JP3905143B2 - Aluminum alloy plate excellent in press formability and method for producing the same - Google Patents
Aluminum alloy plate excellent in press formability and method for producing the same Download PDFInfo
- Publication number
- JP3905143B2 JP3905143B2 JP13428595A JP13428595A JP3905143B2 JP 3905143 B2 JP3905143 B2 JP 3905143B2 JP 13428595 A JP13428595 A JP 13428595A JP 13428595 A JP13428595 A JP 13428595A JP 3905143 B2 JP3905143 B2 JP 3905143B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy plate
- press formability
- aluminum alloy
- orientation
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal Rolling (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、Al−Mg−Si系合金板又はAl−Mg系合金板からなるプレス成形性が優れたアルミニウム合金板及びその製造方法に関し、特に自動車パネル用アルミニウム合金板として好適のプレス成形性が優れたアルミニウム合金板及びその製造方法に関する。
【0002】
【従来の技術】
従来の成形加工性が優れたアルミニウム合金板としては、6009合金、6010合金及び特開平5−295475号公報に開示された合金等のAl−Mg−Si系合金板と、AA5182合金、5085合金、特公昭56−31858号公報又は特開昭60−125346号公報に開示された合金等のAl−Mg系合金板がある。これらのアルミニウム合金板は、主として自動車パネルに適用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの自動車パネル用のアルミニウム合金板は、未だ成形性が不十分であった。
【0004】
本発明はかかる問題点に鑑みてなされたものであって、従来の自動車パネル用アルミニウム合金板よりもプレス成形性を高め、割れ限界を高めたプレス成形性が優れたアルミニウム合金板及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係るプレス成形性が優れたアルミニウム合金板の製造方法は、Al−Mg−Si系合金板を熱間圧延して板厚を1000mmから5mmまで低減し、最終冷間圧延率が35〜65%の範囲で冷間圧延し、最終溶体化処理温度が500℃以上、加熱速度が100℃/分以上の条件で最終溶体化処理することにより、集合組織として、CUBE方位の割合が30%以下であるAl−Mg−Si系合金板を製造することを特徴とする。
本発明に係る他のプレス成形性が優れたアルミニウム合金板の製造方法は、Al−Mg系合金板を熱間圧延して板厚を1000mmから5mmまで低減し、最終冷間圧延率が35〜65%の範囲で冷間圧延し、最終溶体化処理温度が500℃以上、加熱速度が100℃/分以上の条件で最終溶体化処理することにより、集合組織として、CUBE方位、GOSS方位、BRASS方位、S方位、COPPER方位の割合が25%以下であるAl−Mg系合金板を製造することを特徴とする。
【0006】
この場合に、前記冷間圧延の際に、例えば、400℃に1時間加熱して、中間焼鈍を行うことが好ましい。
【0007】
更に、本発明に係るプレス成形性が優れたアルミニウム合金板は、請求項1乃至4のいずれか1項のアルミニウム合金板の製造方法で製造されたことを特徴とする。より、具体的には、請求項1に記載のアルミニウム合金板の製造方法により製造されたAl−Mg−Si系合金板であって、集合組織として、CUBE方位の割合が30%以下である。又は、請求項2に記載のアルミニウム合金板の製造方法により製造されたAl−Mg系合金板であって、集合組織として、CUBE方位、GOSS方位、BRASS方位、S方位、COPPER方位の割合が25%以下である。
【0008】
【作用】
本願発明者が従来の自動車パネル用アルミニウム合金板のプレス成形性が十分ではないことの原因を解明すべく種々実験研究を重ねた結果、従来のアルミニウム合金板は集合組織の制御が十分にされていなかったためにプレス成形性が低いものであることが判明した。。
【0009】
そこで本発明においては、集合組織を制御することによりプレス成形性を高め、特に割れ限界が高いアルミニウム合金板を得るものである。
【0010】
本願発明者等は、集合組織とプレス成形性との関係について鋭意研究し、集合組織を形成する方位因子の割合が成形性を支配することを見いだした。
【0011】
この集合組織を形成する方位因子とは、主として
CUBE方位 (100)<001>
GOSS方位 (110)<001>
BRASS方位 (110)<1−12>
S方位 (123)<63−4>
COPPER方位(112)<11−1>
であり、本明細書においては、これらの方位から土10度以内の方位のずれは同一の方位因子に属するものと定義する。なお、方位を表す場合に、X−Y−Z座標軸において、負方向の数値は、通常、数値の上部にバーを付して表示するが、本明細書においては、都合上、数値の前に「−」符号を付してこれを表示する。
【0012】
通常のアルミニウム合金の集合組織はこれらの方位因子から成立しており、各方位因子の存在割合が変化すると、塑性異方性が異なり、プレス成形性が変化する。本願発明者等は、これらの方位因子の存在割合とプレス成形性との関係を究明した。その結果、Al−Mg−Si系合金板においては、CUBE方位の割合が30%以下の範囲にある場合に、プレス成形性が最も向上することを見い出し、割れ限界が高いAl−Mg−Si系合金板を得た。また、Al−Mg系合金板においては、前記方位因子の割合が全て25%以下の場合に、プレス成形性が最も向上することを見い出し、割れ限界が高いAl−Mg系合金板を開発するに至ったものである。
【0013】
また、本願発明者等は集合組織と製造条件との関係を研究し、最終冷間圧延率が35〜65%の範囲で、かつ最終溶体化処理温度が500℃以上で、しかもその際の加熱速度が100℃/分以上の場合に、理想的な方位因子割合の集合組織を有するAl−Mg−Si系合金板又はAl−Mg系合金板を製造することができることを知見した。
【0014】
なお、Al−Mg−Si系合金としては、Mg:0.6〜1.0重量%及びSi:l.5重量%以下(0重量%を除く)を、Si≧(4/7)Mg+0.5を満足するように含有し、かつCu:l.0重量%以下に規制し、更に必要に応じてCr:0.2重量%以下、Mn:0.3重量%以下、Zr:0.2重量%以下からなる群から選択された少なくとも1種の元素を含有し、残部がAl及び不可避的不純物からなるものが望ましい。
【0015】
また、Al−Mg系合金としては、Mg:3.5〜8.0重量%、Cu:0.5〜1.5重量%を含有し、更に必要に応じてCr:0.2重量%以下、Mn:0.3重量%以下、Zr:0.2重量%以下からなる群から選択された少なくとも1種の元素を含有し、残部がAl及び不可避的不純物であるものがある。このように、Cuを必須成分とすることが好ましい。
【0016】
また、製造方法としては、通常の鋳造、均熱、熱間圧延を施した後、冷間圧延し、その後溶体化処理するものであり、この冷間圧延及び溶体化処理条件が本発明の範囲に入るものであればよく、その他の製造条件は適宜設定すればよい。鋳造工程においては、連続鋳造(ストリッブキャストなど)によりアルミニウム合金を鋳造することもできる。
【0017】
上述のごとく、Al−Mg−Si系合金板の場合には、集合組織として、CUBE方位の割合が30%以下の範囲にある場合に、集合組織がランダムになり、異方性がないものとなるため、プレス成形性が最も向上する。この範囲を外れると異方性が強いものとなり、プレス成形性が劣化する。
【0018】
また、Al−Mg系合金板の場合には、集合組織として、CUBE方位、GOSS方位、BRASS方位、S方位、COPPER方位の割合が全て25%以下の範囲にある場合に、集合組織がランダムになり、異方性がないものとなるため、プレス成形性が最も向上する。この範囲を外れると異方性が強いものとなり、プレス成形性が劣化する。
【0019】
【実施例】
次に、本発明の実施例について、本願発明の範囲から外れる比較例と比較して説明する。
【0020】
実施例1
6009合金及びAl−0.7重量%Mg−0.9重量%Si−0.3重量%Mn−0.1重量%Fe合金を通常のDC(直接鋳造)により鋳造し、550℃に8時間加熱して均熱処理した後、開始温度450℃で熱間圧延した。この熱間圧延により、厚さを1000mmから5mmまで低減した。その後、冷間圧延を施して板厚をlmmとし、ソルトバス及び制御炉を使用して最終溶体化処理を施した。なお、冷間圧延の際、中間焼鈍(400℃でl時間)を施し、最終冷間圧延率を変化させ、また最終溶体化処理の温度と加熱速度を変化させた。これらの変化により集合組織を変化させた。得られたlmm厚さの板材につき、エリクセン試験を行いプレス成形性を評価した。下記表1はその製造条件と集合組織を示し、表2は試験結果を示す。この表2から明らかなように、本発明の実施例材は、エリクセン値が9.5mm以上であり、優れたプレス成形性を示すことがわかる。
【0021】
【表1】
但し、表1において、合金Aは6009合金、合金BはAl−0.7重量%Mg−0.9重量%Si−0.3重量%Mn−0.1重量%Fe合金である。
【0022】
【表2】
【0023】
実施例2
5182合金及びAl−5.5重量%Mg−0.5重量%Cu−0.1重量%Mn−0.1重量%Fe合金を通常のDC鋳造し、480℃に8時間加熱して均熱処理した後、開始温度450℃で熱間圧延した。この熱間圧延により、厚さを1000mmから5mmまで低減した。その後、冷間圧延を施して板厚をlmmとし、ソルトバス及び制御炉を使用して最終溶体化処理を施した。なお、冷間圧延の際、中間焼鈍(400℃でl時間)を施し、最終冷間圧延率を変化させ、また最終溶体化処理の温度と加熱速度を変化させた。これらの変化により集合組織を変化させた。得られたlmm厚さの板材につき、エリクセン試験を行いプレス成形性を評価した。下記表3はその製造条件と集合組織を示し、表4は試験結果を示す。この表4から明らかなように、本発明の実施例材は、エリクセン値が9.8mm以上であり、優れたプレス成形性を示すことがわかる。
【0024】
【表3】
但し、表3において、合金Aは5182合金、合金BはAl−5.5重量%Mg−0.5重量%Cu−0.1重量%Mn−0.1重量%Fe合金である。
【0025】
【表4】
【0026】
【発明の効果】
以上説明したように、本発明によれば、集合組織を適切に制御することにより、アルミニウム合金板のプレス成形性を十分に高めることができ、割れ限界が高く、自動車パネル用アルミニウム合金板として極めて有益なプレス成形性が優れたアルミニウム合金板を得ることができる。[0001]
[Industrial application fields]
The present invention relates to an aluminum alloy plate excellent in press formability made of an Al—Mg—Si based alloy plate or an Al—Mg based alloy plate and a method for producing the same, and in particular, has a press formability suitable as an aluminum alloy plate for automobile panels. The present invention relates to an excellent aluminum alloy plate and a method for producing the same.
[0002]
[Prior art]
Conventional aluminum alloy plates with excellent formability include Al-Mg-Si based alloy plates such as 6009 alloy, 6010 alloy and the alloy disclosed in JP-A-5-295475, AA5182 alloy, 5085 alloy, There is an Al-Mg alloy plate such as an alloy disclosed in Japanese Patent Publication No. 56-31858 or Japanese Patent Application Laid-Open No. 60-125346. These aluminum alloy plates are mainly applied to automobile panels.
[0003]
[Problems to be solved by the invention]
However, these aluminum alloy plates for automobile panels still have insufficient formability.
[0004]
The present invention has been made in view of such a problem, and has improved press formability compared with conventional aluminum alloy plates for automobile panels, and has excellent press formability with an increased crack limit, and a method for producing the same. The purpose is to provide.
[0005]
[Means for Solving the Problems]
The method for producing an aluminum alloy plate excellent in press formability according to the present invention is a method of hot rolling an Al-Mg-Si alloy plate to reduce the plate thickness from 1000 mm to 5 mm, and a final cold rolling rate of 35 to 35 mm. By cold rolling in the range of 65% and final solution treatment under conditions of a final solution treatment temperature of 500 ° C. or higher and a heating rate of 100 ° C./minute or more , the CUBE orientation ratio is 30% as a texture. The following Al-Mg-Si alloy plate is manufactured .
Another method for producing an aluminum alloy plate with excellent press formability according to the present invention is to hot-roll an Al—Mg alloy plate to reduce the plate thickness from 1000 mm to 5 mm, with a final cold rolling rate of 35 to 35 mm. By cold rolling in the range of 65% and final solution treatment under conditions of a final solution treatment temperature of 500 ° C. or higher and a heating rate of 100 ° C./minute or more, the CUBE orientation, GOSS orientation, BRASS It is characterized in that an Al—Mg alloy plate having a ratio of the orientation, S orientation, and COPPER orientation is 25% or less.
[0006]
In this case, during the cold rolling, for example, it is preferable to perform intermediate annealing by heating to 400 ° C. for 1 hour.
[0007]
Furthermore, the aluminum alloy plate excellent in press formability according to the present invention is manufactured by the method for manufacturing an aluminum alloy plate according to any one of claims 1 to 4. More specifically, it is an Al—Mg—Si alloy plate manufactured by the method for manufacturing an aluminum alloy plate according to claim 1, and the CUBE orientation ratio is 30% or less as a texture. Or it is the Al-Mg type alloy plate manufactured by the manufacturing method of the aluminum alloy plate of Claim 2, Comprising: As a texture, the ratio of CUBE direction, GOSS direction, BRASS direction, S direction, COPPER direction is 25 % Or less.
[0008]
[Action]
The inventors of the present application have conducted various experimental studies to elucidate the cause of insufficient press formability of conventional aluminum alloy plates for automobile panels. As a result, the conventional aluminum alloy plates have sufficient texture control. As a result, it was found that the press formability was low. .
[0009]
Therefore, in the present invention, by controlling the texture, press formability is improved, and an aluminum alloy plate having a particularly high crack limit is obtained.
[0010]
The inventors of the present application have conducted intensive research on the relationship between the texture and press formability, and found that the ratio of orientation factors forming the texture dominates the formability.
[0011]
The orientation factor forming this texture is mainly the CUBE orientation (100) <001>.
GOSS orientation (110) <001>
BRASS orientation (110) <1-12>
S direction (123) <63-4>
COPPER orientation (112) <11-1>
In this specification, it is defined that deviations in orientation within 10 degrees of soil from these orientations belong to the same orientation factor. In the case of expressing the azimuth, the numerical value in the negative direction on the XYZ coordinate axis is usually displayed with a bar on top of the numerical value. This is displayed with a "-" sign.
[0012]
The texture of a normal aluminum alloy is composed of these orientation factors. When the proportion of each orientation factor changes, the plastic anisotropy differs and the press formability changes. The inventors of the present application have investigated the relationship between the presence ratio of these orientation factors and press formability. As a result, in the Al-Mg-Si alloy plate, when the ratio of the CUBE orientation is in the range of 30% or less, it is found that the press formability is most improved, and the Al-Mg-Si base has a high crack limit. An alloy plate was obtained. In addition, in the Al-Mg alloy plate, when the ratio of the orientation factors is 25% or less, it is found that the press formability is most improved, and an Al-Mg alloy plate having a high crack limit is developed. It has come.
[0013]
Further, the inventors of the present application have studied the relationship between the texture and the production conditions, the final cold rolling rate is in the range of 35 to 65%, the final solution treatment temperature is 500 ° C. or more, and the heating at that time It has been found that when the speed is 100 ° C./min or more, an Al—Mg—Si alloy plate or an Al—Mg alloy plate having an ideal orientation factor ratio texture can be produced.
[0014]
In addition, as an Al-Mg-Si type alloy, Mg: 0.6-1.0weight% and Si: l. 5% by weight or less (excluding 0% by weight) is contained so as to satisfy Si ≧ (4/7) Mg + 0.5, and Cu: l. At least one selected from the group consisting of Cr: 0.2% by weight or less, Mn: 0.3% by weight or less, Zr: 0.2% by weight or less. It is desirable to contain an element, with the balance being Al and inevitable impurities.
[0015]
Moreover, as an Al-Mg type alloy, Mg: 3.5-8.0 weight%, Cu: 0.5-1.5 weight% is contained, Furthermore, Cr: 0.2 weight% or less as needed , Mn: 0.3% by weight or less, Zr: At least one element selected from the group consisting of 0.2% by weight or less, with the balance being Al and inevitable impurities. Thus, it is preferable to use Cu as an essential component.
[0016]
Further, as a manufacturing method, after performing normal casting, soaking, hot rolling, cold rolling, and then solution treatment, the cold rolling and solution treatment conditions are within the scope of the present invention. Any other manufacturing conditions may be set as appropriate. In the casting process, the aluminum alloy can be cast by continuous casting (such as strip casting).
[0017]
As described above, in the case of an Al—Mg—Si based alloy plate, when the CUBE orientation ratio is in the range of 30% or less as a texture, the texture becomes random and has no anisotropy. Therefore, press formability is most improved. Outside this range, the anisotropy becomes strong and the press formability deteriorates.
[0018]
In the case of an Al—Mg alloy plate, the texture is randomly selected when the ratios of the CUBE orientation, GOSS orientation, BRASS orientation, S orientation, and COPPER orientation are all within 25% or less. Therefore, since there is no anisotropy, press formability is most improved. Outside this range, the anisotropy becomes strong and the press formability deteriorates.
[0019]
【Example】
Next, examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention.
[0020]
Example 1
A 6009 alloy and an Al-0.7 wt% Mg-0.9 wt% Si-0.3 wt% Mn-0.1 wt% Fe alloy were cast by ordinary DC (direct casting) and 550 ° C for 8 hours. After heating and soaking, hot rolling was performed at a start temperature of 450 ° C. By this hot rolling, the thickness was reduced from 1000 mm to 5 mm. Thereafter, cold rolling was performed to make the plate thickness 1 mm, and a final solution treatment was performed using a salt bath and a control furnace. In the cold rolling, intermediate annealing (400 ° C. for 1 hour) was performed, the final cold rolling rate was changed, and the temperature and heating rate of the final solution treatment were changed. The texture was changed by these changes. The obtained plate material having a thickness of 1 mm was subjected to an Erichsen test to evaluate press formability. Table 1 below shows the production conditions and texture, and Table 2 shows the test results. As is apparent from Table 2, the example material of the present invention has an Erichsen value of 9.5 mm or more, and exhibits excellent press formability.
[0021]
[Table 1]
However, in Table 1, Alloy A is a 6009 alloy, and Alloy B is an Al-0.7 wt% Mg-0.9 wt% Si-0.3 wt% Mn-0.1 wt% Fe alloy.
[0022]
[Table 2]
[0023]
Example 2
5182 alloy and Al-5.5 wt% Mg-0.5 wt% Cu-0.1 wt% Mn-0.1 wt% Fe alloy are usually DC cast and heated to 480 ° C for 8 hours for soaking. After that, hot rolling was performed at a start temperature of 450 ° C. By this hot rolling, the thickness was reduced from 1000 mm to 5 mm. Thereafter, cold rolling was performed to make the plate thickness 1 mm, and a final solution treatment was performed using a salt bath and a control furnace. In the cold rolling, intermediate annealing (400 ° C. for 1 hour) was performed, the final cold rolling rate was changed, and the temperature and heating rate of the final solution treatment were changed. The texture was changed by these changes. The obtained plate material having a thickness of 1 mm was subjected to an Erichsen test to evaluate press formability. Table 3 below shows the production conditions and texture, and Table 4 shows the test results. As is apparent from Table 4, the example material of the present invention has an Erichsen value of 9.8 mm or more, and shows excellent press formability.
[0024]
[Table 3]
However, in Table 3, Alloy A is a 5182 alloy, and Alloy B is an Al-5.5 wt% Mg-0.5 wt% Cu-0.1 wt% Mn-0.1 wt% Fe alloy.
[0025]
[Table 4]
[0026]
【The invention's effect】
As described above, according to the present invention, by appropriately controlling the texture, the press formability of the aluminum alloy plate can be sufficiently enhanced, the crack limit is high, and it is extremely useful as an aluminum alloy plate for automobile panels. An aluminum alloy plate excellent in useful press formability can be obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13428595A JP3905143B2 (en) | 1995-05-31 | 1995-05-31 | Aluminum alloy plate excellent in press formability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13428595A JP3905143B2 (en) | 1995-05-31 | 1995-05-31 | Aluminum alloy plate excellent in press formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08325663A JPH08325663A (en) | 1996-12-10 |
JP3905143B2 true JP3905143B2 (en) | 2007-04-18 |
Family
ID=15124715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13428595A Expired - Fee Related JP3905143B2 (en) | 1995-05-31 | 1995-05-31 | Aluminum alloy plate excellent in press formability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3905143B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101815800B (en) * | 2007-10-01 | 2012-09-05 | 美铝公司 | Recrystallized aluminum alloys with brass texture and methods of making the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4063388B2 (en) * | 1998-02-20 | 2008-03-19 | 株式会社神戸製鋼所 | Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same |
US6342112B1 (en) * | 1998-09-02 | 2002-01-29 | Alcoa Inc. | A1-mg based alloy sheets with good press formability |
EP1029937B1 (en) | 1998-09-10 | 2008-02-27 | Kabushiki Kaisha Kobe Seiko Sho | Al-Mg-Si ALLOY SHEET |
JP4057199B2 (en) * | 1998-09-10 | 2008-03-05 | 株式会社神戸製鋼所 | Al-Mg-Si alloy plate |
CA2712316C (en) * | 2001-03-28 | 2013-05-14 | Sumitomo Light Metal Industries, Ltd. | Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof |
JP4499369B2 (en) * | 2003-03-27 | 2010-07-07 | 株式会社神戸製鋼所 | Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks |
JP4634249B2 (en) * | 2005-08-05 | 2011-02-16 | 古河スカイ株式会社 | Aluminum alloy plate for forming and method for producing the same |
JP4602195B2 (en) * | 2005-08-15 | 2010-12-22 | 古河スカイ株式会社 | Method for producing aluminum alloy sheet for forming |
JP5354954B2 (en) | 2007-06-11 | 2013-11-27 | 住友軽金属工業株式会社 | Aluminum alloy plate for press forming |
WO2016002489A1 (en) * | 2014-06-30 | 2016-01-07 | 日本軽金属株式会社 | Aluminum alloy sheet with excellent press formability and shape fixability and process for producing same |
JP6345016B2 (en) * | 2014-07-24 | 2018-06-20 | 株式会社Uacj | Aluminum alloy plate for hot forming and manufacturing method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2831157B2 (en) * | 1991-04-17 | 1998-12-02 | 株式会社神戸製鋼所 | Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same |
JPH0747807B2 (en) * | 1992-03-17 | 1995-05-24 | スカイアルミニウム株式会社 | Method for producing rolled aluminum alloy plate for forming |
JP3278119B2 (en) * | 1992-10-07 | 2002-04-30 | 株式会社神戸製鋼所 | Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability |
JPH06136478A (en) * | 1992-10-23 | 1994-05-17 | Kobe Steel Ltd | Baking hardening type al alloy sheet excellent in formability and its production |
JP2818721B2 (en) * | 1992-11-12 | 1998-10-30 | 川崎製鉄株式会社 | Method for producing aluminum alloy sheet for body sheet and aluminum alloy sheet obtained by the method |
JPH06200346A (en) * | 1993-01-05 | 1994-07-19 | Sky Alum Co Ltd | Aluminum alloy for forming excellent in formability and it production |
JPH0748645A (en) * | 1993-08-02 | 1995-02-21 | Mitsubishi Alum Co Ltd | Aluminum alloy for forming and production of aluminum alloy sheet for forming |
-
1995
- 1995-05-31 JP JP13428595A patent/JP3905143B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101815800B (en) * | 2007-10-01 | 2012-09-05 | 美铝公司 | Recrystallized aluminum alloys with brass texture and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
JPH08325663A (en) | 1996-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645544A (en) | Process for producing cold rolled aluminum alloy sheet | |
JP4901757B2 (en) | Aluminum alloy plate and manufacturing method thereof | |
JP3905143B2 (en) | Aluminum alloy plate excellent in press formability and method for producing the same | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JPH07197219A (en) | Production of aluminum alloy sheet for forming | |
JPS62207851A (en) | Rolled aluminum alloy sheet for forming and its production | |
JP4086350B2 (en) | Method for producing aluminum alloy sheet for forming | |
EP0531118A1 (en) | Rolled aluminium alloy strip for forming and method for making | |
JP2000514139A (en) | Manufacturing process of aluminum alloy can structure stock | |
JP2844411B2 (en) | Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same | |
JPH0931616A (en) | Aluminum-magnesium-silicon alloy sheet excellent in formability and its production | |
JP2671121B2 (en) | Rolled aluminum alloy sheet for forming, which has excellent elongation, bendability, and overhanging property, and method for producing the same | |
JPH11508643A (en) | Method for producing aluminum alloy can material | |
JP2000239811A (en) | Manufacture for aluminum alloy sheet excellent in formability | |
JPH0547615B2 (en) | ||
JPH0788558B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
JP2613466B2 (en) | Manufacturing method of aluminum alloy sheet excellent in bake hardenability | |
JPH0480979B2 (en) | ||
JP2003328064A (en) | Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor | |
JP3208234B2 (en) | Aluminum alloy sheet for forming process excellent in formability and method for producing the same | |
JP2002053924A (en) | Spring material made of aluminum alloy, method of producing the spring material, spring-shaped body using the spring material, and method of producing the spring shaped body | |
JP4180868B2 (en) | Magnesium sheet for extending excellent in formability and manufacturing method thereof | |
JP2678675B2 (en) | Method for producing aluminum alloy sheet for forming having excellent deep drawability | |
JPS6254183B2 (en) | ||
JP3180812B2 (en) | Method for producing Al-Fe alloy foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |