JP5088876B2 - Titanium alloy plate with high strength and excellent formability and manufacturing method thereof - Google Patents

Titanium alloy plate with high strength and excellent formability and manufacturing method thereof Download PDF

Info

Publication number
JP5088876B2
JP5088876B2 JP2008017478A JP2008017478A JP5088876B2 JP 5088876 B2 JP5088876 B2 JP 5088876B2 JP 2008017478 A JP2008017478 A JP 2008017478A JP 2008017478 A JP2008017478 A JP 2008017478A JP 5088876 B2 JP5088876 B2 JP 5088876B2
Authority
JP
Japan
Prior art keywords
phase
titanium alloy
alloy plate
less
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008017478A
Other languages
Japanese (ja)
Other versions
JP2009179822A (en
Inventor
健 工藤
克史 松本
義男 逸見
誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Osaka Titanium Technologies Co Ltd
Original Assignee
Kobe Steel Ltd
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Osaka Titanium Technologies Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2008017478A priority Critical patent/JP5088876B2/en
Publication of JP2009179822A publication Critical patent/JP2009179822A/en
Application granted granted Critical
Publication of JP5088876B2 publication Critical patent/JP5088876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、高強度かつ成形性に優れたチタン合金板とその製造方法に関するものである。   The present invention relates to a titanium alloy plate having high strength and excellent formability and a method for producing the same.

Ti−6Al−4Vに代表される高強度α+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの利用加工諸特性を有することから、従来より航空機産業を中心に多用されている。近年では、これらの特性をさらに活用すべく、自動車部品、土木建築用素材、各種工具類、深海やエネルギー開発用途、更にはゴルフ用品をはじめとしたスポーツ用品にも使用されるなど、いわゆる民生品分野への適用拡大も進んでいる。しかし、上記高強度α+β型チタン合金の著しく高い製造コストが適用拡大を阻んでいるといった問題がある。   High-strength α + β-type titanium alloys represented by Ti-6Al-4V have various processing characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. Widely used mainly in industry. In recent years, in order to make further use of these characteristics, so-called consumer products such as automobile parts, materials for civil engineering and construction, various tools, deep sea and energy development applications, as well as sports equipment such as golf equipment. Application expansion to the field is also progressing. However, there is a problem that the remarkably high production cost of the high strength α + β type titanium alloy hinders application expansion.

この様に高強度α+β型チタン合金の製造コストが高い理由として、
i)Vなどの高価なβ相安定化元素を使用していること、
ii)α相安定化元素および固溶強化元素として使用しているAlが、熱間での変形抵抗を著しく高め、熱間加工性を損ねるため、加工しにくく、また割れなどの欠陥を生じ易いこと、の2点を挙げることができる。
In this way, the reason for the high manufacturing cost of the high strength α + β type titanium alloy is as follows:
i) using an expensive β-phase stabilizing element such as V;
ii) Al used as an α-phase stabilizing element and a solid solution strengthening element remarkably enhances hot deformation resistance and impairs hot workability, so that it is difficult to work and is liable to cause defects such as cracks. Two points can be mentioned.

特に、上記ii)は、主要製品である板を製造する際の大きな高コスト要因であり、圧延途中で再加熱を必要としたり、板端部に割れを生じ材料歩留まりが低下するなどの問題点があった。   In particular, the above ii) is a large high cost factor when manufacturing the main product, such as requiring reheating during rolling, and cracking at the edge of the plate, resulting in a decrease in material yield. was there.

このような状況下で、近年、上記民生品分野への適用拡大を推進すべく、低コストチタン合金が種々提案されている。中でも、Ti−Fe−O−N系高強度チタン合金は、安価なFeをβ相安定化元素として採用し、さらに、熱間加工性を低下させるAlの代わりに、安価でかつ熱間加工性を損なわない酸素や窒素をα相安定化元素として採用していることから、従来のα+β型チタン合金に比べて、相当な低コスト化が期待されている。   Under such circumstances, various low-cost titanium alloys have been proposed in recent years in order to promote application expansion to the consumer products field. Among these, Ti-Fe-O-N high strength titanium alloys employ inexpensive Fe as a β-phase stabilizing element, and are inexpensive and hot workable instead of Al, which reduces hot workability. Oxygen and nitrogen that do not impair the temperature are used as the α-phase stabilizing element, and therefore, a considerable cost reduction is expected compared to conventional α + β-type titanium alloys.

しかし、このTi−Fe−O−N系高強度チタン合金の実用化にも問題が残っている。
Ti−Fe−O−N系チタン合金は、通常の一方向圧延により板を製造した場合に、極端な板面内材質異方性が生じ、板の長さ方向の特性は優れるが、軸方向の特性、特に延性が極端に乏しくなってしまうという問題点がある。また、この改善策として、例えば特許文献1には、圧延方向に対して垂直方向に圧延を行うクロス圧延を実施することで、上記異方性を小さくし、長さ方向および幅方向ともに高強度・高延性のTi−Fe−O−N系高強度チタン合金板を得ることが示されている。しかしながら、上記クロス圧延を実機で行うにあたりコスト増が避けられないことから、圧延方向に関係なく成形性に優れた高強度のチタン合金板を、低コストで得る方法の確立が切望されている。
特開平11−61297号公報
However, problems still remain in the practical application of this Ti—Fe—O—N high strength titanium alloy.
Ti-Fe-O-N-based titanium alloys have extreme in-plane material anisotropy when the plate is produced by ordinary unidirectional rolling, and the plate length direction characteristics are excellent, but the axial direction There is a problem that the characteristics, particularly ductility, becomes extremely poor. In addition, as an improvement measure, for example, in Patent Document 1, by performing cross rolling in which rolling is performed in a direction perpendicular to the rolling direction, the above anisotropy is reduced, and both the length direction and the width direction have high strength. -It has been shown that a high ductility Ti-Fe-ON-based high strength titanium alloy sheet is obtained. However, since an increase in cost is inevitable when performing the above cross rolling with an actual machine, establishment of a method for obtaining a high-strength titanium alloy sheet excellent in formability regardless of the rolling direction at low cost is eagerly desired.
Japanese Patent Laid-Open No. 11-61297

本発明はこの様な事情に鑑みてなされたものであって、その目的は、高強度かつ成形性に優れたチタン合金板を低コストで製造することにある。   The present invention has been made in view of such circumstances, and an object thereof is to produce a titanium alloy plate having high strength and excellent formability at low cost.

本発明に係る高強度かつ成形性に優れたチタン合金板とは、Fe:0.8〜2.5%(質量%の意味、以下同じ)、O:0.10%以下(0%を含まない)を満たし、残部:Tiおよび不可避不純物からなるチタン合金板であって、
金属組織が、
六方最密充填構造であるα相の(0001)面の法線と圧延面の法線とがなす方位角の平均値:45°以下、
α相の面積率:80〜97%、および
α相の平均結晶粒径:7.0μm以下
を満たすところに特徴を有する。
The titanium alloy plate having high strength and excellent formability according to the present invention is Fe: 0.8 to 2.5% (meaning mass%, the same shall apply hereinafter), O: 0.10% or less (including 0%) Not) and the balance: a titanium alloy plate made of Ti and inevitable impurities,
The metal structure is
The average value of the azimuth angle formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface, which is a hexagonal close packed structure: 45 ° or less
It is characterized in that it satisfies the area ratio of the α phase: 80 to 97% and the average crystal grain size of the α phase: 7.0 μm or less.

本発明は、この様なチタン合金板の製造方法も規定するものであって、該方法は、上記成分組成を満たす鋳塊を用いて、分塊圧延、熱間圧延、中間焼鈍、冷間圧延および最終焼鈍を順次行うにあたり、前記熱間圧延の開始温度を800℃以上とし、かつ前記最終焼鈍の焼鈍温度を700℃〜850℃とするところに特徴を有する。   The present invention also defines a method for producing such a titanium alloy plate, and the method uses ingots satisfying the above component composition, and is used for ingot rolling, hot rolling, intermediate annealing, cold rolling. Further, when performing the final annealing sequentially, the hot rolling start temperature is set to 800 ° C. or higher, and the final annealing temperature is set to 700 ° C. to 850 ° C.

本発明によれば、高強度かつ成形性に優れたチタン合金板を低コストで製造できるため、上記スポーツ用品、自動車部品、土木建築用素材、各種工具類等の民生品分野や、深海やエネルギー開発用途へのチタン合金材の適用拡大を促進させることができる。   According to the present invention, a titanium alloy plate having high strength and excellent formability can be produced at a low cost, so that the above-mentioned sports equipment, automobile parts, civil engineering and building materials, various tools, etc., the deep sea and energy The expansion of application of titanium alloy materials to development applications can be promoted.

本発明者らは、高強度かつ成形性に優れたチタン合金板を低コストで得るべく鋭意研究を行った。その結果、特に、金属組織おいて、六方最密充填構造であるα相の(0001)面の法線と圧延面の法線とがなす方位角の平均値およびα相の平均結晶粒径を、α相の面積率と共に制御すれば、圧延方向に関係なく、優れた成形性を発揮する高強度チタン合金板が得られることを見出した。   The present inventors have intensively studied to obtain a titanium alloy plate having high strength and excellent formability at low cost. As a result, in particular, in the metal structure, the average value of the azimuth angle formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface, which is a hexagonal close-packed structure, and the average crystal grain size of the α phase It has been found that a high-strength titanium alloy sheet exhibiting excellent formability can be obtained regardless of the rolling direction by controlling together with the area ratio of the α phase.

またこの様な高強度かつ成形性に優れたチタン合金板を得るには、製造工程において、特に熱間圧延と最終焼鈍の条件を制御すればよい、との着想のもとでその具体的条件を見出した。以下、本発明について詳述する。   In addition, in order to obtain such a high strength and excellent formability of the titanium alloy sheet, the specific conditions are based on the idea that the conditions of hot rolling and final annealing should be controlled in the manufacturing process. I found. Hereinafter, the present invention will be described in detail.

〈α相の(0001)面の法線と圧延面の法線とがなす方位角の平均値:45°以下〉
チタンの金属組織において、六方最密充填構造(HCP;Hexagonal Close−packed Structure)であるα相のすべり方向は、六方最密充填構造の結晶格子の六角形面[(0001)面]にあり、この面に対して垂直方向[(0001)面の法線方向]に荷重が加わると、結晶のすべり変形が生じずより大きな変形が生じやすい、即ち、優れた成形性を発揮する傾向にある。
<Average value of azimuth angle between normal of (0001) plane of α phase and normal of rolled surface: 45 ° or less>
In the titanium metal structure, the slip direction of the α phase, which is a hexagonal close-packed structure (HCP), is in the hexagonal plane [(0001) plane] of the crystal lattice of the hexagonal close-packed structure, When a load is applied in a direction perpendicular to this plane [the normal direction of the (0001) plane], slip deformation of the crystal does not occur and a larger deformation tends to occur, that is, excellent formability tends to be exhibited.

そこで本発明者らは、成形性を確実に高めるべく、上記α相の(0001)面の法線と圧延面の法線とがなす方位角と成形性との関係について調べた。その結果、後述する実施例に示す通り、観察領域の全α相結晶格子について測定した、α相結晶格子の(0001)面の法線と圧延面の法線とがなす方位角(図1のθ)の平均値が45°以下であれば、優れた成形性を発揮し、かつ伸びの異方性も低減することを実験により明らかにした。上記方位角の平均値は、40°以下であることが好ましく、30°以下であればより好ましい。   Therefore, the present inventors investigated the relationship between the azimuth angle formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface and the formability in order to reliably improve the formability. As a result, as shown in the examples described later, the azimuth angle formed by the normal of the (0001) plane of the α-phase crystal lattice and the normal of the rolled surface (measured in FIG. 1) was measured for all α-phase crystal lattices in the observation region. It has been clarified through experiments that if the average value of θ) is 45 ° or less, excellent moldability is exhibited and elongation anisotropy is also reduced. The average value of the azimuth is preferably 40 ° or less, and more preferably 30 ° or less.

この様に、上記方位角の平均値が小さいほど優れた成形性を示すが、現行の量産工程において低コストで製造する観点からは、上記方位角の平均値の下限は20°程度となる。   Thus, the smaller the average value of the azimuth angle, the better the moldability. However, from the viewpoint of manufacturing at a low cost in the current mass production process, the lower limit of the average value of the azimuth angle is about 20 °.

〈α相の面積率:80〜97%〉
上記の通り、α相の(0001)面の法線と圧延面の法線とがなす方位角の平均値が45°以下を満たしていても(即ち、α相全体に占める「板厚垂直方向に対する傾角の小さいα相」の割合が高くても)、金属組織に占めるα相自体の割合が少ないと、成形性の向上に寄与する上記方位角の小さいα相の絶対量が少なくなり、所望レベルの成形性が得られない。よって本発明では、全組織に占めるα相の面積率を80%以上とした。好ましくは85%以上、より好ましくは90%以上である。
<Area ratio of α phase: 80 to 97%>
As described above, even when the average value of the azimuth angles formed by the normal line of the (0001) plane of the α phase and the normal line of the rolled surface satisfies 45 ° or less (that is, “the thickness perpendicular direction of the entire α phase” If the ratio of the α phase with a small tilt angle relative to the metal structure is small), if the ratio of the α phase itself in the metal structure is small, the absolute amount of the α phase with a small azimuth that contributes to the improvement of the formability is reduced. A level of formability cannot be obtained. Therefore, in the present invention, the area ratio of the α phase in the entire structure is set to 80% or more. Preferably it is 85% or more, more preferably 90% or more.

但し、α相の面積率が100%近くになると、α相による伸びの異方性が大きくなり、成形性が却って劣化する。よって本発明では、全組織に占めるα相の面積率を97%以下とする。好ましくは95%以下であり、より好ましくは93%以下である。   However, when the area ratio of the α phase is close to 100%, the anisotropy of elongation due to the α phase increases, and the formability deteriorates. Therefore, in the present invention, the area ratio of the α phase in the entire structure is set to 97% or less. Preferably it is 95% or less, More preferably, it is 93% or less.

〈α相の平均結晶粒径:7.0μm以下〉
α相の平均結晶粒径が小さいほど、結晶粒微細化効果により強度が高まる。本発明では、この様な効果を発揮させるべく、α相の平均結晶粒径の上限を7.0μmとした。好ましくは5μm以下、より好ましくは3μm以下である。この様にα相の平均結晶粒径が小さいほど優れた特性を示すが、現行の量産工程において低コストで製造する観点からは、α相の平均結晶粒径の下限は1μm程度となる。
<Average crystal grain size of α phase: 7.0 μm or less>
The smaller the average crystal grain size of the α phase, the higher the strength due to the grain refinement effect. In the present invention, in order to exert such effects, the upper limit of the average crystal grain size of the α phase is set to 7.0 μm. Preferably it is 5 micrometers or less, More preferably, it is 3 micrometers or less. Thus, the smaller the average crystal grain size of the α phase, the better the characteristics. However, from the viewpoint of manufacturing at a low cost in the current mass production process, the lower limit of the average crystal grain size of the α phase is about 1 μm.

〈成分組成について〉
本発明のチタン合金板は、Fe:0.8〜2.5%、O:0.10%以下(0%を含まない)を満たすものである。
<About component composition>
The titanium alloy plate of the present invention satisfies Fe: 0.8 to 2.5% and O: 0.10% or less (excluding 0%).

Fe量が0.8%より少ないと、α相の結晶粒径が大きくなりすぎて必要最低限の強度を確保できず、また、成形性も低下するので好ましくない。好ましくはFe量を1.0%以上とするのがよい。一方、Fe量が2.5%を超えると、強度が必要以上に高くなり、成形性が劣化するので好ましくない。好ましくはFe量を2.3%以下とするのがよい。   If the amount of Fe is less than 0.8%, the crystal grain size of the α phase becomes too large, so that the necessary minimum strength cannot be ensured and the moldability is also deteriorated. Preferably, the amount of Fe is 1.0% or more. On the other hand, if the amount of Fe exceeds 2.5%, the strength becomes unnecessarily high and the moldability deteriorates, which is not preferable. Preferably, the amount of Fe is 2.3% or less.

O(酸素)は主に不純物として混入する元素である。O量が増加することで強度が高まるが、O量が0.10%を超えると、強度が必要以上に高くなり、成形性が劣化するので好ましくない。よって、本発明ではO量を0.10%以下とする。好ましくは0.08%以下である。   O (oxygen) is an element mixed mainly as an impurity. The strength increases as the amount of O increases. However, if the amount of O exceeds 0.10%, the strength becomes unnecessarily high and the moldability deteriorates, which is not preferable. Therefore, in the present invention, the amount of O is made 0.10% or less. Preferably it is 0.08% or less.

本発明のチタン合金板は、残部がTiおよび不可避不純物からなるものであり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。例えば、Ni、Crは総量で約0.05%以下であり、H(水素)、C(炭素)、N(窒素)は総量で数10ppm程度であり、上記O以外の不可避不純物は大凡0.05%程度である。   The remainder of the titanium alloy plate of the present invention is composed of Ti and inevitable impurities. As the inevitable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. For example, the total amount of Ni and Cr is about 0.05% or less, the total amount of H (hydrogen), C (carbon), and N (nitrogen) is about several tens of ppm. It is about 05%.

〈製造方法について〉
次に、上記チタン合金板の製造条件について説明する。チタン合金板は、一般に下記工程で製造される。チタン合金板の物性や組織状態は、用いるチタン合金板の化学組成や各工程の設定条件により異なるので、一連の製造工程として総合的に条件を選択して決定すべきであり、個々の工程ごとに条件を厳密に設定することは必ずしも適切ではない。
[鋳造]→[分塊圧延]→[均熱・熱間圧延]→[中間焼鈍]→[冷間圧延]→[最終焼鈍](上記各工程間で、随時、ブラストや酸洗処理が行われる)
<About manufacturing method>
Next, manufacturing conditions for the titanium alloy plate will be described. A titanium alloy plate is generally manufactured by the following steps. The physical properties and structural state of the titanium alloy plate vary depending on the chemical composition of the titanium alloy plate used and the setting conditions of each process, so it should be determined by selecting the conditions comprehensively as a series of manufacturing processes. It is not always appropriate to set the conditions strictly.
[Casting] → [Bundled rolling] → [Soaking / hot rolling] → [Intermediate annealing] → [Cold rolling] → [Final annealing] (Blasting or pickling treatment is performed at any time between the above processes. Called)

しかし、本発明者らが、前記成分組成のチタン合金を用いて製造条件の検討を行ったところ、特に下記条件(1)および(2)を採用すれば、高強度で優れた成形性を有するチタン合金板を、確実にかつ低コストで得られることを見出した。   However, the present inventors have examined the production conditions using the titanium alloy having the above-described component composition. In particular, if the following conditions (1) and (2) are employed, the present invention has high strength and excellent formability. It has been found that a titanium alloy plate can be obtained reliably and at low cost.

(1)熱間圧延の開始温度:800℃以上
α相の(0001)面の法線と圧延面の法線とがなす方位角の平均値を45°以下とするには、熱間圧延の開始温度を高める、即ち、熱間圧延の開始温度を800℃以上とする必要がある。好ましくは850℃以上であり、より好ましくは870℃以上である。
(1) Hot rolling start temperature: 800 ° C. or more In order to set the average azimuth angle between the normal line of the (0001) plane of the α phase and the normal line of the rolled surface to 45 ° or less, It is necessary to increase the starting temperature, that is, the hot rolling starting temperature is 800 ° C. or higher. Preferably it is 850 degreeC or more, More preferably, it is 870 degreeC or more.

一方、熱間圧延の開始温度が高すぎても結晶粒が大きくなりすぎることから、β変態点の温度以下とすることが好ましい。   On the other hand, since the crystal grains become too large even if the hot rolling start temperature is too high, it is preferable that the temperature be equal to or lower than the β transformation point temperature.

尚、熱間圧延後は、300℃まで急冷することにより、その後の均熱する工程で、再結晶α相の核となりうる微細α相が生成する。この微細α相の生成により、再結晶α相を微細なものとすることができる。この様な冷却を行うには、例えば、熱間圧延により得られる熱間圧延材に、後述する実施例に示す様に多量の水をかけて冷却する他、積極的に送風を行ったり、ミスト冷却を行う方法が挙げられる。   In addition, after hot rolling, by rapidly cooling to 300 ° C., a fine α phase that can be a nucleus of the recrystallized α phase is generated in the subsequent soaking step. By generating this fine α phase, the recrystallized α phase can be made fine. In order to perform such cooling, for example, the hot-rolled material obtained by hot rolling is cooled by applying a large amount of water as shown in the examples to be described later, and actively blowing or mist. The method of performing cooling is mentioned.

(2)最終焼鈍の焼鈍温度:700℃〜850℃
最終焼鈍の焼鈍温度が850℃を上回ると、α相の平均結晶粒径が大きくなりすぎて、強度が低くなる。よって本発明では、850℃以下の焼鈍温度で最終焼鈍を行う。該焼鈍温度は、好ましくは825℃以下であり、より好ましくは800℃以下である。しかし最終焼鈍の焼鈍温度が低すぎても、焼鈍後に未再結晶部が残り、成形性が劣化するので好ましくない。よって、最終焼鈍の焼鈍温度は700℃以上(好ましくは710℃以上、より好ましくは720℃以上)とする。
(2) Final annealing temperature: 700 ° C to 850 ° C
When the annealing temperature of the final annealing exceeds 850 ° C., the average crystal grain size of the α phase becomes too large and the strength is lowered. Therefore, in the present invention, final annealing is performed at an annealing temperature of 850 ° C. or lower. The annealing temperature is preferably 825 ° C. or lower, and more preferably 800 ° C. or lower. However, even if the annealing temperature of the final annealing is too low, unrecrystallized parts remain after annealing and formability deteriorates, which is not preferable. Therefore, the annealing temperature of the final annealing is set to 700 ° C. or higher (preferably 710 ° C. or higher, more preferably 720 ° C. or higher).

尚、最終焼鈍の時間は特に限定されず、上記温度範囲にて0.1〜10分間行えばよい。   In addition, the time of the last annealing is not specifically limited, What is necessary is just to perform for 0.1 to 10 minutes in the said temperature range.

上記熱間圧延や最終焼鈍におけるその他の条件や、その他の工程の条件は、一般的な条件を採用することができる。   General conditions can be adopted as the other conditions in the hot rolling and final annealing and the conditions of other processes.

本発明に係るチタン合金板(板厚0.2〜1mm程度)は、本来の優れた耐食性はもとより高い機械的強度に加えて、優れた成形性を有しているので、プレート式熱交換器の構成材の他、燃料電池のセパレーター、携帯電話機、モバイルパソコン、カメラ等のボディ、めがねフレーム等、高度な成形性が要求される用途に広く適用できる。   The titanium alloy plate (thickness of about 0.2 to 1 mm) according to the present invention has excellent formability in addition to high mechanical strength as well as original excellent corrosion resistance. In addition to the above-mentioned components, it can be widely applied to applications that require high formability, such as fuel cell separators, mobile phones, mobile personal computers, camera bodies, and eyeglass frames.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

CCIM(コールドクルーシブル誘導加熱法)溶解により、チタン合金を溶製し、φ100mmの円柱形の10kg鋳塊を製造した。下記表1に鋳塊の成分分析結果を示す。この鋳塊を用いて、1050℃で分塊鍛造を行い、分塊鍛造後は放冷して、厚み45mmの板形状の分塊鍛造材を得た。その後、表1に示す条件で熱間圧延し、スケール除去をして厚み約5mmの熱延板を得た。   A titanium alloy was melted by CCIM (cold crucible induction heating method) melting to produce a cylindrical 10 kg ingot with a diameter of 100 mm. Table 1 below shows the results of component analysis of the ingot. Using this ingot, the forging was performed at 1050 ° C., and after the forging, the plate was allowed to cool to obtain a plate-shaped forging material having a thickness of 45 mm. Then, it hot-rolled on the conditions shown in Table 1, scale removal was performed, and the hot rolled sheet about 5 mm thick was obtained.

上記熱間圧延終了後の300℃までの冷却は、それぞれ次の方法で行った。即ち、表1に示すNo.1〜6、8〜10、12〜15、17、18では風を積極的にあてて冷却し、No.7、11では多量の水をかけて冷却し、No.16では放置したまま空冷(放冷)した。   Cooling to 300 ° C. after completion of the hot rolling was performed by the following methods. That is, No. 1 shown in Table 1. Nos. 1-6, 8-10, 12-15, 17, 18 are cooled by positively applying wind. In Nos. 7 and 11, it was cooled with a large amount of water. No. 16 was air-cooled (cooled) while being left standing.

次いで、大気炉にて表1に示す通り700℃で5分間加熱し、その後空冷する焼鈍処理(中間焼鈍)を行ってから、スケール除去を行った。そして、表1に示す通り冷間圧延率:89%の冷間圧延を行った後、大気炉にて、表1に示す焼鈍温度で3分間加熱してから空冷する焼鈍処理(最終焼鈍)を行い、その後、スケール除去を行って厚み0.3mmのチタン合金板を得た。   Next, as shown in Table 1, it was heated at 700 ° C. for 5 minutes in an atmospheric furnace, and then subjected to an annealing treatment (intermediate annealing) that was air-cooled, and then the scale was removed. Then, as shown in Table 1, after performing cold rolling at a cold rolling rate of 89%, an annealing process (final annealing) is performed in an atmospheric furnace, followed by heating at the annealing temperature shown in Table 1 for 3 minutes and then air cooling. After that, the scale was removed to obtain a titanium alloy plate having a thickness of 0.3 mm.

Figure 0005088876
Figure 0005088876

得られたチタン合金板の金属組織の観察・測定、強度および成形性の評価を夫々下記の要領で行った。   Observation and measurement of the metal structure of the obtained titanium alloy plate, and evaluation of strength and formability were performed in the following manner, respectively.

〈α相の面積率、α相の(0001)面の法線と圧延面の法線とがなす方位角の平均値、およびα相の平均結晶粒径〉
チタン合金板の圧延面表面を機械研磨し、更に、バフ研磨に次いで電解研磨を行い、板厚t方向の1/4t部の圧延面を観察できるように調整した試料を用意した。そして、この試料を用いて、ショットキー電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM )(日本電子社製、JSM−6500F)に搭載された、後方散乱電子回折像[EBSP: Electron Back Scattering (Scattered) Pattern ](日本電子社製、JEOL JSM 5410)により、結晶方位の測定および結晶粒径の測定を行った。測定領域は100 μm×100 μmであり、測定ステップ間隔は0.2μmとした。上記EBSP測定・解析システムは、EEDAX/TSL社製OIM(Orientation Imaging Microscopy)(ver.4)を用いた。
<Area area ratio of α phase, average value of azimuth angle formed by normal of (0001) plane of α phase and normal of rolled surface, and average crystal grain size of α phase>
The surface of the rolled surface of the titanium alloy plate was mechanically polished, followed by buffing and then electrolytic polishing to prepare a sample that was adjusted so that the 1/4 t portion of the rolling surface in the thickness t direction could be observed. Then, using this sample, a backscattered electron diffraction image [EBSP: Electron Back] mounted on a Schottky field emission scanning electron microscope (FESEM) (manufactured by JEOL Ltd., JSM-6500F). The crystal orientation and crystal grain size were measured by Scattering (Scattered) Pattern] (JEOL JSM 5410, manufactured by JEOL Ltd.). The measurement area was 100 μm × 100 μm, and the measurement step interval was 0.2 μm. As the EBSP measurement / analysis system, OED (Orientation Imaging Microscopy) (ver. 4) manufactured by EEDAX / TSL was used.

上記FESEMに搭載されたEBSP観察・測定システムは高分解能であることから、金属組織パラメータの測定を極めて精度よく行うことができる。以下、上記測定原理について説明する。   Since the EBSP observation / measurement system mounted on the FESEM has a high resolution, the measurement of the metal structure parameters can be performed with extremely high accuracy. Hereinafter, the measurement principle will be described.

EBSP法は、FESEMの鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行われるので、測定終了時には数万〜数十万点の結晶方位データが得られる。   In the EBSP method, an electron beam is irradiated onto a sample set in a lens barrel of FESEM to project EBSP on a screen. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data can be obtained at the end of measurement.

このように、EBSP法には、X線回折法や透過電子顕微鏡を用いた電子線回折法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する、平均結晶粒径、平均結晶粒径の標準偏差、あるいは方位解析等の情報を、数時間以内で得られる利点がある。また、結晶粒毎の測定ではなく、指定した領域を任意の一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。なお、これらFESEM にEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)p.66−70などに詳細に記載されている。   Thus, the EBSP method has a wider observation field of view than the electron beam diffraction method using an X-ray diffraction method or a transmission electron microscope, and the average crystal grain size and the average crystal for a large number of crystal grains of several hundred or more. There is an advantage that information such as a standard deviation of particle size or orientation analysis can be obtained within a few hours. In addition, since the measurement is performed by scanning a specified region at an arbitrary fixed interval instead of measurement for each crystal grain, there is also an advantage that each of the above-described information on the numerous measurement points covering the entire measurement region can be obtained. is there. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in Kobe Steel Technical Report / Vol.52 No.2 (Sep.2002) p. 66-70 and the like.

ここで、通常のチタン合金の場合、β相(BCC)は、{111}方位({111}<112>、{111}<110>で規定)、{001}<100>方位、{011}<100>方位、{112}<110>方位、{554}<225>方位等からなる集合組織を形成する。   Here, in the case of a normal titanium alloy, the β phase (BCC) has {111} orientation (specified by {111} <112>, {111} <110>), {001} <100> orientation, {011} A texture composed of <100> orientation, {112} <110> orientation, {554} <225> orientation, and the like is formed.

本発明においては、基本的に、方位のずれが各結晶方位から±15°以内のものは同一の結晶方位に属するとした。また、隣り合う結晶粒の方位差が5°以上の結晶粒の境界を結晶粒界と定義した。   In the present invention, basically, those whose orientation deviation is within ± 15 ° from each crystal orientation belong to the same crystal orientation. Further, the boundary between crystal grains in which the orientation difference between adjacent crystal grains is 5 ° or more was defined as a crystal grain boundary.

この様な測定手段により、測定範囲内のα相、β相の全結晶粒の方位を個別に同定し、α相の(0001)面の法線と圧延面の法線とがなす方位角の平均値、およびα相の平均結晶粒径(測定したα相の各結晶粒の円相当直径の合計/測定したα相の結晶粒の数)を求めた。また、α相の面積率は下記式(1)により求めた。
α相の面積率=[α相の面積/(α相の面積+β相の面積)]×100 …(1)
By such measurement means, the orientation of all crystal grains of the α phase and β phase within the measurement range is individually identified, and the orientation angle formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface The average value and the average crystal grain size of the α phase (the total circle equivalent diameter of each crystal grain of the α phase measured / the number of crystal grains of the α phase measured) were determined. Further, the area ratio of the α phase was determined by the following formula (1).
Area ratio of α phase = [area of α phase / (area of α phase + area of β phase)] × 100 (1)

〈引張強度および伸びの異方性の評価〉
上記試験材(0.3mmのチタン合金板)から、JISZ2201で規定される13号試験片を、長手方向が圧延方向(L)となるよう作製し、この試験片を用いて、JISZ2241に規定の方法で引張試験を行い、圧延方向(L)の引張強度(TS)および全伸びを測定した。このとき、試験速度(引張り試験での歪み速度)は、0.2%耐力までを0.5%/min、それ以降を10mm/minとした。また、上記試験材から、JISZ2201で規定される13号試験片を、長手方向が、上記L方向と直交する圧延面上の方向(T)となるよう作製し、この試験片を用いて、上記と同様にして引張試験を行い、T方向の全伸びを測定した。
<Evaluation of tensile strength and elongation anisotropy>
From the above test material (0.3 mm titanium alloy plate), No. 13 test piece defined in JISZ2201 is prepared so that the longitudinal direction is the rolling direction (L), and this test piece is used to define in JISZ2241. A tensile test was performed by the method, and the tensile strength (TS) and total elongation in the rolling direction (L) were measured. At this time, the test speed (strain speed in the tensile test) was 0.5% / min up to 0.2% proof stress, and 10 mm / min thereafter. Further, from the above test material, No. 13 test piece defined in JISZ2201 is prepared so that the longitudinal direction is the direction (T) on the rolling surface orthogonal to the L direction, and using this test piece, A tensile test was performed in the same manner as described above, and the total elongation in the T direction was measured.

そして、圧延方向(L)のTSが500MPa以上のものを高強度であると評価した。また、(T方向全伸び)−(L方向全伸び)から求めた伸びの異方性が7%以下のものを、伸びの異方性が小さいと評価した。   And it evaluated that TS of 500 MPa or more of rolling direction (L) was high intensity | strength. Further, an elongation anisotropy of 7% or less determined from (T direction total elongation)-(L direction total elongation) was evaluated as having low elongation anisotropy.

〈成形性(エリクセン値)の測定〉
エリクセン試験を次の通り行った。即ち、試験材からJISZ2247に規定される2号試験片を作製し、この試験片を用いて、JISZ2247に規定の方法でエリクセン試験を実施した。
<Measurement of formability (Ericsen value)>
The Eriksen test was conducted as follows. That is, the No. 2 test piece prescribed | regulated to JISZ2247 was produced from the test material, and the Eriksen test was implemented by the method prescribed | regulated to JISZ2247 using this test piece.

このとき、試験速度(エリクセン試験でのプレス速度、即ち、プレス工具の変位速度)は5mm/minとした。そして、エリクセン値が7.5mm以上のものを成形性に優れると評価した。   At this time, the test speed (press speed in the Eriksen test, that is, the displacement speed of the press tool) was 5 mm / min. And the Erichsen value evaluated that it was excellent in a moldability 7.5 mm or more.

これらの結果を前記表1に併記する。   These results are also shown in Table 1.

表1から次のように考察することができる。即ち、No.1〜11は本発明で規定する要件を満たすものであり、高強度かつ成形性に優れていることがわかる。   From Table 1, it can be considered as follows. That is, no. 1-11 satisfy | fills the requirements prescribed | regulated by this invention, and it turns out that it is high intensity | strength and excellent in a moldability.

これに対し、No.12〜18は、本発明で規定する要件を満たしていないため、高強度を確保できなかったり、成形性に劣るといった不具合が生じた。   In contrast, no. Since Nos. 12 to 18 did not satisfy the requirements defined in the present invention, problems such as failure to secure high strength and poor formability occurred.

詳細には、No.12は、Fe量が少ないため、α相の結晶粒径が大きくなり、結果として高強度を確保できず、かつ成形性にも劣っている。   Specifically, no. No. 12 has a small amount of Fe, so that the crystal grain size of the α phase becomes large. As a result, high strength cannot be ensured and the moldability is inferior.

No.13は、Fe量が過剰であるため、強度が必要以上に高くなり、成形性が劣っている。   No. In No. 13, since the amount of Fe is excessive, the strength is higher than necessary, and the moldability is inferior.

No.14は、O量が過剰であるため、成形性に劣っている。   No. No. 14 is inferior in moldability because the amount of O is excessive.

No.15は、熱間圧延の開始温度が低いため、α相の(0001)面の法線と圧延面の法線とがなす方位角の平均値が45°を上回り、伸びの異方性が大きく、また成形性に劣っている。   No. No. 15, since the hot rolling start temperature is low, the average value of the azimuth angles formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface exceeds 45 °, and the elongation anisotropy is large. Also, the formability is inferior.

No.16から、高強度を達成させるには、熱間圧延後に300℃まで急冷して、α相の結晶粒粗大化を抑制すればよいことがわかる。   No. From FIG. 16, it can be seen that high strength can be achieved by quenching to 300 ° C. after hot rolling to suppress coarsening of α phase crystal grains.

No.17は、最終焼鈍温度が高すぎるため、α相の結晶粒径が著しく大きくなり、結果として高強度を確保できず、かつ成形性にも劣っている。   No. Since the final annealing temperature of No. 17 is too high, the crystal grain size of the α phase becomes remarkably large. As a result, high strength cannot be ensured and the moldability is inferior.

No.18は、最終焼鈍の焼鈍温度が低すぎるため、焼鈍後に未再結晶部が残り、成形性が劣る結果となった。   No. In No. 18, since the annealing temperature of the final annealing was too low, an unrecrystallized part remained after annealing, resulting in poor formability.

α相の(0001)面の法線と圧延面の法線とがなす方位角(θ)を示す図である。It is a figure which shows the azimuth ((theta)) which the normal line of the (0001) surface of (alpha) phase and the normal line of a rolling surface make.

Claims (2)

Fe:0.8〜2.5%(質量%の意味、以下同じ)、O:0.10%以下(0%を含まない)を満たし、残部:Tiおよび不可避不純物からなるチタン合金板であって、金属組織が、六方最密充填構造であるα相の(0001)面の法線と圧延面の法線とがなす方位角の平均値:45°以下、α相の面積率:80〜97%、およびα相の平均結晶粒径:7.0μm以下を満たすことを特徴とする高強度かつ成形性に優れたチタン合金板。   It is a titanium alloy plate that satisfies Fe: 0.8 to 2.5% (meaning of mass%, the same shall apply hereinafter), O: 0.10% or less (not including 0%), and the balance: Ti and inevitable impurities. Thus, the average value of the azimuth angle formed by the normal of the (0001) plane of the α phase and the normal of the rolled surface, which is a hexagonal close-packed structure of the metal structure: 45 ° or less, and the area ratio of the α phase: 80 to A titanium alloy plate having high strength and excellent formability characterized by satisfying 97% and an average crystal grain size of α phase: 7.0 μm or less. 上記請求項1に規定の成分組成を満たす鋳塊を用いて、分塊圧延、熱間圧延、中間焼鈍、冷間圧延および最終焼鈍を順次行うにあたり、前記熱間圧延の開始温度を800℃以上とし、かつ前記最終焼鈍の焼鈍温度を700℃〜850℃とすることを特徴とする高強度かつ成形性に優れたチタン合金板の製造方法。   When performing ingot rolling, hot rolling, intermediate annealing, cold rolling, and final annealing sequentially using an ingot that satisfies the component composition defined in claim 1, the hot rolling start temperature is 800 ° C. or higher. And the annealing temperature of the said last annealing shall be 700 to 850 degreeC, The manufacturing method of the titanium alloy plate excellent in the high intensity | strength and the moldability characterized by the above-mentioned.
JP2008017478A 2008-01-29 2008-01-29 Titanium alloy plate with high strength and excellent formability and manufacturing method thereof Active JP5088876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017478A JP5088876B2 (en) 2008-01-29 2008-01-29 Titanium alloy plate with high strength and excellent formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017478A JP5088876B2 (en) 2008-01-29 2008-01-29 Titanium alloy plate with high strength and excellent formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009179822A JP2009179822A (en) 2009-08-13
JP5088876B2 true JP5088876B2 (en) 2012-12-05

Family

ID=41034025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017478A Active JP5088876B2 (en) 2008-01-29 2008-01-29 Titanium alloy plate with high strength and excellent formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5088876B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625646B2 (en) * 2010-09-07 2014-11-19 新日鐵住金株式会社 Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
WO2012115242A1 (en) 2011-02-24 2012-08-30 新日本製鐵株式会社 α+β TYPE TITANIUM ALLOY SHEET WITH EXCELLENT COLD ROLLING PROPERTIES AND COLD HANDLING PROPERTIES, AND PRODUCTION METHOD THEREFOR
TW201600611A (en) 2014-04-10 2016-01-01 Nippon Steel & Sumitomo Metal Corp [alpha]+[beta] type cold-rolled and annealed titanium alloy sheet having high strength and high young's modulus, and method for producing same
CN105624467A (en) * 2016-03-08 2016-06-01 上海大学 Alpha titanium alloy containing Fe and Mn alloy elements
TWI732529B (en) * 2019-04-17 2021-07-01 日商日本製鐵股份有限公司 Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing roller, and copper foil manufacturing roller manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033292A1 (en) * 1995-04-21 1996-10-24 Nippon Steel Corporation High-strength, high-ductility titanium alloy and process for preparing the same
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP3481428B2 (en) * 1997-08-11 2003-12-22 新日本製鐵株式会社 Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JP4088183B2 (en) * 2003-01-31 2008-05-21 株式会社神戸製鋼所 Titanium plate excellent in formability and method for producing the same
JP2008106323A (en) * 2006-10-26 2008-05-08 Sumitomo Metal Ind Ltd Titanium alloy
JP5183911B2 (en) * 2006-11-21 2013-04-17 株式会社神戸製鋼所 Titanium alloy plate excellent in bendability and stretchability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009179822A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5298368B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5166921B2 (en) Titanium alloy plate with high strength and excellent formability
JP5592818B2 (en) Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
JP5027603B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
JP5161059B2 (en) Titanium alloy plate with high strength and excellent deep drawability and method for producing titanium alloy plate
KR20210080520A (en) A titanium alloy plate, a manufacturing method of a titanium alloy plate, a copper foil manufacturing drum, and a manufacturing method of a copper foil manufacturing drum
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2013220472A (en) Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP2012057200A (en) Titanium plate excelling in rigidity in rolling width direction, and method of manufacturing the same
JP5385038B2 (en) Titanium plate with high yield strength and excellent press formability
JP5605232B2 (en) Hot rolling method of α + β type titanium alloy
JP5399759B2 (en) Titanium alloy plate having high strength and excellent bending workability and press formability, and method for producing titanium alloy plate
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
EP2801631B1 (en) Alpha+beta-type titanium alloy plate for welded pipe, method for producing same, and alpha+beta-type titanium-alloy welded pipe product
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP4019668B2 (en) High toughness titanium alloy material and manufacturing method thereof
JP5421873B2 (en) High strength α + β type titanium alloy plate excellent in strength anisotropy and method for producing high strength α + β type titanium alloy plate
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
TWI701343B (en) Titanium alloy plate and golf club head
JP2013227618A (en) α+β TYPE TITANIUM ALLOY PLATE, AND METHOD OF MANUFACTURING THE SAME
JP5382518B2 (en) Titanium material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250