JP2006213942A - Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance - Google Patents

Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance Download PDF

Info

Publication number
JP2006213942A
JP2006213942A JP2005025435A JP2005025435A JP2006213942A JP 2006213942 A JP2006213942 A JP 2006213942A JP 2005025435 A JP2005025435 A JP 2005025435A JP 2005025435 A JP2005025435 A JP 2005025435A JP 2006213942 A JP2006213942 A JP 2006213942A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rear side
side rail
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005025435A
Other languages
Japanese (ja)
Inventor
Takashi Oka
貴志 岡
Shinji Yoshihara
伸二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005025435A priority Critical patent/JP2006213942A/en
Publication of JP2006213942A publication Critical patent/JP2006213942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 6000 series aluminum alloy extruded shape material for a rear side rail in a track chassis frame having excellent corrosion resistance even under severe using environment, working environment and stock environment. <P>SOLUTION: The aluminum alloy extruded shape material for a rear side rail in a track chassis frame has a componential composition containing 0.4 to 1.2% Mg and 0.2 to 1.0% Si, and in which each content of Fe, Cu, Mn, Cr, Zn, Zr and Ti is regulated to ≤0.2%, respectively independently in such a manner that the total content thereof is also controlled to ≤1.0%. Further, the average crystal grain size in its recrystallized structure is made the fine one of ≤200 μm, and also, the average aspect ratio of the crystal grains is prescribed to the low one of ≤5. In this way, its corrosion resistance when used as a track chassis frame is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、トラックシャ−シフレ−ムにおけるリアサイドレール用のアルミニウム合金押出形材であって、特に、粒界腐食などの耐食性に優れたリアサイドレール用アルミニウム合金押出形材に関する。   The present invention relates to an aluminum alloy extruded shape for a rear side rail in a track chassis frame, and more particularly to an aluminum alloy extruded shape for a rear side rail excellent in corrosion resistance such as intergranular corrosion.

従来、キャブオーバ車のトラックシャーシフレームは、車体後部側(荷台側)のリアサイドレール(リアサイドフレ−ム)と、車体前部側(運転席キャビン側)のフロントサイドレール(フロントサイドフレ−ム)とが、単一の(一体の)鋼製チャンネル部材によって構成されている。   Conventionally, a truck chassis frame of a cab-over vehicle has a rear side rail (rear side frame) on the rear side of the vehicle body (loading side) and a front side rail (front side frame) on the front side of the vehicle body (cabin side of the driver's seat). Is constituted by a single (integral) steel channel member.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。この事情は、キャブオーバ車などのトラックでも同様であり、トラックの車体に対し、従来から使用されている鋼材に代わって、圧延板や押出形材など、より軽量なアルミニウム合金材の適用が増加しつつある。   In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. The situation is the same for trucks such as cab-over cars, and the use of lighter aluminum alloy materials such as rolled plates and extruded profiles instead of steel materials that have been used in the past has increased for truck bodies. It's getting on.

しかし、このようなトラックの車体に対するアルミニウム合金材の適用は、トラックの荷台やトラックのドアフレームなどに限定されている(例えば、特許文献1や2参照)。言い換えると、上記シャーシフレーム40などのトラック車体本体への実用化(適用)は遅れているのが実情である。
特開2004−189125号公報 (特許請求の範囲) 特開2004−84235公報 (特許請求の範囲)
However, the application of the aluminum alloy material to the truck body is limited to a truck bed or a truck door frame (see, for example, Patent Documents 1 and 2). In other words, the practical use (application) of the chassis frame 40 and the like to the truck body is delayed.
JP 2004-189125 A (Claims) JP 2004-84235 A (Claims)

上記シャーシフレームなどのトラック車体本体へのアルミニウム合金材の実用化(適用)が遅れている理由は、アルミニウム合金材の信頼性の問題がある。   The reason why the practical application (application) of the aluminum alloy material to the truck body such as the chassis frame is delayed is due to the reliability of the aluminum alloy material.

トラックシャ−シフレ−ムにおけるリアサイドレールの場合、車体パネル内に収容される自動車車体のサイドフレーム(サイドメンバ)などとは異なり、トラック車体として、外部にむき出しの状態で使用される。   In the case of a rear side rail in a truck chassis frame, unlike a side frame (side member) of an automobile body housed in a body panel, it is used as a truck body in an exposed state.

このため、トラックシャ−シフレ−ムにおけるリアサイドレールには、耐食性、特に、耐粒界腐食性などの耐食性が高いことが求められる。この点、アルミニウム合金押出形材の内でも、Al−Mg−Si系の6000系アルミニウム合金押出形材は、より強度が高い7000系アルミニウム合金押出形材に比して、粒界腐食発生の懸念が少ない。   For this reason, the rear side rail in the track chassis frame is required to have high corrosion resistance such as intergranular corrosion resistance. In this respect, among the aluminum alloy extruded profiles, the Al-Mg-Si 6000-series aluminum alloy extruded profiles are more likely to cause intergranular corrosion than the higher-strength 7000-series aluminum alloy extruded profiles. Less is.

また、6000系アルミニウム合金押出形材は、5000系アルミニウム合金押出形材に比して、強度や耐力が高く、リアサイドレールとして必要な曲げ強度・剛性やねじり強度・剛性を確保でき、リアサイドレールには好適と言える。   In addition, the 6000 series aluminum alloy extruded profile has higher strength and proof strength than the 5000 series aluminum alloy extruded profile, and can secure the necessary bending strength, rigidity, torsional strength and rigidity for the rear side rail. Is suitable.

しかし、アルミニウム合金押出形材を、機械的な加工やプレス加工などによって、穴あけ加工や成形されて、リアサイドレールに加工する場合、加工部位に残留応力が発生しやすい。この残留応力は、外部にむき出しの状態で使用されるリアサイドレールにとって、トラックの走行が特に塩水などの腐食環境において多い場合には腐食(粒界腐食)の発生原因となりやすい。   However, when an aluminum alloy extruded shape is drilled or formed by mechanical processing or pressing to be processed into a rear side rail, residual stress is likely to be generated at the processing site. This residual stress is likely to cause corrosion (intergranular corrosion) for a rear side rail used in an exposed state when the truck travels particularly in a corrosive environment such as salt water.

また、リアサイドレールへのアルミニウム合金押出形材の適用は軽量化が大きな目的であり、このため、軽量化の利点を出すためには、アルミニウム合金押出形材の肉厚は最大でも6mm以下の比較的薄肉に制限される。このため、このような薄肉での使用下において、粒界腐食が発生した場合のダメージは、より厚肉な場合に比して、極めて大きくなる。   In addition, the application of aluminum alloy extruded profiles to the rear side rail is a major goal of weight reduction. For this reason, in order to obtain the advantages of weight reduction, the thickness of the aluminum alloy extruded profiles is a maximum of 6 mm or less. It is restricted to thin wall. For this reason, the damage when intergranular corrosion occurs under the use of such a thin wall becomes extremely large as compared with the case of a thicker wall.

更に、リアサイドレールとして必要な、曲げ強度・剛性やねじり強度・剛性を確保するために、アルミニウム合金押出形材には0.2%耐力が200MPa以上の高強度、高耐力が要求される。このため、アルミニウム合金押出形材がこのような高強度になるほど、粒界腐食に対する感受性は増すことなる。   Furthermore, in order to ensure the bending strength / rigidity and torsional strength / rigidity necessary for the rear side rail, the aluminum alloy extruded shape material is required to have a high strength and a high strength of 0.2% proof stress of 200 MPa or more. For this reason, the higher the strength of the extruded aluminum alloy, the greater the sensitivity to intergranular corrosion.

このため、使用環境としても、リアサイドレールとして外部にむき出しの状態で使用されても、また、前記した加工部位に残留応力が生じても、前記薄肉化、かつ高強度化の上で、耐粒界腐食性に優れる6000系アルミニウム合金押出形材が求められている。   For this reason, even if it is used as a rear side rail in an exposed state as a usage environment, or even if residual stress is generated in the above-mentioned processed part, the above-mentioned thinning and high-strength can be achieved. There is a need for a 6000 series aluminum alloy extruded profile that has excellent corrosion resistance.

したがって、本発明の目的は、上記使用環境下と加工環境下および上記素材環境下でも、耐粒界腐食性に優れるリアサイドレール用6000系アルミニウム合金押出形材を提供しようとするものである。   Therefore, an object of the present invention is to provide a 6000 series aluminum alloy extruded profile for rear side rails that is excellent in intergranular corrosion resistance even under the above-mentioned usage environment, processing environment, and raw material environment.

この目的を達成するために、本発明のトラックシャ−シフレ−ムにおけるリアサイドレール用のアルミニウム合金押出形材の要旨は、質量%で、Mg:0.4〜1.2%、Si:0.2〜1.0%を含み、Fe、Cu、Mn、Cr、Zn、Zr、Tiを各々単独でも0.2%以下で、これらの総量でも1.0%以下に規制し、残部Alおよび不可避的不純物からなるAl−Mg−Si系アルミニウム合金からなり、0.2%耐力が200MPa以上、肉厚が3〜6mmであって、ミクロ組織が再結晶組織からなり、この再結晶組織の、平均結晶粒径が200μm以下、結晶粒の押出方向の長さLと押出形材厚さ方向の長さSTとの比であるアスペクト比L/STの平均が5以下であることとする。   In order to achieve this object, the gist of the aluminum alloy extruded profile for the rear side rail in the track chassis frame of the present invention is mass%, Mg: 0.4 to 1.2%, Si: 0.00. Including 2 to 1.0%, Fe, Cu, Mn, Cr, Zn, Zr, and Ti are each independently 0.2% or less, and the total amount of these is also regulated to 1.0% or less, the balance Al and inevitable Made of Al-Mg-Si based aluminum alloy consisting of mechanical impurities, 0.2% proof stress is 200 MPa or more, thickness is 3-6 mm, and the microstructure is recrystallized structure. The crystal grain size is 200 μm or less, and the average of the aspect ratio L / ST, which is the ratio of the length L in the extrusion direction of the crystal grains to the length ST in the thickness direction of the extruded profile, is 5 or less.

本発明では、Al−Mg−Si系アルミニウム合金からなる押出形材の組織を押出形材の押出方向に亙って、均一で微細な等軸晶からなる再結晶組織として、耐粒界腐食性に優れるものとする。   In the present invention, the structure of an extruded shape made of an Al-Mg-Si-based aluminum alloy extends in the extrusion direction of the extruded shape, and as a recrystallized structure made of uniform and fine equiaxed crystals, intergranular corrosion resistance. It shall be excellent.

一般的に、再結晶組織は、アスペクト比L/STが大きい繊維状組織に比して、粒界腐食に対する耐食性が劣るとされている。この点、本発明では、再結晶組織における平均結晶粒径とアスペクト比とを規定し、均一で微細な等軸晶からなる再結晶組織とすれば、耐粒界腐食性が向上することを知見した。   Generally, the recrystallized structure is considered to be inferior in corrosion resistance to intergranular corrosion as compared with a fibrous structure having a large aspect ratio L / ST. In this regard, in the present invention, it is found that the intergranular corrosion resistance is improved if the average crystal grain size and the aspect ratio in the recrystallized structure are defined and the recrystallized structure is composed of uniform and fine equiaxed crystals. did.

これによって、本発明アルミニウム合金押出形材は、残留応力が発生しても、トラックの走行が特に塩水などの腐食環境であっても、そして、軽量化のために肉厚が最大でも6mm以下に薄肉化された場合でも、更に、リアサイドレールとして必要な、0.2%耐力が200MPa以上の高耐力であっても、耐粒界腐食性に優れることができる。この結果、トラックシャ−シフレ−ムにおけるリアサイドレールにアルミニウム合金を用いて軽量化することが可能となる。   As a result, the extruded aluminum alloy profile according to the present invention has a maximum thickness of 6 mm or less even if residual stress occurs, even if the truck travels in a corrosive environment such as salt water, and for weight reduction. Even when the thickness is reduced, the intergranular corrosion resistance can be excellent even if the 0.2% proof stress required for the rear side rail is a high proof stress of 200 MPa or more. As a result, it is possible to reduce the weight by using an aluminum alloy for the rear side rail in the track chassis frame.

(化学成分組成)
先ず、本発明押出形材のAl−Mg−Si系アルミニウム合金成分組成につき、以下に説明する。本発明押出形材の組成は、肉厚が3〜6mmにおいて、0.2%耐力が200MPa以上の高耐力を確保するために、また、耐粒界腐食性を確保するために、質量%で、Mg:0.4〜1.2%、Si:0.2〜1.0%を含み、残部Alおよび不可避的不純物からなるAl−Mg−Si系(6000系)アルミニウム合金組成とする。
(Chemical composition)
First, the Al—Mg—Si aluminum alloy component composition of the extruded profile of the present invention will be described below. The composition of the extruded profile of the present invention has a thickness of 3 to 6 mm, in order to ensure a high yield strength with a 0.2% yield strength of 200 MPa or more, and to ensure intergranular corrosion resistance, in mass%. Mg: 0.4 to 1.2%, Si: 0.2 to 1.0%, and the Al—Mg—Si (6000 series) aluminum alloy composition composed of the balance Al and inevitable impurities.

各元素の好ましい含有範囲と意義、あるいは許容量について以下に説明する。 Si:0.2〜1.0%。
Siは、固溶強化と、人工時効処理によってMgとともにGPゾーンなどの化合物相を形成することによって、時効硬化能を発揮し、0.2%耐力が200MPa以上の必要耐力を得るための必須の元素である。Siが0.2%未満では、人工時効処理によっても前記化合物相が不足し、必要な耐力が得られない。一方、Siが1.0%を越えて含有されると、リアサイドレールへの加工性や、耐粒界腐食性が低下する。したがって、Siは0.2〜1.0%の範囲とする。
The preferable content range and significance of each element, or the allowable amount will be described below. Si: 0.2 to 1.0%.
Si forms an age hardening ability by forming a compound phase such as a GP zone together with Mg by solid solution strengthening and artificial aging treatment, and is indispensable for obtaining a required proof stress of 0.2 MPa or 200 MPa or more. It is an element. When Si is less than 0.2%, the compound phase is insufficient even by artificial aging treatment, and the required yield strength cannot be obtained. On the other hand, when Si exceeds 1.0%, workability to the rear side rail and intergranular corrosion resistance are reduced. Accordingly, Si is set in the range of 0.2 to 1.0%.

Mg:0.4〜1.2%、
Mgは、Siと同様、固溶強化と、人工時効処理によってMgとともにGPゾーンなどの化合物相を形成することによって、時効硬化能を発揮し、0.2%耐力が200MPa以上の必要耐力を得るための必須の元素である。Mgが0.4%未満では、人工時効処理によっても前記化合物相が不足し、必要な耐力が得られない。一方、Mgが1.2%を越えて含有されると、リアサイドレールへの加工性や、耐粒界腐食性が低下する。したがって、Mgは0.4〜1.2%の範囲とする。
Mg: 0.4 to 1.2%,
Mg, like Si, exhibits age-hardening ability by forming a compound phase such as a GP zone together with Mg by solid solution strengthening and artificial aging treatment, and a 0.2% proof stress is 200 MPa or more. Is an essential element for. If Mg is less than 0.4%, the compound phase is insufficient even by artificial aging treatment, and the required yield strength cannot be obtained. On the other hand, when Mg exceeds 1.2%, workability to the rear side rail and intergranular corrosion resistance are deteriorated. Therefore, Mg is made 0.4 to 1.2% in range.

(Fe、Cu、Mn、Cr、Zn、Zr、Ti)
Fe、Cu、Mn、Cr、Zr、Tiなどの遷移元素を実質量含むと、熱間押出に際して、アスペクト比L/STが10以上の繊維状組織となりやすく、アスペクト比L/STの平均が5以下の再結晶組織を、押出形材の押出方向に亙って得ることができなくなる。更に、Cu、Znなどの合金元素は、耐粒界腐食性を低下させる。したがって、これら合金元素はできるだけ少ない方が好ましい。
(Fe, Cu, Mn, Cr, Zn, Zr, Ti)
When a substantial amount of a transition element such as Fe, Cu, Mn, Cr, Zr, or Ti is included, a fibrous structure having an aspect ratio L / ST of 10 or more is easily obtained during hot extrusion, and the average of the aspect ratio L / ST is 5 The following recrystallized structure cannot be obtained in the extrusion direction of the extruded profile. Furthermore, alloy elements such as Cu and Zn reduce intergranular corrosion resistance. Therefore, it is preferable that these alloy elements are as small as possible.

しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明アルミニウム合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、Fe、Cu、Mn、Cr、Zn、Zr、Tiを各々単独でも0.2%以下とし(0.2%までの含有は許容し)、これら元素の総量でも1.0%以下に規制する(0.1%までの含有は許容する)。   However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys, other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials as melting materials. In the case of melting, these other alloy elements are necessarily included. Therefore, in the present invention, Fe, Cu, Mn, Cr, Zn, Zr, and Ti are each independently 0.2% or less (up to 0.2% is allowed), and the total amount of these elements is 1.0. % Or less (content up to 0.1% is allowed).

但し、特に、Cu、Znは、耐粒界腐食性を著しく低下させるので、Cu+Znの合計含有量で0.2質量%以下に規制することが好ましい。   However, in particular, Cu and Zn remarkably reduce the intergranular corrosion resistance, so it is preferable to regulate the total content of Cu + Zn to 0.2% by mass or less.

(ミクロ組織)
本発明押出形材では、特に、リアサイドレールとしての前記使用環境下での耐粒界腐食性を向上させるために、ミクロ組織が再結晶組織からなり、この再結晶組織の、平均結晶粒径が200μm以下、結晶粒の押出方向の長さLと押出形材厚さ方向の長さSTとの比であるアスペクト比L/STの平均が5以下であることとする。
(Micro structure)
In the extruded profile of the present invention, in particular, in order to improve the intergranular corrosion resistance under the use environment as the rear side rail, the microstructure is composed of a recrystallized structure, and the average crystal grain size of the recrystallized structure is It is assumed that the average of the aspect ratio L / ST, which is the ratio of the length L in the extrusion direction of the crystal grains and the length ST in the thickness direction of the extruded shape, is 5 or less.

再結晶組織の平均結晶粒径が200μmを超え、また、上記結晶粒のアスペクト比の平均が5以下を超える場合、リアサイドレールとしての前記使用環境下では、粒界が優先的に腐食する粒界腐食を起こしやすい。この粒界腐食を起こすと、結晶粒が浮いて表面から次々に脱落する腐食形態が、粒界に沿って内部に伝播して発達し、腐食減量が多くなり元の表面が失われる。   When the average crystal grain size of the recrystallized structure exceeds 200 μm and the average aspect ratio of the crystal grains exceeds 5 or less, the grain boundary corrodes preferentially in the use environment as the rear side rail. Prone to corrosion. When this intergranular corrosion occurs, a corrosion form in which crystal grains float and fall off one after another from the surface is propagated and developed along the grain boundary, resulting in an increase in weight loss and loss of the original surface.

一方、再結晶組織の平均結晶粒径が200μm以下、上記結晶粒のアスペクト比の平均が5以下では、リアサイドレールとしての前記使用環境下では、粒界腐食が抑制され、孔食や全面腐食が発生するようになる。これらの孔食や全面腐食の場合は、上記した表面の結晶粒が浮いて脱落するようなことは少なく、腐食減量が粒界腐食に比べて格段に少なく、元の表面も残る。   On the other hand, when the average crystal grain size of the recrystallized structure is 200 μm or less and the average aspect ratio of the crystal grains is 5 or less, intergranular corrosion is suppressed under the use environment as the rear side rail, and pitting corrosion and overall corrosion occur. To occur. In the case of these pitting corrosion and overall corrosion, the crystal grains on the surface described above are unlikely to float and fall off, the corrosion weight loss is much less than intergranular corrosion, and the original surface remains.

本発明では、押出形材の押出方向に亙って、言い換えると、リアサイドレールの長手方向に亙って、上記平均結晶粒径と結晶粒のアスペクト比とを満たす、均一で微細な等軸晶からなる再結晶組織とすることが好ましい。   In the present invention, uniform and fine equiaxed crystals satisfying the average crystal grain size and the crystal grain aspect ratio in the extrusion direction of the extruded shape, in other words, in the longitudinal direction of the rear side rail. A recrystallized structure consisting of

押出形材の押出方向やリアサイドレールの長手方向に亙って、部分的にでも平均結晶粒径が200μmを超えたり、結晶粒のアスペクト比L/STの平均が5を超える再結晶組織があると、上記使用環境下と加工環境下および上記素材環境下では、その部分から、粒界腐食が生じる可能性が高い。   There is a recrystallized structure in which the average crystal grain size exceeds 200 μm or the average aspect ratio L / ST of the crystal grains exceeds 5 even partially in the extrusion direction of the extruded shape and the longitudinal direction of the rear side rail. In the use environment, the processing environment, and the raw material environment, there is a high possibility that intergranular corrosion occurs from the portions.

(製造方法)
本発明押出形材の製造方法につき以下に説明する。本発明押出形材は、常法の押出加工により製造可能であるが、押出後の再結晶組織が粗大化しないように、また、結晶粒のアスペクト比L/STの平均が5以下となるように、特に熱間押出までの温度などの条件を下記のように制御する。
(Production method)
The manufacturing method of the extruded profile of the present invention will be described below. The extruded profile of the present invention can be produced by a conventional extrusion process, but the recrystallized structure after extrusion is not coarsened, and the average of the aspect ratio L / ST of the crystal grains is 5 or less. In particular, conditions such as the temperature until hot extrusion are controlled as follows.

均質化熱処理(ソーキング)条件は、450〜550℃の温度範囲で、4hr未満か、24hrを超える時間とする。ソーキング温度が450℃未満では均質化が十分となる。また、ソーキング温度が550℃を越える必要は無い。但し、この温度範囲でのソーキング時間が4時間〜24時間では、不純物として含まれるMn、Zrなどの遷移元素系の析出物が生じて、押出中に再結晶組織のアスペクト比が大きくなる可能性が高い。   The homogenization heat treatment (soaking) conditions are a temperature range of 450 to 550 ° C. and a time of less than 4 hours or more than 24 hours. If the soaking temperature is less than 450 ° C., homogenization is sufficient. Also, the soaking temperature need not exceed 550 ° C. However, when the soaking time in this temperature range is 4 to 24 hours, precipitates of transition elements such as Mn and Zr contained as impurities may be generated, and the aspect ratio of the recrystallized structure may increase during extrusion. Is expensive.

押出温度は500℃を超える比較的高温とする。押出温度が500℃未満では、押出中に再結晶組織の結晶粒のアスペクト比が大きくなる可能性が高い。   The extrusion temperature is a relatively high temperature exceeding 500 ° C. When the extrusion temperature is less than 500 ° C., the aspect ratio of the crystal grains of the recrystallized structure is likely to increase during the extrusion.

以上のような好ましい条件下で、Mg、Siを上記組成範囲内で含むアルミニウム合金を溶製して鋳造し、鋳塊をソーキング(均質化処理)し、熱間押出を行い、プレス焼入れ(押出直後にオンラインで焼き入れること)することにより、上記耐力を満たした上で、押出形材のミクロ組織を押出形材の押出方向や長手方向に亙って、上記再結晶組織とすることができる。   Under the preferred conditions as described above, an aluminum alloy containing Mg and Si within the above composition range is melted and cast, the ingot is soaked (homogenized), hot-extruded, and press-quenched (extruded) Immediately after quenching, the microstructure of the extruded profile can be made into the recrystallized structure in the extrusion direction and the longitudinal direction of the extruded profile after satisfying the proof stress. .

以下に、本発明に係るアルミニウム合金押出形材の実施例を説明する。
表1に示す化学成分のAl−Mg−Si系アルミニウム合金を常法により溶解し、半連続鋳造により直径200mmのビレットに鋳造し、そのビレットを表2に示す均質化熱処理、押出開始温度、押出速度条件で、一辺が50mm×50mmで、厚みが4mmの矩形中空形材を熱間押出し、押出直後に水冷プレス焼入れを行い、さらに製品長さ3mに切断後に人工時効処理を行った。
Examples of the aluminum alloy extruded profile according to the present invention will be described below.
An Al—Mg—Si-based aluminum alloy having chemical components shown in Table 1 is melted by a conventional method, cast into a billet having a diameter of 200 mm by semi-continuous casting, and the billet is subjected to homogenization heat treatment, extrusion start temperature, and extrusion shown in Table 2. Under the speed condition, a rectangular hollow material having a side of 50 mm × 50 mm and a thickness of 4 mm was hot-extruded, subjected to water-cooled press quenching immediately after extrusion, and further subjected to artificial aging treatment after cutting to a product length of 3 m.

これら製品矩形中空形材の諸特性を以下に示す通り評価した。
製品矩形中空形材から、長手方向に亙って50mm間隔で試験片を5個採取し、各々厚み中心部のミクロ組織を測定した。より具体的には、電解エッチングした各試験片表面の平均結晶粒径を、100 倍の光学顕微鏡を用いて順次観察し、中空形材L方向にラインインターセプト法で測定した。そして、5個の試験片の各平均結晶粒径を更に平均化した。なお、1 測定ライン長さは0.95mm、1 視野当たり各3 本で合計5 視野を観察することにより全測定ライン長さを0.95×15mmとした。
Various characteristics of these product rectangular hollow materials were evaluated as shown below.
Five test pieces were sampled from the product rectangular hollow shape at intervals of 50 mm along the longitudinal direction, and the microstructure of the thickness center portion was measured. More specifically, the average crystal grain size on the surface of each electrolytically etched specimen was sequentially observed using a 100 × optical microscope, and measured in the direction of the hollow shape L by the line intercept method. And each average crystal grain diameter of five test pieces was further averaged. Note that the length of one measurement line was 0.95 mm and the total measurement line length was 0.95 x 15 mm by observing a total of five fields with three lines per field.

また、同時に、上記視野内の個々の結晶粒の押出形材の押出方向の長さLと押出形材厚さ方向の長さSTとの比であるアスペクト比L/STを求め、結晶粒の数で除して平均化した。   At the same time, the aspect ratio L / ST, which is the ratio of the length L in the extrusion direction of the extruded shape of the individual crystal grains in the field of view to the length ST in the thickness direction of the extruded shape, is obtained. Divide by number and average.

製品矩形中空形材から試験片を採取し、0.2%耐力を引張試験により測定した。引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行い、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。これらの結果を表2に示す。なお、表2のAl合金番号は表1のAl合金番号と対応している。   A specimen was taken from the product rectangular hollow shape, and 0.2% yield strength was measured by a tensile test. The tensile test was performed according to JIS Z 2201, the shape of the test piece was a JIS No. 5 test piece, the crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke. These results are shown in Table 2. The Al alloy numbers in Table 2 correspond to the Al alloy numbers in Table 1.

粒界腐食試験は、製品矩形中空形材から、長手方向に亙って50mm間隔で Cリング状の試験片を5個採取して行った。試験条件は、前記 Cリング試験片をASTM G47の交互浸漬法の規定に準じて行った。但し、試験条件は、試験片に引張応力が付加されるか、残留応力が負荷されて、リアサイドレールとして使用されることを模擬して、C リング試験片の Cリングの上下方向に、前記0.2%耐力の75%の応力を負荷した状態とした。この状態で、C リング試験片の5%濃度塩水への浸漬と引き上げを繰り返して60日間行った後に、試験片の粒界腐食発生の有無を確認した。確認は試験片断面組織を顕微鏡で観察して、試験片表面から内部に向かって、結晶粒界に沿って、発達している粒界腐食か否かの腐食形態を調べて行なった。   The intergranular corrosion test was performed by collecting five C-ring-shaped test pieces at intervals of 50 mm from the product rectangular hollow shape. The test condition was that the C-ring test piece was compliant with the ASTM G47 alternate dipping method. However, the test condition is that the tensile stress is applied to the test piece or the residual stress is applied and used as a rear side rail, and the test condition is 0 in the vertical direction of the C ring of the C ring test piece. .2% proof stress 75% stress was applied. In this state, the immersion of the C-ring test piece in 5% concentration salt water and the pulling were repeated for 60 days, and then the presence or absence of intergranular corrosion of the test piece was confirmed. The confirmation was made by observing the cross-sectional structure of the test piece with a microscope and examining the corrosion state as to whether or not the grain boundary corrosion was developed along the crystal grain boundary from the test piece surface to the inside.

評価は、試験片の5個の内1 個でも粒界腐食が発生している場合を、製品矩形中空形材の長手方向に亙って耐食性が優れたものではないと判定して×と評価した。そして、試験片の5個とも粒界腐食が発生していず、表面的な全面腐食や孔食が発生している場合を、製品矩形中空形材の長手方向に亙って耐食性が優れていると判定して○と評価した。これらの結果も表2に示す。   Evaluation is evaluated as x when the intergranular corrosion has occurred even in one of the five test pieces and the corrosion resistance is not excellent over the longitudinal direction of the rectangular product. did. And, when no intergranular corrosion has occurred in all of the five test pieces, and the entire surface corrosion or pitting corrosion has occurred, the corrosion resistance is excellent over the longitudinal direction of the product rectangular hollow shape material. And judged as “good”. These results are also shown in Table 2.

表2から分かる通り、本発明成分組成を満足する表2のA、B、Cの合金を用い、ミクロ組織が再結晶組織からなり、この再結晶組織の平均結晶粒径が200μm以下、結晶粒のアスペクト比L/STの平均が5以下である発明例1〜5は、厳しい使用環境下であっても、耐粒界腐食性に優れている。また0.2%耐力も200MPa以上である。この結果は、トラックシャ−シフレ−ムにおけるリアサイドレール用のアルミニウム合金押出形材として実用可能であることを示している。   As can be seen from Table 2, the alloys A, B, and C in Table 2 satisfying the composition of the present invention were used, and the microstructure consisted of a recrystallized structure. Inventive Examples 1 to 5 having an average aspect ratio L / ST of 5 or less are excellent in intergranular corrosion resistance even under severe use environments. The 0.2% proof stress is 200 MPa or more. This result shows that the aluminum alloy extruded shape for the rear side rail in the track chassis frame is practical.

これに対して、本発明成分組成を満足する表2のA、Bの合金を用い、ミクロ組織が再結晶組織からなっていても、平均結晶粒径が200μmを超えるか、結晶粒のアスペクト比L/STの平均が5を超える比較例6〜9は、耐粒界腐食性に劣っている。また0.2%耐力も200MPa未満と低い。   On the other hand, using the alloys A and B in Table 2 satisfying the composition of the present invention, even if the microstructure is a recrystallized structure, the average crystal grain size exceeds 200 μm, or the aspect ratio of the crystal grains Comparative Examples 6 to 9 having an L / ST average exceeding 5 are inferior in intergranular corrosion resistance. Further, the 0.2% proof stress is as low as less than 200 MPa.

また、表1の、Znが0.2%を超えるD、Cuが0.2%を超えるE、Feが0.2%を超えるFの合金を各々を用いた比較例10〜12は、耐粒界腐食性に劣っている。   In Table 1, Comparative Examples 10 to 12, each using an alloy of D with Zn exceeding 0.2%, E with Cu exceeding 0.2%, and F with Fe exceeding 0.2%, Inferior to intergranular corrosion.

Figure 2006213942
Figure 2006213942

Figure 2006213942
Figure 2006213942

本発明によれば、厳しい使用環境下と加工環境下および素材環境下でも、耐粒界腐食性に優れるトラックシャ−シフレ−ムにおけるリアサイドレール用6000系アルミニウム合金押出形材を提供することができる。したがって、本発明は、キャブオーバ車などのトラックのシャ−シフレ−ムにアルミニウム合金材の適用を拡大して、トラックの軽量化が実現可能である。
According to the present invention, it is possible to provide a 6000 series aluminum alloy extruded shape for a rear side rail in a track chassis frame having excellent intergranular corrosion resistance even under severe use environment, processing environment and raw material environment. . Therefore, according to the present invention, it is possible to reduce the weight of the truck by expanding the application of the aluminum alloy material to the chassis frame of a truck such as a cab-over vehicle.

Claims (1)

トラックシャ−シフレ−ムにおけるリアサイドレール用のアルミニウム合金押出形材であって、質量%で、Mg:0.4〜1.2%、Si:0.2〜1.0%を含み、Fe、Cu、Mn、Cr、Zn、Zr、Tiを各々単独でも0.2%以下で、これらの総量でも1.0%以下に規制し、残部Alおよび不可避的不純物からなるAl−Mg−Si系アルミニウム合金からなり、0.2%耐力が200MPa以上、肉厚が3〜6mmであって、ミクロ組織が再結晶組織からなり、この再結晶組織の、平均結晶粒径が200μm以下、結晶粒の押出方向の長さLと押出形材厚さ方向の長さSTとの比であるアスペクト比L/STの平均が5以下であることを特徴とする、耐食性に優れたリアサイドレール用アルミニウム合金押出形材。
An aluminum alloy extruded shape for a rear side rail in a truck chassis frame, which contains Mg: 0.4-1.2%, Si: 0.2-1.0% by mass, Fe, Cu, Mn, Cr, Zn, Zr, and Ti are each independently 0.2% or less, and the total amount of these is also regulated to 1.0% or less, and Al—Mg—Si based aluminum composed of the balance Al and inevitable impurities It is made of an alloy, 0.2% proof stress is 200 MPa or more, wall thickness is 3 to 6 mm, the microstructure is a recrystallized structure, and the average crystal grain size of this recrystallized structure is 200 μm or less. Aluminum alloy extruded form for rear side rails with excellent corrosion resistance, characterized in that the average of the aspect ratio L / ST, which is the ratio of the length L in the direction and the length ST in the thickness direction of the extruded shape, is 5 or less Wood.
JP2005025435A 2005-02-01 2005-02-01 Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance Pending JP2006213942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025435A JP2006213942A (en) 2005-02-01 2005-02-01 Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025435A JP2006213942A (en) 2005-02-01 2005-02-01 Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JP2006213942A true JP2006213942A (en) 2006-08-17

Family

ID=36977410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025435A Pending JP2006213942A (en) 2005-02-01 2005-02-01 Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP2006213942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228111A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Aluminum alloy extruded material having excellent bending-crashed property and corrosion resistance and method for manufacturing the same
CN103014439A (en) * 2012-11-26 2013-04-03 姚芸 Material capable of preventing large grains from being produced in aluminium alloy sections
CN103014436A (en) * 2012-11-26 2013-04-03 姚富云 Material capable of preventing large grains from being produced in aluminium alloy and preparation method thereof
JP2016079454A (en) * 2014-10-16 2016-05-16 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
US20180105900A1 (en) * 2015-05-28 2018-04-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength aluminum alloy sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228111A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Aluminum alloy extruded material having excellent bending-crashed property and corrosion resistance and method for manufacturing the same
CN103014439A (en) * 2012-11-26 2013-04-03 姚芸 Material capable of preventing large grains from being produced in aluminium alloy sections
CN103014436A (en) * 2012-11-26 2013-04-03 姚富云 Material capable of preventing large grains from being produced in aluminium alloy and preparation method thereof
JP2016079454A (en) * 2014-10-16 2016-05-16 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
US20180105900A1 (en) * 2015-05-28 2018-04-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength aluminum alloy sheet

Similar Documents

Publication Publication Date Title
KR102228792B1 (en) High strength 6XXX aluminum alloys and methods of making them
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP6090725B2 (en) Method for manufacturing plastic processed product made of aluminum alloy
JP3053352B2 (en) Heat-treated Al alloy with excellent fracture toughness, fatigue properties and formability
WO2007114078A1 (en) Aluminum alloy forging member and process for producing the same
JP7215920B2 (en) Al-Mg-Si based aluminum alloy hollow extruded material
WO2020085082A1 (en) Al-mg-si-based aluminum alloy extruded product and method for producing same
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP7182435B2 (en) Al-Mg-Si based aluminum alloy extruded material
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2006213942A (en) Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance
US20020014290A1 (en) Al-si-mg aluminum alloy aircraft structural component production method
JP4775935B2 (en) Aluminum alloy extruded material with excellent impact fracture resistance
CN116694969A (en) Door impact beam for a motor vehicle formed from an aluminum alloy extrusion and method for the production thereof
JP2003221636A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JP6329430B2 (en) High yield strength Al-Zn aluminum alloy extruded material with excellent bendability
JP5125995B2 (en) Magnesium alloy wrought material
JP5860371B2 (en) Aluminum alloy automotive parts
JP2019183264A (en) High strength aluminum alloy, aluminum alloy sheet and aluminum alloy member using the aluminum alloy
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance