JP2015085381A - Constant temperature forged component and manufacturing method for constant temperature forged component - Google Patents

Constant temperature forged component and manufacturing method for constant temperature forged component Download PDF

Info

Publication number
JP2015085381A
JP2015085381A JP2013228594A JP2013228594A JP2015085381A JP 2015085381 A JP2015085381 A JP 2015085381A JP 2013228594 A JP2013228594 A JP 2013228594A JP 2013228594 A JP2013228594 A JP 2013228594A JP 2015085381 A JP2015085381 A JP 2015085381A
Authority
JP
Japan
Prior art keywords
temperature
crystal grains
forging
constant temperature
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013228594A
Other languages
Japanese (ja)
Other versions
JP6100675B2 (en
Inventor
宏史 川▲崎▼
Hiroshi Kawasaki
宏史 川▲崎▼
秀則 恵良
Hidenori Era
秀則 恵良
徹 河部
Tooru Kawabe
徹 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOBATA TURRET KOSAKUSHO KK
Kyushu Institute of Technology NUC
Original Assignee
TOBATA TURRET KOSAKUSHO KK
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOBATA TURRET KOSAKUSHO KK, Kyushu Institute of Technology NUC filed Critical TOBATA TURRET KOSAKUSHO KK
Priority to JP2013228594A priority Critical patent/JP6100675B2/en
Publication of JP2015085381A publication Critical patent/JP2015085381A/en
Application granted granted Critical
Publication of JP6100675B2 publication Critical patent/JP6100675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-quality constant temperature forged component which can realize a high intensity and a high toughness equal to or more than those of a conventional steel component in spite of being an aluminum alloy component by having a complex texture dotted with flat crystal grains and micro recrystallization grains formed at least in a part.SOLUTION: A constant temperature forged component, manufactured by forging an Al-Mg-Si-based aluminum alloy at a constant temperature, has flat crystal grains elongated by being crushed under forging molding formed at least in a part of crystal grains and has a complex texture dotted with micro recrystallization grains with an average grain diameter of 10 nm - 1000 nm in a deformed tissue of the flat crystal grains or a recovery tissue region, or a grain boundary region of the crystal grains with a tensile strength of 360 MPa or more and an elongation of 14% or more.

Description

本発明は、アルミニウム合金を高速で恒温鍛造することにより得られる、高強度、高靭性で高品質な恒温鍛造部品及びその製造方法に関する。   The present invention relates to a high-strength, high-toughness, high-quality constant-temperature forged part obtained by performing constant-temperature forging of an aluminum alloy at high speed, and a method for producing the same.

金属の強度、品質を向上させる手段として、従来から鍛造が知られている。
金型を加熱しない熱間鍛造法では、加工中に急速に素材温度が下がり、成型性が低下するため、欠陥が発生し易く、また、形状自在性に欠け、切削工程などの後加工が必要となり、量産性に欠けると共に、用途が限定されるという問題点があった。
また、従来の恒温鍛造法では、強度や品質を向上させることができるが、大型プレス機を用いて加工速度を極端に遅くして加工する方法であるため、大量生産品や小型部品の製造には不向きであり、航空機の機体や脚などのような大型の少量部品の生産にしか採用されておらず、量産品に適用できないという問題点があった。
特に、自動車、鉄道車両、航空機等の部品製造において、近年の燃費向上、排ガス規制などの環境問題への対応から、車体や機体の重量の軽量化が求められ、一部の部品がアルミニウム合金化されているが、強度、品質確保の面から、軽量合金への転換は進んでおらず、高強度、高靭性で高品質な恒温鍛造部品の実現と、高速加工が可能で量産性に優れた恒温鍛造部品の製造方法の確立が強く望まれていた。
Forging has been conventionally known as a means for improving the strength and quality of metals.
In the hot forging method that does not heat the mold, the material temperature drops rapidly during processing and the moldability deteriorates, so defects are likely to occur, shape flexibility is lacking, and post-processing such as a cutting process is required. Thus, there is a problem that the mass production is lacking and the use is limited.
In addition, the conventional isothermal forging method can improve strength and quality, but it is a method that uses a large press to slow down the processing speed extremely, so it can be used for mass production and small parts manufacturing. Is unsuitable, and has been used only for the production of large-scale small parts such as aircraft bodies and legs, and has a problem that it cannot be applied to mass-produced products.
In particular, parts manufacturing for automobiles, railway vehicles, aircraft, etc. are required to reduce the weight of the vehicle body and fuselage in response to environmental issues such as improved fuel economy and exhaust gas regulations in recent years. Some parts are made of aluminum alloy. However, from the aspect of ensuring strength and quality, the transition to lightweight alloys has not progressed, and high-temperature constant temperature forged parts with high strength, high toughness and high quality can be realized, and high-speed machining is possible, which is excellent in mass productivity. The establishment of a manufacturing method for constant temperature forged parts has been strongly desired.

一方、アルミニウム合金等の金属を再結晶温度以下で加熱、加圧することにより、結晶粒を微細化し、強度を向上させる金属材料の製造方法が提案されている。
例えば、(特許文献1)には、「アルミニウム若しくはアルミニウム合金製の塊状アルミニウム材を再結晶温度以下に加熱し、この再結晶温度以下に加熱した塊状アルミニウム材をx軸方向,y軸方向及びz軸方向から繰り返し温間鍛造することで塊状アルミニウム材中の結晶粒を超微細結晶粒とすることを特徴とする超微細結晶粒を有するアルミニウム及びアルミニウム合金材の製造方法。」が開示されている。
しかし、(特許文献1)では、x軸,y軸,z軸の各軸方向から繰り返し鍛造を行うが、各鍛造毎に試料を90°回転させ、毎回523Kに再加熱を行う必要があるので、工程が複雑で加工に時間を要し、量産性に欠けるという問題点があった。
また、所望の形状を得るためには、切削や研磨などの様々な後加工を施す必要があり、省資源性に欠けるという問題点があった。
また、各鍛造毎に再加熱を行うことにより、試料の温度が上昇と低下を繰り返し、加熱温度がばらつき易く、結晶粒の均一性に欠けるため、剛性や靭性のばらつきが生じて歩留まりが低下し易く、品質の安定性、量産性に欠けるという問題点があった。
On the other hand, a method for producing a metal material has been proposed in which a metal such as an aluminum alloy is heated and pressed at a recrystallization temperature or lower to refine crystal grains and improve strength.
For example, (Patent Document 1) states that “a bulk aluminum material made of aluminum or an aluminum alloy is heated to a recrystallization temperature or lower, and the bulk aluminum material heated to a temperature lower than the recrystallization temperature is converted to the x-axis direction, y-axis direction, and z "A method for producing aluminum and aluminum alloy materials having ultrafine crystal grains, characterized in that crystal grains in the massive aluminum material are made ultrafine crystal grains by repeatedly forging in the axial direction." .
However, in (Patent Document 1), forging is repeatedly performed from the respective directions of the x-axis, y-axis, and z-axis, but it is necessary to rotate the sample by 90 ° for each forging and to reheat to 523K each time. However, there are problems that the process is complicated, time is required for processing, and mass productivity is lacking.
Moreover, in order to obtain a desired shape, it is necessary to perform various post-processing such as cutting and polishing, and there is a problem that resource saving is lacking.
In addition, by performing reheating for each forging, the temperature of the sample repeatedly rises and falls, the heating temperature is likely to vary, and the crystal grain is not uniform, resulting in variations in rigidity and toughness, resulting in a decrease in yield. There was a problem that it was easy and lacked in stability of quality and mass productivity.

そこで、本願出願人は鋭意研究の結果、(特許文献2)において、「上金型と下金型を加熱する金型加熱工程と、上金型及び/又は下金型の温度を測定監視する金型温度監視工程と、金型温度監視工程で測定される温度に基づいて金型内部の表面温度を金属素材の加工温度に収束させ維持するように金型加熱工程における加熱温度を調整する加熱温度調整工程と、溶体化された金属素材を100℃以上で金属素材の再結晶温度以下に加熱する素材加熱工程と、素材加熱工程で加熱された金属素材を加熱温度調整工程で前記加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程と、を備えた恒温鍛造成型方法」を開示した。   Therefore, as a result of earnest research, the applicant of the present application disclosed (patent document 2) that “a mold heating process for heating the upper mold and the lower mold, and the temperature of the upper mold and / or the lower mold is measured and monitored. Mold temperature monitoring process and heating that adjusts the heating temperature in the mold heating process so that the surface temperature inside the mold converges and maintains the processing temperature of the metal material based on the temperature measured in the mold temperature monitoring process A temperature adjustment step, a material heating step of heating the solution-treated metal material to 100 ° C. or more and below the recrystallization temperature of the metal material, and the metal material heated in the material heating step to the processing temperature in the heating temperature adjustment step A constant temperature forging molding method including a forging molding process in which a temperature-adjusted mold is placed and forged by molding is disclosed.

特開2004−176134号公報JP 2004-176134 A 特開2010−137284号公報JP 2010-137284 A

(特許文献2)の恒温鍛造成型方法は、金型内の素材温度を簡便かつ確実に所定の温度に維持することができ、鍛造成型時の加工速度を適正に保持して、素材が所定の温度以上に加熱されることを確実に防止することができ、結晶粒を微細化して、高強度、高靭性で高品質な部品を高速加工することができ、加工後の熱処理が不要で、後加工を最小限に抑えることができる量産性に優れるものであった。
しかし、従来の鋼製部品と同等以上の高品質なアルミニウム合金製部品を安定して供給し、実際の自動車部品等に適用するために、さらなる均質化と強度及び靭性の向上並びに加工の高速化が強く要望されていた。
The constant temperature forging molding method of (Patent Document 2) can easily and reliably maintain the material temperature in the mold at a predetermined temperature, appropriately maintain the processing speed at the time of forging, and the material is predetermined. It can be reliably prevented from being heated above the temperature, the crystal grains can be refined, high-strength, high-toughness and high-quality parts can be processed at high speed, and no post-processing heat treatment is required. It was excellent in mass productivity that could minimize processing.
However, in order to stably supply high-quality aluminum alloy parts that are equal to or better than conventional steel parts and apply them to actual automobile parts, etc., further homogenization, improved strength and toughness, and faster processing There was a strong demand.

本発明は上記要望に応えるもので、少なくとも一部に形成された扁平状結晶粒と微細再結晶粒が点在する複合組織を有することにより、アルミニウム合金製部品でありながら、従来の鋼製部品と同等以上の高強度、高靭性を実現できる高品質な恒温鍛造部品の提供、及び結晶粒を微細化することにより、高い強度と靭性を併せ持つ高品質な部品を高速加工することができる量産性に優れた恒温鍛造部品の製造方法の提供を目的とする。   The present invention meets the above-mentioned demands, and has a composite structure in which flat crystal grains and fine recrystallized grains formed at least in part are scattered, so that it is a conventional steel part while being an aluminum alloy part. Providing high-quality constant temperature forged parts that can achieve high strength and toughness equivalent to or better than the above, and mass production that enables high-speed processing of high-quality parts that have both high strength and toughness by refining crystal grains An object of the present invention is to provide a method for producing a constant temperature forged part that is excellent in temperature.

課題を解決するための手段及びそれによって得られる作用、効果Means for solving the problems, and actions and effects obtained thereby

上記課題を解決するために本発明の恒温鍛造部品及び恒温鍛造部品の製造方法は、以下の構成を有している。
本発明の請求項1に記載の恒温鍛造部品は、Al−Mg−Si系のアルミニウム合金を恒温鍛造して製造される恒温鍛造部品であって、結晶粒の少なくとも一部に鍛造成形により押し潰されて長く伸びた扁平状結晶粒が形成され、前記扁平状結晶粒の変形組織若しくは回復組織の領域又は前記結晶粒の粒界領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在する複合組織を有し、引張り強さが360MPa以上で、伸びが14%以上である構成を有している。
この構成により、以下のような作用、効果を有する。
(1)結晶粒の少なくとも一部に鍛造成形により押し潰されて長く伸びた扁平状結晶粒が形成され、扁平状結晶粒の変形組織若しくは回復組織の領域又は結晶粒の粒界領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在する複合組織を有することにより、扁平状結晶粒の変形組織若しくは回復組織の領域が主に強度の上昇に寄与し、微細再結晶粒が強度と靭性の向上に寄与すると考えられる。これにより、従来にない高強度かつ高靭性を実現できる高品質な恒温鍛造部品を実現できる。
(2)扁平状結晶粒の変形組織若しくは回復組織の領域又は結晶粒の粒界領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在することにより、変形や応力が集中し易い領域で、破壊の起点となる領域の強度と靭性の両方を兼ね備えた組織を形成することができ、特に、結晶粒界や粒界三重点に沿って形成される微細再結晶粒は、塑性変形することにより破壊の起点となる粒界の応力集中を緩和して、製品の靭性を大きく向上させることができ、高靭性で耐久性、長寿命性に優れた恒温鍛造部品を実現できる。
(3)引張り強さが360MPa以上で、伸びが14%以上であることにより、高強度でありながら、高靭性を実現することができ、耐久性、長寿命性に優れる。
(4)引張り強さが360MPa以上で、伸びが14%以上であり、JIS H4040
A6061BE−T6の規格値(引張り強さ265MPa以上、伸び10%以上)を大きく上回っているので、自動車用部品などに好適に用いることができ、部品の軽量化、燃費の向上を図ることができる。
In order to solve the above problems, the constant temperature forged part and the method for manufacturing a constant temperature forged part of the present invention have the following configurations.
The constant temperature forged part according to claim 1 of the present invention is a constant temperature forged part manufactured by isothermal forging of an Al-Mg-Si based aluminum alloy, and at least part of the crystal grains is crushed by forging. Are formed to be elongated, and fine recrystallized grains having an average grain size of 10 nm to 1000 nm are scattered in the deformed or recovered structure area of the flat crystal grains or the grain boundary area of the crystal grains. The tensile strength is 360 MPa or more, and the elongation is 14% or more.
This configuration has the following operations and effects.
(1) At least a part of crystal grains is formed into flat crystal grains which are crushed and elongated by forging, and an average grain is formed in a deformed or recovered structure region of flat crystal grains or a grain boundary region of crystal grains. By having a composite structure in which fine recrystallized grains having a diameter of 10 nm to 1000 nm are scattered, the region of the deformed or recovered structure of the flat crystal grains mainly contributes to the increase in strength, and the fine recrystallized grains It is thought that it contributes to the improvement of toughness. Thereby, it is possible to realize a high-quality constant temperature forged part capable of realizing unprecedented high strength and high toughness.
(2) A region in which deformation or stress is likely to be concentrated due to the presence of fine recrystallized grains having an average particle size of 10 nm to 1000 nm in the region of the deformed or recovered structure of the flat crystal grain or the grain boundary region of the crystal grain. Thus, it is possible to form a structure having both strength and toughness of the region where fracture starts, and in particular, fine recrystallized grains formed along crystal grain boundaries and grain boundary triple points undergo plastic deformation. As a result, the stress concentration at the grain boundary, which is the starting point of fracture, can be alleviated and the toughness of the product can be greatly improved, and a constant temperature forged part with high toughness, durability and long life can be realized.
(3) Since the tensile strength is 360 MPa or more and the elongation is 14% or more, high toughness can be realized while having high strength, and durability and long life are excellent.
(4) Tensile strength is 360 MPa or more, elongation is 14% or more, JIS H4040
Since it greatly exceeds the standard value of A6061BE-T6 (tensile strength of 265 MPa or more, elongation of 10% or more), it can be suitably used for automobile parts and the like, and the weight of the parts and the improvement of fuel consumption can be achieved. .

ここで、Al−Mg−Si系のアルミニウム合金としてはJIS規格に規定される6000系アルミニウム合金が好ましく、特にA6061やA6063が好適に用いられる。
アルミニウムの結晶粒の内、扁平状結晶粒は、変形し易い方向に原子が並んだ結晶粒が鍛造成形により押し潰されて長く伸びて扁平状に変形したものである。また、微細再結晶粒は、恒温鍛造により変形が集中した扁平状結晶粒領域や結晶粒界に、変形の程度や速度に応じて瞬時に形成される。超微細析出物は結晶粒の回復や再結晶化を抑えるが、強変形領域で再結晶した結晶粒の成長を抑制する役割を果たしていると考えられる。
例えば、従来のA6061のアルミニウム合金を冷間鍛造してT8処理したものは、平均粒径が10〜100μmの結晶粒と、平均長さが150〜200nmのMg2Siの微細析出物を含む組織であることが知られている。この鍛造品は、まず冷間鍛造により扁平状の変形結晶粒組織を形成し、これをT8処理して一部又は全部を回復結晶粒にすると共に、析出による強度上昇を図っている。
これに対し、本発明の恒温鍛造部品は、変形組織若しくは回復組織を有する扁平状結晶粒と、微細再結晶粒を瞬時にかつ同時に形成することにより、強度と靭性の両方の向上を図っている。これらの組織形成は動的析出によって形成される超微細析出物が扁平状結晶粒(変形結晶粒又は回復結晶粒)の回復あるいは再結晶を起こり難くさせ、本発明のような微細再結晶粒が形成されると考えられる。また、微細再結晶粒は強度上昇にも寄与していると考えられる。
Here, as the Al—Mg—Si based aluminum alloy, a 6000 based aluminum alloy specified in JIS standard is preferable, and A6061 and A6063 are particularly preferably used.
Of the aluminum crystal grains, the flat crystal grains are those in which atoms aligned in a direction that is easily deformed are crushed by forging to be elongated and deformed into a flat shape. Further, fine recrystallized grains are instantaneously formed in a flat crystal grain region or a grain boundary where deformation is concentrated by isothermal forging according to the degree and speed of deformation. The ultrafine precipitate suppresses the recovery and recrystallization of crystal grains, but is considered to play a role of suppressing the growth of crystal grains recrystallized in the strong deformation region.
For example, a conventional A6061 aluminum alloy that has been cold forged and treated with T8 has a structure including crystal grains having an average grain diameter of 10 to 100 μm and fine precipitates of Mg 2 Si having an average length of 150 to 200 nm. It is known that In this forged product, a flat deformed grain structure is first formed by cold forging, and this is treated with T8 to make a part or all of it a recovered crystal grain, and the strength is increased by precipitation.
On the other hand, the constant temperature forged component of the present invention aims to improve both strength and toughness by forming flat crystal grains having a deformed structure or a recovery structure and fine recrystallized grains instantaneously and simultaneously. . In the formation of these structures, the ultrafine precipitate formed by dynamic precipitation makes it difficult to recover or recrystallize flat crystal grains (deformed crystal grains or recovered crystal grains). It is thought that it is formed. In addition, the fine recrystallized grains are thought to contribute to an increase in strength.

請求項2に記載の発明は、請求項1に記載の恒温鍛造部品であって、前記結晶粒が、鍛造成形前の溶体化処理時の外形が鍛造後にも維持され母相内に厚さ10μm以下に形成された変形帯を有する粒状結晶粒を含む構成を有している。
この構成により、請求項1の作用、効果に加え、以下のような作用、効果を有する。
(1)結晶粒が、鍛造成形前の溶体化処理時の外形が維持され母相内に、厚さ10μm以下に形成された変形帯を有する粒状結晶粒を含むことにより、鍛造成型により押し潰されて長く伸びた扁平状結晶粒の鍛造比が相対的に高くなる効果を生み出し、強度と靭性を備えた複合組織を形成することができ、従来にない耐久性、長寿命性に優れた恒温鍛造部品を実現できる。
The invention described in claim 2 is the constant-temperature forged part according to claim 1, wherein the crystal grains are maintained in an outer shape during solution treatment before forging after the forging and have a thickness of 10 μm in the matrix. It has the structure containing the granular crystal grain which has the deformation | transformation zone | band formed below.
With this configuration, in addition to the operations and effects of claim 1, the following operations and effects are provided.
(1) When the crystal grains include granular crystal grains having a deformation band formed to have a thickness of 10 μm or less in the parent phase while maintaining the outer shape at the time of the solution treatment before forging, the crushing is performed by forging. It has the effect of relatively increasing the forging ratio of the flat crystal grains that have been elongated for a long time, can form a composite structure with strength and toughness, and has an unprecedented durability and long life. Forged parts can be realized.

ここで、粒状結晶粒は、変形し難い方向に原子が並んだ結晶粒であり、鍛造成形前の溶体化処理時の外形を維持しながら、それでもなお母相内に厚さ10μm以下の変形帯が形成されたものである。鍛造成形前の外形を維持した粒状結晶粒が残存することにより、扁平状結晶粒は、より厳しい変形を受けて扁平状結晶粒の鍛造比が相対的に高くなって、強度化が図られる。
尚、この変形帯の領域では双晶変形が発生している可能性もあるのではないかと推測される。
Here, the granular crystal grain is a crystal grain in which atoms are arranged in a direction in which deformation is difficult, and while maintaining the outer shape at the time of solution treatment before forging, a deformation band having a thickness of 10 μm or less is still in the matrix. Is formed. By leaving the granular crystal grains maintaining the outer shape before forging, the flat crystal grains are subjected to more severe deformation, and the forging ratio of the flat crystal grains becomes relatively high, so that the strength is enhanced.
It is assumed that twin deformation may have occurred in the region of this deformation zone.

請求項3に記載の発明は、請求項2に記載の恒温鍛造部品であって、前記微細再結晶粒が、前記粒状結晶粒の前記変形帯の領域に点在している構成を有している。
この構成により、請求項2の作用、効果に加え、以下のような作用、効果を有する。
(1)微細再結晶粒が、粒状結晶粒の変形帯の領域に点在していることにより、組織全体の強度と靭性を向上させることができ、高品質性、品質の均一性に優れる。
The invention according to claim 3 is the constant-temperature forged part according to claim 2, wherein the fine recrystallized grains are scattered in the region of the deformation band of the granular crystal grains. Yes.
With this configuration, the following functions and effects are obtained in addition to the functions and effects of the second aspect.
(1) Since the fine recrystallized grains are scattered in the region of the deformation zone of the granular crystal grains, the strength and toughness of the entire structure can be improved, and high quality and quality uniformity are excellent.

ここで、前述のように、恒温鍛造により変形が集中した扁平状結晶粒の変形領域若しくは回復組織の領域や結晶粒界には微細再結晶粒が形成されるが、粒状結晶粒の変形帯の領域にも鍛造時に歪みが集中するため、瞬時に再結晶して微細再結晶粒が形成される。   Here, as described above, fine recrystallized grains are formed in the deformed region of the flat crystal grain or the region of the recovery structure or the grain boundary where the deformation is concentrated by isothermal forging. Since strain also concentrates in the region during forging, recrystallization occurs instantaneously and fine recrystallized grains are formed.

請求項4に記載の発明は、請求項1乃至3の内いずれか1項に記載の恒温鍛造部品であって、ビッカース硬さが120以上である構成を有している。
この構成により、請求項1乃至3の内いずれか1項の作用、効果に加え、以下のような作用、効果を有する。
(1)ビッカース硬さが120以上であることにより、従来のA6061のアルミニウム合金の冷間鍛造+T6処理品の限界値であるビッカース硬さHv=110〜120を超える高強度を実現することができ、低中炭素鋼鍛工品の代替品として軽量化が可能となり、汎用性に優れる。
(2)炭素鋼S35Cの鍛鋼品の強度仕様はビッカース硬さHv=155レベルにあるが、製品部位によってはこの鍛鋼品と同等の硬さが得られるので、強度を向上させるために設計時に肉増しなどを行う必要がほとんどなく、軽量化を図ることができ、設計自在性、加工性に優れる。
The invention according to claim 4 is the constant temperature forged part according to any one of claims 1 to 3, wherein the Vickers hardness is 120 or more.
With this configuration, in addition to the operation and effect of any one of claims 1 to 3, the following operation and effect are provided.
(1) When the Vickers hardness is 120 or more, high strength exceeding the Vickers hardness Hv = 110 to 120, which is the limit value of the conventional cold forging of A6061 aluminum alloy + T6 product, can be realized. As a substitute for low- and medium-carbon steel forgings, it is possible to reduce the weight, and it has excellent versatility.
(2) The strength specification of carbon steel S35C forged steel products is at the level of Vickers hardness Hv = 155, but depending on the product part, the same hardness as this forged steel product can be obtained. There is almost no need to increase the weight, the weight can be reduced, and design flexibility and workability are excellent.

ここで、例えば、従来のA6061のアルミニウム合金を冷間鍛造してT8処理したものは、ビッカース硬さと伸びが負の相関を有するので、硬さを増すと脆くなり易く、耐衝撃性、耐久性に欠ける。
これに対して、本発明の恒温鍛造部品は、従来品に比べて硬さの増加にも関わらず、伸びを大きくすることができるので、部品の硬さを増しても脆くなることがなく、耐久性、長寿命性に優れる。
Here, for example, a conventional A6061 aluminum alloy that has been cold forged and T8 treated has a negative correlation between Vickers hardness and elongation. Therefore, when the hardness is increased, it tends to become brittle, impact resistance, and durability. Lack.
On the other hand, the constant temperature forged part of the present invention can increase the elongation in spite of the increase in hardness compared to the conventional product, so that it does not become brittle even if the hardness of the part is increased, Excellent durability and long life.

本発明の請求項5に記載の恒温鍛造部品の製造方法は、請求項1乃至4の内いずれか1項に記載の恒温鍛造部品の製造方法であって、溶体化された前記アルミニウム合金を温度調整された金型内に投入して150℃〜静的再結晶温度で鍛造成型する鍛造成型工程を備えた構成を有している。
この構成により、以下のような作用、効果を有する。
(1)溶体化されたアルミニウム合金を温度調整された金型内に投入して150℃〜静的再結晶温度で鍛造成型する鍛造成型工程を有することにより、金型内部及び金型内の金属素材の温度を所定の温度に保持して製造条件を略一定に保つことができ、ばらつきの少ない高品質な恒温鍛造部品を製造することができ、品質の信頼性、高品質性に優れる。
(2)溶体化されたアルミニウム合金を温度調整された金型内に投入して150℃〜静的再結晶温度で鍛造成型する鍛造成型工程を有することにより、従来の冷間鍛造において、強度上昇のみに着目して加工硬化と析出硬化が別々に行われていたのに対し、本発明は恒温鍛造することにより加工硬化、析出硬化、結晶粒微細化硬化による強度の上昇だけでなく、靭性までも同時に向上させることができ、鍛造成型工程後に、別途、熱処理などを行うことなく、高強度、高靭性で高品質な恒温鍛造部品を製造することができ、しかも製品の最終形状に近い形状に成型することができるので、切削などの後加工が不要で、加工工数を大幅に低減することができると共に、材料歩留まりを向上させることができ、生産性、省資源性に優れる。
The method for producing a constant temperature forged part according to claim 5 of the present invention is the method for producing a constant temperature forged part according to any one of claims 1 to 4, wherein the temperature of the solution-treated aluminum alloy is set to a temperature. It has the structure provided with the forge molding process which throws in the adjusted metal mold | die and forge-molds at 150 degreeC-static recrystallization temperature.
This configuration has the following operations and effects.
(1) By introducing a solution-cast aluminum alloy into a temperature-controlled mold and forging at a temperature of 150 ° C. to static recrystallization, the inside of the mold and the metal in the mold The manufacturing conditions can be kept substantially constant by keeping the temperature of the material at a predetermined temperature, and high-quality constant temperature forged parts with little variation can be manufactured, and the quality reliability and high quality are excellent.
(2) Increasing strength in conventional cold forging by having a forging process in which solutionized aluminum alloy is put into a temperature-controlled mold and forged at 150 ° C. to static recrystallization temperature. In contrast, work hardening and precipitation hardening were performed separately focusing on only the above, but the present invention not only increases strength by work hardening, precipitation hardening and grain refinement hardening, but also toughness by isothermal forging. At the same time, it is possible to produce high-temperature, high-toughness, high-quality constant-temperature forged parts without additional heat treatment after the forging process, and the shape is close to the final shape of the product. Since it can be molded, post-processing such as cutting is unnecessary, the number of processing steps can be greatly reduced, the material yield can be improved, and productivity and resource saving are excellent.

ここで、鍛造成型工程中は、金型の任意の位置で温度を測定監視することができるが、設定した測定位置での温度と、金型の内部の表面温度(金型内表面温度)との関係を予め求めておくことにより、金型の内部(内表面)温度を所定の温度に設定することができる。よって、金型の形状や温度などに応じて、適宜、温度の測定位置やその数を選択することができ、必ずしも金型の内部(内表面)温度を直接、測定する必要がなく、金型の外部(外表面)や金型の外表面から穿設した挿通孔の内部で熱電対などを用いて簡便かつ確実に金型の温度を測定することができる。
鍛造成型工程における加圧力は、製造する部品の形状、寸法等に応じて、適宜、選択することができるが、金型が加熱されていることにより、通常よりも加圧力を低く抑えることができ、加工速度を高速化することができる。また、その結果、金型への負担も軽減することができ、金型の長寿命化を図ることができる。
Here, during the forging process, the temperature can be measured and monitored at an arbitrary position of the mold, but the temperature at the set measurement position and the surface temperature inside the mold (internal mold surface temperature) By obtaining the relationship in advance, the internal (inner surface) temperature of the mold can be set to a predetermined temperature. Therefore, the measurement position and number of temperatures can be selected appropriately according to the shape and temperature of the mold, and it is not always necessary to directly measure the internal (inner surface) temperature of the mold. The temperature of the mold can be easily and reliably measured using a thermocouple or the like inside the outside (outer surface) or inside the insertion hole formed from the outer surface of the mold.
The pressing force in the forging process can be selected as appropriate according to the shape, dimensions, etc. of the parts to be manufactured, but the pressing force can be kept lower than usual by heating the mold. The processing speed can be increased. As a result, the burden on the mold can be reduced, and the life of the mold can be extended.

鍛造成型工程における金属素材の温度は、適宜、選択できるが、好ましくは120℃〜静的再結晶温度、より好ましくは150℃〜静的再結晶温度、さらに好ましくは150℃〜260℃である。鍛造成型工程における金属素材の温度が、150℃よりも低くなるにつれ、成型性が低下し易くなる傾向があり、260℃よりも高くなるにつれ、結晶粒の粒径が大きくなり、強度が低下し易くなる傾向がある。また、製品の大きさや形状などにもよるが、鍛造成型工程における金属素材の温度が、120℃よりも低くなると、物性の低下が著しくなって、複雑な形状を成型することが困難になり、静的再結晶温度より高くなると、組織が再配列して焼き鈍し状態になるため、いずれも好ましくない。尚、アルミニウム合金の静的再結晶温度はアルミニウム合金の種類や加工度などによって変化するが、およそ300℃前後であり、同じ合金でも加工度が高ければ静的再結晶温度が低くなる傾向がある。   Although the temperature of the metal raw material in a forge molding process can be selected suitably, Preferably it is 120 degreeC-static recrystallization temperature, More preferably, it is 150 degreeC-static recrystallization temperature, More preferably, it is 150 degreeC-260 degreeC. As the temperature of the metal material in the forging process becomes lower than 150 ° C., the moldability tends to decrease, and as it becomes higher than 260 ° C., the grain size of the crystal grains increases and the strength decreases. It tends to be easier. In addition, depending on the size and shape of the product, when the temperature of the metal material in the forging process is lower than 120 ° C., the physical properties deteriorate significantly, making it difficult to mold a complicated shape. When the temperature is higher than the static recrystallization temperature, the structure is rearranged to be in an annealed state. The static recrystallization temperature of an aluminum alloy varies depending on the type and degree of processing of the aluminum alloy, but is about 300 ° C., and the static recrystallization temperature tends to decrease if the degree of processing is high even in the same alloy. .

尚、金型の温度に基づいて、鍛造成型工程における加工速度を調整するようにすれば、加工速度が速くなり過ぎて金属素材の温度が所定の温度よりも高くなることを防止でき、製造条件の均一性に優れる。
鍛造成型工程における加工速度は、金属素材の温度や製造する部品の形状、寸法等によっても異なるが、例えば成型する部品が300g以下で、金属素材の温度が120℃〜静的再結晶温度のときの加工速度は30mm/s〜150mm/sが好ましい。
鍛造成型工程における加工速度が30mm/sより遅くなるにつれ、量産性が低下する傾向があり、150mm/sより速くなるにつれ、金属素材の温度が上昇し易くなり、所定の温度を維持することが困難になって、品質にばらつきが発生し易くなる傾向があり、いずれも好ましくない。
If the processing speed in the forging process is adjusted based on the temperature of the mold, it is possible to prevent the processing speed from becoming too high and the metal material temperature to be higher than a predetermined temperature. Excellent uniformity.
The processing speed in the forging process varies depending on the temperature of the metal material and the shape and dimensions of the parts to be manufactured. For example, when the part to be molded is 300 g or less and the temperature of the metal material is 120 ° C. to static recrystallization temperature The processing speed is preferably 30 mm / s to 150 mm / s.
As the processing speed in the forging process becomes slower than 30 mm / s, the mass productivity tends to decrease, and as the speed becomes faster than 150 mm / s, the temperature of the metal material is likely to rise and maintain a predetermined temperature. This tends to be difficult and tends to cause variations in quality, both of which are not preferred.

実施例及び比較例における金属素材の温度と引張強さとの関係を示す図The figure which shows the relationship between the temperature and tensile strength of the metal raw material in an Example and a comparative example. 実施例及び比較例における金属素材の温度と伸びとの関係を示す図The figure which shows the relationship between the temperature and elongation of a metal raw material in an Example and a comparative example. 実施例及び比較例における金属素材の温度とビッカース硬さとの関係を示す図The figure which shows the relationship between the temperature of a metal raw material in an Example and a comparative example, and Vickers hardness 実施例及び比較例におけるビッカース硬さと伸びとの相関を示す図The figure which shows the correlation of Vickers hardness and elongation in an Example and a comparative example 実施例3の恒温鍛造部品の組織を観察したEBSPの画像The image of EBSP which observed the structure | tissue of the constant temperature forge part of Example 3 実施例3の恒温鍛造部品の組織における粒状結晶粒を観察したEBSPの画像Image of EBSP in which granular crystal grains in structure of constant temperature forged part of Example 3 were observed 実施例3の恒温鍛造部品の組織における結晶粒を拡大して観察したEBSPの画像Image of EBSP observed by enlarging crystal grains in the structure of the constant temperature forged part of Example 3 実施例3の恒温鍛造部品の組織における結晶粒の粒界領域を拡大して観察したEBSPの画像EBSP image observed by enlarging the grain boundary region of the crystal grain in the structure of the constant temperature forged part of Example 3

(実施の形態1)
本発明の実施の形態1における恒温鍛造部品の製造方法について説明する。
まず、金型加熱工程により、下金型と上金型を加熱する。
下金型と上金型の加熱が開始されると、下金型及び上金型の内部の表面近側部の温度を測定監視し、測定される温度に基づいて金型の内部表面温度を所定の温度に収束させ維持するように、金型加熱工程における加熱温度を調整する。
金型は、製造する部品の形状、寸法等に応じて、80℃〜210℃に温度調整した。
下金型及び上金型の金型内部表面温度が所定の温度に収束したら、鍛造成型工程において、金属素材(Al−Mg−Si系のアルミニウム合金)を金型内に投入し、下金型と上金型で挟持した金属素材を加圧して150℃〜静的再結晶温度で鍛造成型した。鍛造成型工程における金属素材の温度が、150℃よりも低くなると、成型性が低下し易くなり、静的再結晶温度よりも高くなると、組織が再配列して焼き鈍し状態になることがわかったためである。
尚、鍛造成型工程で金型内に金属素材を投入する前に、素材加熱工程において、予め溶体化された金属素材を120℃〜静的再結晶温度に加熱した。
一度溶体化させた金属素材を120℃〜静的再結晶温度に加熱し、温度調整された金型内に投入して150℃〜静的再結晶温度で恒温鍛造することにより、加工硬化、析出硬化、結晶粒微細化硬化による強度の上昇だけでなく、靭性までも同時に向上させることができ、高強度、高靭性で高品質な恒温鍛造部品を製造することができた。
尚、鍛造成型工程における加工速度は、金属素材の温度や製造する部品の形状、寸法等に応じて、適宜、選択することができる。特に、金属素材の温度に基づいて、鍛造成型工程における加工速度を調整することにより、鍛造成型工程での加工速度が速くなり過ぎて金属素材の温度が所定の温度よりも高くなることを防止でき、製造条件の均一性に優れる。
(Embodiment 1)
A method for manufacturing a constant temperature forged part according to Embodiment 1 of the present invention will be described.
First, the lower mold and the upper mold are heated by a mold heating process.
When heating of the lower mold and the upper mold is started, the temperature near the surface inside the lower mold and the upper mold is measured and monitored, and the internal surface temperature of the mold is determined based on the measured temperature. The heating temperature in the mold heating process is adjusted so as to converge and maintain at a predetermined temperature.
The temperature of the mold was adjusted to 80 ° C. to 210 ° C. according to the shape and dimensions of the parts to be manufactured.
When the inner surface temperature of the lower mold and the upper mold converges to a predetermined temperature, in the forging process, a metal material (Al-Mg-Si based aluminum alloy) is put into the mold, and the lower mold The metal material sandwiched between the upper mold and the upper die was pressed and forged at 150 ° C. to static recrystallization temperature. It was found that when the temperature of the metal material in the forging process is lower than 150 ° C., the moldability is likely to deteriorate, and when the temperature is higher than the static recrystallization temperature, the structure is rearranged and annealed. is there.
In addition, before throwing a metal raw material in a metal mold | die in a forge molding process, the metal raw material previously solution-formed in the raw material heating process was heated to 120 degreeC-static recrystallization temperature.
The metal material once solutionized is heated to 120 ° C to static recrystallization temperature, put into a temperature-controlled mold and subjected to isothermal forging at 150 ° C to static recrystallization temperature. Not only increased strength due to hardening and grain refinement hardening, but also toughness could be improved at the same time, and high-temperature constant temperature forged parts with high strength and high toughness could be manufactured.
The processing speed in the forging process can be appropriately selected according to the temperature of the metal material, the shape and dimensions of the parts to be manufactured, and the like. In particular, by adjusting the processing speed in the forging process based on the temperature of the metal material, it is possible to prevent the processing speed in the forging process from becoming too fast and the metal material temperature from becoming higher than a predetermined temperature. Excellent in manufacturing condition uniformity.

以上のように構成された実施の形態1における恒温鍛造部品の製造方法によれば、以下の作用を有する。
(1)溶体化されたアルミニウム合金を温度調整された金型内に投入して150℃〜静的再結晶温度で鍛造成型する鍛造成型工程を有することにより、金型内部及び金型内の金属素材の温度を所定の温度に保持して製造条件を略一定に保つことができ、ばらつきの少ない高品質な恒温鍛造部品を製造することができ、品質の信頼性、高品質性に優れる。
(2)予め素材加熱工程で加熱された金属素材を温度調整された金型内に投入して鍛造成型する鍛造成型工程を有するので、金属素材が冷えることがなく、加工圧力を低減して高速加工することができ、量産性に優れる。
(3)溶体化されたアルミニウム合金を温度調整された金型内に投入して150℃〜静的再結晶温度で鍛造成型する鍛造成型工程を有することにより、従来の冷間鍛造において、強度上昇のみに着目して加工硬化と析出硬化が別々に行われていたのに対し、本発明は恒温鍛造することにより加工硬化、析出硬化、結晶粒微細化硬化による強度の上昇だけでなく、靭性までも同時に向上させることができ、鍛造成型工程後に、別途、熱処理などを行うことなく、高強度、高靭性で高品質な恒温鍛造部品を製造することができ、しかも製品の最終形状に近い形状に成型することができるので、切削などの後加工が不要で、加工工数を大幅に低減することができると共に、材料歩留まりを向上させることができ、生産性、省資源性に優れる。
According to the manufacturing method of the constant temperature forged part in Embodiment 1 comprised as mentioned above, it has the following effects.
(1) By introducing a solution-cast aluminum alloy into a temperature-controlled mold and forging at a temperature of 150 ° C. to static recrystallization, the inside of the mold and the metal in the mold The manufacturing conditions can be kept substantially constant by keeping the temperature of the material at a predetermined temperature, and high-quality constant temperature forged parts with little variation can be manufactured, and the quality reliability and high quality are excellent.
(2) Since there is a forging process in which the metal material heated in advance in the material heating process is put into a temperature-adjusted mold and forged, the metal material will not cool down and the processing pressure will be reduced and high speed will be achieved. It can be processed and has excellent mass productivity.
(3) Increasing strength in conventional cold forging by having a forging process in which a solution-treated aluminum alloy is put into a temperature-controlled mold and forged at 150 ° C. to static recrystallization temperature In contrast, work hardening and precipitation hardening were performed separately focusing on only the above, but the present invention not only increases strength by work hardening, precipitation hardening and grain refinement hardening, but also toughness by isothermal forging. At the same time, it is possible to produce high-temperature, high-toughness, high-quality constant-temperature forged parts without additional heat treatment after the forging process, and the shape is close to the final shape of the product. Since it can be molded, post-processing such as cutting is unnecessary, the number of processing steps can be greatly reduced, the material yield can be improved, and productivity and resource saving are excellent.

以上のように構成された実施の形態1における恒温鍛造部品の製造方法によって製造される恒温鍛造部品によれば、以下の作用を有する。
(1)結晶粒の少なくとも一部に鍛造成形により押し潰されて長く伸びた扁平状結晶粒が形成され、扁平状結晶粒の変形組織若しくは回復組織の領域又は結晶粒の粒界領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在する複合組織を有することにより、扁平状結晶粒の変形組織若しくは回復組織の領域が主に強度の上昇に寄与し、微細再結晶粒が強度と靭性の向上に寄与すると考えられる。これにより、従来にない高強度かつ高靭性を実現できる高品質な恒温鍛造部品を実現できる。
(2)扁平状結晶粒の変形組織若しくは回復組織の領域又は結晶粒の粒界領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在することにより、変形や応力が集中し易い領域で、破壊の起点となる領域の強度と靭性の両方を兼ね備えた組織を形成することができ、特に、結晶粒界や粒界三重点に沿って形成される微細再結晶粒は、塑性変形することにより破壊の起点となる粒界の応力集中を緩和して、製品の靭性を大きく向上させることができ、高靭性で耐久性、長寿命性に優れた恒温鍛造部品を実現できる。
(3)引張り強さが360MPa以上で、伸びが14%以上であることにより、高強度でありながら、高靭性を実現することができ、耐久性、長寿命性に優れる。
(4)引張り強さが360MPa以上で、伸びが14%以上であり、JIS H4040
A6061BE−T6の規格値(引張り強さ265MPa以上、伸び10%以上)を大きく上回っているので、自動車用部品などに好適に用いることができ、部品の軽量化、燃費の向上を図ることができる。
(5)結晶粒が、鍛造成形前の溶体化処理時の外形が維持され母相内に、厚さ10μm以下に形成された変形帯を有する粒状結晶粒を含むことにより、鍛造成型により押し潰されて長く伸びた扁平状結晶粒の鍛造比が相対的に高くなる効果を生み出し、強度と靭性を備えた複合組織を形成することができ、従来にない耐久性、長寿命性に優れた恒温鍛造部品を実現できる。
(6)微細再結晶粒が、粒状結晶粒の変形帯の領域に点在していることにより、組織全体の強度と靭性を向上させることができ、高品質性、品質の均一性に優れる。
(7)ビッカース硬さが120以上であることにより、従来のA6061のアルミニウム合金の冷間鍛造+T6処理品の限界値であるビッカース硬さHv=110〜120を超える高強度を実現することができ、低中炭素鋼鍛工品の代替品として軽量化が可能となり、汎用性に優れる。
(8)炭素鋼S35Cの鍛鋼品の強度仕様はビッカース硬さHv=155レベルにあるが、製品部位によってはこの鍛鋼品と同等の硬さが得られるので、強度を向上させるために設計時に肉増しなどを行う必要がほとんどなく、軽量化を図ることができ、設計自在性、加工性に優れる。
According to the constant-temperature forged part manufactured by the method for manufacturing a constant-temperature forged part in Embodiment 1 configured as described above, the following effects are obtained.
(1) At least a part of crystal grains is formed into flat crystal grains which are crushed and elongated by forging, and an average grain is formed in a deformed or recovered structure region of flat crystal grains or a grain boundary region of crystal grains. By having a composite structure in which fine recrystallized grains having a diameter of 10 nm to 1000 nm are scattered, the region of the deformed or recovered structure of the flat crystal grains mainly contributes to the increase in strength, and the fine recrystallized grains It is thought that it contributes to the improvement of toughness. Thereby, it is possible to realize a high-quality constant temperature forged part capable of realizing unprecedented high strength and high toughness.
(2) A region in which deformation or stress is likely to be concentrated due to the presence of fine recrystallized grains having an average particle size of 10 nm to 1000 nm in the region of the deformed or recovered structure of the flat crystal grain or the grain boundary region of the crystal grain. Thus, it is possible to form a structure having both strength and toughness of the region where fracture starts, and in particular, fine recrystallized grains formed along crystal grain boundaries and grain boundary triple points undergo plastic deformation. As a result, the stress concentration at the grain boundary, which is the starting point of fracture, can be alleviated and the toughness of the product can be greatly improved, and a constant temperature forged part with high toughness, durability and long life can be realized.
(3) Since the tensile strength is 360 MPa or more and the elongation is 14% or more, high toughness can be realized while having high strength, and durability and long life are excellent.
(4) Tensile strength is 360 MPa or more, elongation is 14% or more, JIS H4040
Since it greatly exceeds the standard value of A6061BE-T6 (tensile strength of 265 MPa or more, elongation of 10% or more), it can be suitably used for automobile parts and the like, and the weight of the parts and the improvement of fuel consumption can be achieved. .
(5) When the crystal grains include granular crystal grains having a deformation band formed to have a thickness of 10 μm or less in the parent phase while maintaining the outer shape at the time of the solution treatment before forging, the crystals are crushed by forging. It has the effect of relatively increasing the forging ratio of the flat crystal grains that have been elongated for a long time, can form a composite structure with strength and toughness, and has an unprecedented durability and long life. Forged parts can be realized.
(6) Since the fine recrystallized grains are scattered in the region of the deformation zone of the granular crystal grains, the strength and toughness of the whole structure can be improved, and high quality and quality uniformity are excellent.
(7) When the Vickers hardness is 120 or more, it is possible to realize a high strength exceeding the Vickers hardness Hv = 110 to 120, which is the limit value of the conventional cold forging of A6061 aluminum alloy + T6 processed product. As a substitute for low- and medium-carbon steel forgings, it is possible to reduce the weight, and it has excellent versatility.
(8) The strength specification of carbon steel S35C forged steel products is at the level of Vickers hardness Hv = 155, but depending on the product part, the same hardness as this forged steel product can be obtained. There is almost no need to increase the weight, the weight can be reduced, and design flexibility and workability are excellent.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施の形態1で説明した恒温鍛造部品の製造方法により、恒温鍛造部品の製造を行った。
(実施例1)
金属素材としては、アルミニウム合金(A6061−T6材)を溶体化処理(540℃で2時間加熱後水冷)したものを温度調整された金型内に投入し、金属素材の温度を170℃として、相当歪み0.5、加工速度30mm/sで鍛造成型工程を行った。
(実施例2)
鍛造成型工程における金属素材の温度を220℃とした以外は、実施例1と同様にして成型した
(比較例1)
鍛造成型工程における金属素材の温度を20℃とした以外は、実施例1と同様にして成型した
(比較例2)
鍛造成型工程における金属素材の温度を120℃とした以外は、実施例1と同様にして成型した
(実施例3)
相当歪みを1.0とした以外は、実施例1と同様にして成型した
(実施例4)
相当歪みを1.0とした以外は、実施例2と同様にして成型した
(比較例3)
鍛造成型工程における金属素材の温度を20℃とし、相当歪みを1.0とした以外は、実施例1と同様にして成型した
(比較例4)
鍛造成型工程における金属素材の温度を70℃とし、相当歪みを1.0とした以外は、実施例1と同様にして成型した
(比較例5)
鍛造成型工程における金属素材の温度を120℃とし、相当歪みを1.0とした以外は、実施例1と同様にして成型した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
The constant temperature forged part was manufactured by the method for manufacturing the constant temperature forged part described in the first embodiment.
Example 1
As a metal material, an aluminum alloy (A6061-T6 material) solution-treated (heated at 540 ° C. for 2 hours and then water-cooled) is put into a temperature-controlled mold, and the temperature of the metal material is set to 170 ° C. The forging process was performed at an equivalent strain of 0.5 and a processing speed of 30 mm / s.
(Example 2)
Molding was performed in the same manner as in Example 1 except that the temperature of the metal material in the forging process was 220 ° C. (Comparative Example 1)
Molded in the same manner as in Example 1 except that the temperature of the metal material in the forging process was 20 ° C. (Comparative Example 2)
Molding was performed in the same manner as in Example 1 except that the temperature of the metal material in the forging process was 120 ° C. (Example 3)
Molding was performed in the same manner as in Example 1 except that the equivalent strain was 1.0 (Example 4).
Molded in the same manner as in Example 2 except that the equivalent strain was 1.0 (Comparative Example 3).
Molded in the same manner as in Example 1 except that the temperature of the metal material in the forging process was 20 ° C. and the equivalent strain was 1.0 (Comparative Example 4).
Molded in the same manner as in Example 1 except that the temperature of the metal material in the forging process was 70 ° C. and the equivalent strain was 1.0 (Comparative Example 5).
Molding was performed in the same manner as in Example 1 except that the temperature of the metal material in the forging process was 120 ° C. and the equivalent strain was 1.0.

以上のようにして得られた実施例1〜4及び比較例1〜5の恒温鍛造部品から試験片を採取した。引張試験の試験片はJIS Z2201の14A号試験片に準拠し、初期平行部はφ10mm×長さ60mm、標点距離は50mmとした。JIS Z 2241「金属材料引張試験方法」に準拠して、引張強さ、伸びを測定した。測定には島津製作所製の万能試験機UH−F500kNXを使用した。また、ミツトヨ製の微小硬さ試験機HM−221を用いて試験力100gfでビッカース硬さを測定した。
その結果を表1及び図1乃至4に示す。
表1並びに図1、図2に示したように、実施例1〜4及び比較例1〜5の引張強さ及び伸びは、いずれも従来の鍛造加工品におけるJIS H4040 A6061BE−T6の規格値(引張り強さ265MPa以上、伸び10%以上)を上回る結果となった。
特に、実施例1〜4の引張強さは360MPaを超え、伸びも14%を超えており、比較例1〜5の特性を大きく改善することができた。
また、表1並びに図3に示したように、比較例1〜5のビッカース硬さが、従来のA6061のアルミニウム合金の冷間鍛造+T6処理品の限界値であるビッカース硬さHv=110〜120と同等以下であるのに対し、実施例1〜4のビッカース硬さは、これを上回る結果となった。
尚、図4に示したように、比較例1〜5と実施例1〜4のビッカース硬さと伸びとの関係を見ると、実施例1〜4は、比較例1〜5に比べ、硬さが増加しているにも関わらず、伸びが大きくなっており、部品の硬さを増しても脆くなることがなく、耐久性、長寿命性に優れるものと言える。
これらの結果から、鍛造成型工程における金属素材の温度を150℃〜静的再結晶温度とすることにより、加工硬化、析出硬化、結晶粒微細化硬化による強度の上昇だけでなく、靭性までも同時に向上させることができ、高強度、高靭性で高品質な恒温鍛造部品を製造できることがわかった。
Test pieces were collected from the constant temperature forged parts of Examples 1 to 4 and Comparative Examples 1 to 5 obtained as described above. The specimen for the tensile test was based on a JIS Z2201 No. 14A specimen, the initial parallel portion was φ10 mm × length 60 mm, and the gauge distance was 50 mm. Tensile strength and elongation were measured in accordance with JIS Z 2241 “Metal Material Tensile Test Method”. A universal testing machine UH-F500kNX manufactured by Shimadzu Corporation was used for the measurement. Further, the Vickers hardness was measured with a test force of 100 gf using a Mitutoyo micro hardness tester HM-221.
The results are shown in Table 1 and FIGS.
As shown in Table 1 and FIGS. 1 and 2, the tensile strength and elongation of Examples 1 to 4 and Comparative Examples 1 to 5 are both standard values of JIS H4040 A6061BE-T6 in conventional forged products ( The tensile strength was 265 MPa or more and the elongation was 10% or more.
In particular, the tensile strengths of Examples 1 to 4 exceeded 360 MPa and the elongation exceeded 14%, and the characteristics of Comparative Examples 1 to 5 could be greatly improved.
Further, as shown in Table 1 and FIG. 3, the Vickers hardness of Comparative Examples 1 to 5 is the limit value of the conventional A6061 aluminum alloy cold forging + T6 treated product. However, the Vickers hardness of Examples 1 to 4 exceeded this value.
In addition, as shown in FIG. 4, when the relationship between Vickers hardness and elongation of Comparative Examples 1 to 5 and Examples 1 to 4 is seen, Examples 1 to 4 are harder than Comparative Examples 1 to 5. However, even if the hardness of the component is increased, it does not become brittle and it can be said that it has excellent durability and long life.
From these results, by setting the temperature of the metal material in the forging process to 150 ° C. to static recrystallization temperature, not only the increase in strength due to work hardening, precipitation hardening, and grain refinement hardening, but also toughness at the same time. It was found that high-quality constant temperature forged parts can be manufactured with high strength and toughness.

図5は、実施例3の恒温鍛造部品の組織を観察したEBSPの画像であり、図6は、実施例3の恒温鍛造部品の組織における粒状結晶粒を観察したEBSPの画像であり、図7は、実施例3の恒温鍛造部品の組織における結晶粒を拡大して観察したEBSPの画像であり、図8は、実施例3の恒温鍛造部品の組織における結晶粒の粒界領域を拡大して観察したEBSPの画像である。
図5より、実施例3の恒温鍛造部品の組織中には、鍛造成形により押し潰されて長く伸びた扁平状結晶粒が存在していることがわかった。
また、図6より、実施例3の恒温鍛造部品の組織中には、破線で囲まれたa1,a2のように、鍛造成形前の溶体化処理時の外形が鍛造後にも維持された粒状結晶粒も見られるが、その母相内にはb1,b2で指し示したような厚さ10μm以下の変形帯が形成されたものが存在していることがわかった。
さらに、図7より、結晶粒を拡大してみると、破線で囲まれたa3の結晶粒の母相内やc1〜c3のような扁平状結晶粒の変形組織若しくは回復組織の領域又は変形帯の領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在していることがわかった。
また、図8より、結晶粒の粒界領域を拡大してみると、a4の結晶粒のように、破線で囲まれたd1,d2の粒界領域にも、平均粒径が10nm〜1000nmの微細再結晶粒が点在していることがわかった。
このように、実施例3の恒温鍛造部品の組織は、基本的には強変形結晶粒又は回復結晶粒(変形組織若しくは回復組織の領域を有する扁平状結晶粒や変形帯を有する粒状結晶粒)、及び微細結晶粒から構成されている。強変形結晶粒や回復結晶粒は主に強度の向上に寄与し、微細結晶粒は強度の向上のみならず靭性の向上にも寄与している。
FIG. 5 is an EBSP image obtained by observing the structure of the constant temperature forged part of Example 3, and FIG. 6 is an EBSP image obtained by observing granular crystal grains in the structure of the constant temperature forged part of Example 3. FIG. 8 is an image of EBSP observed by enlarging the crystal grains in the structure of the constant temperature forged part of Example 3, and FIG. 8 is an enlarged view of the grain boundary region of the crystal grains in the structure of the constant temperature forged part of Example 3. It is the image of the observed EBSP.
From FIG. 5, it was found that in the structure of the constant temperature forged part of Example 3, flat crystal grains that were crushed by the forging and extended long were present.
Moreover, from FIG. 6, in the structure of the constant temperature forged part of Example 3, granular crystals in which the outer shape at the time of solution treatment before forging is maintained after forging, as indicated by a1 and a2 surrounded by broken lines. Grains are also observed, but it was found that there were those in which a deformation band having a thickness of 10 μm or less as indicated by b1 and b2 was formed in the matrix.
Further, from FIG. 7, when the crystal grains are enlarged, the deformation structure or the recovery zone of the deformation structure or the recovery structure of the flat crystal grains such as c1 to c3 in the matrix of the a3 crystal grains surrounded by the broken line It was found that fine recrystallized grains having an average grain size of 10 nm to 1000 nm are scattered in the region of.
Further, from FIG. 8, when the grain boundary region of the crystal grains is enlarged, the average grain size is 10 nm to 1000 nm in the grain boundary regions d1 and d2 surrounded by the broken line like the crystal grain a4. It was found that fine recrystallized grains were scattered.
Thus, the structure of the constant temperature forged part of Example 3 is basically a strongly deformed crystal grain or a recovered crystal grain (flat crystal grains having a deformed structure or a region of recovered structure or granular crystal grains having a deformed zone). And fine crystal grains. Strongly deformed crystal grains and recovery crystal grains mainly contribute to improvement of strength, and fine crystal grains contribute not only to improvement of strength but also to toughness.

以上のように、本実施例によれば、従来のような鍛造加工後の熱処理を行うことなく、それを超える機械的強度が得られることがわかった。また、従来の鍛造成形品では、強さとしなやかさを兼ね備えることは困難であったが、本実施例によれば、極めて優れた強さとしなやかさを有する恒温鍛造部品を実現できることがわかった。
これらの結果は、組織観察の結果からも明らかなように、強度を受け持つ変形結晶粒又は回復結晶粒と、強度及び靭性を受け持つ微細結晶粒を形成せしめたことによるものと考えられる。
尚、実施例1乃至4ではJIS規格のA6061を用いたが、A6063やその他の6000系などのAl−Mg−Si系のアルミニウム合金であれば、同様の組織を形成することができ、強度及び靭性を向上させることができるものと思われる。
As described above, according to this example, it was found that a mechanical strength exceeding that can be obtained without performing the heat treatment after forging as in the prior art. In addition, it has been difficult to combine strength and flexibility with a conventional forged product, but it has been found that a constant temperature forged part having extremely excellent strength and flexibility can be realized according to this example.
These results are considered to be due to the formation of deformed or recovered crystal grains responsible for the strength and fine crystal grains responsible for the strength and toughness, as is apparent from the results of the structure observation.
In Examples 1 to 4, JIS standard A6061 was used. However, A6063 and other 6000 series Al—Mg—Si based aluminum alloys can form the same structure, and the strength and It seems that toughness can be improved.

本発明は、少なくとも一部に形成された扁平状結晶粒と微細再結晶粒が点在する複合組織を有することにより、アルミニウム合金製部品でありながら、従来の鋼製部品と同等以上の高強度、高靭性を実現できる高品質な恒温鍛造部品の提供、及び結晶粒を微細化することにより、高い強度と靭性を併せ持つ高品質な部品を高速加工することができる量産性に優れた恒温鍛造部品の製造方法の提供を行うことにより、アルミニウム合金製の恒温鍛造部品を高品質で安定供給することができ、自動車、電力機器、住宅関連設備などの各種金属製部品の高品質化、軽量化に貢献することができる。   The present invention has a composite structure in which flat crystal grains and fine recrystallized grains formed at least in part are scattered, so that the strength is equal to or higher than that of conventional steel parts while being an aluminum alloy part. Providing high-quality constant-temperature forged parts that can achieve high toughness, and by refining crystal grains, high-temperature constant-temperature forged parts that can process high-quality parts that have both high strength and toughness at high speed By providing this manufacturing method, it is possible to stably supply high-temperature forged parts made of aluminum alloy with high quality, and to improve the quality and weight of various metal parts such as automobiles, power equipment, and housing-related equipment. Can contribute.

Claims (5)

Al−Mg−Si系のアルミニウム合金を恒温鍛造して製造される恒温鍛造部品であって、
結晶粒の少なくとも一部に鍛造成形により押し潰されて長く伸びた扁平状結晶粒が形成され、前記扁平状結晶粒の変形組織若しくは回復組織の領域又は前記結晶粒の粒界領域に平均粒径が10nm〜1000nmの微細再結晶粒が点在する複合組織を有し、
引張り強さが360MPa以上で、伸びが14%以上であることを特徴とする恒温鍛造部品。
A constant-temperature forged part produced by constant-temperature forging of an Al-Mg-Si-based aluminum alloy,
At least part of the crystal grains are formed by flattened flat crystal grains that are crushed by forging, and have an average grain size in the deformed or recovered structure region of the flat crystal grains or in the grain boundary region of the crystal grains. Has a composite structure interspersed with fine recrystallized grains of 10 nm to 1000 nm,
A constant-temperature forged part having a tensile strength of 360 MPa or more and an elongation of 14% or more.
前記結晶粒が、鍛造成形前の溶体化処理時の外形が鍛造後にも維持され母相内に厚さ10μm以下に形成された変形帯を有する粒状結晶粒を含むことを特徴とする請求項1に記載の恒温鍛造部品。 2. The crystal grains include granular crystal grains having a deformation band formed to have a thickness of 10 [mu] m or less in a parent phase, wherein an outer shape at the time of solution treatment before forging is maintained after forging. Constant temperature forged parts as described in 前記微細再結晶粒が、前記粒状結晶粒の前記変形帯の領域に点在していることを特徴とする請求項2に記載の恒温鍛造部品。 The isothermal forged part according to claim 2, wherein the fine recrystallized grains are scattered in the region of the deformation band of the granular crystal grains. ビッカース硬さが120以上であることを特徴とする請求項1乃至3の内いずれか1項に記載の恒温鍛造部品。 The constant temperature forged part according to any one of claims 1 to 3, wherein the Vickers hardness is 120 or more. 請求項1乃至4の内いずれか1項に記載の恒温鍛造部品の製造方法であって、
溶体化された前記アルミニウム合金を温度調整された金型内に投入して150℃〜静的再結晶温度で鍛造成型する鍛造成型工程を備えたことを特徴とする恒温鍛造部品の製造方法。
A method for producing a constant temperature forged part according to any one of claims 1 to 4,
A method for producing a constant temperature forged part, comprising a forging process in which the aluminum alloy solution is put into a temperature-controlled mold and forged at a temperature of 150 ° C. to a static recrystallization temperature.
JP2013228594A 2013-11-01 2013-11-01 Constant temperature forged parts and method for producing constant temperature forged parts Active JP6100675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228594A JP6100675B2 (en) 2013-11-01 2013-11-01 Constant temperature forged parts and method for producing constant temperature forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228594A JP6100675B2 (en) 2013-11-01 2013-11-01 Constant temperature forged parts and method for producing constant temperature forged parts

Publications (2)

Publication Number Publication Date
JP2015085381A true JP2015085381A (en) 2015-05-07
JP6100675B2 JP6100675B2 (en) 2017-03-22

Family

ID=53048760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228594A Active JP6100675B2 (en) 2013-11-01 2013-11-01 Constant temperature forged parts and method for producing constant temperature forged parts

Country Status (1)

Country Link
JP (1) JP6100675B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137284A (en) * 2008-11-13 2010-06-24 Tobata Turret Kosakusho:Kk Isothermal forging method and isothermal forging device
JP2011214093A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Aluminum alloy forging and method for manufacturing same
JP2013142168A (en) * 2012-01-11 2013-07-22 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in creep resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137284A (en) * 2008-11-13 2010-06-24 Tobata Turret Kosakusho:Kk Isothermal forging method and isothermal forging device
JP2011214093A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Aluminum alloy forging and method for manufacturing same
JP2013142168A (en) * 2012-01-11 2013-07-22 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in creep resistance

Also Published As

Publication number Publication date
JP6100675B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
TWI619816B (en) Thermo-mechanical processing of nickel-titanium alloys
JP6368087B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member
CN104726746B (en) High-strength metastable beta-type titanium alloy bar and production method thereof
JP5756091B2 (en) Method for producing aluminum alloy forged member
US9297059B2 (en) Method for the manufacture of wrought articles of near-beta titanium alloys
Qiu et al. Microstructures and mechanical properties of titanium alloy connecting rod made by powder forging process
JP6348466B2 (en) Aluminum alloy extruded material and method for producing the same
RU2555267C2 (en) Method of fabrication of thin sheets from two-phase titanium alloy and product from these sheets
JP5527498B2 (en) Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate
CN107955893A (en) A kind of method for forging and molding of aluminium alloy knuckle
JP2017534762A (en) Aluminum alloy product and preparation method
JP6079294B2 (en) Free forging method of Ni-base heat-resistant alloy member
CN105102646A (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
CN106795595A (en) Isotropism aluminum bronze lithium alloy plate for manufacturing airframe
JP2014161861A5 (en)
KR20200003261A (en) A process for warm forming an age hardenable aluminum alloy in t4 temper
JP2011099140A (en) Magnesium alloy and method for producing the same
JP2016209895A (en) Constant temperature forged component and manufacturing method for constant temperature forged component
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP2017078216A (en) Manufacturing method of heat resistant aluminum alloy material
JP2004322206A (en) Method for manufacturing magnesium alloy billet for semi-solidified forming
JP5941070B2 (en) Method for producing titanium alloy having high strength and high formability, and titanium alloy using the same
JP6100675B2 (en) Constant temperature forged parts and method for producing constant temperature forged parts
JP5588884B2 (en) Magnesium alloy forged piston manufacturing method and magnesium alloy forged piston
JP5316982B2 (en) High-strength molded article made of ultrafine grained steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160831

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250