JP2013142168A - Aluminum alloy excellent in creep resistance - Google Patents

Aluminum alloy excellent in creep resistance Download PDF

Info

Publication number
JP2013142168A
JP2013142168A JP2012002663A JP2012002663A JP2013142168A JP 2013142168 A JP2013142168 A JP 2013142168A JP 2012002663 A JP2012002663 A JP 2012002663A JP 2012002663 A JP2012002663 A JP 2012002663A JP 2013142168 A JP2013142168 A JP 2013142168A
Authority
JP
Japan
Prior art keywords
aluminum alloy
forging
hours
creep
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002663A
Other languages
Japanese (ja)
Inventor
Minoru Hayashi
稔 林
Kosuke Sahashi
皓介 佐橋
Zenji Shimizu
善士 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2012002663A priority Critical patent/JP2013142168A/en
Publication of JP2013142168A publication Critical patent/JP2013142168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant aluminum alloy which overcomes conventional technical problems and is excellent in creep resistance.SOLUTION: The aluminum alloy material for forging excellent in heat resistance is an aluminum alloy comprising 5.1-6.5% (mass%, this shall apply hereafter) Cu, 0.30-0.70% Mg, 0.10-1.0% Ag, 0.10-0.50% Mn, 0.07-0.11% Cr, and 0.06-0.30% Ti, with the balance comprising Al and unavoidable impurities, wherein the amount of Mn+Cr solid-dissolved is in the range of 0.05-0.50%, and the creep rapture life under conditions of 200°C and 160 MPa is 500 hr or longer.

Description

この発明は航空機や宇宙機材の部品や構造材あるいは自動車等の内燃機関や過給機等の部品などとして、150℃を越える高温度域において高強度および耐クリープ強度が要求される用途に用いられる耐熱アルミニウム合金に関するものである。   INDUSTRIAL APPLICABILITY This invention is used for applications requiring high strength and creep resistance in a high temperature range exceeding 150 ° C. as parts of aircraft and space equipment, structural materials, parts of internal combustion engines such as automobiles and superchargers. The present invention relates to a heat resistant aluminum alloy.

アルミニウム合金材料の高強度化を図るための手法としては、従来から時効硬化による高強度化が広く利用されている。しかしながら一般にこのようなアルミニウム合金時効硬化材では、100℃を越える高温度域に長時間曝した場合、析出物の粗大化によって著しい軟化が生じることが多い。そこでこのような軟化を抑えるため、各種元素の添加および成分組成の最適化を図って、高温強度を向上させた合金として、Al−Cu系合金のJIS A2618合金やA2219合金などが一般的な耐熱アルミニウム合金として実用化されている。   As a technique for increasing the strength of an aluminum alloy material, increasing the strength by age hardening has been widely used. However, in general, when such an aluminum alloy age hardened material is exposed to a high temperature range exceeding 100 ° C. for a long time, the softening is often caused by coarsening of precipitates. Therefore, in order to suppress such softening, JIS A2618 alloy and A2219 alloy, which are Al-Cu based alloys, are generally used as heat-resistant alloys by adding various elements and optimizing component compositions to improve high temperature strength. It is put into practical use as an aluminum alloy.

またこのようなAl−Cu系合金の高温強度を一層向上させるために、例えば特許文献1、特許文献2に示されるように、MgとともにAgを添加した合金でθ'相やΩ相の析出物による強化を計ったものや、Vの添加によりAl−V系化合物の分散強化による高温強度の改善が試みられている。   In order to further improve the high-temperature strength of such an Al—Cu alloy, as shown in, for example, Patent Document 1 and Patent Document 2, a precipitate of θ ′ phase or Ω phase in an alloy in which Ag is added together with Mg. Attempts have been made to improve the high-temperature strength by dispersion strengthening of Al-V compounds by adding V and by adding V.

しかしながらアルミニウム合金部材の使用環境の高温化などの点からこれらアルミニウム合金部材のさらなる高温特性使用が要求されてきており、従来合金では高温における耐クリープ特性が不十分であり、さらに耐クリープ特性を改善する必要がある。
特許第3997009号公報 特許第4088546号公報 特許第4058398号公報
However, the use of higher temperature characteristics of these aluminum alloy members has been demanded from the point of increasing the usage environment of aluminum alloy members, and conventional alloys have insufficient creep resistance characteristics at high temperatures, and further improved creep resistance characteristics. There is a need to.
Japanese Patent No. 3999709 Japanese Patent No. 4088546 Japanese Patent No. 4058398

この発明は前述のような従来技術の問題点を一掃し、耐クリープ特性に優れた耐熱アルミニウム合金を提供することを課題としている。   An object of the present invention is to provide a heat-resistant aluminum alloy that eliminates the problems of the prior art as described above and has excellent creep resistance.

本発明者等は前述の課題を解決するべく、Al−Cu系にMg、Agを添加した合金、すなわちAl−Cu−Mg−Ag系合金について、種々実験、研究を重ね、耐クリープ特性におよぼす添加成分元素の析出強化および固溶強化の働きについて詳細に調査した結果、従来結晶粒微細化による強度向上あるいは分散強化による高温強度の改善に用いられてきたMn、Crは固溶状態を維持することによりクリープ特性の向上が著しいことを見出した。   In order to solve the above-mentioned problems, the present inventors have made various experiments and researches on an alloy in which Mg and Ag are added to an Al—Cu system, that is, an Al—Cu—Mg—Ag system alloy, and have an effect on creep resistance. As a result of detailed investigations on the effects of precipitation strengthening and solid solution strengthening of additive component elements, Mn and Cr, which have been used to improve strength by refining crystal grains or improve high temperature strength by dispersion strengthening, maintain a solid solution state. It was found that the creep characteristics were remarkably improved.

具体的には、請求項1の発明の展伸加工用耐熱アルミニウム合金は、Cu5.1〜6.5%、Mg0.10〜0.7%、Ag0.10〜1.0%、Mn0.10〜0.50%、Cr0.07〜0.12%、Ti0.06〜0.30%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金において、200℃、160MPaの条件でのクリープ破断寿命が500hr以上であることを特徴とする耐熱性に優れたアルミニウム合金鍛造材である。   Specifically, the heat-resistant aluminum alloy for extension work of the invention of claim 1 is Cu 5.1-6.5%, Mg 0.10-0.7%, Ag 0.10-1.0%, Mn 0.10. Creep rupture under conditions of 200 ° C. and 160 MPa in an aluminum alloy containing ˜0.50%, Cr 0.07 to 0.12%, Ti 0.06 to 0.30%, the balance being Al and inevitable impurities It is an aluminum alloy forged material excellent in heat resistance characterized by having a lifetime of 500 hours or more.

また請求項2の発明は、請求項1に記載の展伸加工用耐熱アルミニウム合金において、Mn+Crの固溶量が0.05〜0.50%の範囲内にあることを特徴とする耐熱性に優れたアルミニウム合金鍛造材である。   Further, the invention of claim 2 is characterized in that in the heat resistant aluminum alloy for extension processing according to claim 1, the solid solution amount of Mn + Cr is in the range of 0.05 to 0.50%. It is an excellent aluminum alloy forging material.

さらに請求項3の発明は、請求項1、2の組成を有する合金鋳塊を490〜530℃で48時間以内の均質化処理を施した後、鋳塊の互いに直行する3方向からそれぞれ鍛造比2以上で鍛造し、かつ各方向の鍛造比の合計が7以上として、200℃、160MPaの条件でのクリープ破断寿命が500hr以上であることを特徴とする耐熱に優れたアルミニウム鍛造材の製造方法である。   Further, the invention of claim 3 is characterized in that after the alloy ingot having the composition of claims 1 and 2 is subjected to homogenization treatment within 490 to 530 ° C. for 48 hours, the ingot ratio is determined from three directions orthogonal to each other. A method for producing an aluminum forged material excellent in heat resistance, characterized in that forging is performed at 2 or more and the total forging ratio in each direction is 7 or more, and the creep rupture life at 200 ° C. and 160 MPa is 500 hours or more. It is.

この発明の耐熱アルミニウム合金は、従来合金では困難であった200℃以上の温度域において耐クリープ特性を向上させることができ、そのためより高温かつ高負荷の環境においても信頼性を損なうことなく好適に使用することができる。すなわちこの発明のアルミニウム合金は、200℃以上の高温域において高強度および高靭性が要求される部品や構造部材として、圧延や鍛造、押出等の展伸加工を施して使用することができ、例えばロケット、あるいは航空機等の高速移動体の外壁や、内燃機関あるいは過給機用部材などに好適に使用することができる。そのためこの発明によれば、アルミニウム合金の長所を生かせる用途を大きく拡大させるという優れた効果を奏することができる。   The heat-resistant aluminum alloy of the present invention can improve the creep resistance in a temperature range of 200 ° C. or higher, which is difficult with conventional alloys, and is therefore suitable without deteriorating reliability even in a higher temperature and higher load environment. Can be used. That is, the aluminum alloy of the present invention can be used as a component or structural member that requires high strength and high toughness in a high temperature range of 200 ° C. or higher, and subjected to a stretching process such as rolling, forging, and extrusion. It can be suitably used for an outer wall of a high-speed moving body such as a rocket or an aircraft, an internal combustion engine or a supercharger member. Therefore, according to this invention, the outstanding effect that the use which can make use of the advantage of an aluminum alloy is expanded greatly can be produced.

この発明の耐熱アルミニウム合金は、基本的には、Al−Cu系のいわゆる2000番系の時効硬化型の耐熱合金にMg、Agを添加したAl−Cu−Mg−Ag系合金をベースとし、これにさらにMnとCrを適量だけ同時に添加したものである。   The heat-resistant aluminum alloy of the present invention is basically based on an Al-Cu-Mg-Ag alloy obtained by adding Mg and Ag to a so-called No. 2000 age-hardening heat-resistant alloy of Al-Cu type. Further, Mn and Cr are added in appropriate amounts at the same time.

ここで、本発明の合金であるAl−Cu−Mg−Ag系合金では、時効処理によりAl−Cu系のいわゆるθ'相あるいはAl−Cu−Mg−Ag系のいわゆるΩ相が析出し、これらの時効析出物が硬化に寄与して、高強度を得ることが可能となるが、この発明では、さらにMnおよびCrを適切な量だけ固溶させることによって、高温変形特性、高温クリープ特性が著しく改善することが可能となる。   Here, in the Al—Cu—Mg—Ag based alloy that is the alloy of the present invention, an Al—Cu based so-called θ ′ phase or an Al—Cu—Mg—Ag based so-called Ω phase is precipitated by aging treatment. In this invention, high-temperature deformation characteristics and high-temperature creep characteristics are remarkably improved by further dissolving Mn and Cr in appropriate amounts. It becomes possible to improve.

そしてこの発明の展伸加工用耐熱アルミニウム合金の成分組成も、これらの作用を充分に発揮して、高いクリープ特性を得る点から定められる。そこで以下にこの発明の耐熱アルミニウム合金における成分組成の限定理由について説明する。   The component composition of the heat-resistant aluminum alloy for stretch processing according to the present invention is also determined from the viewpoint of sufficiently exhibiting these functions and obtaining high creep characteristics. Therefore, the reason for limiting the component composition in the heat-resistant aluminum alloy of the present invention will be described below.

Cu:
Cuを添加することによって、前述のように時効処理によってAl−Cu系のθ'相もしくはAl−Cu−Mg−Ag系のΩ相が析出し、硬化に寄与する。Cu量が5.1%未満ではその効果が充分に得られず、6.5%を越えれば溶体化処理によっても溶け切れない安定相θが形成されてしまって、強度や延性の低下を招く。したがってCu量は5.1〜6.5%の範囲内とした。なおより高い強度を必要とする場合は、Cu量は5.3〜6.5%とすることが望ましい。
Cu:
By adding Cu, the Al—Cu-based θ ′ phase or the Al—Cu—Mg—Ag-based Ω phase is precipitated by the aging treatment as described above, and contributes to curing. If the amount of Cu is less than 5.1%, the effect cannot be sufficiently obtained, and if it exceeds 6.5%, a stable phase θ that cannot be completely melted by the solution treatment is formed, resulting in a decrease in strength and ductility. . Therefore, the amount of Cu is set within the range of 5.1 to 6.5%. In addition, when higher intensity | strength is required, it is desirable that the amount of Cu shall be 5.3 to 6.5%.

Mg:
Mgも時効処理によってAl−Cu−Mg−Ag系のΩ相を析出し、硬化に寄与する。
Mg量が0.10%未満ではその効果が充分に得られず、一方0.7%を越えてMgを添加しても、更なる強度の向上が望めないばかりか、延性および靭性の低下が顕著となってしまう。したがってMg量は0.10〜0.7%の範囲内とした。なお特に高強度を必要とする場合には、Mg量は0.2〜0.7%とすることが望ましい。
Mg:
Mg also precipitates an Al—Cu—Mg—Ag Ω phase by aging treatment and contributes to hardening.
If the amount of Mg is less than 0.10%, the effect cannot be sufficiently obtained. On the other hand, addition of Mg exceeding 0.7% cannot be expected to further improve the strength, but also decreases ductility and toughness. It becomes remarkable. Therefore, the amount of Mg is set within the range of 0.10 to 0.7%. In particular, when high strength is required, the Mg content is desirably 0.2 to 0.7%.

Ag:
Agも時効処理によってΩ相を析出し、硬化に寄与する。Ag量が0.10%未満ではその効果が充分に得られず、一方1.0%を越えてAgを添加しても更なる強度の向上は望めず、高価なAgの使用量が増して経済性が低下するだけである。したがってAg量は0.10〜1.0%の範囲内とした。なお特に高強度を必要とする場合は、Ag量は0.2〜1.0%とすることが望ましい。
Ag:
Ag also contributes to hardening by precipitating an Ω phase by aging treatment. If the amount of Ag is less than 0.10%, the effect cannot be sufficiently obtained. On the other hand, even if Ag exceeds 1.0%, further improvement in strength cannot be expected, and the amount of expensive Ag used increases. It only reduces the economy. Therefore, the Ag content is set in the range of 0.10 to 1.0%. In particular, when high strength is required, the Ag content is desirably 0.2 to 1.0%.

Mn:
Mnは固溶および微細な析出物をすることによって高温におけるクリープ変形の抑制に大きな効果をもたらす。Mn量が0.1%未満ではクリープ特性向上効果は十分ではなく、0.5%を超えるとその効果は飽和するとともに、冷却速度が遅い場合の析出核生成サイトとなり強度の低下を引き起こす。
Mn:
Mn has a great effect on the suppression of creep deformation at high temperatures by forming a solid solution and fine precipitates. If the amount of Mn is less than 0.1%, the effect of improving the creep characteristics is not sufficient, and if it exceeds 0.5%, the effect is saturated and becomes a precipitation nucleation site when the cooling rate is slow, causing a decrease in strength.

Cr:
Crは固溶することによって高温におけるクリープ変形の抑制を大きく向上させる重要な元素である。Cr量が0.07%未満ではクリープ特性向上効果は十分ではなく、0.11%を超えるとその効果は飽和するとともに、過剰のCr添加は粗大なAl−Cr系晶出物を形成し、冷却速度が遅い場合θ'相やΩ相の不均一析出核生成サイトとなり強度の低下を引き起こす。
Cr:
Cr is an important element that greatly improves the suppression of creep deformation at high temperatures by solid solution. When the Cr content is less than 0.07%, the effect of improving the creep characteristics is not sufficient, and when it exceeds 0.11%, the effect is saturated, and excessive addition of Cr forms a coarse Al—Cr crystallized product, When the cooling rate is slow, it becomes a heterogeneous precipitation nucleation site of the θ ′ phase or the Ω phase, causing a decrease in strength.

Ti:
Tiは鋳造時の結晶粒微細化材として添加される。その効果は0.06%未満では不十分であり、0.30%を超えるとその効果は飽和するとともに、粗大な金属間化合物を形成しやすくなり、機械的特性や疲労特性を低下させる。
Ti:
Ti is added as a crystal grain refining material during casting. The effect is insufficient if it is less than 0.06%, and if it exceeds 0.30%, the effect is saturated and coarse intermetallic compounds are easily formed, and mechanical properties and fatigue properties are deteriorated.

なお、一般的なアルミニウム合金において微細化成分として考えられているTiは、Bを同時に添加することによりTi−B系化合物を形成させて、鋳塊結晶粒を微細化する目的で使用されている。このためBが通常範囲で含有されていても本発明の効果を阻害するものではない。   In addition, Ti considered as a refinement | miniaturization component in a general aluminum alloy is used in order to form a Ti-B type compound by adding B simultaneously, and to refine an ingot crystal grain. . For this reason, even if B is contained in a normal range, the effect of the present invention is not inhibited.

そのほかアルミニウム地金に不可避的不純物として含まれるSiは他の遷移金属等とともに晶出物を形成しやすく、材料の延性および靭性の低下をもたらす。Siの含有量が0.15%を越えた場合、明らかな靭性低下が生じるため好ましくない。Siの許容含有量は、原料地金の価格に基づく経済的観点と用途に適合した要求特性との兼ね合いにかかわる部分が大きく、また一方では、Siはアルミニウム合金の強度を向上させる効果も認められ、これらから総合的に判断して、Siの含有量は0.02〜0.15%の範囲内とすることが望ましい。   In addition, Si contained as an inevitable impurity in the aluminum ingot easily forms a crystallized substance with other transition metals and the like, resulting in a decrease in material ductility and toughness. When the Si content exceeds 0.15%, a significant decrease in toughness occurs, which is not preferable. The allowable content of Si is largely related to the balance between the economic viewpoint based on the price of the raw metal and the required characteristics suitable for the application. On the other hand, Si has an effect of improving the strength of the aluminum alloy. Judging from the above, it is desirable that the Si content is in the range of 0.02 to 0.15%.

またSiと同様にアルミニウム地金に不可避的不純物として含まれるFeは、他の遷移金属等とともに晶出物を形成しやすく、材料の延性および靭性の低下をもたらす。Feの含有量が0.20%を越えた場合には、明らかな靭性低下が生じるため好ましくない。Feの許容含有量も、原料地金の価格に基づく経済的観点と用途に適合した要求特性との兼ね合いにかかわる部分が大きく、また一方ではFeは高温特性を向上させる効果もあり、これらから総合的に判断して、Feの含有量は0.05〜0.20%の範囲内とすることが望ましい。   Further, similarly to Si, Fe contained as an inevitable impurity in an aluminum ingot easily forms a crystallized substance together with other transition metals and the like, resulting in a decrease in material ductility and toughness. If the Fe content exceeds 0.20%, the toughness is clearly lowered, which is not preferable. The allowable content of Fe is also largely related to the balance between the economic viewpoint based on the price of the raw metal and the required properties suitable for the application. On the other hand, Fe has the effect of improving the high-temperature properties, and from these, Judging from the viewpoint, it is desirable that the Fe content is in the range of 0.05 to 0.20%.

以上で説明した各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良いが、前記各成分元素のほかの元素についても、この発明に係る耐熱用アルミニウム合金の高温クリープ特性や機械的特性およびその他の特性を阻害しない範囲内での含有は許容される。   In addition to the elements described above, basically, Al and inevitable impurities may be used. However, other elements other than the above-described component elements may also be used for the high-temperature creep characteristics and mechanical properties of the heat-resistant aluminum alloy according to the present invention. Inclusion within the range that does not impair the physical characteristics and other characteristics is allowed.

Mn、Cr固溶量:
先述したようにMn、Crは固溶した状態で耐クリープ特性を著しく向上させる働きがある。その効果は0.05%未満では不十分である。上限は特に定めるものではないが、Mn、Crはアルミニウム合金中への溶解度が小さいため金属間化合物として析出する。種々検討を実施した結果、工業的な製造条件においては0.5%が固溶量の限界であり、本発明においてはこれを上限とした。
Mn, Cr solid solution amount:
As described above, Mn and Cr have a function of remarkably improving the creep resistance in a solid solution state. The effect is insufficient if it is less than 0.05%. Although the upper limit is not particularly defined, Mn and Cr are precipitated as intermetallic compounds because of their low solubility in the aluminum alloy. As a result of various studies, 0.5% is the limit of the solid solution amount under industrial production conditions, and this is the upper limit in the present invention.

高温強度、クリープ特性を高めるには前述したθ相、Ω相を均一に析出分散させることが極めて重要となる。これを達成するためには鋳塊を互いに直行する3方向から鍛造することが必須となる。1方向もしくは2方向からの鍛造ではただ単に組織がある方向に伸長するだけであるので析出相の均一化は十分にはかれない。   In order to increase the high temperature strength and creep characteristics, it is extremely important to uniformly precipitate and disperse the aforementioned θ phase and Ω phase. In order to achieve this, it is essential to forge the ingot from three directions orthogonal to each other. In the forging from one or two directions, the structure simply extends in a certain direction, so that the precipitation phase is not sufficiently uniformized.

鍛造比も重要であり、各方向の鍛造比を2以上、各方向の鍛造比の合計を7以上として鋳塊組織を破壊し、溶体化効果を高め時効処理時のθ相、Ω相を均一に析出分散させることが必要である。各方向の鍛造比が2以下、各方向の鍛造比の合計が7以下であると鋳塊組織の残存があるためθ相、Ω相の均一析出をさせることができない。   The forging ratio is also important. The forging ratio in each direction is 2 or more, the total forging ratio in each direction is 7 or more, the ingot structure is destroyed, the solution effect is enhanced, and the θ phase and Ω phase during aging treatment are uniform. It is necessary to be precipitated and dispersed. If the forging ratio in each direction is 2 or less and the sum of the forging ratios in each direction is 7 or less, the ingot structure remains, so that the θ phase and the Ω phase cannot be uniformly precipitated.

なお、各方向の鍛造の中間、もしくは鍛造終了後に490〜530℃で24時間以内の熱処理を施すことでさらに均一析出には有効となる。   In addition, it becomes more effective for uniform precipitation by performing a heat treatment at 490 to 530 ° C. within 24 hours in the middle of forging in each direction or after completion of forging.

以上のようなこの本発明の展伸加工用アルミニウム合金を製造するための方法は、特に限定されるものではないが、好ましい製造方法について以下に説明する。   Although the method for manufacturing the aluminum alloy for extending | stretching of this invention as mentioned above is not specifically limited, A preferable manufacturing method is demonstrated below.

先ずこの発明の成分範囲内に溶解調整されたアルミニウム合金溶湯を、鋳造して鋳塊を製作する。
鋳造された鋳塊は、次いで均質化処理される。なお、必要に応じて均質化処理前に鋳塊を切断加工する場合、残留応力に起因して鋳塊が割れるおそれがある。そのため、鋳塊を300℃〜450℃の温度で20時間未満熱処理することによって鋳塊の残留応力を緩和してから切断加工しても、この発明の目的達成には影響しない。
First, an ingot is produced by casting an aluminum alloy melt adjusted to be within the component range of the present invention.
The cast ingot is then homogenized. In addition, when cutting an ingot before a homogenization process as needed, there is a possibility that the ingot may break due to residual stress. Therefore, even if the ingot is subjected to heat treatment at a temperature of 300 ° C. to 450 ° C. for less than 20 hours to relieve the residual stress of the ingot and then cut, it does not affect the achievement of the object of the invention.

ここで、均質化処理温度は490〜530℃で25時間未満が望ましい。均質化処理温度が490℃未満では時効析出強化に寄与する主要合金元素であるCu、Mg、Agの均質化が不充分となり、強度の向上が望めなくなる。一方均質化処理温度が530℃を越えればバーニングが生じる可能性が高くなる。また、均質化処理時間が長ければ、均質化処理中に強制固溶されていたMnやCrがAl−Mn系、Al−Cr系化合物として析出を開始する。そしてMnやCrがθ'相あるいはΩ相などの析出物を微細化させる効果、また高温暴露時に生じる時効析出物の粗大化を抑制する効果は、Al地中にMn、Crが固溶している状態で最も強く発揮されるため、均質化処理時に必要以上にAl−Mn系、Al−Cr系化合物が析出すれば、この発明で目的とする効果が得られ難くなる。そのため均質化処理時間は、好ましくは25時間未満、さらに好ましくは15時間未満とすることが適切である。   Here, the homogenization temperature is preferably 490 to 530 ° C. and less than 25 hours. If the homogenization temperature is less than 490 ° C., the homogenization of Cu, Mg, and Ag, which are the main alloy elements contributing to aging precipitation strengthening, is insufficient, and it is impossible to improve the strength. On the other hand, if the homogenization temperature exceeds 530 ° C., the possibility of burning increases. Moreover, if the homogenization treatment time is long, Mn and Cr that have been forcibly dissolved during the homogenization treatment start to precipitate as Al—Mn and Al—Cr compounds. The effect of Mn and Cr to refine precipitates such as the θ ′ phase and the Ω phase, and the effect of suppressing the coarsening of aging precipitates that occur during high-temperature exposure is that Mn and Cr are dissolved in the Al ground. Therefore, if an Al-Mn-based or Al-Cr-based compound precipitates more than necessary during the homogenization process, the intended effect of the present invention is hardly obtained. Therefore, the homogenization treatment time is preferably less than 25 hours, more preferably less than 15 hours.

均質化処理後の鋳塊は、用途により所望の形状のアルミニウム展伸材に展伸加工される。より具体的には、展伸加工として、板材については圧延加工を、鍛造材については鍛造加工を、形材については押出加工が施される。この発明で対象としているAl−Cu−Mg−Ag系の合金は、鋳造時にミクロポロシティ(鋳塊内部に残留する微小な空洞状の欠陥)が発生しやすく、このミクロポロシティは破壊の起点となって靭性を害するため、ミクロポロシティを潰す工程が必要となる。   The ingot after the homogenization treatment is drawn into an aluminum wrought material having a desired shape depending on the application. More specifically, as the expansion process, a rolling process is performed on the plate material, a forging process is performed on the forging material, and an extrusion process is performed on the shape material. The Al—Cu—Mg—Ag alloy that is the subject of the present invention is likely to generate microporosity (a minute void-like defect remaining in the ingot) during casting, and this microporosity is the starting point of fracture. In order to damage the toughness, a process of crushing the microporosity is required.

また、一般に鋳塊組織には、凝固セル境界に多数の晶出物が集団で存在し、この場合個々の晶出物が微細であっても、密集して存在する場合には機械的特性や疲労特性を劣化させるため、晶出物の密集した状態を破壊する必要がある。さらに、延性を確保するためには、最終製品の結晶粒、特に圧延方向に垂直な断面における結晶粒の円相当径を500μm以下に微細化することも重要である。ここでいう結晶粒とは等軸粒、扁平した粒、どちらも含まれるが、扁平粒の場合の結晶粒径は長軸方向の長さとして定義される。そして上述のようなミクロ組織の改善のためには、圧延、押出、鍛造などの展伸加工が必須である。ミクロ組織の状態は加工率にも影響されるが、靭性向上のためには、圧延加工の場合は圧下率50%以上、押出加工の場合は押出比2以上、鍛造加工の場合は鍛錬比2以上とすることが好ましい。また、鍛造品の場合、鍛錬の方向を1方向だけではなく、少なくとも異なる2方向で行い、各方向での鍛錬比を2以上とすることがさらに望ましい。   In general, a large number of crystallized substances exist in the ingot structure at the boundary of the solidification cell. In this case, even if the individual crystallized substances are fine, they are mechanically In order to deteriorate the fatigue characteristics, it is necessary to destroy the dense state of crystallized substances. Furthermore, in order to ensure ductility, it is also important to reduce the equivalent circle diameter of crystal grains in the final product, particularly in a cross section perpendicular to the rolling direction, to 500 μm or less. The crystal grains here include both equiaxed grains and flat grains, but the crystal grain size in the case of flat grains is defined as the length in the major axis direction. In order to improve the microstructure as described above, a drawing process such as rolling, extrusion, forging, or the like is essential. Although the microstructure is affected by the processing rate, in order to improve toughness, the rolling reduction is 50% or more in the case of rolling, the extrusion ratio is 2 or more in the case of extrusion, and the forging ratio is 2 in the case of forging. The above is preferable. Further, in the case of a forged product, it is more desirable that the forging direction is performed not only in one direction but in at least two different directions, and the forging ratio in each direction is 2 or more.

このような展伸加工後のアルミニウム合金素材については、さらに溶体化処理および焼入れ処理を施した後、高温の人工時効処理を施す。この溶体化処理では、時効硬化に寄与する合金成分であるCu、Mg、Agを可能な限り固溶させるため、溶体化処理は495〜535℃の範囲で行なうことが望ましい。しかし、前述した均質化処理の場合と同様に、強制固溶されていたMnやCrがAl−Mn系、Al−Cr系の化合物として溶体化処理時に必要以上に析出すれば、本発明で目的とする効果が得られ難くなる。したがって、溶体化処理時間は、好ましくは15時間未満、更に好ましくは8時間未満とすることが適切である。   The aluminum alloy material after such extension processing is further subjected to solution treatment and quenching treatment, and then subjected to high-temperature artificial aging treatment. In this solution treatment, the solution treatment is desirably performed in the range of 495 to 535 ° C. in order to make Cu, Mg, and Ag, which are alloy components contributing to age hardening, dissolve as much as possible. However, as in the case of the homogenization treatment described above, if the Mn and Cr that have been forcibly dissolved are precipitated as an Al—Mn-based and Al—Cr-based compound more than necessary during the solution treatment, the object of the present invention is achieved. It is difficult to obtain the effect. Accordingly, the solution treatment time is preferably less than 15 hours, more preferably less than 8 hours.

また、焼入れ処理は、時効硬化に寄与する合金成分であるCu、Mg、Agの再析出をできる限り抑制するため、280〜480℃の温度範囲における焼入れ冷却速度を10℃/min以上とすることが望ましく、特に高強度が要求される場合には60℃以下の温度まで冷却し、一方残留応力が問題となる場合には75℃以上の温度まで冷却することが望ましい。   In addition, in the quenching treatment, the quenching cooling rate in the temperature range of 280 to 480 ° C. is set to 10 ° C./min or more in order to suppress reprecipitation of Cu, Mg, and Ag as alloy components contributing to age hardening as much as possible. It is desirable to cool to a temperature of 60 ° C. or lower when high strength is required, and to a temperature of 75 ° C. or higher when residual stress becomes a problem.

また、人工時効処理は、160〜200℃で2〜60時間程度行なうことが望ましい。なお焼入れによる残留応力が特に問題となる場合には、焼入れ処理後に冷間加工をなうことが望ましい。   The artificial aging treatment is desirably performed at 160 to 200 ° C. for about 2 to 60 hours. If residual stress due to quenching is particularly problematic, it is desirable to perform cold working after quenching.

以下にこの発明を実施例に基づいてさらに詳細に説明する。但し、この発明はこれらの実施例に限定されないことはもちろんである。   Hereinafter, the present invention will be described in more detail based on examples. However, it goes without saying that the present invention is not limited to these examples.

表1の合金A〜Tに示す化学成分を有する各アルミニウム合金を溶解して半連続鋳造し、φ160mm、長さ1000mmの鋳塊を得た。この鋳塊に520℃で6時間の均質化処理を施した後、面削、切断によりφ150mm長さ250mmの鍛造用素材とした。熱間加工は開始温度を400℃とし、鍛錬比4で板厚60mmとした。溶体化処理は520℃で4時間保持した後、約80℃の温水焼き入れを行った。その後200℃で5時間の時効処理を行い、最終製品とした。供試材の機械的特性および高温クリープ特性を評価するため、LT方向よりφ10mmの丸棒試験片を採取し、室温における引張試験および200℃でのクリープ試験を実施した。   Each aluminum alloy having chemical components shown in Alloys A to T in Table 1 was melted and semi-continuously cast to obtain an ingot having a diameter of 160 mm and a length of 1000 mm. The ingot was subjected to homogenization treatment at 520 ° C. for 6 hours, and then a forging material having a diameter of 150 mm and a length of 250 mm was obtained by chamfering and cutting. In the hot working, the starting temperature was 400 ° C., the forging ratio was 4, and the plate thickness was 60 mm. The solution treatment was carried out at 520 ° C. for 4 hours, followed by warm water quenching at about 80 ° C. Thereafter, an aging treatment was performed at 200 ° C. for 5 hours to obtain a final product. In order to evaluate the mechanical properties and high-temperature creep properties of the test materials, a round bar specimen having a diameter of 10 mm was taken from the LT direction, and a tensile test at room temperature and a creep test at 200 ° C. were performed.

Figure 2013142168
Figure 2013142168

なお従来耐熱用合金の代表例としてA2618合金も同時に評価した。耐クリープ性については200℃で応力160MPaを負荷し破断寿命を測定した。その結果、破断寿命が500hr以上のものを、耐クリープ性に優れると判断した。Mn、Crの固溶量はフェノール溶解法により分析を実施した。これらの結果を表2に合わせて示す。   In addition, A2618 alloy was also evaluated at the same time as a representative example of conventional heat-resistant alloys. Regarding the creep resistance, a stress of 160 MPa was applied at 200 ° C., and the rupture life was measured. As a result, those having a rupture life of 500 hours or more were judged to be excellent in creep resistance. The solid solution amount of Mn and Cr was analyzed by the phenol dissolution method. These results are also shown in Table 2.

Figure 2013142168
Figure 2013142168

表2から明らかなように、Cu、Mg、Ag、Mn、Cr、Tiの合金組成が本発明の範囲外である比較例の合金P〜Wでは、機械的特性と耐クリープ特性ともに良好なものは得られなかった。これに対して本発明例の合金A〜Oは、機械的特性と耐クリープ特性のいずれにおいても良好で優れることがわかった。   As is apparent from Table 2, the alloys P to W of comparative examples in which the alloy composition of Cu, Mg, Ag, Mn, Cr, and Ti is outside the scope of the present invention have good mechanical properties and creep resistance properties. Was not obtained. On the other hand, it was found that the alloys A to O of the examples of the present invention were good and excellent in both mechanical properties and creep resistance properties.

表1の合金Dについて表3に示す鍛造を実施した。溶体化処理以降は前記と同じ条件で製造、試験した。結果を表4に示す。   Forging shown in Table 3 was performed on Alloy D in Table 1. After the solution treatment, it was manufactured and tested under the same conditions as described above. The results are shown in Table 4.

Figure 2013142168
Figure 2013142168

Figure 2013142168
Figure 2013142168

本結果から鍛錬比各方向2以上で合計7以上の鍛造を行うことにより、さらにクリープ特性の向上が認められた。
From these results, it was confirmed that the creep characteristics were further improved by forging a total of 7 or more at a forging ratio 2 or more in each direction.

Claims (3)

Cu5.1〜6.5%(mass%、以下同じ)、Mg0.30〜0.70%、Ag0.10〜1.0%、Mn0.10〜0.50%、Cr0.07〜0.11%、Ti0.06〜0.30%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金において、200℃、160MPaでのクリープ破断寿命が500hr以上であることを特徴とする耐熱性に優れたアルミニウム合金鍛造材。   Cu 5.1-6.5% (mass%, the same applies hereinafter), Mg 0.30-0.70%, Ag 0.10-1.0%, Mn 0.10-0.50%, Cr 0.07-0.11 %, Ti 0.06 to 0.30%, the balance being Al and inevitable impurities in an aluminum alloy, the creep rupture life at 200 ° C. and 160 MPa is 500 hours or more, excellent heat resistance Aluminum alloy forging. Cu5.1〜6.5%、Mg0.30〜0.70%、Ag0.10〜1.0%、Mn0.10〜0.50%、Cr0.07〜0.11%、Ti0.06〜0.30%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金において、Mn+Crの固溶量が0.05〜0.50%の範囲内にあり、200℃、160MPaの条件でのクリープ破断寿命が500hr以上であることを特徴とする耐熱性に優れたアルミニウム合金鍛造材。   Cu 5.1-6.5%, Mg 0.30-0.70%, Ag 0.10-1.0%, Mn 0.10-0.50%, Cr 0.07-0.11%, Ti 0.06-0 In an aluminum alloy containing 30% and the balance being Al and inevitable impurities, the amount of solid solution of Mn + Cr is in the range of 0.05 to 0.50%, and creep rupture at 200 ° C. and 160 MPa. An aluminum alloy forging material excellent in heat resistance, characterized by having a lifetime of 500 hours or more. 請求項1、2の組成を有する合金鋳塊を490〜530℃で48時間以内の均質化処理を施した後、鋳塊の互いに直行する3方向からそれぞれ鍛造比2以上で鍛造し、かつ各方向の鍛造比の合計が7以上として、200℃、160MPaの条件でのクリープ破断寿命が500hr以上であることを特徴とする耐熱に優れたアルミニウム鍛造材の製造方法。   The alloy ingot having the composition of claims 1 and 2 is subjected to homogenization treatment at 490 to 530 ° C. within 48 hours, then forged at a forging ratio of 2 or more from three directions perpendicular to each other, and each A method for producing an aluminum forged material excellent in heat resistance, characterized in that a total forging ratio in a direction is 7 or more and a creep rupture life under conditions of 200 ° C. and 160 MPa is 500 hours or more.
JP2012002663A 2012-01-11 2012-01-11 Aluminum alloy excellent in creep resistance Pending JP2013142168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002663A JP2013142168A (en) 2012-01-11 2012-01-11 Aluminum alloy excellent in creep resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002663A JP2013142168A (en) 2012-01-11 2012-01-11 Aluminum alloy excellent in creep resistance

Publications (1)

Publication Number Publication Date
JP2013142168A true JP2013142168A (en) 2013-07-22

Family

ID=49038912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002663A Pending JP2013142168A (en) 2012-01-11 2012-01-11 Aluminum alloy excellent in creep resistance

Country Status (1)

Country Link
JP (1) JP2013142168A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085381A (en) * 2013-11-01 2015-05-07 株式会社戸畑タ−レット工作所 Constant temperature forged component and manufacturing method for constant temperature forged component
EP3009525A1 (en) 2014-10-16 2016-04-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminium alloy forging and method for producing the same
EP2942412B1 (en) 2014-05-06 2016-11-16 Goodrich Corporation Forged aerospace products from lithium-free aluminium alloy containing copper magnesium and silver
JP2017078216A (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020090727A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020090726A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020110820A (en) * 2019-01-11 2020-07-27 昭和電工株式会社 Forged product for scroll member
CN114855039A (en) * 2021-02-03 2022-08-05 中国石油化工股份有限公司 Al-Cu-Mg-Ag alloy and preparation method and application thereof
CN116024510A (en) * 2022-12-29 2023-04-28 重庆大学 Novel process for improving performance of AlCuMgAg series heat-resistant aluminum alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107440A (en) * 1989-09-20 1991-05-07 Showa Alum Corp Aluminum alloy for load cell
JP2001181771A (en) * 1999-12-20 2001-07-03 Kobe Steel Ltd High strength and heat resistant aluminum alloy material
JP2004002987A (en) * 2002-03-29 2004-01-08 Kobe Steel Ltd Aluminum alloy material for forging superior in high-temperature property
JP2006527303A (en) * 2003-06-06 2006-11-30 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Highly damage resistant aluminum alloy products, especially for aerospace applications
JP2007239029A (en) * 2006-03-09 2007-09-20 Furukawa Sky Kk Malleable heat-resistant aluminum alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107440A (en) * 1989-09-20 1991-05-07 Showa Alum Corp Aluminum alloy for load cell
JP2001181771A (en) * 1999-12-20 2001-07-03 Kobe Steel Ltd High strength and heat resistant aluminum alloy material
JP2004002987A (en) * 2002-03-29 2004-01-08 Kobe Steel Ltd Aluminum alloy material for forging superior in high-temperature property
JP2006527303A (en) * 2003-06-06 2006-11-30 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Highly damage resistant aluminum alloy products, especially for aerospace applications
JP2007239029A (en) * 2006-03-09 2007-09-20 Furukawa Sky Kk Malleable heat-resistant aluminum alloy

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085381A (en) * 2013-11-01 2015-05-07 株式会社戸畑タ−レット工作所 Constant temperature forged component and manufacturing method for constant temperature forged component
EP2942412B1 (en) 2014-05-06 2016-11-16 Goodrich Corporation Forged aerospace products from lithium-free aluminium alloy containing copper magnesium and silver
EP3009525A1 (en) 2014-10-16 2016-04-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminium alloy forging and method for producing the same
CN105525170A (en) * 2014-10-16 2016-04-27 株式会社神户制钢所 Aluminium alloy forging and method for producing the same
JP2016079454A (en) * 2014-10-16 2016-05-16 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
JP2017078216A (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020110820A (en) * 2019-01-11 2020-07-27 昭和電工株式会社 Forged product for scroll member
JP7186097B2 (en) 2019-01-11 2022-12-08 昭和電工株式会社 Forgings for scroll members
JP2020090727A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020090726A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
CN114855039A (en) * 2021-02-03 2022-08-05 中国石油化工股份有限公司 Al-Cu-Mg-Ag alloy and preparation method and application thereof
CN116024510A (en) * 2022-12-29 2023-04-28 重庆大学 Novel process for improving performance of AlCuMgAg series heat-resistant aluminum alloy
CN116024510B (en) * 2022-12-29 2023-11-07 重庆大学 Novel process for improving performance of AlCuMgAg series heat-resistant aluminum alloy

Similar Documents

Publication Publication Date Title
JP2013142168A (en) Aluminum alloy excellent in creep resistance
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
JP5582532B2 (en) Co-based alloy
WO2016129485A1 (en) METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
JP6057855B2 (en) Aluminum alloy extruded material for cutting
JP2012097309A (en) Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
JP2011058047A (en) Method for producing aluminum alloy thick plate having excellent strength and ductility
JP6348466B2 (en) Aluminum alloy extruded material and method for producing the same
KR20180115350A (en) Aluminum alloy having excellent high-temperature characteristics
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2017128789A (en) Heat resistant aluminum alloy shape material and aluminum alloy member
CN109642275B (en) High-strength aluminum alloy, piston for internal combustion engine containing same, and method for producing piston for internal combustion engine
JP2007070686A (en) Highly workable magnesium alloy, and method for producing the same
JP2010018854A (en) Lightweight and high strength aluminum alloy excellent in heat resistance
JP4676906B2 (en) Heat-resistant aluminum alloy for drawing
JP2007070685A (en) Highly workable magnesium alloy, and method for producing the same
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP4351609B2 (en) Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof
JP2014189844A (en) Aluminum alloy and method of producing the same
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP5607960B2 (en) Heat-resistant magnesium alloy with excellent fatigue strength characteristics and heat-resistant parts for engines
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP2014208865A (en) Heat treatment type aluminum alloy for cold plastic working and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405