高温になると共晶融解によ
る軟化等の製造上の不都合が生じ、また部分融解により
製品の外観を損なう恐れがある。したがって到達温度は
400〜600℃とする。冷却速度は1℃/sより遅い
と固溶した合金元素が冷却過程で析出してしまい、溶体
化効果による強度向上の程度が少なくなる。したがっ
て、1℃/s以上の冷却速度とする。また、400℃よ
り高温では表面酸化が著しく進行するため、400℃以
上の保持時間を少なくする必要がある。10分を超えて
長時間となると、表面に形成された酸化皮膜が焼鈍終了
後の冷間圧延性や製品外観を損ねる。従って加熱、保
持、冷却期間を合わせて400〜600℃の温度範囲に
晒される時間は10分以内とする。上記温度に到達後保
持無しで直ちに冷却してもよい。上記時間を短縮するた
めにもそのためにも加熱速度は速い方が良く、1℃/s
以上の加熱速度とする。 冷間圧延:上記焼鈍後、冷間圧延を施すが、圧延率は4
0%以上ないと必要な強度が得られない。なお、必要に
応じて100〜200℃程度の最終焼鈍を施すことによ
り、深絞り性の改善が望める。
Next, the manufacturing process in the present invention will be described. Casting: An aluminum alloy ingot having the above alloy composition is produced by a DC casting method (semi-continuous casting method) according to a conventional method. Soaking: Next, the ingot is subjected to preheating before hot rolling which also serves as homogenization treatment, or after heating as homogenization treatment and then preheating before hot rolling. This homogenization treatment is an effective treatment for improving the strength, toughness and deep drawing workability of the final plate and reducing the variation in the ear ratio.
Below 560 ° C, sufficient homogenization cannot be obtained, and 620
If the temperature exceeds ℃, swelling may occur on the surface of the ingot, so the soaking temperature is 560 to 620 ℃. Further, since holding for less than 1 hour does not result in sufficient homogenization, it is desirable to set the holding time to 1 hour or more. The upper limit of the holding time may be set appropriately in consideration of productivity. Hot rolling: The conditions for hot rolling are not particularly limited,
In consideration of hot ductility, a rising temperature of 230 ° C or higher is preferable. The thickness of the ascending plate is preferably 10 mm or less in consideration of the winding property. Cold rolling: In the case of a structure recrystallized after hot rolling, it is necessary to perform cold rolling with a rolling rate of 30% or more in order to obtain a uniform recrystallized structure in the subsequent annealing. is there. First stage annealing: (Partial recrystallization annealing) In the present invention,
This first-stage annealing is characterized in that it is not completely recrystallized, but is only partially recrystallized and promotes crystallization of the R direction of the normally high ear component. A like the alloy of the present invention
In the 1-Mn-Mg-based alloy, a large number of crystallized compounds having a size of several μm are usually present, and cold rolling causes strains to accumulate near the crystallized substances, which facilitates recrystallization. Therefore, by performing annealing such that the heating / cooling rate is 0.5 ° C./s or more, the ultimate temperature is 290 to 400 ° C., and the time to be maintained in this temperature range is within 10 minutes, the crystallized substances are preferentially added from the vicinity of the crystallized substances. Recrystallization with R orientation starts. The recrystallization rate is preferably 10 to 80%. Heating / cooling rate is 0.5
If less than ℃ / s, Mg 2 Si, Al 2 CuM
Precipitation of g and αAlMnSi or Al 6 Mn occurs, and the growth of crystals having a Cube orientation is suppressed during the second annealing, which is not preferable. If the annealing temperature is less than 290 ° C, recrystallization does not proceed sufficiently, and if the annealing temperature exceeds 400 ° C, recrystallization hardly occurs, which is not preferable. Therefore, the annealing temperature is 290 to 400 ° C., preferably 3
20-380 degreeC. Cold rolling: After the above partial recrystallization annealing, cold rolling with a rolling ratio of 5 to 30% is performed, and a slight strain is applied to the portion recrystallized by the first annealing. If the rolling ratio is less than 5%, the strain applied is not sufficient, and if it exceeds 30%, the strain of strength is added to the recrystallized portion. Therefore, preferential generation and growth of Cube orientation cannot be obtained. Therefore, the rolling rate is 5-30%
And Second-stage annealing: (Complete recrystallization annealing) Since the strain in the vicinity of the crystallized substances is reduced by the first-stage annealing, the vicinity of the crystallized substances is easily recrystallized in the second-stage annealing. It cannot be a nucleus, and instead, recrystallization preferentially proceeds from the dislocation accumulating portion in the matrix introduced by the cold rolling in the previous step. The orientation of the crystal grains generated from this portion is called Cube orientation and has a low ear component. That is, the second-stage annealing preferentially generates recrystallized grains in the Cube orientation, and even grows to the vicinity of the crystallized substances that cannot be completely recrystallized, resulting in a recrystallized structure with many Cube orientations as a whole. , As a whole, the tissue has a low ear rate. Japanese Examined Japanese Patent Sho 60-3
Japanese Patent No. 7186 describes that this second stage annealing is performed in a batch type, but in the present invention, this annealing is performed at a high heating rate of 1 ° C./s or more like a CAL (continuous annealing furnace). By having a cooling rate and an ultimate temperature of 400 to 600 ° C., it is desired to improve strength by the solution treatment effect by solid solution of metal elements such as Cu, Mg, and Si. That is, although the strength during DI molding is not so strong, it is possible to obtain an aluminum alloy plate which is not significantly reduced in strength due to age hardening even if a coating baking treatment is performed. Therefore, the strength during DI molding is not so high that the moldability is good, and the strength after DI baking is small, so the strength during DI molding is lower than that of the batch type annealed material, but the strength during DI molding is low. In the end, an aluminum alloy plate having sufficient strength is obtained. If the ultimate temperature is less than 400 ° C, a sufficient recrystallized structure cannot be obtained,
Further, although it is expected that the higher the temperature is, the strength improvement due to the solution treatment can be expected, the higher the temperature exceeds 600 ° C, the more inconvenient the production such as the softening due to the eutectic melting, and the partial melting may impair the appearance of the product. . Therefore, the ultimate temperature is set to 400 to 600 ° C. If the cooling rate is slower than 1 ° C./s, the solid-dissolved alloy elements are precipitated during the cooling process, and the degree of strength improvement due to the solution treatment effect is reduced. Therefore, the cooling rate is 1 ° C./s or more. Further, at a temperature higher than 400 ° C., the surface oxidation remarkably progresses, so it is necessary to reduce the holding time at 400 ° C. or higher. When the time is longer than 10 minutes, the oxide film formed on the surface impairs the cold rollability and the product appearance after annealing. Therefore, the total period of heating, holding and cooling is to be exposed to the temperature range of 400 to 600 ° C. for 10 minutes or less. After reaching the above temperature, it may be cooled immediately without holding. In order to shorten the above-mentioned time and for that reason as well, it is preferable that the heating rate is fast, 1 ° C / s.
The heating rate is the above. Cold rolling: After the above annealing, cold rolling is performed, but the rolling ratio is 4
If it is 0% or more, the required strength cannot be obtained. It is expected that the deep drawability will be improved by performing final annealing at about 100 to 200 ° C., if necessary.

【0009】[0009]

【実施例】表1に示す化学成分を有するアルミニウム合
金を表2に示す製造方法により圧延、熱処理し試料を作
成した。表2で均熱の欄は温度×保持時間を示し、熱
延、冷延の欄は板厚(mm)、中間焼鈍の欄は温度×保
持時間を示す。ただし保持時間が0となっているのは温
度到達後直ちに(保持無しで)冷却に移ったことを示
す。またCALの加熱・冷却速度は約20℃/s、バッ
チの加熱・冷却速度は約35℃/hであった。以下、各
々について説明する。No1は、焼鈍をCALで1回の
み行った従来例である。No2は、冷間圧延を行わずに
熱延後バッチ焼鈍を行った従来例である。No3は、1
段目をバッチ焼鈍とし、2段目もバッチ焼鈍で行った比
較例である。No4は、1段目をバッチ焼鈍とし、2段
目をCAL焼鈍で行った比較例である。No5は、1段
目を本発明の範囲より低温のCAL焼鈍とし、2段目も
CAL焼鈍で行った比較例である。No6は、1段目を
CAL焼鈍とし、2段目もCAL焼鈍で行った発明例で
ある。No7は、1段目を本発明の範囲より高温のCA
L焼鈍とし、2段目もCAL焼鈍で行った比較例であ
る。No8は、1段目と2段目のCAL焼鈍の間の冷間
圧延の圧延率が本発明の範囲より高い比較例である。N
o9は、本発明と同様の工程だが2段目の焼鈍を高温の
バッチ焼鈍で行い、400〜600℃の温度範囲に晒さ
れる時間を10分を超えるようにした比較例である。
EXAMPLE An aluminum alloy having the chemical composition shown in Table 1 was rolled and heat-treated by the manufacturing method shown in Table 2 to prepare a sample. In Table 2, the column of soaking shows temperature × holding time, the columns of hot rolling and cold rolling show sheet thickness (mm), and the column of intermediate annealing shows temperature × holding time. However, the holding time of 0 indicates that the cooling was started immediately (without holding) after the temperature reached. The heating / cooling rate of CAL was about 20 ° C./s, and the heating / cooling rate of the batch was about 35 ° C./h. Each will be described below. No. 1 is a conventional example in which annealing was performed only once by CAL. No. 2 is a conventional example in which batch annealing was performed after hot rolling without performing cold rolling. No3 is 1
This is a comparative example in which the second step is batch annealing and the second step is batch annealing. No. 4 is a comparative example in which the first step was batch annealing and the second step was CAL annealing. No. 5 is a comparative example in which the first step was performed by CAL annealing at a temperature lower than the range of the present invention and the second step was also performed by CAL annealing. No. 6 is an example of the invention in which the first step was CAL annealing and the second step was CAL annealing. In No. 7, the first stage has a higher temperature than the range of the present invention.
This is a comparative example in which L annealing is performed and the second step is also CAL annealing. No. 8 is a comparative example in which the rolling ratio of the cold rolling between the first and second CAL annealing is higher than the range of the present invention. N
o9 is a comparative example in which the second step annealing is performed by high temperature batch annealing, but the time of exposure to the temperature range of 400 to 600 ° C. is set to exceed 10 minutes, although the same step as in the present invention.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】得られた試料について元板ならびに塗装ベ
ーキング相当の200℃x20分の熱処理後の板の引張
強さ(TS:N/mm2)、耐力(YS:N/mm2)、
伸び(EL:%)を調べ、元板について38mmφ、肩
R2.5mmのポンチを用いて66mmφサークルをク
リアランス30%で深絞りを行って耳率を測定した。ま
た実際のDI成形を行って連続成形性およびDI缶の外
観を観察した。外観は缶側壁の圧延方向に沿ったフロー
ライン状の外観欠陥の有無で判定した。その結果を表3
に示す。
With respect to the obtained sample, the tensile strength (TS: N / mm 2 ) and proof stress (YS: N / mm 2 ) of the base plate and the plate after heat treatment at 200 ° C. for 20 minutes corresponding to coating baking,
The elongation (EL:%) was examined, and a 66 mmφ circle was deep-drawn with a clearance of 30% using a punch having a diameter of 38 mmφ and a shoulder R of 2.5 mm to measure the ear rate. Further, actual DI molding was performed to observe the continuous moldability and the appearance of the DI can. The appearance was judged by the presence or absence of flow line-like appearance defects along the rolling direction of the can side wall. The results are shown in Table 3.
Shown in.

【0013】[0013]

【表3】 [Table 3]

【0014】以下、各々について説明する。No1の焼
鈍をCALで1回のみ行った従来例では、元板ならびに
ベーキング後の強度は充分であるものの耳率が5%と高
くなっている。No2の冷間圧延を行わずに熱延後バッ
チ焼鈍を行った従来例では、耳率は3%と低いものの、
元板強度が高く成形しにくいとともにベーキングによる
強度の変化が引張強さで大きく13N/mm2強度低下
している。これに対して、No6の発明例はDI成形時
の元板の強さは引張強さで300N/mm2、耐力で2
82N/mm2と従来材No1と同程度で、成形しやす
くなっている。しかも、ベーキング後においては引張強
さは5N/mm2向上しており、本来強度が必要とされ
るベーキング後における強度が充分高いという良好な特
性を示している。耳率は従来例が3〜5%であるのに対
して、発明例では1.5%と極めて低い値を示してい
る。さらに、DI性においてもまったく問題なく、また
DI成形した缶の外観にも不良は認められない。以上の
ように、発明例は元板強度は柔らかく従って成形性が良
好であり、ベーキング後においては必要とする強度を十
分満たし、耳率は極めて低く、またDI性ならびに外観
不良の点においても優れている。No3の1段目をバッ
チ焼鈍とし2段目もバッチ焼鈍で行った比較例では、元
板の引張強さが高すぎて成形性が悪く、しかもベーキン
グ処理により引張強さが大幅に低下しており、強度面で
問題がある。No4の1段目をバッチ焼鈍とし2段目を
CAL焼鈍で行った比較例では、元板およびベーキング
後の強度ならびにDI性、DI缶外観においては発明例
とほぼ同じだか、耳率はやや大きい値を示している。N
o5の1段目を本発明の範囲より低温のCAL焼鈍とし
2段目もCAL焼鈍で行った比較例では、No4と同様
に耳率において発明例より劣っている。No7の1段目
を本発明の範囲より高温のCAL焼鈍とし2段目もCA
L焼鈍で行った比較例では、ベーキングによる強度向上
は発明例より大きいものの耳率では発明例より劣る値と
なっている。No8の1段目と2段目のCAL焼鈍の間
の冷間圧延の圧延率が本発明の範囲より高い比較例では
No5、No7と同様に耳率において発明例より劣る値
となっている。No9の本発明と同様の工程だが2段目
の焼鈍を高温のバッチ焼鈍で行い400〜600℃の温
度範囲に晒される時間を10分を超えるようにした比較
例では、耳率は従来例と同等だが、元板強度が高すぎ、
逆にベーキング後の強度低下が大きくて強度面において
問題があるとともに、DI成形においてフローライン状
の外観不良が発生している。
Each of these will be described below. In the conventional example in which the No. 1 annealing was performed only once by CAL, the original plate and the strength after baking were sufficient, but the ear rate was as high as 5%. In the conventional example in which batch rolling annealing was performed after hot rolling without performing cold rolling of No2, the ear ratio was as low as 3%,
The original plate has high strength and is difficult to form, and the change in strength due to baking is large in tensile strength, and the strength is reduced by 13 N / mm 2 . On the other hand, in the invention example of No. 6, the strength of the base plate during DI molding is 300 N / mm 2 in tensile strength and 2 in proof stress.
It is 82 N / mm 2, which is about the same as the conventional material No. 1 and easy to mold. Moreover, the tensile strength is improved by 5 N / mm 2 after baking, which shows good characteristics that the strength after baking, which originally requires strength, is sufficiently high. The ear ratio is 3 to 5% in the conventional example, while the invention example shows an extremely low value of 1.5%. Further, there is no problem in DI property, and no defect is observed in the appearance of the DI molded can. As described above, the invention examples have soft base plate strength and therefore good moldability, sufficiently satisfy the required strength after baking, have extremely low ear rates, and are excellent in DI property and poor appearance. ing. In the comparative example in which the first step of No. 3 was batch-annealed and the second step was also batch-annealed, the tensile strength of the base plate was too high and the formability was poor, and the tensile strength was significantly reduced by the baking treatment. And there is a problem in strength. In the comparative example in which the first step of No. 4 was batch-annealed and the second step was CAL-annealed, the original plate and the strength after baking, DI property, and the appearance of the DI can were almost the same as those of the invention example, but the ear ratio was slightly larger. Indicates the value. N
In the comparative example in which the first step of o5 was performed at a temperature lower than the range of the present invention by CAL annealing and the second step was also performed by CAL annealing, the ear ratio was inferior to that of the inventive example similarly to No4. The first step of No. 7 was CAL annealed at a temperature higher than the range of the present invention, and the second step was CA.
In the comparative example performed by L annealing, the strength improvement by baking is larger than that of the invention example, but the ear rate is inferior to that of the invention example. In Comparative Example in which the rolling ratio of the cold rolling between the first and second CAL annealings of No. 8 is higher than the range of the present invention, the ear ratio is inferior to that of the inventive example as in No. 5 and No. 7. In the comparative example in which the process of No. 9 is the same as that of the present invention but the second stage annealing is performed by high temperature batch annealing so that the time of exposure to the temperature range of 400 to 600 ° C. exceeds 10 minutes, the ear rate is the same as that of the conventional example. Equivalent, but the base plate strength is too high,
On the contrary, there is a problem in strength due to a large decrease in strength after baking, and a flow line-like appearance defect occurs in DI molding.

【0015】[0015]

【効果】本発明により製造された成形加工用アルミニウ
ム硬質板は、特に、缶材などの塗装焼付け処理が施され
る用途に適しており、深絞り耳が低く、高強度が得ら
れ、成形性にも優れている。すなわち、詳述したよう
に、本発明によればDI成形時における強度はそれほど
高くなく従って成形性が良好であり、しかも塗装焼付け
処理により強度が向上するという成形加工用アルミニウ
ム合金として理想的な強度特性を示すとともに、耳率が
極めて低いアルミニウム合金板を提供することができ
る。従って、本発明の製造方法によればDI缶、DR缶
およびDRD缶等の缶胴材に好適なアルミニウム合金板
を得ることができるものである。
[Effect] The aluminum hard plate for forming processing produced by the present invention is particularly suitable for applications such as can materials that are subjected to paint baking treatment, and has low deep-drawing ears, high strength, and formability. Is also excellent. That is, as described in detail, according to the present invention, the strength at the time of DI molding is not so high, the moldability is good, and the strength is improved by the paint baking treatment. It is possible to provide an aluminum alloy plate that exhibits characteristics and has an extremely low ear rate. Therefore, according to the manufacturing method of the present invention, it is possible to obtain an aluminum alloy plate suitable for can bodies such as DI cans, DR cans, and DRD cans.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.5
〜2.0%、Mn:0.5〜1.8%、Fe:0.1〜
0.7%、組織微細化・安定化のためTi:0.005
〜0.20%を単独であるいはB:0.0001〜0.
05%とともに含有し、さらに、Si:0.05〜0.
5%、Cu:0.05〜0.5%、Cr:0.05〜
0.3%、Zn:0.1〜0.5%の一種または二種以
上を含有し、残部Alおよび不純物からなるアルミニウ
ム合金鋳塊を、常法に従って560〜620℃で均熱
し、その後熱間圧延を行い、その後冷間圧延を施し、次
いで0.5℃/s以上の加熱・冷却速度、290〜40
0℃の到達温度、この温度範囲に保持される時間を10
分以内とする焼鈍を行い、その後5〜30%の圧延率で
冷間圧延を施し、次いで1℃/s以上の加熱・冷却速度
で400〜600℃の到達温度で、かつ400〜600
℃の温度範囲に晒される時間を10分以内とする再結晶
焼鈍を行い、その後40%以上の圧延率の冷間圧延を施
すことを特徴とする、耳率が低く成形性に優れたアルミ
ニウム合金板の製造方法。
1. In weight% (hereinafter the same), Mg: 0.5
~ 2.0%, Mn: 0.5 to 1.8%, Fe: 0.1
0.7%, Ti: 0.005 for microstructuring and stabilization
.About.0.20% alone or B: 0.0001 to 0.
0.05%, and further Si: 0.05-0.
5%, Cu: 0.05 to 0.5%, Cr: 0.05 to
An aluminum alloy ingot containing 0.3%, Zn: 0.1 to 0.5% of one kind or two kinds, and the balance of Al and impurities is soaked at 560 to 620 ° C. according to a conventional method, and then heated. Hot rolling, then cold rolling, then heating / cooling rate of 0.5 ° C / s or more, 290-40
The reached temperature of 0 ° C, the time to be kept in this temperature range is 10
Annealing is performed for no more than minutes, then cold rolling is performed at a rolling rate of 5 to 30%, then at a heating / cooling rate of 1 ° C./s or more, at an ultimate temperature of 400 to 600 ° C., and at 400 to 600
An aluminum alloy having a low earring ratio and excellent formability, which is characterized by performing recrystallization annealing for 10 minutes of exposure to a temperature range of ℃, and then performing cold rolling with a rolling rate of 40% or more. Method of manufacturing a plate.
JP27662292A 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability Expired - Fee Related JP3218099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27662292A JP3218099B2 (en) 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27662292A JP3218099B2 (en) 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Publications (2)

Publication Number Publication Date
JPH06101002A true JPH06101002A (en) 1994-04-12
JP3218099B2 JP3218099B2 (en) 2001-10-15

Family

ID=17572007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27662292A Expired - Fee Related JP3218099B2 (en) 1992-09-21 1992-09-21 Method for producing aluminum alloy sheet with low ear ratio and excellent formability

Country Status (1)

Country Link
JP (1) JP3218099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293105A (en) * 2002-03-29 2003-10-15 Mitsubishi Alum Co Ltd Method for producing aluminum alloy sheet for bottle type drink can
DE10164094B4 (en) * 2000-12-28 2006-03-16 Sumitomo Wiring Systems, Ltd., Yokkaichi Interconnects
CN112469841A (en) * 2018-09-07 2021-03-09 奥地利纽曼铝业有限责任公司 Aluminium alloy, semi-finished product, tank, method for producing block, method for producing tank, and use of aluminium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164094B4 (en) * 2000-12-28 2006-03-16 Sumitomo Wiring Systems, Ltd., Yokkaichi Interconnects
JP2003293105A (en) * 2002-03-29 2003-10-15 Mitsubishi Alum Co Ltd Method for producing aluminum alloy sheet for bottle type drink can
CN112469841A (en) * 2018-09-07 2021-03-09 奥地利纽曼铝业有限责任公司 Aluminium alloy, semi-finished product, tank, method for producing block, method for producing tank, and use of aluminium alloy

Also Published As

Publication number Publication date
JP3218099B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
US5441582A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH06228696A (en) Aluminum alloy sheet for di can body
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JPH05317914A (en) Production of aluminum alloy sheet having low edge rate and excellent formability
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JPH0660366B2 (en) Aluminum alloy sheet for zinc phosphate treatment and method for producing the same
JPH0860314A (en) Production of aluminum alloy sheet for forming
JP2613522B2 (en) Aluminum alloy plate for stay tub
JPH06271968A (en) Aluminum alloy sheet excellent in ironability and its production
JPH0734208A (en) Production of aluminum alloy sheet excellent in formability
JPH06271969A (en) Aluminum alloy sheet excellent in ironability and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees