JP2014161861A5 - - Google Patents

Download PDF

Info

Publication number
JP2014161861A5
JP2014161861A5 JP2013033885A JP2013033885A JP2014161861A5 JP 2014161861 A5 JP2014161861 A5 JP 2014161861A5 JP 2013033885 A JP2013033885 A JP 2013033885A JP 2013033885 A JP2013033885 A JP 2013033885A JP 2014161861 A5 JP2014161861 A5 JP 2014161861A5
Authority
JP
Japan
Prior art keywords
phase
forging
resistant alloy
amount
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013033885A
Other languages
Japanese (ja)
Other versions
JP6079294B2 (en
JP2014161861A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013033885A priority Critical patent/JP6079294B2/en
Priority claimed from JP2013033885A external-priority patent/JP6079294B2/en
Publication of JP2014161861A publication Critical patent/JP2014161861A/en
Publication of JP2014161861A5 publication Critical patent/JP2014161861A5/ja
Application granted granted Critical
Publication of JP6079294B2 publication Critical patent/JP6079294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

Ni基耐熱合金部材の自由鍛造加工方法Free forging method of Ni-base heat-resistant alloy member

この発明はNi基耐熱合金部材の自由鍛造加工方法に関する。   The present invention relates to a free forging method for a Ni-base heat-resistant alloy member.

Ni基耐熱合金は、高温における高い引張強度,疲労強度の要求される航空機エンジンや、発電用タービンディスク等に広く使用されている。インコネル(登録商標)718はその代表的なもので、0.04C-19.0Cr-52.5Ni-3.05Mo-5.13Nb-0.90Ti-0.50Al-18.5Feの組成を有している。   Ni-base heat-resistant alloys are widely used in aircraft engines, turbine turbines for power generation, and the like that require high tensile strength and fatigue strength at high temperatures. Inconel (registered trademark) 718 is a typical example, and has a composition of 0.04C-19.0Cr-52.5Ni-3.05Mo-5.13Nb-0.90Ti-0.50Al-18.5Fe.

Ni基耐熱合金から成る部材の高温引張強度や衝撃特性,疲労特性等の機械的特性は、Ni基耐熱合金の結晶粒の粒度に左右され、結晶粒が微細で均一であるほど機械的特性は高くなる。
Ni基耐熱合金はオーステナイト単相材料であるため、相変態を利用した結晶粒微細化ができず、再結晶温度以上の温度での熱間鍛造及びその後の加熱保持により結晶を再結晶させ且つその際の再結晶粒の成長を抑制することで結晶粒を微細化する手法が用いられている。
The mechanical properties of Ni-base heat-resistant alloys such as high-temperature tensile strength, impact properties, and fatigue properties depend on the crystal grain size of the Ni-base heat-resistant alloys. Get higher.
Since Ni-base heat-resistant alloys are austenite single-phase materials, crystal grains cannot be refined using phase transformation, and crystals are recrystallized by hot forging at a temperature higher than the recrystallization temperature and subsequent heating and holding. A technique for refining crystal grains by suppressing the growth of recrystallized grains at the time is used.

その1つとして、δ相と呼ばれる金属間化合物NiNbを析出処理した後、δ相固溶温度以下で鍛造(熱間鍛造)工程を実施し、析出したδ相によるピン止め効果(ピンニング効果)によって再結晶の結晶粒を微細化する手法が従来公知である。
下記特許文献1には、この手法によってNi基耐熱合金の結晶粒を微細化する技術が開示されている。
As one of them, after precipitating the intermetallic compound Ni 3 Nb called δ phase, the forging (hot forging) process is carried out below the δ phase solid solution temperature, and the pinning effect (pinning effect) by the precipitated δ phase The method of refining the recrystallized crystal grains is conventionally known.
Patent Document 1 listed below discloses a technique for refining crystal grains of a Ni-base heat-resistant alloy by this method.

δ相によるピン止め効果については下記特許文献2にも開示されている。即ち特許文献2には、Ni基耐熱合金の鍛造加工において、加熱温度が高過ぎると粒界をピンニングする作用がある金属間化合物(δ相)の微粒子がマトリックス中に固溶するために、再結晶粒の粒成長が起る旨の記載がなされている。   The pinning effect by the δ phase is also disclosed in Patent Document 2 below. That is, Patent Document 2 discloses that in the forging process of a Ni-base heat-resistant alloy, fine particles of an intermetallic compound (δ phase) having a function of pinning grain boundaries when the heating temperature is too high are dissolved in the matrix. There is a description that grain growth of crystal grains occurs.

特許文献1は、δ相の析出により結晶粒を微細化する方法を、型打鍛造のような速い歪速度で大きな鍛造比をかける製造法に適用した場合、鍛造中に部材の一部がδ相の固溶温度以上に昇温してしまうことで、全体に亘って微細粒を得ることが難しい問題があるとして、鍛造途中に被鍛造物の温度がδ相固溶温度を超えないように一旦鍛造を中断し、再度加熱して鍛造すること、また鍛造を数回に分けると、一度で行う場合に比べて結晶粒微細化の駆動力が小さくなるので、素材として結晶粒度を予めASTM No.6以上に微細化したものを用いることを開示している。
但しそこには、仕上げ鍛造工程前において、最終的に狙いとする結晶粒度との関係でどれだけのδ相を初期δ相として析出させておくかの点については開示されていない。
In Patent Document 1, when a method of refining crystal grains by precipitation of a δ phase is applied to a manufacturing method in which a large forging ratio is applied at a high strain rate such as stamping forging, a part of the member is δ during forging. As the temperature rises above the solid solution temperature of the phase, there is a problem that it is difficult to obtain fine particles throughout, so that the temperature of the forged product does not exceed the δ phase solid solution temperature during forging Once forging is interrupted and heated again to forge, and when forging is divided into several times, the driving force for crystal grain refinement becomes smaller than when it is performed once. . It discloses the use of a finer product of 6 or more.
However, there is no disclosure of how much δ phase is precipitated as the initial δ phase in relation to the final target grain size before the final forging step.

特許文献1にも言及されているように、鍛造(仕上げ鍛造)によって結晶粒を微細化する上で問題となる点として、鍛造開始前の被鍛造材の結晶粒度の問題がある。   As mentioned in Patent Document 1, there is a problem of the crystal grain size of the material to be forged before the start of forging as a problem when miniaturizing crystal grains by forging (finish forging).

図9は、鍛造及びその後の加熱によってどのように再結晶が生じ且つ成長するかを模式的に表している。
同図に示しているように鍛造によって結晶粒は変形を生じ、そして変形した結晶粒の粒界に沿って再結晶粒が生成する。
生成した再結晶粒はその後成長し、次第に大きくなって行くが、初期結晶粒が粗大であると、その芯部に至るまで再結晶による結晶成長が及ばずに、芯部が未再結晶部分(ハッチで示す部分)として残り易い。
特に、一般に1回の鍛造で済ませてしまう型鍛造の場合はこうした問題を生じ易い。
FIG. 9 schematically shows how recrystallization occurs and grows by forging and subsequent heating.
As shown in the figure, the crystal grains are deformed by forging, and recrystallized grains are generated along the grain boundaries of the deformed crystal grains.
The generated recrystallized grains then grow and gradually increase. However, if the initial crystal grains are coarse, the core does not reach the core and crystal growth due to recrystallization does not reach, and the core is not recrystallized ( It is easy to remain as a hatched part).
In particular, such a problem is likely to occur in the case of die forging that generally requires only one forging.

これに対して、通常同じ個所に何回も打撃を加え、歪みを与える自由鍛造では、再結晶粒の粒界からの再結晶生成が繰り返されるため、再結晶した領域が拡大し、結晶粒をより効果的に微細化し易いし、また未再結晶部分を消失させ易い。
この意味において、結晶粒を微細且つ均一とする上で自由鍛造は望ましい鍛造方法である。
In contrast, in free forging, in which the same portion is usually hit several times and strain is applied, recrystallization is repeated from the grain boundaries of the recrystallized grains. It is easy to make it finer more effectively, and it is easy to lose unrecrystallized parts.
In this sense, free forging is a desirable forging method for making the crystal grains fine and uniform.

前述したように、δ相のピン止め効果を利用して結晶粒を微細化する技術は従来知られた技術であるが、仕上げ鍛造工程前のδ相の析出量と結晶粒の微細化の程度との関係に着眼し、δ相の析出量を制御することで最終的に得られる結晶粒の粒度を制御する技術に関しては従来提案されていない。
即ち、δ相析出処理を行って結晶粒を微細化するにしても、δ相の析出量が過少であれば結晶粒を十分に微細化することが難しいと考えられる。
かといってδ相の析出量が過剰であれば結晶粒を過剰に微細化してしまう可能性がある。
結晶粒が微細であるほど引張強度,衝撃強度,疲労強度等の機械的特性は良くなるものの、高温クリープ強度については結晶粒が過剰に微細であると却って特性が劣化することが知られている。
またδ相析出処理によって生成する初期δ相は針状形態であり、この針状のδ相が最後まで残ってしまうと機械的特性を却って損なってしまう問題が生ずる。
しかるに従来、こうした観点に基づく結晶粒微細化の制御については報告がなされていない。
As described above, the technology for refining crystal grains using the pinning effect of the δ phase is a conventionally known technology, but the amount of precipitation of the δ phase and the degree of crystal grain refinement before the final forging process. The technology for controlling the grain size of the finally obtained crystal by controlling the amount of precipitation of the δ phase is not conventionally proposed.
That is, even if the δ phase precipitation treatment is performed to refine the crystal grains, it is considered difficult to sufficiently refine the crystal grains if the amount of precipitation of the δ phase is too small.
However, if the amount of precipitation of the δ phase is excessive, the crystal grains may be excessively refined.
Although the mechanical properties such as tensile strength, impact strength, and fatigue strength improve as the crystal grains become finer, it is known that the high temperature creep strength deteriorates when the crystal grains are excessively fine. .
In addition, the initial δ phase generated by the δ phase precipitation treatment has a needle-like form, and if this needle-like δ phase remains until the end, there arises a problem that mechanical characteristics are lost.
However, there has been no report on control of crystal grain refinement based on such a viewpoint.

尚本発明に対する他の先行技術として、下記特許文献3には「Ni基合金の鍛伸方法」についての発明が示され、そこにおいてNi基合金のインゴットからビレットを製造する方法として、加工用素材の送り方向と直交方向の1回の打撃による圧縮量を小さくして微小変形を累積して与えるようにし、1回目の打撃位置と次の打撃位置とをシフトさせて、鍛伸送り方向断面の結晶粒径の均一化を図るようにした点が開示されている。
しかしながらこの特許文献3に記載のものは、δ相によるピン止め効果にて結晶粒を微細化する点の開示はなく、本発明とは異なった別異のものである。
As another prior art to the present invention, the following Patent Document 3 discloses an invention about a “Ni-base alloy forging / stretching method”, in which a processing material is used as a method for producing a billet from a Ni-base alloy ingot. The amount of compression caused by one stroke in the direction perpendicular to the feed direction is made small and cumulative deformation is applied, and the first strike position and the next strike position are shifted, and the cross section of the forge and stretch feed direction It is disclosed that the crystal grain size is made uniform.
However, the one described in Patent Document 3 is not different from the present invention in that there is no disclosure of the point that the crystal grains are refined by the pinning effect by the δ phase.

特開平6−293946号公報JP-A-6-293946 特開2008−200730号公報Japanese Patent Laid-Open No. 2008-200320 特開2003−251429号公報JP 2003-251429 A

本発明は以上のような事情を背景とし、δ相によるピン止め効果によって結晶粒を微細化するに際し、Ni基耐熱合金部材の結晶粒を所望の結晶粒に容易に制御することのできるNi基耐熱合金部材の自由鍛造加工方法を提供することを目的としてなされたものである。   The present invention is based on the above circumstances, and when the crystal grains are refined by the pinning effect by the δ phase, the Ni-base heat-resistant alloy member can easily control the crystal grains to the desired crystal grains. It is made for the purpose of providing the free forging method of a heat-resistant alloy member.

而して請求項1のものは、質量%でNi:50〜55%,Cr:17〜21%,Al:0.2〜0.8%,Ti:0.6〜1.2%,Nb:4.7〜5.6%,Mo:2.8〜3.3%,Co:≦1.0%,C+Si+Mn+P+S+Cu+B:≦1.1%,残部Feの組成を有するNi基耐熱合金から成る被鍛造材に対して、δ相を針状に析出させるδ相析出処理を行い、しかる後、δ相析出処理した被鍛造材を920〜1025℃未満で1〜36hr加熱して、前記析出した針状のδ相を分断を伴って部分的に固溶させ、δ相の析出量を調整するδ相の初期量調整処理を実施し、その後において、再結晶温度以上で且つ合計圧下率33%以上で打撃を加える自由鍛造と再加熱とを少なくとも1回以上繰り返す仕上げ鍛造工程を実施し、結晶粒が微細化されたNi基耐熱合金部材を得ることを特徴とする。   Thus, in the first aspect, Ni: 50 to 55%, Cr: 17 to 21%, Al: 0.2 to 0.8%, Ti: 0.6 to 1.2%, Nb: 4.7 to 5.6%, Mo: 2.8-3.3%, Co: ≤1.0%, C + Si + Mn + P + S + Cu + B: ≤1.1%, δ phase precipitation treatment for depositing δ phase in a needle shape for Ni-base heat-resistant alloy having the remaining Fe composition Thereafter, the forged material subjected to the δ phase precipitation treatment is heated at 920 to less than 1025 ° C. for 1 to 36 hours to partially dissolve the precipitated needle-like δ phase with separation, thereby precipitating the δ phase. A final forging process in which an initial amount adjusting process of the δ phase for adjusting the amount is performed, and thereafter, the free forging and reheating at which the striking is performed at a recrystallization temperature or more and a total reduction ratio of 33% or more is repeated at least once. It is carried out to obtain a Ni-based heat-resistant alloy member with refined crystal grains.

請求項2は、請求項1において、前記δ相析出処理は800〜1020℃の温度範囲且つ0.1〜36hrの時間範囲で行うことを特徴とする。A second aspect of the present invention is characterized in that, in the first aspect, the δ phase precipitation treatment is performed in a temperature range of 800 to 1020 ° C. and a time range of 0.1 to 36 hr.

請求項3は、請求項1,2の何れかにおいて、前記再加熱は920〜980℃の温度範囲で行うことを特徴とする。According to a third aspect of the present invention, in any one of the first and second aspects, the reheating is performed in a temperature range of 920 to 980 ° C.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、Ni:50〜55%,Cr:17〜21%,Al:0.2〜0.8%,Ti:0.6〜1.2%,Nb:4.7〜5.6%,Mo:2.8〜3.3%,Co:≦1.0%,C+Si+Mn+P+S+Cu+B:≦1.1%,残部Feの組成を有する、インコネル718相当材から成るNi基耐熱合金部材を得るための鍛造加工方法に関するものである。   As described above, the present invention includes Ni: 50 to 55%, Cr: 17 to 21%, Al: 0.2 to 0.8%, Ti: 0.6 to 1.2%, Nb: 4.7 to 5.6%, Mo: 2.8 to 3.3%, The present invention relates to a forging method for obtaining a Ni-base heat-resistant alloy member made of an Inconel 718 equivalent material having a composition of Co: ≦ 1.0%, C + Si + Mn + P + S + Cu + B: ≦ 1.1%, and the balance Fe.

かかる本発明によれば、Ni基耐熱合金部材の最終の結晶粒度を容易に所望の粒度とすることができる。
特に本発明によれば、Ni基耐熱合金部材の全体の最終の結晶粒度をASTM No.8以上とすることが可能である。
According to the present invention, the final crystal grain size of the Ni-base heat-resistant alloy member can be easily set to a desired grain size.
In particular, according to the present invention, the final crystal grain size of the entire Ni-base heat-resistant alloy member can be set to ASTM No. 8 or more.

(被鍛造材の固溶化熱処理)
本発明では、被鍛造材(鍛造素材)に予めST処理(固溶化熱処理)を施しておく。そのST処理は、被鍛造材を得る際の加工時に併せて行っておくことができる。
その加工は、1050℃〜1120℃で行うことが望ましい。
1050℃よりも低い温度であると固溶化を良好に行うことができない。また加工時に割れ等を起してしまい加工を良好にできない。
一方1200℃を超える高い温度であると材料が溶けてしまう。
(Solution heat treatment of forged materials)
In the present invention, ST treatment (solution heat treatment) is performed in advance on the material to be forged (forged material). The ST treatment can be performed together with the processing for obtaining the material to be forged.
The processing is desirably performed at 1050 ° C to 1120 ° C.
If the temperature is lower than 1050 ° C., solid solution cannot be performed satisfactorily. In addition, cracking or the like occurs during processing, and processing cannot be performed satisfactorily.
On the other hand, the material melts at a high temperature exceeding 1200 ° C.

本発明ではまた、被鍛造材の結晶粒度を予め所定粒度に調整しておく。その結晶粒度の調整は、被鍛造材を得るための上記の加工時に併せて行うことができる。具体的には加工時の加熱温度と加熱時間,加工量等の条件を適宜調節することで結晶粒度の調整を行うことができる。
その被鍛造材(鍛造素材)の結晶粒度は、最終の結晶粒度としてASTM No.8以上とする場合にはASTM No.4以上としておくことが望ましい。
In the present invention, the crystal grain size of the material to be forged is previously adjusted to a predetermined grain size. The adjustment of the crystal grain size can be performed together with the above-described processing for obtaining the forged material. Specifically, the crystal grain size can be adjusted by appropriately adjusting conditions such as the heating temperature and heating time during processing and the processing amount.
The crystal grain size of the material to be forged (forging material) is ASTM No. In case of 8 or more, ASTM No. It is desirable to set it to 4 or more.

(δ相析出処理)
本発明では、仕上げ鍛造工程前にδ相の析出処理を行う。
ここで言うδ相の析出処理は、固溶状態からδ相の金属間化合物NiNbを析出させる処理で、このδ相析出処理により針状のδ相が結晶粒の粒内,粒界に析出する。
ここでδ相析出処理は800〜1020℃の温度範囲,0.1〜36hrの時間範囲で行うことができる。
温度が高過ぎるとδ相の析出量が不十分となり、一方低過ぎるとδ相の析出量が過剰量となってしまう。
本発明ではδ相を粒界,粒内に合計で2%(体積%)以上,13%以下析出させておくことが望ましい。
好適には915℃×36hrの条件の下でこのδ相の析出処理を行う。
(Δ phase precipitation treatment)
In the present invention, the δ phase is deposited before the finish forging step.
The δ phase precipitation treatment mentioned here is a treatment for precipitating the δ phase intermetallic compound Ni 3 Nb from a solid solution state, and this δ phase precipitation treatment causes the needle-like δ phase to enter the grain boundaries and grain boundaries. Precipitate.
Here, the δ phase precipitation treatment can be performed in a temperature range of 800 to 1020 ° C. and a time range of 0.1 to 36 hr.
If the temperature is too high, the amount of precipitation of the δ phase will be insufficient, while if it is too low, the amount of precipitation of the δ phase will be excessive.
In the present invention, it is desirable that the δ phase is precipitated in a total of 2% (volume%) or more and 13% or less in the grain boundaries and grains.
Preferably, the δ phase is precipitated under the condition of 915 ° C. × 36 hr.

(δ相の初期量調節処理)
本発明では、上記のδ相析出処理の後において、δ相の初期量調整処理を行う。
具体的には、先のδ相析出処理によって析出した針状のδ相を、加熱によりその分断を伴って部分的に固溶させ、δ相の量を減量調整する。即ち仕上げ鍛造工程前のδ相の初期量を適正量に調整する。
このδ相の初期量調整処理は、本発明において特徴的な処理である。
この処理は、最終的に得られるNi基耐熱合金部材の結晶粒の細かさと、仕上げ鍛造工程前のδ相の初期量との間に密接な因果関係があり、δ相の初期量が、最終的に得られる結晶粒の細かさを決定する大きな要因となるとの知見の下に、本発明において実施されるものである。
(Δ phase initial amount adjustment processing)
In the present invention, the initial amount adjustment process of the δ phase is performed after the δ phase precipitation process.
Specifically, the needle-like δ phase precipitated by the previous δ phase precipitation treatment is partly solid-solved by heating and divided, and the amount of δ phase is adjusted to decrease. That is, the initial amount of the δ phase before the finish forging process is adjusted to an appropriate amount.
This initial amount adjustment process of the δ phase is a characteristic process in the present invention.
This treatment has a close causal relationship between the fineness of the crystal grain of the finally obtained Ni-base heat-resistant alloy member and the initial amount of the δ phase before the finish forging step, and the initial amount of the δ phase is the final amount. It is carried out in the present invention under the knowledge that it is a major factor that determines the fineness of the crystal grains that are obtained.

このδ相の初期量調整処理によってその一部が部分固溶したδ相は、未だ針状形態を保ったままで合金中に残留する。
残留した針状のδ相は、後に述べるようにその後の仕上げ鍛造工程における鍛造-再加熱で更に分断、固溶して微細に球状化して行き、そして微細化した球状のδ相がピン止め効果を発揮して、鍛造-再加熱における再結晶の粒成長を抑制する。
その際に微細且つ球状となったδ相の量が多ければ、再結晶粒の粒成長に対する抑制効果が大となり、逆に少なければ抑制効果は小となる。
The δ phase, a part of which is partly dissolved by the initial amount adjustment processing of the δ phase, remains in the alloy while still maintaining the needle-like form.
As will be described later, the remaining needle-like δ phase is further divided by forging and reheating in the subsequent finishing forging process, and then solid-dissolved to form a fine spheroid, and the refined spherical δ phase has a pinning effect. To suppress grain growth of recrystallization during forging and reheating.
At that time, if the amount of the fine and spherical δ phase is large, the inhibitory effect on the grain growth of the recrystallized grains becomes large, and conversely if the amount is small, the inhibitory effect becomes small.

この仕上げ鍛造工程でも、δ相は次第に固溶して行くため、合金内のδ相は初期量よりも少なくなるが、その減少量は、仕上げ鍛造工程の加工条件、更にその後の固溶化熱処理等の条件に応じて定まっており、従ってその減少量も加工等の条件から予め知ることができる。
そこでこれに応じて、δ相の初期量調整処理で残しておくべきδ相の量、即ち最終的に狙いとするNi基耐熱合金部材の結晶粒の粒度に応じた適正なδ量の初期量も知ることができる。
つまりδ相の初期量調整処理で、δ相の存在量(初期量)を適正な量としておくことで、Ni基耐熱合金部材の最終の求める結晶粒度が得易くなる。
その適正なδ相の初期量は、後続の加工,処理の条件等に応じて異なったものとなるが、これを含めて本発明ではδ相の初期量を1.5%(体積%)以上,10%以下としておくのが望ましい。
Even in this finish forging process, the δ phase gradually dissolves, so the δ phase in the alloy is less than the initial amount, but the amount of decrease is due to the processing conditions of the finish forging process, and further to the subsequent solution heat treatment, etc. Therefore, the reduction amount can be known in advance from the conditions such as processing.
Therefore, according to this, the amount of δ phase to be left in the initial amount adjustment processing of δ phase, that is, the initial amount of δ amount appropriate for the grain size of the crystal grain of the Ni-base heat-resistant alloy member to be finally targeted You can also know.
In other words, the final crystal grain size required for the Ni-base heat-resistant alloy member can be easily obtained by setting the δ-phase existing amount (initial amount) to an appropriate amount in the δ-phase initial amount adjustment process.
The appropriate initial amount of the δ phase differs depending on the subsequent processing, processing conditions, etc. Including this, the initial amount of the δ phase is 1.5% (volume%) or more in the present invention. , 10% or less is desirable.

尚、前述した様にNi基耐熱合金部材の最終の結晶粒は細かければ細かいほど良いというわけではなく、結晶粒が細かくなり過ぎると重要な機械的特性である高温クリープ特性が悪化する。
逆に結晶粒が粗大であれば他の機械的特性である高温引張強度,疲労強度,衝撃特性が悪化する。
従ってNi基耐熱合金部材の結晶粒の粒度も、適正な粒度というものがある。
本発明では、δ相の初期量調整処理で初期のδ相の量を調整することにより、最終の適正な結晶粒の粒度を容易に得ることができる。
As described above, the finer the final crystal grains of the Ni-based heat-resistant alloy member, the better. However, if the crystal grains become too fine, the high-temperature creep characteristics that are important mechanical characteristics deteriorate.
Conversely, if the crystal grains are coarse, other mechanical properties such as high-temperature tensile strength, fatigue strength, and impact properties deteriorate.
Therefore, the grain size of the crystal grain of the Ni-base heat-resistant alloy member also has an appropriate grain size.
In the present invention, the final appropriate crystal grain size can be easily obtained by adjusting the amount of the initial δ phase by the initial amount adjustment process of the δ phase.

本発明では、δ相の初期量調整のための、加熱によるδ相の分断・部分固溶処理を920〜1025℃未満,1〜36hrの時間条件の下で行う。
そして加熱温度,加熱時間をコントロールすることで、δ相の初期量を求める量に調整することができる。
ここで加熱温度を920℃以上としているのは、これよりも低い温度であるとδ相の部分固溶が進み難く、求める初期量とするために極めて長時間かかってしまうか、或いはδ相の部分固溶を良好に行えなくなる。
一方1025℃以上の高い温度にすると、δ相の固溶温度を超えてしまい、δ相全体がマトリックス中に固溶してしまう。
また時間条件として1時間未満であると、針状δ相の分断を伴う部分固溶を良好に行うことが難しく、また36hrを超えると処理時間が長くなり過ぎてしまい、生産性が悪化してしまう。
In the present invention, for the adjustment of the initial amount of the δ phase, the δ phase is divided and partially dissolved by heating under a time condition of 920 to less than 1025 ° C. for 1 to 36 hours.
By controlling the heating temperature and heating time, the initial amount of the δ phase can be adjusted to the required amount.
Here, the heating temperature is set to 920 ° C. or more. If the temperature is lower than this, partial dissolution of the δ phase is difficult to proceed, and it takes an extremely long time to obtain the initial amount to be obtained, or the δ phase Partial solid solution cannot be performed well.
On the other hand, when the temperature is higher than 1025 ° C., the solid solution temperature of the δ phase is exceeded, and the entire δ phase is dissolved in the matrix.
Also, if the time condition is less than 1 hour, it is difficult to perform partial solid solution with acicular δ phase separation, and if it exceeds 36 hours, the treatment time becomes too long and the productivity deteriorates. End up.

本発明のδ相の初期量調整処理では、上記の加熱によるδ相の分解・部分固溶処理に先立って、針状δ相の分断・部分固溶の促進のための予備処理として鍛造(予備鍛造)を行っておくことができる。
即ちδ相の初期量調整処理に、予備鍛造処理と、加熱によるδ相の分断・部分固溶処理を含ませておくことができる。
In the initial amount adjustment process of the δ phase of the present invention, prior to the above-described decomposition and partial solution treatment of the δ phase by heating, forging (preliminary treatment) is performed as a pretreatment for promoting the fragmentation and partial solution of the acicular δ phase. Forging) can be performed.
That is, the initial amount adjustment process of the δ phase can include a preliminary forging process and a δ phase division / partial solution process by heating.

このような予備鍛造処理を事前に行っておくことで、その後の加熱によるδ相の分断・部分固溶処理の際に、針状δ相の分断・部分固溶を促進することができ、仕上げ鍛造工程でδ相を微細化,球状化し易くなる。
ここで予備鍛造としては様々な加工方法を適用できる。前方押出し加工はその予備鍛造の加工方法として好適な加工方法である。
加工温度としては800〜980℃,加工率(減面率)として15〜60%の条件を好適に採用できる。
By performing such a preliminary forging process in advance, it is possible to promote the splitting / partial solution of the needle-like δ phase during subsequent splitting / partial solution treatment of the δ phase by heating. The δ phase is easily refined and spheroidized in the forging process.
Here, various processing methods can be applied as preliminary forging. The forward extrusion process is a preferable processing method as the pre-forging processing method.
A processing temperature of 800 to 980 ° C. and a processing rate (area reduction rate) of 15 to 60% can be suitably employed.

この加熱によるδ相の分断・部分固溶処理に先立つ予備鍛造処理はまた、上記の針状δ相の分断,部分固溶の促進の他に、仕上げ鍛造工程前の段階で被鍛造材の結晶粒を事前に微細化しておける意義を有する。
そしてこれにより、仕上げ鍛造工程において微細な結晶粒が得られ易くなるとともに、予備鍛造処理の際の加工条件の設定により仕上げ鍛造工程前の結晶粒の粒度を事前に制御しておくことで、仕上げ鍛造工程後における最終の結晶粒の粒度の制御を行い易くなる。
The pre-forging process prior to the δ phase splitting and partial solid solution treatment by this heating is not limited to the above-mentioned acicular δ phase splitting and partial solid solution processing, but also the crystal of the forged material before the final forging process. It has the significance that the grains can be refined in advance.
And this makes it easy to obtain fine crystal grains in the finish forging process, and by controlling the grain size of the crystal grains before the finish forging process in advance by setting the processing conditions during the preliminary forging process, It becomes easy to control the grain size of the final crystal grains after the forging process.

(仕上げ鍛造工程)
本発明では、上記のδ相の初期量調整処理の後において、被鍛造材に打撃による圧下を加える鍛造(自由鍛造)と再加熱とを少なくとも1回以上繰り返す仕上げ鍛造工程を実施する。
合金中に残留した針状形態の初期δ相は、この仕上げ鍛造工程において分断、固溶して球状化して行く。
そして球状化し微細となったδ相が、鍛造及び再加熱の際に生ずる再結晶粒の粒成長をピン止め効果によって抑制する。
即ちこのようなδ相のピン止め効果が無い状態の下では、鍛造及び再加熱によって生じた再結晶が大きく粒成長してしまうが、球状化した微細なδ相によるピン止め効果によって、その粒成長が効果的に抑制される。
(Finish forging process)
In the present invention, after the above-described initial amount adjustment processing of the δ phase, a finishing forging step is performed in which forging (free forging) in which the material to be forged is squeezed by striking (free forging) and reheating are repeated at least once.
The initial δ phase in the form of needles remaining in the alloy is divided, dissolved, and spheroidized in this final forging process.
The δ phase, which has become spheroidized and fine, suppresses the grain growth of recrystallized grains that occurs during forging and reheating due to the pinning effect.
That is, under such a state where there is no pinning effect of the δ phase, the recrystallization generated by forging and reheating grows greatly, but the graining due to the pinning effect by the fine spheroidized δ phase Growth is effectively suppressed.

この仕上げ鍛造工程においては、打撃による圧下を合計圧下率33%以上の加工量で行うのが良い。
圧下率が33%未満であると再結晶のための十分な駆動力が得られ難く、また再結晶による結晶粒の微細化を十分に行うことが難しい。
尚この圧下率33%は、再加熱が行われるまでに複数回の打撃を加える場合には、複数回の打撃による合計の圧下率を意味する。
In this finish forging step, it is preferable to perform the reduction by striking with a processing amount of a total reduction ratio of 33% or more.
If the rolling reduction is less than 33%, it is difficult to obtain a sufficient driving force for recrystallization, and it is difficult to sufficiently refine crystal grains by recrystallization.
The reduction ratio of 33% means the total reduction ratio by a plurality of hits when a plurality of hits are applied before reheating is performed.

この仕上げ鍛造工程において、再加熱は920〜980℃,3hr以上の条件で行うのが望ましい。
920℃未満であるとδ相の分断,固溶による球状化が十分に行われず、逆に980℃を超える高い温度ではδ相の固溶量が多くなり過ぎ、また再結晶の結晶粒が粗大化し易い。
In this final forging step, it is desirable to perform reheating under conditions of 920 to 980 ° C. and 3 hours or more.
If the temperature is lower than 920 ° C., the δ phase is not sufficiently divided or spheroidized by solid solution, and conversely, at a high temperature exceeding 980 ° C., the amount of solid solution in the δ phase becomes excessive and the recrystallized crystal grains are coarse. Easy to convert.

本発明では、一般に上記の各処理の後においてその後金属間化合物γ''(ガンマダブルプライム,NiNb)を析出させるための固溶化熱処理を行い、しかる後に時効処理を行ってγ''を析出させ、その析出硬化によってNi基耐熱合金部材を高強度化する。
この固溶化熱処理は、最終的な粒度調整を兼ねて行うことができる。
尚ここでの固溶化熱処理は例えば975℃,2時間の条件の下で好適に行うことができる。
尚時効処理は、例えば718〜760℃,8〜20hrの条件で1段目の時効処理を行い、また621〜648℃,8〜36hrの条件で2段目の時効処理を行うことができる。
In the present invention, generally, after each of the above treatments, a solution heat treatment for precipitating the intermetallic compound γ ″ (gamma double prime, Ni 3 Nb) is performed, and thereafter an aging treatment is performed to obtain γ ″. The Ni-base heat-resistant alloy member is strengthened by precipitation and precipitation hardening.
This solution heat treatment can be performed also for final particle size adjustment.
The solution heat treatment here can be suitably performed under conditions of, for example, 975 ° C. for 2 hours.
The aging treatment can be performed, for example, under the conditions of 718 to 760 ° C. and 8 to 20 hours, and the second aging treatment can be performed under the conditions of 621 to 648 ° C. and 8 to 36 hours.

固溶化熱処理した試料のミクロ組織を示した図である。It is the figure which showed the microstructure of the sample which carried out the solution heat treatment. 図1に示したミクロ組織の試料に対してδ相の析出処理を行ったときのδ相の析出挙動を示した図である。FIG. 2 is a diagram showing the precipitation behavior of a δ phase when a δ phase precipitation treatment is performed on the microstructure sample shown in FIG. 1. 析出処理後においてδ相の部分固溶処理を行ったときの固溶挙動を示した図である。It is the figure which showed the solid solution behavior when the partial solid solution process of (delta) phase was performed after precipitation process. δ相析出処理後において前方押出しを行い、その後に加熱保持したときの保持時間とδ相析出量及び結晶粒径との関係を示した図である。FIG. 6 is a diagram showing a relationship between a holding time, a δ phase precipitation amount, and a crystal grain size when forward extrusion is performed after the δ phase precipitation treatment and then heated and held. 図4における保持時間15min,360min後のミクロ組織とδ相析出状態を示した図である。FIG. 5 is a diagram showing a microstructure and a δ phase precipitation state after holding times of 15 min and 360 min in FIG. 4. 前方押出し及び加熱保持を行った後の均一圧縮試験及び再加熱保持のプロセスを示した図である。It is the figure which showed the process of the uniform compression test after performing forward extrusion and heat holding, and a reheat holding. 図6の再加熱保持による結晶粒の粒成長挙動を初期δ相との関係において示した図である。It is the figure which showed the grain growth behavior of the crystal grain by the reheating holding | maintenance of FIG. 6 in relation to the initial δ phase. 図7における初期δ相5%のものと0%のものについて加熱保持によるミクロ組織の変化を比較して示した図である。It is the figure which compared and showed the change of the microstructure by heating holding | maintenance about the thing of 5% of initial delta phases in FIG. 7, and the thing of 0%. 鍛造による再結晶挙動を模式的に示した図である。It is the figure which showed typically the recrystallization behavior by forging.

次に本発明の実施形態を以下に説明する。
(δ相の析出挙動)
表1に示す化学組成のNi基耐熱合金にδ相析出処理を行ったときのδ相の析出挙動を調べた。
Next, embodiments of the present invention will be described below.
(Deposition behavior of δ phase)
The precipitation behavior of the δ phase was examined when the δ phase precipitation treatment was performed on the Ni-base heat-resistant alloy having the chemical composition shown in Table 1.

Figure 2014161861
Figure 2014161861

先ず1050×1hr保持の条件でST処理(固溶化熱処理)し、またASTM No.4に粒度調整した試料(試料サイズは外径φ12mm×高さ18mm)を用意した。図1はこの試料のミクロ組織を示している。その平均粒径は91.2μm(光学顕微鏡測定による)である。
この試料を850℃以上1000℃以下の種々温度に保持し、δ相の析出挙動をSEM(走査型電子顕微鏡)にて調べた。
温度900℃,950℃,1000℃の下でのδ相の析出挙動が図2に示してある。
First, ST treatment (solution heat treatment) was performed under the condition of holding 1050 × 1 hr. A sample whose particle size was adjusted to 4 (sample size: outer diameter φ12 mm × height 18 mm) was prepared. FIG. 1 shows the microstructure of this sample. The average particle size is 91.2 μm (by optical microscope measurement).
This sample was held at various temperatures ranging from 850 ° C. to 1000 ° C., and the precipitation behavior of the δ phase was examined by SEM (scanning electron microscope).
The precipitation behavior of the δ phase at temperatures of 900 ° C., 950 ° C., and 1000 ° C. is shown in FIG.

図2に示しているように900℃→950℃→1000℃と温度が高くなるに従ってδ相の析出量は少なくなり、温度1000℃の下では保持時間36時間経過した時点はもとより、100時間経過後もδ相の析出量は2%(面積%で測定したものを体積%として表している)強と少ない。
また温度950℃の下でも、保持時間36時間経過した時点でδ相の析出量は4%に達していない。
これに対して温度900℃の下では、36時間経過時点で7%を超えており、δ相は十分な量で析出している。
δ相の析出処理の温度としては900〜930℃の範囲が好適である。
中でも915℃×36hrの条件でδ相の析出処理を特に好適に行うことができる。
As shown in FIG. 2, the amount of precipitation of the δ phase decreases as the temperature increases from 900 ° C. to 950 ° C. to 1000 ° C., and at a temperature of 1000 ° C., not only the retention time of 36 hours has elapsed, but also 100 hours have elapsed. After that, the amount of precipitation of the δ phase is as low as 2% (represented as volume% when measured in area%).
Even at a temperature of 950 ° C., the amount of precipitation of the δ phase does not reach 4% when the holding time of 36 hours elapses.
On the other hand, at a temperature of 900 ° C., it exceeds 7% after 36 hours, and the δ phase is precipitated in a sufficient amount.
The temperature for the precipitation treatment of the δ phase is preferably in the range of 900 to 930 ° C.
In particular, the precipitation treatment of the δ phase can be particularly suitably performed under the condition of 915 ° C. × 36 hr.

(δ相の固溶挙動)
ST処理した上記の試料を915℃×36hrの条件でδ相析出処理を行い、針状δ相を6.7%析出させた固溶試験用の試料(平均粒径91.2μm)を、975℃〜1050℃の各種温度に加熱し、保持してδ相の部分固溶挙動を調べた。
加熱温度975℃,1000℃,1025℃,1050℃の下でのδ相の部分固溶挙動が図3に示してある。
(Solubility behavior of δ phase)
The sample subjected to ST treatment was subjected to δ phase precipitation under the condition of 915 ° C. × 36 hr, and a solid solution test sample (average particle size 91.2 μm) in which 6.7% of acicular δ phase was precipitated was obtained as 975 The solution was heated to various temperatures of 1050 ° C. to 1050 ° C. and held to examine the partial solid solution behavior of the δ phase.
The partial solid solution behavior of the δ phase at heating temperatures of 975 ° C., 1000 ° C., 1025 ° C., and 1050 ° C. is shown in FIG.

図3に示しているように、1050℃の下ではδ相が直ちに全体的に固溶してしまい、また1025℃の下でもδ相が急激に固溶してしまう。従って針状δ相を分断を伴って部分的に固溶させる、δ相の初期量調整処理における加熱処理、詳しくは加熱によるδ相の分断・部分固溶処理は、1025℃未満で行うのが良い。
但し920℃よりも低い温度であると、δ相の部分固溶が十分に進まないため、処理温度としては920℃以上とするのが良い。
As shown in FIG. 3, at 1050 ° C., the δ phase immediately forms a solid solution, and even at 1025 ° C., the δ phase suddenly dissolves. Therefore, the heat treatment in the initial amount adjustment process of the δ phase, in which the acicular δ phase is partly dissolved with parting, in particular, the parting / partial solution treatment of the δ phase by heating is performed at less than 1025 ° C. good.
However, if the temperature is lower than 920 ° C., the partial solid solution of the δ phase does not proceed sufficiently, so the processing temperature is preferably 920 ° C. or higher.

(再結晶/粒成長挙動)
表1に示す化学組成のNi基耐熱合金の素材をST処理(1050℃×1hrの条件)した後、δ相析出処理(915℃×36hr)し、次にδ相の初期量調整処理における予備鍛造処理としてサイズ外径φ23.8mm×高さ48.0mmの試験材につき高周波加熱による昇温で前方押出しを980℃,減面率60%の条件で実施した。そしてその後に、加熱によるδ相の分断・部分固溶処理として980℃×15〜360minの条件で再加熱保持してδ相を分断を伴って部分固溶させ、δ相の初期量調整を行った。
(Recrystallization / grain growth behavior)
The Ni-base heat-resistant alloy material having the chemical composition shown in Table 1 is subjected to ST treatment (conditions of 1050 ° C. × 1 hr), followed by δ phase precipitation treatment (915 ° C. × 36 hr), and then a preliminary in the initial amount adjustment treatment of δ phase As a forging treatment, a test material having a size outer diameter of φ23.8 mm × a height of 48.0 mm was subjected to forward extrusion at a temperature of 980 ° C. and a surface reduction rate of 60% by high-temperature heating. After that, as the δ phase division / partial solid solution treatment by heating, the δ phase is partly dissolved with division by holding it again at 980 ° C. for 15 to 360 min, and the initial amount of δ phase is adjusted. It was.

このときの保持時間(sec)とδ相の析出量(初期量)との関係が、結晶粒径との関係とともに図4に示してある。
図4に示しているように、δ相は保持時間が長くなるのにつれて部分固溶によりその量が減少して行く。図4中δ相の量(初期量)は、15min保持後において5%,360min保持後において3%である。
また980℃×15min保持後及び980℃×360min保持後のミクロ組織及びδ相析出状態が図5に示してある。
FIG. 4 shows the relationship between the holding time (sec) and the precipitation amount (initial amount) of the δ phase together with the crystal grain size.
As shown in FIG. 4, the amount of the δ phase decreases due to partial solid solution as the holding time becomes longer. In FIG. 4, the amount of δ phase (initial amount) is 5% after holding for 15 min and 3% after holding for 360 min.
FIG. 5 shows the microstructure and δ phase precipitation state after holding at 980 ° C. × 15 min and after holding at 980 ° C. × 360 min.

これらの図に示しているように、前方押出し以前の状態で当初ASTM No.4の結晶粒度(平均粒径91.2μm)であったものが、前方押出し後の980℃再加熱保持で平均粒径が7.1μm(15min保持の場合),9.4μm(360min保持の場合)と結晶粒が細かくなっているが、これは前方押出しを経ることで結晶粒が細かくなったものである。
以上のようなδ相の初期量調整処理を終えた後に、仕上げ鍛造工程として以下の均一圧縮加工試験を実施し、その後再加熱保持を行って結晶粒の粒成長挙動及びδ相の固溶による減少挙動を調べた。
ここで均一圧縮加工試験は次のようにして行った。
As shown in these figures, ASTM No. 1 was originally set in a state before forward extrusion. The crystal grain size of 4 (average particle size: 91.2 μm) is 7.1 μm (when holding for 15 minutes) and 9.4 μm (when holding for 360 minutes) when reheated and held at 980 ° C. after forward extrusion. ) And the crystal grains are finer, but this is a finer crystal grain through forward extrusion.
After completing the initial amount adjustment processing of the δ phase as described above, the following uniform compression processing test is performed as a final forging process, and then reheating and holding are performed to determine the crystal grain growth behavior and the solid solution of the δ phase. The decrease behavior was investigated.
Here, the uniform compression processing test was conducted as follows.

図6に示しているように外径φ15mm×高さ22.5mmの円柱状の試験片を高周波加熱(加熱速度10℃/sec)にて980℃に加熱し、その後同温度に30sec(秒)保持して温度分布を均等化し、その後に歪み(ε)速度10/secで試験片を軸方向(図中上下方向)に圧縮加工した(歪みε=0.4)(圧下率は33%)。
その後に980℃の再加熱保持を行って、保持時間の経過による結晶粒の粒成長挙動,δ相の減少挙動を調べた。
ここではδ相の初期量を0%,3%,5%としたものについて粒成長挙動,δ相減少挙動を調べ、それぞれの結果を比較して図7に示した。
また初期δ相0%,5%のものについて10sec後,1000sec後,3100sec後のミクロ組織を図8に併せて示した。
尚δ相の初期量0%のものは、δ相の析出処理を行うことなくST処理後のものをそのまま前方押出しして得たものを用いた。
As shown in FIG. 6, a cylindrical test piece having an outer diameter of 15 mm and a height of 22.5 mm was heated to 980 ° C. by high-frequency heating (heating rate: 10 ° C./sec), and then the same temperature was maintained for 30 sec (seconds). The temperature distribution was maintained and the temperature distribution was equalized, and then the specimen was compressed in the axial direction (vertical direction in the figure) at a strain (ε) speed of 10 / sec (strain ε = 0.4) (the reduction rate was 33%). .
Thereafter, reheating and holding at 980 ° C. were performed, and the grain growth behavior of the crystal grains and the δ phase reduction behavior with the lapse of the holding time were examined.
Here, the grain growth behavior and the δ phase decrease behavior were investigated for those in which the initial amount of the δ phase was 0%, 3%, and 5%, and the respective results were compared and shown in FIG.
Further, the microstructure after 10 sec, 1000 sec, and 3100 sec for the initial δ phase of 0% and 5% are also shown in FIG.
For the δ phase having an initial amount of 0%, the one obtained by directly extruding the ST-treated product without performing the δ-phase precipitation treatment was used.

これら図7,図8の結果は、初期δ相が0%である場合に比べて初期δ相が3%,5%と多くなるに従って結晶粒の粒成長を効果的に抑制できること、従って最終的に得られる結晶粒の粒度をより細かくできることを表している。
この結果はまた、初期δ相の量を変えることで最終的な結晶粒の粒度をコントロールできることも表している。
因みに初期δ相が5%のものでは、最終的な(3100sec後)結晶粒の粒径が約10μmであり、その結晶粒度はASTM No.10程度となっている。
一方初期δ相が3%のものは、最終的な結晶粒の粒径が20μm弱であり、結晶粒の粒度はASTM No.8程度である。
尚δ相の初期量がゼロのものは、最終の結晶粒の粒径は50μm程度である。
この結果において、δ相0%のものと3%,5%のものとの最終の粒径の差がδ相によるピン止めの効果ということになる。
These results of FIGS. 7 and 8 show that the grain growth of the crystal grains can be effectively suppressed as the initial δ phase increases to 3% and 5% as compared with the case where the initial δ phase is 0%. This indicates that the crystal grain size obtained can be made finer.
This result also shows that the final grain size can be controlled by changing the amount of the initial δ phase.
Incidentally, when the initial δ phase is 5%, the final crystal grain size (after 3100 sec) is about 10 μm. It is about 10.
On the other hand, when the initial δ phase is 3%, the final crystal grain size is a little less than 20 μm. It is about 8.
When the initial amount of δ phase is zero, the final crystal grain size is about 50 μm.
In this result, the final particle size difference between the δ phase of 0%, 3%, and 5% is the pinning effect by the δ phase.

Claims (3)

質量%で
Ni:50〜55%
Cr:17〜21%
Al:0.2〜0.8%
Ti:0.6〜1.2%
Nb:4.7〜5.6%
Mo:2.8〜3.3%
Co:≦1.0%
C+Si+Mn+P+S+Cu+B:≦1.1%
残部Feの組成を有するNi基耐熱合金から成る被鍛造材に対して、δ相を針状に析出させるδ相析出処理を行い、
しかる後、δ相析出処理した被鍛造材を920〜1025℃未満で1〜36hr加熱して、前記析出した針状のδ相を分断を伴って部分的に固溶させ、δ相の析出量を調整するδ相の初期量調整処理を実施し、
その後において、再結晶温度以上で且つ合計圧下率33%以上で打撃を加える自由鍛造と再加熱とを少なくとも1回以上繰り返す仕上げ鍛造工程を実施し、
結晶粒が微細化されたNi基耐熱合金部材を得ることを特徴とするNi基耐熱合金部材の自由鍛造加工方法。
In mass%
Ni: 50-55%
Cr: 17-21%
Al: 0.2-0.8%
Ti: 0.6-1.2%
Nb: 4.7-5.6%
Mo: 2.8-3.3%
Co: ≤ 1.0%
C + Si + Mn + P + S + Cu + B: ≦ 1.1%
For the to-be-formed material made of the Ni-base heat-resistant alloy having the remaining Fe composition, a δ phase precipitation treatment is performed to precipitate the δ phase in a needle shape,
Thereafter, the forging material subjected to the δ phase precipitation treatment is heated at 920 to 1025 ° C. for less than 1 to 36 hours, and the precipitated acicular δ phase is partly dissolved together with separation, and the amount of precipitation of the δ phase Execute the initial amount adjustment process of δ phase to adjust
Thereafter, a forging step of repeating at least once the free forging and reheating at which the blow is performed at a recrystallization temperature or higher and a total reduction ratio of 33% or more,
A free forging method for a Ni-base heat-resistant alloy member, characterized in that a Ni-base heat-resistant alloy member having fine crystal grains is obtained.
請求項1において、前記δ相析出処理は800〜1020℃の温度範囲且つ0.1〜36hrの時間範囲で行うことを特徴とするNi基耐熱合金部材の自由鍛造加工方法。2. The method for free forging a Ni-base heat-resistant alloy member according to claim 1, wherein the δ phase precipitation treatment is performed in a temperature range of 800 to 1020 ° C. and a time range of 0.1 to 36 hr. 請求項1,2の何れかにおいて、前記再加熱は920〜980℃の温度範囲で行うことを特徴とするNi基耐熱合金部材の自由鍛造加工方法。The free forging method of a Ni-base heat-resistant alloy member according to any one of claims 1 and 2, wherein the reheating is performed in a temperature range of 920 to 980 ° C.
JP2013033885A 2013-02-22 2013-02-22 Free forging method of Ni-base heat-resistant alloy member Active JP6079294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033885A JP6079294B2 (en) 2013-02-22 2013-02-22 Free forging method of Ni-base heat-resistant alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033885A JP6079294B2 (en) 2013-02-22 2013-02-22 Free forging method of Ni-base heat-resistant alloy member

Publications (3)

Publication Number Publication Date
JP2014161861A JP2014161861A (en) 2014-09-08
JP2014161861A5 true JP2014161861A5 (en) 2015-08-27
JP6079294B2 JP6079294B2 (en) 2017-02-15

Family

ID=51613005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033885A Active JP6079294B2 (en) 2013-02-22 2013-02-22 Free forging method of Ni-base heat-resistant alloy member

Country Status (1)

Country Link
JP (1) JP6079294B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151318A1 (en) 2014-03-31 2015-10-08 日立金属株式会社 METHOD FOR PRODUCING Fe-Ni-BASED SUPER HEAT-RESISTANT ALLOY
WO2018221648A1 (en) * 2017-05-31 2018-12-06 日立金属株式会社 Method for producing ni-based heat-resistant superalloy
JP7218605B2 (en) * 2018-03-16 2023-02-07 日本製鉄株式会社 Low thermal expansion alloy and its manufacturing method
CN108515132B (en) * 2018-04-09 2019-04-16 宁波工程学院 A kind of hot-die forging process of ni-base wrought superalloy double-properties turbine disk
JP7340154B2 (en) 2019-07-02 2023-09-07 大同特殊鋼株式会社 Method for manufacturing Ni-based hot forged material
CN111534771A (en) * 2020-06-12 2020-08-14 无锡派克新材料科技股份有限公司 Method for homogenizing nickel-based superalloy crystal grains
CN113637929B (en) * 2021-07-14 2022-04-12 北京科技大学 Heat treatment process for improving room temperature strength of nickel-based high-temperature alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909406B2 (en) * 2002-02-06 2007-04-25 大同特殊鋼株式会社 Method for producing Ni-based alloy material
FR2941962B1 (en) * 2009-02-06 2013-05-31 Aubert & Duval Sa PROCESS FOR MANUFACTURING A NICKEL-BASED SUPERALLIANCE WORKPIECE, AND A PRODUCT OBTAINED THEREBY

Similar Documents

Publication Publication Date Title
JP6079294B2 (en) Free forging method of Ni-base heat-resistant alloy member
US20200048750A1 (en) Ni-Based Alloy Product and Method for Producing Same, and Ni-Based Alloy Member and Method for Producing Same
JP2014161861A5 (en)
CN107250416B (en) The manufacturing method of Ni base superalloy
US10526689B2 (en) Heat-resistant Ti alloy and process for producing the same
JP6200985B2 (en) Method of manufacturing parts with high stress resistance for reciprocating piston engines and gas turbines, especially aero engines, from α + γ titanium aluminide alloys
JP5419098B2 (en) Nanocrystal-containing titanium alloy and method for producing the same
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP5994951B2 (en) Method for producing Fe-Ni base superalloy
JPH03140447A (en) Forging of microcrystalline titanium powder and method of its manufacture
JP2011068955A (en) Nanocrystal titanium alloy and method for producing the same
JP7003676B2 (en) Manufacturing method of hot forged aluminum alloy
JP2008200730A (en) METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP6315320B2 (en) Method for producing Fe-Ni base superalloy
JP6748951B2 (en) Method for producing Ni-base superheat-resistant alloy and Ni-base superheat-resistant alloy
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
JP6299344B2 (en) Method for forging disc-shaped products
JP6663575B2 (en) Manufacturing method of Ni-base super heat-resistant alloy
JP2015151612A (en) HOT FORGING TYPE TiAl-BASED ALLOY AND PRODUCTION METHOD THEREOF
RU2707006C1 (en) Method of forging workpieces with ultra-fine-grained structure of two-phase titanium alloys
JPH101758A (en) Production of formed part made of aluminum alloy