JP2009299110A - HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY - Google Patents

HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY Download PDF

Info

Publication number
JP2009299110A
JP2009299110A JP2008153217A JP2008153217A JP2009299110A JP 2009299110 A JP2009299110 A JP 2009299110A JP 2008153217 A JP2008153217 A JP 2008153217A JP 2008153217 A JP2008153217 A JP 2008153217A JP 2009299110 A JP2009299110 A JP 2009299110A
Authority
JP
Japan
Prior art keywords
less
titanium alloy
strength
type titanium
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153217A
Other languages
Japanese (ja)
Inventor
Shogo Murakami
昌吾 村上
Koichi Akazawa
浩一 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008153217A priority Critical patent/JP2009299110A/en
Priority to PCT/JP2009/060475 priority patent/WO2009151031A1/en
Publication of JP2009299110A publication Critical patent/JP2009299110A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength α-β type titanium alloy which is superior in hot workability, and besides, shows superior intermittent machinability when being worked by an end mill, a milling cutter, or the like. <P>SOLUTION: The titanium alloy includes, by mass%, 0.06 to 0.13% C, 3.0 to 8.5% Al, further one or more elements of 5.0% or less V, 3.0% or less Cr, less than 2.5% Fe, 5.0% or less Mo, 5.0% or less Ni, 5.0% or less Nb and 5.0% or less Ta in a total amount of 2.0 to 10.0% and the balance Ti with unavoidable impurities. An average area ratio of TiC precipitates in a titanium alloy matrix is 0.5% or less and a mean equivalent circle diameter of the TiC precipitates is 1 μm or less by average. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンドミルやフライス加工などによる断続切削性に優れた高強度α−β型チタン合金に関するものである。   The present invention relates to a high-strength α-β type titanium alloy excellent in intermittent cutting performance by end milling or milling.

Ti−6Al−4Vに代表される高強度α−β型チタン合金は、軽量、高強度、高耐食性であることに加え、熱処理によって容易に強度レベルを変化させることができることから、従来から航空機産業を中心に多用されてきた。これらの特性を更に活用すべく、近年では、自動車や2輪のエンジン部材といった自動車部品、ゴルフ用品をはじめとしたスポーツ用品、土木建築用素材、各種工具類、眼鏡フレームなどの民生品分野や、深海やエネルギー開発用途などへの適用拡大も進んでいる。   High strength α-β type titanium alloys represented by Ti-6Al-4V are lightweight, high strength, and high corrosion resistance, and can easily change the strength level by heat treatment. Has been used extensively. In order to further utilize these characteristics, in recent years, automobile parts such as automobiles and two-wheel engine members, sports equipment such as golf equipment, civil engineering and building materials, various tools, eyeglass frames and other consumer goods fields, Application to deep seas and energy development applications is also expanding.

しかしながら、α−β型チタン合金の著しく高い製造コスト、また加工性、特に切削加工性が悪いことが、その適用拡大の妨げとなっており、使用範囲は限定されているのが現状である。このような実情が勘案され、近年、切削性を改善したチタン合金についての種々の提案がなされている。   However, the remarkably high production cost of α-β type titanium alloys and poor workability, particularly machinability, hinders the expansion of its application, and the range of use is currently limited. In view of such circumstances, in recent years, various proposals have been made for titanium alloys with improved machinability.

特許文献1には、希土類元素(REM)とCa、S、Se、Te、Pb、Biを適宜含有させて、粒状の化合物を形成することによって靭性、延性の低下を抑制しつつ、被削性(切削性)を向上させたコンロッド用チタン合金が記載されている。また、特許文献2には、希土類元素(REM)を含有させることにより被削性(切削性)を向上させ、Bを含有させることにより熱間加工性を改善させた快削チタン合金が記載されている。更には、特許文献3には、快削成分として、PおよびS、PおよびNi、或いはPとSおよびNi、更にはこれら元素に加えてREMを添加することにより、マトリックスの延性低下と介在物の微細化を行い、快削性を改善しつつ、熱間加工性や疲労強度の低下を抑制した快削性チタン合金が記載されている。   Patent Document 1 includes a rare earth element (REM) and Ca, S, Se, Te, Pb, Bi as appropriate, and forms a granular compound, thereby suppressing toughness and ductility deterioration, and machinability. A titanium alloy for connecting rods with improved (cutability) is described. Patent Document 2 describes a free-cutting titanium alloy that improves machinability (cutability) by containing rare earth elements (REM) and improves hot workability by containing B. ing. Furthermore, in Patent Document 3, as a free-cutting component, P and S, P and Ni, or P and S and Ni, and further, in addition to these elements, REM is added to reduce the ductility of the matrix and inclusions. Is described, and a free-cutting titanium alloy that suppresses a decrease in hot workability and fatigue strength while improving the free-cutting property is described.

また、特許文献4には、Cを積極添加することによって、常温から500℃までの実用温度域での強度を低下させることなく、より高温の鍛造温度域での強度を低下させることによって、汎用合金であるTi−6Al−4V合金より熱間加工性を向上させると共に、チタン合金素地中に析出するTiCの面積率を3%以下に抑制することで、疲労特性を改善したα−β型チタン合金が記載されている。   Further, in Patent Document 4, by positively adding C, the strength in the higher temperature forging temperature range is reduced without reducing the strength in the practical temperature range from room temperature to 500 ° C. Α-β type titanium with improved fatigue characteristics by improving hot workability from Ti-6Al-4V alloy, which is an alloy, and suppressing the area ratio of TiC deposited in the titanium alloy substrate to 3% or less Alloys are described.

更には、特許文献5には、Cを積極添加したα−β型チタン合金において、併せて添加するCr含有量とFe含有量との比[Cr]/[Fe]をコントロールし、Cr量に対してFe量を増やすことで、Cの固溶限を増大させ、TiC析出量を抑制することにより、被削性(切削性)および熱間加工性を改善したα−β型チタン合金が記載されている。   Furthermore, in Patent Document 5, in the α-β type titanium alloy to which C is positively added, the ratio [Cr] / [Fe] of the Cr content and the Fe content to be added together is controlled. On the other hand, an α-β type titanium alloy having improved machinability (cutability) and hot workability by increasing the solid solubility limit of C by increasing the amount of Fe and suppressing the amount of TiC precipitation is described Has been.

また、特許文献6には、Cを積極添加することによって、鍛造性を含む熱間加工性を確保しつつ、TiC析出物量を低減、微細化し、更にCr濃度の上限を制限することによって、優れた被削性(切削性)と熱間加工性とを兼備させたα−β型チタン合金が記載されている。   Further, in Patent Document 6, by adding C positively, while ensuring hot workability including forgeability, the amount of TiC precipitate is reduced and refined, and further, by limiting the upper limit of Cr concentration, it is excellent. An α-β type titanium alloy having both machinability (cutability) and hot workability is described.

これらの特許文献には、被削性(切削性)を改善させた効果の記載はあるものの、これら特許文献に記載の技術、特に特許文献5並びに特許文献6に記載された技術は、ドリルでの連続切削性を対象とした技術であり、エンドミルやフライス加工などによる断続切削性の検討がなされた技術ではない。特に、鍛造性などの熱間加工性を改善するためにCを積極添加することによって析出するTiCの影響は、連続切削性よりも断続切削性に対する影響が顕著であり、連続切削性だけではなく断続切削性に優れた高強度α−β型チタン合金が開発されることが待ち望まれていた。   Although these patent documents have a description of the effect of improving machinability (cutability), the techniques described in these patent documents, in particular, the techniques described in Patent Documents 5 and 6, are drills. This technology is intended for continuous machinability, and is not a technology that has been studied for intermittent machinability by end milling or milling. In particular, the effect of TiC precipitated by positively adding C in order to improve hot workability such as forgeability is more conspicuous than intermittent machinability, not just continuous machinability. The development of a high-strength α-β type titanium alloy excellent in interrupted machinability has been awaited.

特公平6−99764号公報Japanese Patent Publication No. 6-99764 特公平6−53902号公報Japanese Patent Publication No. 6-53902 特許第2626344号公報Japanese Patent No. 2626344 特開2004−91893号公報JP 2004-91893 A 特開2007−84864号公報JP 2007-84864 A 特開2007−84865号公報JP 2007-84865 A

本発明は、上記従来の問題を解決せんとしてなされたもので、熱間加工性に優れたうえで、エンドミルやフライス加工などによる断続切削性に優れた高強度α−β型チタン合金を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and provides a high-strength α-β type titanium alloy having excellent hot workability and excellent intermittent cutting performance by end milling or milling. This is a problem.

請求項1記載の発明は、質量%で、C:0.06〜0.13%、Al:3.0〜8.5%を含有すると共に、V:5.0%以下、Cr:3.0%以下、Fe:2.5%未満、Mo:5.0%以下、Ni:5.0%以下、Nb:5.0%以下、Ta:5.0%以下の1種または2種以上を合計で2.0〜10.0%含有し、残部がTiおよび不可避的不純物であるチタン合金であって、チタン合金素地中の0.25mm以上の任意断面におけるTiC析出物の平均面積率が0.5%以下、そのTiC析出物の平均円相当径の平均値が1μm以下であることを特徴とする断続切削性に優れた高強度α−β型チタン合金である。 The invention according to claim 1 contains, in mass%, C: 0.06 to 0.13%, Al: 3.0 to 8.5%, V: 5.0% or less, Cr: 3. One or more of 0% or less, Fe: less than 2.5%, Mo: 5.0% or less, Ni: 5.0% or less, Nb: 5.0% or less, Ta: 5.0% or less Is a titanium alloy containing 2.0 to 10.0% in total with the balance being Ti and inevitable impurities, and the average area ratio of TiC precipitates in an arbitrary cross section of 0.25 mm 2 or more in the titanium alloy substrate Is a high-strength α-β type titanium alloy excellent in intermittent machinability, characterized in that the average equivalent circle diameter of the TiC precipitate is 1% or less.

請求項2記載の発明は、更に、質量%で、Si:1.0%以下を含有する請求項1記載の断続切削性に優れた高強度α−β型チタン合金である。   Invention of Claim 2 is a high intensity | strength alpha-beta type titanium alloy excellent in the intermittent cutting property of Claim 1 which contains Si: 1.0% or less further by the mass%.

請求項3記載の発明は、更に、質量%で、Zr:5.0%以下、Sn:5.0%以下の1種または2種を合計で7.0%以下含有する請求項1または2記載の断続切削性に優れた高強度α−β型チタン合金である。   The invention according to claim 3 further contains, in mass%, one or two of Zr: 5.0% or less and Sn: 5.0% or less in total of 7.0% or less. It is a high-strength α-β type titanium alloy having excellent intermittent cutting performance.

本発明のα−β型チタン合金は、高強度で熱間加工性に優れるうえに、連続切削性は当然のこと、エンドミルやフライス加工などによる断続切削性にも優れているという効果を有している。   The α-β type titanium alloy of the present invention has the effect that it has high strength and excellent hot workability, as well as continuous machinability, and is also excellent in intermittent machinability by end milling and milling. ing.

本発明者らは、Cを添加したα−β型チタン合金について、切削時に工具寿命が低下する原因を追究したところ、TiC析出物の生成量が少ない場合であっても、粗大なTiC析出物が存在した場合は、工具寿命が低下することを見出した。特にドリルによる連続切削時より、エンドミルやフライス加工などによる断続切削時の方が、TiC析出物を原因とする工具寿命の低下の影響がより顕著であることが分かった。   The inventors have investigated the cause of the decrease in tool life during cutting of α-β type titanium alloys to which C has been added. Even when the amount of TiC precipitates produced is small, coarse TiC precipitates are obtained. It has been found that the tool life is reduced when the is present. In particular, it was found that the effect of tool life reduction due to TiC precipitates was more pronounced during intermittent cutting by end milling or milling than by continuous cutting with a drill.

本発明者らは、これらを前提に実験、研究を重ねた結果、Cの積極添加により鍛造性などの熱間加工性を改善したうえで、TiC析出物量を低減し、更に微細化することで、断続切削性に優れた高強度α−β型チタン合金を得ることに成功した。   As a result of repeated experiments and research based on these assumptions, the present inventors have improved hot workability such as forgeability by positive addition of C, and further reduced the amount of TiC precipitates and further refined. The present inventors have succeeded in obtaining a high-strength α-β type titanium alloy excellent in intermittent cutting performance.

以下、本発明を実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments.

本発明の断続切削性に優れた高強度α−β型チタン合金は、質量%で、C:0.06〜0.13%、Al:3.0〜8.5%を含有すると共に、V:5.0%以下、Cr:3.0%以下、Fe:2.5%未満、Mo:5.0%以下、Ni:5.0%以下、Nb:5.0%以下、Ta:5.0%以下の1種または2種以上を合計で2.0〜10.0%含有し、残部がTiおよび不可避的不純物であるチタン合金であって、チタン合金素地中の0.25mm以上の任意断面におけるTiC析出物の平均面積率が0.5%以下、そのTiC析出物の平均円相当径の平均値が1μm以下としたものである。 The high-strength α-β-type titanium alloy having excellent intermittent machinability according to the present invention contains, in mass%, C: 0.06 to 0.13%, Al: 3.0 to 8.5%, and V : 5.0% or less, Cr: 3.0% or less, Fe: less than 2.5%, Mo: 5.0% or less, Ni: 5.0% or less, Nb: 5.0% or less, Ta: 5 0.01% or less of a total of 2.0 to 10.0% of a titanium alloy containing Ti and unavoidable impurities, and 0.25 mm 2 or more in the titanium alloy substrate The average area ratio of the TiC precipitates in the arbitrary cross section is 0.5% or less, and the average value of the average equivalent circle diameter of the TiC precipitates is 1 μm or less.

尚、α−β型チタン合金とは、稠密六方晶(HCP)であるα相と体心立方晶(BCC)であるβ相が、組織中に混在するチタン合金のことをいう。   The α-β type titanium alloy refers to a titanium alloy in which an α phase which is a dense hexagonal crystal (HCP) and a β phase which is a body centered cubic crystal (BCC) are mixed in the structure.

まず、本発明の断続切削性に優れた高強度α−β型チタン合金の成分限定理由について説明する。以下、各元素の比率については単に%と記載するが、全て質量%を示す。   First, the reasons for limiting the components of the high-strength α-β type titanium alloy excellent in intermittent machinability of the present invention will be described. Hereinafter, the ratio of each element is simply described as%, but all indicate mass%.

C:0.06〜0.13%
Cは強度を向上させるという作用があり、また、β温度域でTiCとして微細析出するため、β相結晶粒を微細化し、その微細化によって熱間加工性を向上させるという作用もある。その含有量が0.06%未満であるとその作用が不足する。一方、その含有量が0.13%を超えると、室温でα相中に固溶されない平均円相当径が1μm超の粗大なTiCが残留するようになり、機械的特性が劣化して断続切削性に悪影響を及ぼすようになる。従って、Cの含有量は、その下限を0.06%、好ましくは0.07%、更に好ましくは0.08%とし、その上限を0.13%、好ましくは0.12%、更に好ましくは0.11%とする。
C: 0.06-0.13%
C has an effect of improving the strength, and since it precipitates finely as TiC in the β temperature range, it also has an effect of refining β phase crystal grains and improving hot workability by the refinement. If the content is less than 0.06%, the action is insufficient. On the other hand, if the content exceeds 0.13%, coarse TiC with an average equivalent circle diameter of more than 1 μm that does not dissolve in the α-phase at room temperature remains, and the mechanical characteristics deteriorate, resulting in intermittent cutting. It will adversely affect sex. Therefore, the lower limit of the C content is 0.06%, preferably 0.07%, more preferably 0.08%, and the upper limit is 0.13%, preferably 0.12%, more preferably. 0.11%.

Al:3.0〜8.5%
Alは、α安定化元素であり、α相を生成するために添加される元素である。その含有量が3.0%未満であればα相の生成が過少になり、また、十分な強度が発現せず、900MPa以上の引張強度(TS)が得られないようになる。一方、その含有量が8.5%を超えて過多になると、延性が劣化し、伸び(EL)が10%未満に低下する。従って、Alの含有量は、その下限を3.0%、好ましくは3.2%とし、その上限を8.5%、好ましくは8.0%とする。
Al: 3.0 to 8.5%
Al is an α-stabilizing element and is an element added to generate an α-phase. If the content is less than 3.0%, the α phase is excessively generated, sufficient strength is not exhibited, and a tensile strength (TS) of 900 MPa or more cannot be obtained. On the other hand, when the content exceeds 8.5% and becomes excessive, ductility deteriorates and elongation (EL) decreases to less than 10%. Therefore, the lower limit of the Al content is 3.0%, preferably 3.2%, and the upper limit is 8.5%, preferably 8.0%.

V:5.0%以下、Cr:3.0%以下、Fe:2.5%未満、Mo:5.0%以下、Ni:5.0%以下、Nb:5.0%以下、Ta:5.0%以下の1種または2種以上を合計で2.0〜10.0%
これらの元素は全てβ安定化元素であり、β相を生成するために添加される元素である。これらの元素の合計の含有量が2.0%未満であればβ相の生成量が過少になる。従って、2.0%以上、好ましくは3.0%以上とすれば良い。これらの元素も強度を向上させる作用があるが、夫々の元素の含有量の上限を超えて添加すると、また、合計の含有量が10.0%を超えて添加すると、伸び(EL)の劣化を招くことになる。特に、Feの含有量が過多になると伸び(EL)の低下が顕著になる。また、Crの含有量が過多になると被削性が低下する。従って、これら各元素の含有量の上限を上記のように規定し、これら元素の合計の含有量の上限を10.0%とする。
V: 5.0% or less, Cr: 3.0% or less, Fe: less than 2.5%, Mo: 5.0% or less, Ni: 5.0% or less, Nb: 5.0% or less, Ta: 5.0 to 10.0% of one or more of 5.0% or less in total
These elements are all β-stabilizing elements and are elements added to generate a β-phase. If the total content of these elements is less than 2.0%, the amount of β-phase produced is too small. Therefore, it may be 2.0% or more, preferably 3.0% or more. Although these elements also have an effect of improving the strength, if they are added exceeding the upper limit of the content of each element, and if the total content exceeds 10.0%, the elongation (EL) is deteriorated. Will be invited. In particular, when the Fe content is excessive, the elongation (EL) decreases remarkably. In addition, if the Cr content is excessive, the machinability is lowered. Therefore, the upper limit of the content of each element is specified as described above, and the upper limit of the total content of these elements is 10.0%.

本発明のα−β型チタン合金は、以上の元素のほかは、Tiと不可避的不純物で構成されるが、以下の元素を単独で、或いは複合して含有しても良い。   The α-β type titanium alloy of the present invention is composed of Ti and unavoidable impurities in addition to the above elements, but may contain the following elements alone or in combination.

Si:1.0%以下
Siを添加することで更に強度が向上するが、1.0%を超えて添加すると、延性が劣化し、必要な伸び(EL)が得られないようになる。従って、Siを添加する場合は、その含有量の上限は1.0%とする。
Si: 1.0% or less The strength is further improved by adding Si, but if it exceeds 1.0%, the ductility deteriorates and the required elongation (EL) cannot be obtained. Therefore, when adding Si, the upper limit of the content is made 1.0%.

Zr:5.0%以下、Sn:5.0%以下の1種または2種を合計で7.0%以下
ZrやSnを添加することでも更に強度が向上するが、Zr、Snを夫々単独で5.0%超、合計で7.0%超添加すると、延性が劣化し、必要な伸び(EL)が得られないようになる。従って、ZrやSnを添加する場合は、Zrの含有量、Snの含有量は、夫々単独で5.0%以下、合計で7.0%以下とする。
One or two of Zr: 5.0% or less and Sn: 5.0% or less is 7.0% or less in total. The addition of Zr or Sn can further improve the strength, but each of Zr and Sn is independent. If over 5.0%, and over 7.0% in total, the ductility deteriorates and the required elongation (EL) cannot be obtained. Therefore, when adding Zr or Sn, the content of Zr and the content of Sn are 5.0% or less each independently, and the total content is 7.0% or less.

以上の化学成分において、更にCr含有量とFe含有量の比[Cr]/[Fe]を3.0以下とすることが好ましい。前記したように、CrとFeは共にβ安定化元素であるが、Crに比してFeはCの固溶限を拡大する作用を有する。Cr含有量とFe含有量の比[Cr]/[Fe]が3.0を超えると、FeによるCの固溶限の拡大作用が失われ、TiCの析出の抑制効果が発揮できなってしまう。従って、Feを含有する場合、Cr含有量とFe含有量の比[Cr]/[Fe]の上限は3.0、好ましくは2.5とする。   In the above chemical components, the ratio of Cr content to Fe content [Cr] / [Fe] is preferably 3.0 or less. As described above, both Cr and Fe are β-stabilizing elements, but Fe has an effect of expanding the solid solubility limit of C as compared with Cr. When the ratio [Cr] / [Fe] of Cr content to Fe content exceeds 3.0, the effect of expanding the solid solubility limit of C by Fe is lost, and the effect of suppressing the precipitation of TiC can be exhibited. . Therefore, when Fe is contained, the upper limit of the Cr content / Fe content ratio [Cr] / [Fe] is 3.0, preferably 2.5.

本発明のチタン合金は、その組織が室温でα相とβ相よりなるα−β型チタン合金である。Cの添加によりα−β型チタン合金の組織中、すなわちチタン合金素地中にTiCが析出するが、チタン合金素地中の0.25mm以上の任意断面におけるTiC析出物の平均面積率は0.5%以下で、TiC析出物が存在する場合、そのTiC析出物の平均円相当径の平均値は1μm以下である。 The titanium alloy of the present invention is an α-β type titanium alloy whose structure is composed of an α phase and a β phase at room temperature. By adding C, TiC precipitates in the structure of the α-β type titanium alloy, that is, in the titanium alloy substrate. The average area ratio of TiC precipitates in an arbitrary cross section of 0.25 mm 2 or more in the titanium alloy substrate is 0. When the TiC precipitate is present at 5% or less, the average value of the average equivalent circle diameter of the TiC precipitate is 1 μm or less.

このCの添加によりTiCを生成させることになり、そのTiCを核として組織はα相に変態し、結果的にα−β組織が微細化することで、鍛造性をはじめとする熱間加工性が向上する。一方、TiCは被削性(切削性)に大きな影響を及ぼし、TiCの析出量が多い場合、或いはTiC析出物のサイズが大きい場合には著しく工具磨耗が促進される。特に、エンドミルやフライス加工などによる断続切削性への影響は大きくなる。従って、チタン合金素地中の0.25mm以上の任意断面におけるTiC析出物の平均面積率の上限は0.5%、好ましくは0.25%とし、TiC析出物が存在する場合、そのTiC析出物の平均円相当径の平均値の上限は1μm、好ましくは0.8μmとする。 TiC is generated by the addition of C, and the structure transforms into α phase with the TiC as a nucleus. As a result, the α-β structure is refined, so that hot workability including forgeability is achieved. Will improve. On the other hand, TiC has a great influence on machinability (cutability), and when the amount of TiC deposited is large, or when the size of the TiC precipitate is large, tool wear is remarkably promoted. In particular, the influence on interrupted cutting performance by end milling or milling becomes large. Therefore, the upper limit of the average area ratio of TiC precipitates in an arbitrary cross section of 0.25 mm 2 or more in the titanium alloy substrate is 0.5%, preferably 0.25%, and when TiC precipitates are present, The upper limit of the average value of the average equivalent circle diameter of the object is 1 μm, preferably 0.8 μm.

上記した成分組成のα−β型チタン合金を、以下の実施例に例示するような製造条件で、圧延や鍛造などの熱間加工工程で加工すれば、チタン合金素地中の0.25mm以上の任意断面におけるTiC析出物の平均面積率を0.5%以下、そのTiC析出物の平均円相当径の平均値を1μm以下とすることができる。 If the α-β type titanium alloy having the above component composition is processed in a hot working process such as rolling or forging under the production conditions exemplified in the following examples, 0.25 mm 2 or more in the titanium alloy substrate The average area ratio of the TiC precipitates in the arbitrary cross-section can be 0.5% or less, and the average value of the average equivalent circle diameter of the TiC precipitates can be 1 μm or less.

以下実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention. These are all included in the technical scope of the present invention.

本実施例では、まず、CCIM(コールドクルーシブル誘導加熱法)溶解により表1に示す各成分組成のチタン合金でなる約20kgの鋳塊を鋳造した。その鋳塊の形状は、直径150mm×高さ150mmの円柱状である。   In this example, first, an ingot of about 20 kg made of a titanium alloy having each component composition shown in Table 1 was cast by CCIM (cold crucible induction heating method) melting. The shape of the ingot is a columnar shape having a diameter of 150 mm and a height of 150 mm.

Figure 2009299110
Figure 2009299110

この鋳塊を用いて以下に示す製造条件で熱間鍛造を行った。その熱間鍛造は、鋳塊を1200℃で加熱した後、鍛錬比約1.5で鍛造し、水冷した後に900℃まで加熱して、更に鍛錬比約3.2以上で鍛造することで実施した。この熱間鍛造により、厚さ20mm×幅190mmの断面形状で長尺板状のチタン合金板を得た。次に室温まで空冷した後に800℃で2時間の焼鈍を行い、試験に用いる最終的なチタン合金板とした。そのチタン合金板から組織観察試験片、エンドミル切削試験片、並びに引張試験片を採取し、以下に示す各試験を実施した。   Using this ingot, hot forging was performed under the following production conditions. The hot forging is performed by heating the ingot at 1200 ° C, forging at a forging ratio of about 1.5, cooling to water, heating to 900 ° C, and forging at a forging ratio of about 3.2 or higher. did. By this hot forging, a long plate-like titanium alloy plate having a cross-sectional shape of thickness 20 mm × width 190 mm was obtained. Next, after air cooling to room temperature, annealing was performed at 800 ° C. for 2 hours to obtain a final titanium alloy plate used in the test. From the titanium alloy plate, a structure observation test piece, an end mill cutting test piece, and a tensile test piece were sampled and subjected to the following tests.

<組織観察試験>
組織観察では、TiC析出物の平均面積率、並びにTiC析出物の平均円相当径の平均値を以下に示す要領で調査して求め出した。
<Tissue observation test>
In the structure observation, the average area ratio of the TiC precipitates and the average value of the average equivalent circle diameter of the TiC precipitates were obtained by investigating in the following manner.

チタン合金板の定常部(四周の外周縁から50mmを除く部位で、且つ表裏面から2mmを除く部位)から採取した組織観察試験片を、合成樹脂ホルダに埋め込み、その試験片が露出するように研磨し、更にバフ研磨を施した。この研磨した試験片の表面の4視野を400倍の倍率で写真撮影し(4視野合計で観察面積は0.25mm)、その画像データから画像解析ソフト(ナノシステム株式会社製、Nano Hunter NS2K−Lt)を用いて、各写真のTiC析出物の面積率、並びにその平均円相当径を求め、全体の平均値としてTiC析出物の平均面積率、並びにTiC析出物の平均円相当径の平均値を計算により求め出した。この試験で求められた各試料のTiC析出物の平均面積率とTiC析出物の平均円相当径の平均値を夫々表2に示す。尚、実施例における各試料には、TiC析出物以外の析出物、介在物は存在しなかった。 Tissue observation specimens taken from the steady part of the titanium alloy plate (parts excluding 50 mm from the outer periphery of the four circumferences and parts excluding 2 mm from the front and back surfaces) are embedded in the synthetic resin holder so that the specimens are exposed. Polished and further buffed. Four fields of view of the polished specimen surface were photographed at a magnification of 400 × (total observation area is 0.25 mm 2 ), and image analysis software (Nano System NS2K, manufactured by Nanosystem Co., Ltd.) was used from the image data. -Lt), the area ratio of the TiC precipitates in each photograph and the average equivalent circle diameter thereof were determined, and the average area ratio of the TiC precipitates and the average of the average equivalent circle diameter of the TiC precipitates as the average value of the whole The value was calculated. Table 2 shows the average area ratio of the TiC precipitates of each sample and the average value of the average equivalent circle diameter of the TiC precipitates obtained in this test. In each sample in the examples, no precipitates and inclusions other than TiC precipitates were present.

<断続切削試験(エンドミル切削試験)>
前記したチタン合金板から、厚さ15mm×幅180mm×長さ145mmのエンドミル切削試験片を採取した。この試験片を用いて断続切削試験(エンドミル切削試験)を行い、工具摩耗量(逃げ面)を確認した。試験結果から、工具摩耗量が60μm以下のものを合格とし、断続切削性に優れたチタン合金であると判断した。以下にこの断続切削試験条件を示す。また、この試験で求められた各試料の工具摩耗量(逃げ面)を表2に示す。
<Intermittent cutting test (end mill cutting test)>
An end mill cutting test piece having a thickness of 15 mm, a width of 180 mm, and a length of 145 mm was collected from the titanium alloy plate. An intermittent cutting test (end mill cutting test) was performed using this test piece, and the amount of tool wear (flank) was confirmed. From the test results, a tool wear amount of 60 μm or less was accepted, and the titanium alloy was judged to be excellent in intermittent cutting performance. The intermittent cutting test conditions are shown below. Table 2 shows the amount of tool wear (flank) of each sample obtained in this test.

・工具:H13Aチップ
・切削速度:25m/mm
・切削送り:0.2mm/rev
・切り込み量:半径方向0.5mm、軸方向1.0mm
・切削長さ:7.25m(1カット145mm)
・切削油:水溶性潤滑油
・ Tool: H13A chip ・ Cutting speed: 25 m / mm
・ Cutting feed: 0.2 mm / rev
・ Cut amount: 0.5mm in the radial direction, 1.0mm in the axial direction
・ Cutting length: 7.25m (1cut 145mm)
・ Cutting oil: Water-soluble lubricant

<室温引張試験>
前記したチタン合金板から引張試験片を採取した。引張試験はASTM規格のE8に準拠して実施した。引張試験片の形状、寸法については図1に示す。試験温度は室温(25℃)であり、歪速度は100/secである。試験結果から、引張強度(TS)が900MPa以上で、伸び(EL)が10%以上のものを合格とし、高強度のチタン合金であると判断した。この試験で求められた各試料の引張強度(TS)と伸び(EL)を、前記した他の試験結果と共に表2に示す。
<Room temperature tensile test>
A tensile test piece was collected from the titanium alloy plate described above. The tensile test was performed in accordance with ASTM standard E8. The shape and dimensions of the tensile test piece are shown in FIG. The test temperature is room temperature (25 ° C.), and the strain rate is 100 / sec. From the test results, those having a tensile strength (TS) of 900 MPa or more and an elongation (EL) of 10% or more were accepted and judged to be a high-strength titanium alloy. Table 2 shows the tensile strength (TS) and elongation (EL) of each sample obtained in this test together with the other test results described above.

Figure 2009299110
Figure 2009299110

表1に記載の試料No.と表2に記載の試料No.は一致している。表1に記載の成分組成と、表2に記載のTiC析出物の平均面積率並びに平均円相当径の平均値が、共に本発明の条件を満足する試料No.4と6〜11が発明例、その他は全て比較例である。   Sample No. described in Table 1 And sample Nos. Are consistent. Sample No. 1 in which the component composition shown in Table 1 and the average area ratio and average circle equivalent diameter of TiC precipitates shown in Table 2 both satisfy the conditions of the present invention. Examples 4 and 6 to 11 are invention examples, and the others are all comparative examples.

発明例の試料No.4と6〜11は、断続切削試験で求められた工具摩耗量、室温引張試験で求められた引張強度(TS)と伸び(EL)が全て合格判定基準を満たした。その結果から、試料No.4と6〜11は、断続切削性に優れた高強度チタン合金であると判断することができる。   Sample No. of Invention Example In Nos. 4 and 6 to 11, the tool wear amount obtained in the intermittent cutting test and the tensile strength (TS) and elongation (EL) obtained in the room temperature tensile test all satisfied the acceptance criteria. From the result, sample no. It can be judged that 4 and 6 to 11 are high-strength titanium alloys excellent in interrupted machinability.

これに対し、本発明の条件の何れか1項目でも満足しない比較例(試料No.1〜3、5、12〜19)の場合は、断続切削試験で求められた工具摩耗量、室温引張試験で求められた引張強度(TS)と伸び(EL)のうち少なくとも1項目で合格判定基準を満足することができなかった。すなわち、試料No.1〜3、5、12〜19は、断続切削性に優れたチタン合金および/または高強度のチタン合金であると判断することはできない。   On the other hand, in the case of comparative examples (samples Nos. 1 to 3, 5, 12 to 19) that do not satisfy any one of the conditions of the present invention, the amount of tool wear determined by the intermittent cutting test and the room temperature tensile test The acceptance criteria could not be satisfied with at least one of the tensile strength (TS) and elongation (EL) determined in (1). That is, sample no. 1 to 3, 5 and 12 to 19 cannot be determined to be a titanium alloy and / or a high strength titanium alloy having excellent interruptability.

実施例の室温引張試験で用いた引張試験片の形状および寸法を示す説明図である。It is explanatory drawing which shows the shape and dimension of the tensile test piece used by the room temperature tensile test of the Example.

Claims (3)

質量%で、C:0.06〜0.13%、Al:3.0〜8.5%を含有すると共に、V:5.0%以下、Cr:3.0%以下、Fe:2.5%未満、Mo:5.0%以下、Ni:5.0%以下、Nb:5.0%以下、Ta:5.0%以下の1種または2種以上を合計で2.0〜10.0%含有し、残部がTiおよび不可避的不純物であるチタン合金であって、
チタン合金素地中の0.25mm以上の任意断面におけるTiC析出物の平均面積率が0.5%以下、そのTiC析出物の平均円相当径の平均値が1μm以下であることを特徴とする断続切削性に優れた高強度α−β型チタン合金。
In addition to containing C: 0.06 to 0.13%, Al: 3.0 to 8.5%, V: 5.0% or less, Cr: 3.0% or less, Fe: 2.% by mass. Less than 5%, Mo: 5.0% or less, Ni: 5.0% or less, Nb: 5.0% or less, Ta: 5.0% or less, or a total of 2.0 to 10 A titanium alloy containing 0.0% and the balance being Ti and inevitable impurities,
The average area ratio of TiC precipitates in an arbitrary cross section of 0.25 mm 2 or more in the titanium alloy substrate is 0.5% or less, and the average value of the average equivalent circle diameter of the TiC precipitates is 1 μm or less. High-strength α-β type titanium alloy with excellent interruptability.
更に、質量%で、Si:1.0%以下を含有する請求項1記載の断続切削性に優れた高強度α−β型チタン合金。   Furthermore, the high intensity | strength alpha-beta type titanium alloy excellent in the intermittent machinability of Claim 1 which contains Si: 1.0% or less by mass%. 更に、質量%で、Zr:5.0%以下、Sn:5.0%以下の1種または2種を合計で7.0%以下含有する請求項1または2記載の断続切削性に優れた高強度α−β型チタン合金。   Furthermore, it is excellent in the intermittent cutting property of Claim 1 or 2 which contains 1 type or 2 types of Zr: 5.0% or less and Sn: 5.0% or less in total 7.0% or less by mass%. High strength α-β type titanium alloy.
JP2008153217A 2008-06-11 2008-06-11 HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY Pending JP2009299110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008153217A JP2009299110A (en) 2008-06-11 2008-06-11 HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
PCT/JP2009/060475 WO2009151031A1 (en) 2008-06-11 2009-06-08 α-β TYPE TITANIUM ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153217A JP2009299110A (en) 2008-06-11 2008-06-11 HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY

Publications (1)

Publication Number Publication Date
JP2009299110A true JP2009299110A (en) 2009-12-24

Family

ID=41416738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153217A Pending JP2009299110A (en) 2008-06-11 2008-06-11 HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY

Country Status (2)

Country Link
JP (1) JP2009299110A (en)
WO (1) WO2009151031A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097559A (en) * 2010-09-23 2013-05-08 Ati资产公司 High strength and ductility alpha/beta titanium alloy
US20130164168A1 (en) * 2010-01-20 2013-06-27 Vsmpo-Avisma Corporation Secondary Titanium Alloy And The Art Of Its Manufacture
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
WO2016152663A1 (en) * 2015-03-26 2016-09-29 株式会社神戸製鋼所 α-β TITANIUM ALLOY
JP2016183407A (en) * 2015-03-26 2016-10-20 株式会社神戸製鋼所 α-β TYPE TITANIUM ALLOY
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN111225989A (en) * 2017-10-06 2020-06-02 莫纳什大学 Improved heat treatable titanium alloys
CN112522539A (en) * 2020-11-19 2021-03-19 西部超导材料科技股份有限公司 High-dynamic-performance titanium alloy and preparation method thereof
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN113508183A (en) * 2019-03-06 2021-10-15 日本制铁株式会社 Bar material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154576A (en) * 2011-04-21 2011-08-17 辽宁峰阁钛业集团有限公司 High-strength and high-plasticity titanium alloy
CN103627928B (en) * 2013-12-12 2015-11-11 西北有色金属研究院 A kind of low-temperature high-strength diphasic titanium alloy
CN104762525A (en) * 2015-03-27 2015-07-08 常熟市双羽铜业有限公司 Titanium alloy tube for heat exchanger
CN106521236B (en) * 2016-10-25 2018-08-24 南京工业大学 Nearly β type high-strength titanium alloys of a kind of low cost containing Fe and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297027B2 (en) * 1998-11-12 2002-07-02 株式会社神戸製鋼所 High strength and high ductility α + β type titanium alloy
JP4098205B2 (en) * 2003-09-30 2008-06-11 株式会社神戸製鋼所 Heat-resistant Ti alloy with excellent high-temperature strength
JP4507094B2 (en) * 2005-02-14 2010-07-21 株式会社神戸製鋼所 Ultra high strength α-β type titanium alloy with good ductility

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9458527B2 (en) 2010-01-20 2016-10-04 Vsmpo-Avisma Corporation Secondary titanium alloy and the art of its manufacture
US20130164168A1 (en) * 2010-01-20 2013-06-27 Vsmpo-Avisma Corporation Secondary Titanium Alloy And The Art Of Its Manufacture
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN103097559A (en) * 2010-09-23 2013-05-08 Ati资产公司 High strength and ductility alpha/beta titanium alloy
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
RU2695852C2 (en) * 2015-03-26 2019-07-29 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) α-β TITANIUM ALLOY
CN107406918A (en) * 2015-03-26 2017-11-28 株式会社神户制钢所 Alpha-beta Type Titanium Alloy
WO2016152663A1 (en) * 2015-03-26 2016-09-29 株式会社神戸製鋼所 α-β TITANIUM ALLOY
JP2016183407A (en) * 2015-03-26 2016-10-20 株式会社神戸製鋼所 α-β TYPE TITANIUM ALLOY
EP3276016A4 (en) * 2015-03-26 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Alpha-beta titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN111225989B (en) * 2017-10-06 2022-03-15 莫纳什大学 Improved heat treatable titanium alloys
CN111225989A (en) * 2017-10-06 2020-06-02 莫纳什大学 Improved heat treatable titanium alloys
CN113508183A (en) * 2019-03-06 2021-10-15 日本制铁株式会社 Bar material
CN112522539B (en) * 2020-11-19 2022-04-08 西部超导材料科技股份有限公司 High-dynamic-performance titanium alloy and preparation method thereof
CN112522539A (en) * 2020-11-19 2021-03-19 西部超导材料科技股份有限公司 High-dynamic-performance titanium alloy and preparation method thereof

Also Published As

Publication number Publication date
WO2009151031A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP2009299110A (en) HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
KR102162947B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP4548652B2 (en) Α-β type titanium alloy with excellent machinability
JP2004244672A (en) Copper-base alloy with excellent dezincification resistance
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JP6719216B2 (en) α-β type titanium alloy
KR102574153B1 (en) bar material
EP3072989A1 (en) Magnesium-lithium alloy, method of manufacturing magnesium-lithium alloy, aircraft part, and method of manufacturing aircraft part
JP2017145429A (en) α+β TYPE TITANIUM ALLOY MEMBER AND MANUFACTURING METHOD THEREFOR
JP2017036477A (en) Austenitic heat resistant alloy member and manufacturing method therefor
JP5621571B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JP2006213961A (en) alpha-beta TYPE TITANIUM ALLOY WHICH GIVES TOOL LONG LIFE AND CHIPS PARTIBILITY
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
JP5062829B2 (en) Brass material and method for producing brass material
JP4263987B2 (en) High-strength β-type titanium alloy
JP2017218660A (en) Titanium alloy forging material
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same
JP2017002373A (en) Titanium alloy forging material
WO2016152663A1 (en) α-β TITANIUM ALLOY
JP4524584B2 (en) Free-cutting β-type Ti alloy
JP6213014B2 (en) β-type titanium alloy and method for producing the same
JP2007321243A (en) HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF
JP4987640B2 (en) Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A7422