JP2016141880A - Aluminum alloy and material, and manufacturing method of extrusion material - Google Patents

Aluminum alloy and material, and manufacturing method of extrusion material Download PDF

Info

Publication number
JP2016141880A
JP2016141880A JP2015020858A JP2015020858A JP2016141880A JP 2016141880 A JP2016141880 A JP 2016141880A JP 2015020858 A JP2015020858 A JP 2015020858A JP 2015020858 A JP2015020858 A JP 2015020858A JP 2016141880 A JP2016141880 A JP 2016141880A
Authority
JP
Japan
Prior art keywords
aluminum alloy
phase
temperature
extrusion
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020858A
Other languages
Japanese (ja)
Other versions
JP6501109B2 (en
Inventor
吉田 朋夫
Tomoo Yoshida
朋夫 吉田
健二 松田
Kenji Matsuda
健二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Aisin Keikinzoku Co Ltd
Original Assignee
Toyama University
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University, Aisin Keikinzoku Co Ltd filed Critical Toyama University
Priority to JP2015020858A priority Critical patent/JP6501109B2/en
Publication of JP2016141880A publication Critical patent/JP2016141880A/en
Application granted granted Critical
Publication of JP6501109B2 publication Critical patent/JP6501109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy excellent in elongation property while having high strength and a manufacturing method of a material and an extrusion material using the same.SOLUTION: An aluminum alloy contains Mg:1.5 to 2.0%, Zn:9.0 to 11.0%, Cu:2.0 to 2.5%, Zr:0.15 to 0.25% and the balance Al with impurities.SELECTED DRAWING: Figure 1

Description

本発明は高強度でありながら高い伸びを有するアルミニウム合金、それを用いたアルミニウム合金材料及び押出材の製造方法に関する。   The present invention relates to an aluminum alloy having high strength and high elongation, an aluminum alloy material using the aluminum alloy, and a method for producing an extruded material.

従来のAl−Zn−Mg−Cu系合金は高強度が得られるものの、伸び特性が不充分で構造材に適用するのが困難であった。
特許文献1には、Mg:1.5〜2.0質量%(以下単に%と称する),Zn:7.0〜9.0%,Cu:0.2〜0.4%等からなり、溶体化処理後に冷却速度1000℃/min以上で急冷する高強度アルミニウム合金押出材を開示する。
本材料は引張強さ500〜600MPa級の高強度材料としては優れているが、さらなる高強度材料が要求されている。
特許文献2は、Mg:0.9%〜1.3%,Zn:8.0〜10.0%,Cu:0.45〜0.55%,Zr:0.1〜0.2%のアルミニウム合金からなる押出材を室温に保持後に2段階に加熱処理する製造方法を開示する。
この材料はCu成分量が比較的少なく、強度が500MPa以下で不充分である。
特許文献3は、Mg:1.9〜2.6%,Zn:5.7〜6.7%,Cu:2.0〜2.6%,Zr:0.08〜0.15%を含有し、2段階の均質化処理後に、熱間加工、溶体化焼入れ、冷間加工、時効処理を順に行うことでAlZrの析出を制御する技術を開示する。
同公報に開示する材料は、破壊靭性の改善効果は認められるものの、所定の圧延材に限定される。
特許文献4は、Mg:1.0〜1.5%,Zn:5.0〜7.0%,Cu:0.1〜0.3%,Zr:0.05〜0.2%等を含有し、表面再結晶層を制御したアルミニウム合金押出材を開示する。
しかし、同公報に開示する材料は引張強度が500MPa以下と不充分である。
Although conventional Al-Zn-Mg-Cu-based alloys can provide high strength, they have insufficient elongation characteristics and are difficult to apply to structural materials.
Patent Document 1 includes Mg: 1.5 to 2.0% by mass (hereinafter simply referred to as%), Zn: 7.0 to 9.0%, Cu: 0.2 to 0.4%, and the like. Disclosed is a high-strength aluminum alloy extruded material that is rapidly cooled at a cooling rate of 1000 ° C./min or higher after solution treatment.
Although this material is excellent as a high-strength material having a tensile strength of 500 to 600 MPa, a further high-strength material is required.
In Patent Document 2, Mg: 0.9% to 1.3%, Zn: 8.0 to 10.0%, Cu: 0.45 to 0.55%, Zr: 0.1 to 0.2% A manufacturing method is disclosed in which an extruded material made of an aluminum alloy is heat-treated in two stages after being kept at room temperature.
This material has a relatively small amount of Cu component and is insufficient with a strength of 500 MPa or less.
Patent Document 3 contains Mg: 1.9 to 2.6%, Zn: 5.7 to 6.7%, Cu: 2.0 to 2.6%, Zr: 0.08 to 0.15% and, after homogenization in two stages, hot working, solution heat hardening, cold working, discloses a technique for controlling the precipitation of Al 3 Zr by performing aging treatment in order.
The material disclosed in the publication is limited to a predetermined rolled material although an effect of improving fracture toughness is recognized.
Patent Document 4 describes Mg: 1.0 to 1.5%, Zn: 5.0 to 7.0%, Cu: 0.1 to 0.3%, Zr: 0.05 to 0.2%, and the like. An aluminum alloy extruded material containing a controlled surface recrystallized layer is disclosed.
However, the material disclosed in the publication has an insufficient tensile strength of 500 MPa or less.

特許第3735407号公報Japanese Patent No. 3735407 特許第3834076号公報Japanese Patent No. 3834076 特許第4498180号公報Japanese Patent No. 4498180 特許第2928445号公報Japanese Patent No. 2928445

本発明は、高強度でありながら伸び特性に優れるアルミニウム合金、それを用いた材料と押出材の製造方法の提供を目的とする。   An object of this invention is to provide the manufacturing method of the aluminum alloy which is excellent in the elongation characteristic while being high strength, and the material and extrusion material using the same.

本発明に係るアルミニウム合金は、以下質量%にて、Mg:1.5〜2.0%,Zn:9.0〜11.0%,Cu:2.0〜2.5%,Zr:0.15〜0.25%であり、残部がAl及び不純物であることを特徴とする。
このようなアルミニウム合金の組成は、特許文献1〜4のいずれとも相違し、それらに比較して高強度が得られる。
The aluminum alloy according to the present invention has the following mass%: Mg: 1.5 to 2.0%, Zn: 9.0 to 11.0%, Cu: 2.0 to 2.5%, Zr: 0 15 to 0.25%, and the balance is Al and impurities.
The composition of such an aluminum alloy is different from any of Patent Documents 1 to 4, and high strength is obtained as compared with them.

本発明は金属組織の母相中に準安定相η’(MgZn)の折出形態及びその前駆構造であるGP(1)ゾーン,GP(2)ゾーンを制御したことにより高強度とそれに相反する高い伸び特性との両立を図ることができた点に特徴がある。
その態様として本発明に係るアルミニウム合金材料は、請求項1に記載のアルミニウム合金を450〜550℃の温度にて溶体化処理後に焼入れ処理し、次に圧延率50%以上の冷間圧延及び100〜150℃の温度で人工時効処理することで、金属の折出組織にGP(1)ゾーン又は/及びGP(2)ゾーンを有することを特徴とする。
また、前記金属の折出組織に、さらに母相の結晶格子に対して2層周期のη’相又は/及びη相と、母相中にAlZrを有することを特徴とする。
従来のAl−Zn−Mg−Cu系の合金においては 母相の結晶格子に対して3層周期にη’相、η相が析出していたのに対して、本発明では上記のように2層周期のη’、η相となっている。
ここで前駆構造であるGPゾーンのうち、GP(1)ゾーンは、母相の結晶格子に整合した配列を持って析出する溶質の、極めて微細な板状の相である。
その長さは数nmと微細である。
GP(2)ゾーンは母相の結晶格子に対して3次元的に規則的配列を有する。
また、AlZrは微細な析出物である。
The present invention controls the strength of the metastable phase η ′ (MgZn 2 ) in the matrix of the metallographic structure and the GP (1) zone and GP (2) zone, which are the precursor structures thereof, and thereby provides high strength. It is characterized in that it was possible to achieve both high elongation characteristics.
As an aspect thereof, an aluminum alloy material according to the present invention is obtained by subjecting the aluminum alloy according to claim 1 to a quenching treatment after a solution treatment at a temperature of 450 to 550 ° C., followed by cold rolling with a rolling rate of 50% or more and 100 It is characterized by having a GP (1) zone and / or a GP (2) zone in a metal folding structure by performing an artificial aging treatment at a temperature of ˜150 ° C.
Further, the metal folding structure further includes a η ′ phase or / and η 1 phase having a two-layer period with respect to the crystal lattice of the parent phase, and Al 3 Zr in the parent phase.
In the conventional Al—Zn—Mg—Cu alloy, the η ′ phase and η 1 phase were precipitated in a three-layer cycle with respect to the crystal lattice of the parent phase, whereas in the present invention, as described above, It has η ′ and η 1 phases with a two-layer period.
The GP (1) zone in the GP zone which is a precursor structure is a very fine plate-like phase of a solute that precipitates with an alignment matched with the crystal lattice of the parent phase.
Its length is as fine as several nm.
The GP (2) zone has a three-dimensional regular arrangement with respect to the crystal lattice of the parent phase.
Al 3 Zr is a fine precipitate.

本発明の具体的な態様としては、請求項1に記載のアルミニウム合金を用いてビレットを鋳造し、前記ビレットを用いて押出加工及びその直後に急冷又は、押出加工後に温度450〜500℃にて溶体化処理及び焼入れ処理をし、次に圧延率50%以上の冷間圧延及び100〜150℃の温度で人工時効処理することで、引張強さ700MPa以上、耐力値600MPa以上であって、伸びが8%以上有することを特徴とするアルミニウム合金押出材の製造方法が例として挙げられる。   As a specific aspect of the present invention, a billet is cast using the aluminum alloy according to claim 1 and the billet is extruded and immediately cooled immediately thereafter, or at a temperature of 450 to 500 ° C. after the extrusion. Solution treatment and quenching treatment, followed by cold rolling with a rolling rate of 50% or more and artificial aging treatment at a temperature of 100 to 150 ° C., have a tensile strength of 700 MPa or more, a proof stress value of 600 MPa or more, and elongation As an example, a method for producing an aluminum alloy extruded material characterized by having a content of 8% or more is mentioned.

本発明に係る合金組成はMg,Zn,Cuの成分量をMg:1.5〜2.0%,Zn:9.0〜11.0%,Cu:2.0〜2.5%と従来のAl−Zn−Mg−Cu系合金よりも比較的高濃度に設定するとともに、Zrを0.15〜0.25%添加することで析出組織を制御し、高強度及び高い伸び特性を実現したものである。
従って、本発明において他の成分は次のように取り扱う。
Ti成分は合金鋳造時の微細化に寄与することから必要に応じて添加してもよく、添加する場合はTi:0.01〜0.05%の範囲が好ましく、この範囲でTiを添加した合金も本発明に含まれる。
その他の成分は不純物として取り扱い金属組織に影響を与えない範囲にて含有することが許容される。
Fe,Si成分は製造工程にて不可避的に混入する成分であり、いずれも0.2%程度までは許容される。
In the alloy composition according to the present invention, the Mg, Zn and Cu component amounts are conventionally Mg: 1.5 to 2.0%, Zn: 9.0 to 11.0%, Cu: 2.0 to 2.5%. In addition to the relatively high concentration of the Al-Zn-Mg-Cu alloy, 0.15 to 0.25% Zr was added to control the precipitation structure, realizing high strength and high elongation characteristics. Is.
Therefore, in the present invention, the other components are handled as follows.
The Ti component contributes to miniaturization at the time of casting the alloy, so it may be added as necessary. When added, Ti is preferably in the range of 0.01 to 0.05%, and Ti is added in this range. Alloys are also included in the present invention.
The other components are allowed to be contained as impurities in a range that does not affect the metal structure handled.
Fe and Si components are components that are inevitably mixed in the manufacturing process, and both are allowed up to about 0.2%.

本発明においては合金成分範囲の調整により、好ましくは金属組織の制御により、引張強さが700MPa以上の高強度でありながら、伸び8%以上を有することから従来、適用できないとされていた構造部材に適用でき、軽量化に寄与できる。   In the present invention, a structural member that has been conventionally considered to be inapplicable because it has an elongation of 8% or more while having a high strength of 700 MPa or more by adjusting the alloy composition range, preferably by controlling the metal structure. Can contribute to weight reduction.

評価に用いた合金組成を示す。The alloy composition used for evaluation is shown. 評価サンプルの製造条件を示す。The manufacturing conditions of the evaluation sample are shown. 評価サンプルの物性値を示す。The physical property value of the evaluation sample is shown. 実施例1の組織写真を示す。The structure photograph of Example 1 is shown. 実施例1の拡大組織写真を示す。The enlarged structure | tissue photograph of Example 1 is shown.

本発明に係るアルミニウム合金材料を比較評価したので以下説明する。
図1の表に示す各組成のアルミニウム合金を調整及び鋳造し、評価サンプルを押出加工した。
次に図2の表に示す条件で溶体化処理し、水焼入れ(WQ)した後に圧延率約53%の冷間圧延をした。
次に図2の表に基づいて焼戻し(人工時効処理)をした。
このようにして得られた材料の評価結果を図3に示す。
表中に記載の物性値は本発明における目標値を示す。
また、実施例1にて得られた材料の金属組織写真を図4及び図5に示す。
機械的性質はJIS Z2241に基づいて実施した。
結晶粒径は押出方向に沿って鏡面研磨し、測定した。
本発明においては結晶粒径が小さい方が好ましく、平均結晶粒径を50μm以下と設定し、評価した。
その結果、実施例1,2は、合金組成が設定範囲内にあり、図4,図5に示すようにGP(1)ゾーン,GP(2)ゾーン,AlZrが析出し、母相の結晶格子に対して2層間毎にη’相が現れているので機械的性質における全ての目標値をクリアしている。
比較例1は、Mg、Zn、Cu、Zrが設定より少ないためGP(1),GP(2),2層のη、AlZrの析出がなく、機械的性質の目標を満足しない
比較例2〜7、9、11〜17は、Zn、Cu、Zrが設定より少ないためGP(1),GP(2),2層のη’,AlZrの析出がなく、機械的性質の目標を満足しない。
比較例8、10は、Mg、Cu、Zrが設定より少ないためGP(1),GP(2),2層のη’,AlZrの析出がなく、機械的性質の目標を満足しない。
比較例18は、Cu、Zrが設定より少ないためGP(1),GP(2),AlZrの析出がなく、機械的性質の目標を満足しない。
The aluminum alloy material according to the present invention was comparatively evaluated and will be described below.
An aluminum alloy having each composition shown in the table of FIG. 1 was prepared and cast, and an evaluation sample was extruded.
Next, solution treatment was performed under the conditions shown in the table of FIG. 2, water quenching (WQ) was performed, and then cold rolling was performed at a rolling rate of about 53%.
Next, tempering (artificial aging treatment) was performed based on the table of FIG.
The evaluation result of the material thus obtained is shown in FIG.
The physical property values described in the table indicate target values in the present invention.
Moreover, the metal structure photograph of the material obtained in Example 1 is shown in FIGS.
The mechanical properties were implemented based on JIS Z2241.
The crystal grain size was measured by mirror polishing along the extrusion direction.
In the present invention, a smaller crystal grain size is preferable, and the average crystal grain size was set to 50 μm or less for evaluation.
As a result, in Examples 1 and 2, the alloy composition is within the set range, and GP (1) zone, GP (2) zone, and Al 3 Zr are precipitated as shown in FIGS. Since the η ′ phase appears every two layers with respect to the crystal lattice, all target values in the mechanical properties are cleared.
Comparative Example 1 has no Mg, Zn, Cu, and Zr than set, so GP (1), GP (2), η of two layers, Al 3 Zr does not precipitate, and does not satisfy the target of mechanical properties 2-7, 9, 11-17 have less Zn, Cu, and Zr than set, so there is no precipitation of GP (1), GP (2), two-layer η ', Al 3 Zr, and the target of mechanical properties Not satisfied.
In Comparative Examples 8 and 10, since Mg, Cu, and Zr are less than the set values, GP (1), GP (2), η ′ in two layers, and Al 3 Zr do not precipitate, and the mechanical properties target is not satisfied.
In Comparative Example 18, since Cu and Zr are less than the set values, GP (1), GP (2), and Al 3 Zr do not precipitate, and the mechanical property target is not satisfied.

Claims (4)

以下質量%にて、Mg:1.5〜2.0%,Zn:9.0〜11.0%,Cu:2.0〜2.5%,Zr:0.15〜0.25%であり、残部がAl及び不純物であることを特徴とするアルミニウム合金。   In the following mass%, Mg: 1.5 to 2.0%, Zn: 9.0 to 11.0%, Cu: 2.0 to 2.5%, Zr: 0.15 to 0.25% An aluminum alloy characterized in that the balance is Al and impurities. 請求項1に記載のアルミニウム合金を450〜550℃の温度にて溶体化処理後に焼入れ処理し、
次に圧延率50%以上の冷間圧延及び100〜150℃の温度で人工時効処理することで、金属の折出組織にGP(1)ゾーン又は/及びGP(2)ゾーンを有することを特徴とするアルミニウム合金材料。
The aluminum alloy according to claim 1 is hardened after solution treatment at a temperature of 450 to 550 ° C,
Next, it has a GP (1) zone and / or a GP (2) zone in the metal folding structure by cold rolling with a rolling rate of 50% or more and artificial aging treatment at a temperature of 100 to 150 ° C. Aluminum alloy material.
前記金属の折出組織に、さらに母相の結晶格子に対して2層周期のη’相又は/及びη相と、母相中にAlZrを有することを特徴とする請求項2記載のアルミニウム合金材料。 3. The metal bent structure further includes a η ′ phase and / or η 1 phase having a two-layer period with respect to a crystal lattice of the parent phase, and Al 3 Zr in the parent phase. Aluminum alloy material. 請求項1に記載のアルミニウム合金を用いてビレットを鋳造し、
前記ビレットを用いて押出加工及びその直後に急冷又は、押出加工後に温度450〜500℃にて溶体化処理及び焼入れ処理をし、
次に圧延率50%以上の冷間圧延及び100〜150℃の温度で人工時効処理することで、引張強さ700MPa以上、耐力値600MPa以上であって、伸びが8%以上有することを特徴とするアルミニウム合金押出材の製造方法。
A billet is cast using the aluminum alloy according to claim 1,
Extrusion using the billet and quenching immediately after that, or solution treatment and quenching at a temperature of 450-500 ° C. after extrusion,
Next, it is characterized by having a tensile strength of 700 MPa or more, a proof stress value of 600 MPa or more, and an elongation of 8% or more by performing cold rolling with a rolling rate of 50% or more and artificial aging treatment at a temperature of 100 to 150 ° C. A method for producing an extruded aluminum alloy material.
JP2015020858A 2015-02-05 2015-02-05 Aluminum alloy and material, and method of manufacturing extruded material Active JP6501109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020858A JP6501109B2 (en) 2015-02-05 2015-02-05 Aluminum alloy and material, and method of manufacturing extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020858A JP6501109B2 (en) 2015-02-05 2015-02-05 Aluminum alloy and material, and method of manufacturing extruded material

Publications (2)

Publication Number Publication Date
JP2016141880A true JP2016141880A (en) 2016-08-08
JP6501109B2 JP6501109B2 (en) 2019-04-17

Family

ID=56569880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020858A Active JP6501109B2 (en) 2015-02-05 2015-02-05 Aluminum alloy and material, and method of manufacturing extruded material

Country Status (1)

Country Link
JP (1) JP6501109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124554A1 (en) * 2017-12-22 2019-06-27 日本発條株式会社 Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013479A (en) * 2007-07-06 2009-01-22 Nippon Light Metal Co Ltd High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same
JP2010236665A (en) * 2009-03-31 2010-10-21 Nippon Light Metal Co Ltd Method for manufacturing high-tensile aluminum alloy bolt
JP2014037557A (en) * 2012-08-10 2014-02-27 Nippon Light Metal Co Ltd Aluminum-zinc based alloy extrusion material and method for producing teh same
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013479A (en) * 2007-07-06 2009-01-22 Nippon Light Metal Co Ltd High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same
JP2010236665A (en) * 2009-03-31 2010-10-21 Nippon Light Metal Co Ltd Method for manufacturing high-tensile aluminum alloy bolt
JP2014037557A (en) * 2012-08-10 2014-02-27 Nippon Light Metal Co Ltd Aluminum-zinc based alloy extrusion material and method for producing teh same
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124554A1 (en) * 2017-12-22 2019-06-27 日本発條株式会社 Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
JP6602508B1 (en) * 2017-12-22 2019-11-06 日本発條株式会社 Aluminum alloy, aluminum alloy spring and aluminum alloy fastening member
US11505851B2 (en) 2017-12-22 2022-11-22 Nhk Spring Co., Ltd. Aluminum alloy, aluminum alloy spring, and fastening member made of aluminum alloy

Also Published As

Publication number Publication date
JP6501109B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP6794264B2 (en) Magnesium-lithium alloy, rolled materials and molded products
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP5084106B2 (en) Copper titanium alloy sheet and method for producing the same
JP6692803B2 (en) Aluminum-copper-lithium alloy isotropic sheet metal for aircraft fuselage manufacturing
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP6810508B2 (en) High-strength aluminum alloy plate
EP3208361B1 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
JP2007138227A (en) Magnesium alloy material
JP6401823B2 (en) Aluminum-zinc alloy including precipitates with improved strength and elongation, and method for producing the same
JP6723215B2 (en) Aluminum-zinc-copper (Al-Zn-Cu) alloy and method for producing the same
JP2015063747A (en) High strength aluminum alloy extrusion thin shape material and manufacturing method therefor
JP2019504207A (en) Magnesium alloy sheet and method for producing the same
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP6096488B2 (en) Billet for extrusion molding of 7000 series aluminum alloy and method for producing extruded profile
TWI674324B (en) Method for manufacturing aluminum-manganese alloy
JP6452042B2 (en) Method for producing magnesium alloy
JP6501109B2 (en) Aluminum alloy and material, and method of manufacturing extruded material
JP2013079436A (en) Magnesium alloy and method for producing the same
JP2016169431A5 (en)
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
WO2021003528A1 (en) Aluminium alloys
JP6185799B2 (en) Cu-Ti-based copper alloy and manufacturing method
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
WO2021070889A1 (en) Aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6501109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250