JP7340154B2 - Method for manufacturing Ni-based hot forged material - Google Patents
Method for manufacturing Ni-based hot forged material Download PDFInfo
- Publication number
- JP7340154B2 JP7340154B2 JP2019124069A JP2019124069A JP7340154B2 JP 7340154 B2 JP7340154 B2 JP 7340154B2 JP 2019124069 A JP2019124069 A JP 2019124069A JP 2019124069 A JP2019124069 A JP 2019124069A JP 7340154 B2 JP7340154 B2 JP 7340154B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- phase particles
- temperature
- particles
- forged material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Forging (AREA)
Description
本発明は、Ni3Nbの準安定相であるγ”相による強化機構を与えるNi-Cr-Fe系合金からなるNi基熱間鍛造材の製造方法に関し、特に、微細な再結晶粒を維持し高い機械強度を有するNi基熱間鍛造材の製造方法に関する。 The present invention relates to a method for manufacturing a Ni-based hot forged material made of a Ni-Cr-Fe alloy that provides a strengthening mechanism using the γ'' phase, which is a metastable phase of Ni 3 Nb, and in particular, it relates to a method for producing a Ni-based hot forged material made of a Ni-Cr-Fe alloy that provides a strengthening mechanism using the γ'' phase, which is a metastable phase of Ni 3 Nb, and in particular, it relates to a method for manufacturing a Ni-based hot forged material made of a Ni-Cr-Fe alloy that provides a strengthening mechanism using the γ'' phase, which is a metastable phase of Ni 3 Nb, and in particular, it relates to a method for producing a Ni-based hot forged material made of a Ni-Cr-Fe alloy that provides a strengthening mechanism by the γ'' phase, which is a metastable phase of Ni 3 Nb. The present invention relates to a method for producing a Ni-based hot forged material having high mechanical strength.
高温での機械強度に優れたNi基合金として、母相であるγ相中に正方晶のNi3Nbの準安定相であるγ”(ガンマダブルプライム)相を析出させ、その界面整合歪みによる強化機構を利用したNi基合金、例えば、インコネル718(商品名)などが知られている。このようなオーステナイト相を母相とするNi基合金では、相変態による結晶粒径の微細化ができない。そこで、再結晶温度以上で熱間鍛造し加熱保持することで再結晶化を促進させる一方、その再結晶粒の成長を抑制させて微細な結晶粒を維持し高い機械強度を得ようとするNi基熱間鍛造材の製造方法が提案されている。 As a Ni-based alloy with excellent mechanical strength at high temperatures, the γ'' (gamma double prime) phase, which is a metastable phase of tetragonal Ni 3 Nb, is precipitated in the γ phase, which is the parent phase, and due to the interfacial coherent strain. Ni-based alloys that utilize a strengthening mechanism, such as Inconel 718 (trade name), are known. In such Ni-based alloys that have an austenite phase as their parent phase, grain size cannot be refined through phase transformation. Therefore, hot forging above the recrystallization temperature and heating and holding promotes recrystallization while suppressing the growth of recrystallized grains to maintain fine grains and obtain high mechanical strength. A method for producing a Ni-based hot forged material has been proposed.
例えば、特許文献1では、再結晶化を利用して細粒のNi基熱間鍛造材を製造しようとする方法が開示されている。まず、Nbを含有するNi基合金からなる熱間鍛造材に、900℃以上の所定温度で熱処理を行ってNi3Nbからなるδ相を母相に析出させておく。その後、900℃よりも低い温度で所定の鍛錬比以上で仕上げ鍛造を行ってδ相の切断片を母相に分散させる。そして、固溶化処理で仕上げ鍛造の加工歪みを除去しつつ再結晶化による再結晶粒を得るとともに、その成長はδ相でピン止めされる。これによれば、ASTM E112で規定する結晶粒度が平均値で#7以上であり、かつ最大値が#4以上のNi基合金材を製造できるとしている。 For example, Patent Document 1 discloses a method of manufacturing a fine-grained Ni-based hot forged material using recrystallization. First, a hot forged material made of a Ni-based alloy containing Nb is heat-treated at a predetermined temperature of 900° C. or higher to precipitate a δ phase made of Ni 3 Nb in the parent phase. Thereafter, finish forging is performed at a temperature lower than 900° C. and at a predetermined forging ratio or higher to disperse the cut pieces of the δ phase in the parent phase. Then, recrystallized grains are obtained by recrystallization while removing the machining strain of finish forging through solid solution treatment, and their growth is pinned by the δ phase. According to this, it is possible to produce a Ni-based alloy material having an average grain size of #7 or more and a maximum value of #4 or more as defined by ASTM E112.
また、特許文献2でも、δ相による再結晶粒の成長のピン止め効果を利用した細粒のNi基合金材を製造する方法を開示している。予めδ相を針状に析出させるδ相析出処理を行った後、920~1025℃未満で1~36hr加熱して、析出した針状δ相の分断を伴って部分的に固溶させδ相の形状及び析出量を調整する。その後、再結晶温度以上で所定量の打撃を加える自由鍛造、及び再加熱を繰り返すとしている。ここでは、δ相の形状及び析出量を調整し、δ相を球状化し且つ微細化することで、再結晶粒の成長のピン止め効果をより高めることができ、結晶粒度を平均値で#8以上にできるとしている。 Moreover, Patent Document 2 also discloses a method for manufacturing a fine-grained Ni-based alloy material using the pinning effect of the growth of recrystallized grains due to the δ phase. After performing a δ phase precipitation treatment in advance to precipitate the δ phase in the form of needles, the δ phase is heated at a temperature below 920 to 1025°C for 1 to 36 hours to partially dissolve the precipitated acicular δ phase into a solid solution with the fragmentation of the δ phase. Adjust the shape and amount of precipitation. After that, free forging, in which a predetermined amount of blow is applied above the recrystallization temperature, and reheating are repeated. Here, by adjusting the shape and precipitation amount of the δ phase and making the δ phase spheroidal and fine, the pinning effect on the growth of recrystallized grains can be further enhanced, and the average grain size is #8. They say they can do more than that.
微細な結晶粒を維持するために、針状のδ相を球状化し且つ微細化する調整熱処理の工程は時間を要し、結果として、製造コストを上昇させる。また、調整熱処理によるδ相の形状によっては、特に、板状になってしまうと、破壊靱性が低下してしまう。更に、強化相としてのγ”相も正方晶のNi3Nbの準安定相であるから、δ相が過剰に残留するとγ”相を十分に析出させることができなくなって、機械強度を高めることができない。 In order to maintain fine grains, the step of conditioning heat treatment to spheroidize and refine the acicular δ phase is time consuming and, as a result, increases manufacturing costs. Furthermore, depending on the shape of the δ phase resulting from the conditioning heat treatment, especially if it becomes plate-like, the fracture toughness will decrease. Furthermore, since the γ'' phase as a reinforcing phase is also a metastable phase of tetragonal Ni 3 Nb, if the δ phase remains in excess, the γ'' phase cannot be sufficiently precipitated, making it difficult to increase the mechanical strength. I can't.
本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、Ni3Nbからなるγ”相による強化機構を利用し、微細な再結晶粒を維持し高い機械強度を有するNi基熱間鍛造材の製造方法を提供することにある。 The present invention has been made in view of the above -mentioned circumstances, and its purpose is to maintain fine recrystallized grains and achieve high An object of the present invention is to provide a method for manufacturing a Ni-based hot forged material having mechanical strength.
本発明によるNi基熱間鍛造材の製造方法は、Ni3Nbの準安定相であるγ”相による強化機構を与えるNi-Cr-Fe系合金からなるNi基熱間鍛造材の製造方法であって、γ”相ソルバス温度以上の温度でNi3Nbの安定相であるδ相粒子を析出させておき、再結晶温度以上で、熱間鍛造し加熱保持して再結晶化させるにあたって前記δ相粒子で再結晶粒の粒径成長を抑制させる鍛造・再結晶化工程を含み、前記鍛造・再結晶化工程に先立って、前記γ”相ソルバス温度以下の温度でγ”相粒子を析出させて、前記δ相粒子の析出を制御する析出制御工程を含むことを特徴とする。 The method for producing a Ni-based hot forged material according to the present invention is a method for producing a Ni-based hot forged material made of a Ni-Cr-Fe alloy that provides a strengthening mechanism using the γ'' phase, which is a metastable phase of Ni 3 Nb. Therefore, the δ phase particles, which are the stable phase of Ni 3 Nb, are precipitated at a temperature higher than the γ'' phase solvus temperature, and the δ phase particles are precipitated at a temperature higher than the γ'' phase solvus temperature. It includes a forging/recrystallization step in which the grain size growth of recrystallized grains is suppressed by phase particles, and prior to the forging/recrystallization step, the γ” phase particles are precipitated at a temperature below the γ” phase solvus temperature. The method is characterized by including a precipitation control step of controlling precipitation of the δ phase particles.
かかる発明によれば、鍛造・再結晶化工程に先立つ析出制御工程でγ”相粒子を析出させることでδ相粒子の析出を制御し得て再結晶粒の成長を効果的に抑制して微細な結晶粒を維持できる。この微細な再結晶粒によって、その後のγ”相による強化機構を利用することで高い機械強度を付与できる。 According to this invention, the precipitation of δ phase particles can be controlled by precipitating γ'' phase particles in the precipitation control process prior to the forging/recrystallization process, and the growth of recrystallized grains can be effectively suppressed to form fine particles. These fine recrystallized grains can provide high mechanical strength by utilizing the subsequent strengthening mechanism by the γ'' phase.
上記した発明において、前記δ相粒子は、前記γ”相粒子を核に析出し、主として結晶粒内に与えられることを特徴としてもよい。かかる発明によれば、δ相粒子を微細に分散析出させ得て、容易に微細な再結晶を維持できる。 In the above invention, the δ phase particles may be characterized in that they are precipitated with the γ'' phase particles as nuclei and are mainly provided within the crystal grains.According to this invention, the δ phase particles are finely dispersed and precipitated. and can easily maintain fine recrystallization.
上記した発明において、前記δ相粒子を断面面積率で5%以上としてから熱間鍛造することを特徴としてもよい。かかる発明によれば、微細な再結晶粒の維持を容易にする。 The above-described invention may be characterized in that hot forging is performed after the cross-sectional area ratio of the δ phase particles is set to 5% or more. According to this invention, maintenance of fine recrystallized grains is facilitated.
上記した発明において、前記γ”相粒子は100nm以上の平均粒径で与えられることを特徴としてもよい。かかる発明によれば、δ相粒子の析出の制御を容易とし得る。 The above invention may be characterized in that the γ'' phase particles have an average particle diameter of 100 nm or more. According to this invention, the precipitation of the δ phase particles can be easily controlled.
上記した発明において、前記析出制御工程に先だって、溶体化のための高温熱処理工程を含むことを特徴としてもよい。かかる発明によれば、制御工程におけるγ”相粒子の性出を容易に制御でき、結果として微細な再結晶粒を維持できる。 The above-described invention may be characterized by including a high-temperature heat treatment step for solution treatment prior to the precipitation control step. According to this invention, the development of γ'' phase particles in the control process can be easily controlled, and as a result, fine recrystallized grains can be maintained.
本発明による1つの実施例としてのNi-Cr-Fe系合金からなるNi基熱間鍛造材の製造方法について、図1に沿って図2及び図3を参照しつつ説明する。 A method for manufacturing a Ni-based hot forged material made of a Ni-Cr-Fe alloy as one embodiment of the present invention will be described along with FIG. 1 with reference to FIGS. 2 and 3.
ここで対象とするNi-Cr-Fe系合金は、少なくともNbを含み、主として、Ni3Nbからなるγ”相を強化相とする強化機構を与えられる成分組成を有する合金である。例えば、最終的な製品形状に加工された後に時効熱処理によってγ”相粒子を析出させることで、部材として要求される機械強度を確保する。このようなNi-Cr-Fe系合金としては、例えば、Alloy718、Alloy718plus、Alloy706、Alloy625、FX550などが挙げられる。 The Ni-Cr-Fe alloy targeted here is an alloy that contains at least Nb and has a composition that provides a strengthening mechanism with a γ'' phase mainly composed of Ni 3 Nb as a strengthening phase. For example, the final By precipitating γ'' phase particles through aging heat treatment after processing into a typical product shape, the mechanical strength required for the component is ensured. Examples of such Ni-Cr-Fe alloys include Alloy718, Alloy718plus, Alloy706, Alloy625, and FX550.
Alloy718について、その成分組成について例示すると、以下の通りである。すなわち、質量%で、Ni:50~55%、Cr:17~21%、Al:0.2~0.8%、Ti:0.6~1.2%、Nb:4.7~5.6%、Mo:2.8~3.3%、Co:1.0%以下、残部Fe、且つ、元素Mの含有量を[M]質量%として、[C]+[Si]+[Mn]+[P]+[S]+[Cu]+[B]+[Mg]を1.1%以下とする成分組成である。 An example of the component composition of Alloy 718 is as follows. That is, in mass %, Ni: 50-55%, Cr: 17-21%, Al: 0.2-0.8%, Ti: 0.6-1.2%, Nb: 4.7-5. 6%, Mo: 2.8 to 3.3%, Co: 1.0% or less, the balance is Fe, and the content of element M is [M]% by mass, [C] + [Si] + [Mn ]+[P]+[S]+[Cu]+[B]+[Mg] is a component composition of 1.1% or less.
図1に示すように、まず、上記したNi-Cr-Fe系合金を用いた合金塊を準備する(S1)。例えば、真空アーク溶解炉で合金を溶製し、その鋳塊を分塊鍛造するなどして所定の寸法を有する合金塊を得る。 As shown in FIG. 1, first, an alloy ingot using the above-mentioned Ni-Cr-Fe alloy is prepared (S1). For example, an alloy ingot having predetermined dimensions is obtained by melting an alloy in a vacuum arc melting furnace and then subjecting the ingot to blooming.
次いで、必要に応じて、高温熱処理をする(S2)。高温熱処理では、合金塊を溶体化させて金属間化合物を固溶させるなどするとともに、分塊鍛造で生じた歪みの除去や結晶粒の整細粒化などが行われる。なお、高温化熱処理する場合はその後の冷却速度に制限はなく、冷却により到達させる温度にも制限はなく、適宜設定し得る。つまり、室温まで冷却であっても、後続の工程の保持温度までの冷却であってもよい。 Next, high-temperature heat treatment is performed as necessary (S2). In the high-temperature heat treatment, the alloy ingot is made into a solution to dissolve intermetallic compounds into solid solution, and at the same time, distortions caused by blooming forging are removed and crystal grains are refined. In addition, in the case of high-temperature heat treatment, there is no restriction on the subsequent cooling rate, and there is no restriction on the temperature reached by cooling, which can be set as appropriate. In other words, it may be cooled to room temperature or cooled to a holding temperature in a subsequent step.
次いで、必要に応じて合金塊の粗鍛造を行う(S3)。後続の工程において結晶粒を微細化するため、この工程の終了後には、結晶粒度番号が-2以上であることが好ましい。例えば、この段階で結晶粒度番号が5以下であれば、本実施例によって結晶粒を微細化させ得る。 Next, the alloy ingot is roughly forged as required (S3). In order to refine the crystal grains in the subsequent step, it is preferable that the grain size number is -2 or more after this step. For example, if the crystal grain size number is 5 or less at this stage, the crystal grains can be made finer by this embodiment.
ところで、上記したγ”相を強化相とする強化機構を用いる製造方法において、δ相粒子を析出させておいて、熱間鍛造し、再結晶粒の粒径成長を抑制させる方法が知られている。このような方法の場合は、次にδ相粒子を析出させる工程とすることが一般的である。 By the way, in the manufacturing method using the above-mentioned strengthening mechanism using the γ'' phase as the strengthening phase, there is a known method in which δ phase particles are precipitated and then hot forged to suppress the grain size growth of recrystallized grains. In the case of such a method, the next step is generally to precipitate δ phase particles.
これに対して、本実施例では、δ相粒子析出(S5a)工程に先立ってγ”相粒子を析出させる析出制御工程を設けた(S4)。ここでは、γ”相ソルバス温度以下の温度でNi3Nbの準安定相であるγ”相粒子を析出させる(S4a)。例えば、同温度は800~900℃の範囲で適宜設定され得る。後述するように、後のδ相粒子析出工程(S5a)工程におけるδ相粒子の析出は、本工程で析出したγ”相粒子によって制御される。 In contrast, in this example, a precipitation control step (S4) in which γ'' phase particles are precipitated was provided prior to the δ phase particle precipitation (S5a) step. γ'' phase particles, which are the metastable phase of Ni 3 Nb, are precipitated (S4a). For example, the temperature can be set appropriately in the range of 800 to 900°C. As will be described later, the subsequent δ phase particle precipitation step ( The precipitation of δ phase particles in step S5a) is controlled by the γ” phase particles precipitated in this step.
次いで、δ相粒子析出(S5a)工程を含む鍛造・再結晶化(S5)工程を進める。まず、δ相粒子析出(S5a)工程では、γ”相ソルバス温度以上且つδ相ソルバス温度以下の温度に加熱し、Ni3Nbの安定相であるδ相粒子を析出させる。例えば、900~1100℃の範囲で適宜設定され得る。そして、熱間鍛造(S5b)の工程では、再結晶温度以上で仕上鍛造を行って、析出したδ相粒子を分断し微細化させるとともに、合金塊に加工歪みを蓄積させる。そして、再結晶(S5c)工程では、再結晶温度で加熱保持する。すると、熱間鍛造(S5b)で蓄積された加工歪みによって再結晶が促され結晶粒を微細化させ得る。このとき、δ相粒子で再結晶粒の粒径成長を抑制させて、得られるNi基熱間鍛造材の結晶粒を微細に維持する。 Next, a forging/recrystallization (S5) process including a δ phase particle precipitation (S5a) process is performed. First, in the δ phase particle precipitation (S5a) step, heating is performed to a temperature above the γ'' phase solvus temperature and below the δ phase solvus temperature to precipitate δ phase particles, which are the stable phase of Ni 3 Nb. For example, 900 to 1100 It can be set as appropriate in the range of ℃.In the hot forging (S5b) process, finish forging is performed at a temperature higher than the recrystallization temperature to split and refine the precipitated δ phase particles and to apply processing strain to the alloy ingot. In the recrystallization (S5c) step, the steel is heated and held at the recrystallization temperature.Then, the working strain accumulated in the hot forging (S5b) promotes recrystallization and can refine the crystal grains. At this time, the grain size growth of the recrystallized grains is suppressed by the δ phase particles, and the crystal grains of the obtained Ni-based hot forging material are kept fine.
ここで、図2(a)を併せて参照すると、上記した析出制御(S4)工程のない従来法の場合、まず、所定の温度に加熱保持して粒界1を有する結晶粒a1にδ相粒子を析出させると、結晶粒a2のように粒界1に沿ってδ相粒子3が析出して、粒界1から粒内に向けて伸びてゆく。結晶粒a3のように粒内までδ相粒子3を伸ばすにはそれなりの保持時間を必要とする。 Here, referring also to FIG. 2(a), in the case of the conventional method without the above-mentioned precipitation control (S4) step, first, by heating and holding at a predetermined temperature, the crystal grains a1 having the grain boundary 1 have a δ phase. When the particles are precipitated, δ phase particles 3 are precipitated along grain boundaries 1 like crystal grains a2, and extend from grain boundaries 1 toward the interior of the grains. A certain amount of holding time is required to extend the δ phase particles 3 into the grains like crystal grains a3.
一方、析出制御(S4)工程のある本実施例の方法の場合、メカニズムについては定かではないものの、本発明者が以下のように推測した。すなわち、図2(b)に示すように、まず粒界1を有する結晶粒b1にγ”相ソルバス温度以下の温度に加熱保持してγ”相粒子を析出させると、結晶粒b2のように粒内にγ”相粒子2が分散析出する。さらに、γ”相ソルバス温度以上の温度に加熱保持してδ相粒子を析出させると、結晶粒b3のようにδ相粒子3が粒内から析出する。これは、γ”相粒子2を析出核としてδ相粒子3が析出するためであると考えられる。 On the other hand, in the case of the method of the present example that includes the precipitation control (S4) step, although the mechanism is not certain, the inventors speculated as follows. That is, as shown in FIG. 2(b), first, when a crystal grain b1 having a grain boundary 1 is heated and held at a temperature below the γ" phase solvus temperature to precipitate γ" phase particles, it becomes like a crystal grain b2. γ” phase particles 2 are dispersed and precipitated within the grains.Furthermore, when heated and held at a temperature higher than the γ” phase solvus temperature to precipitate δ phase particles, the δ phase particles 3 are separated from the grains as shown in crystal grain b3. Precipitate. This is considered to be because the δ phase particles 3 are precipitated using the γ'' phase particles 2 as precipitation nuclei.
このように、本実施例による結晶粒b3では、結晶粒b2の粒内からδ相粒子を析出させるため、小さなδ相粒子3であっても結晶粒b3の粒内の全域に分散される。そのため、本実施例によれば、従来法による結晶粒a3に比べて小さなδ相粒子3を得られればよく、小さなδ相粒子3を得るためのδ相粒子析出(S5a)工程では短時間の処理とし得る。 In this way, in the crystal grains b3 according to the present example, since the δ phase particles are precipitated from within the crystal grains b2, even the small δ phase particles 3 are dispersed throughout the interior of the crystal grains b3. Therefore, according to this example, it is sufficient to obtain smaller δ-phase particles 3 than the crystal grains a3 obtained by the conventional method, and the δ-phase particle precipitation (S5a) step for obtaining small δ-phase particles 3 requires only a short time. It can be treated as a treatment.
例えば、図3(a)に示すように、従来法であれば、δ相粒子を析出させる処理において、γ”相ソルバス温度以上の温度T2で時間H2の保持によってδ相粒子を析出させて、δ相粒子を粒内まで成長させていた。例えば、Alloy718を用いた場合、温度T2を915℃としたとき、粒内まで十分δ相粒子を成長させるためには時間H2を36時間とする必要があった。 For example, as shown in FIG. 3(a), in the conventional method, in the process of precipitating δ phase particles, the δ phase particles are precipitated by holding the temperature T2 higher than the γ'' phase solvus temperature for a time H2, The δ phase particles were grown to the inside of the grains. For example, when using Alloy 718, when the temperature T2 is 915°C, the time H2 needs to be 36 hours in order to grow the δ phase particles sufficiently to the inside of the grains. was there.
これに対して、図3(b)に示すように、本実施例の方法では、γ”相粒子析出(S4a)工程においてはγ”相ソルバス温度以下の温度T1で時間H1の保持によってγ”相粒子を析出させる。δ相粒子析出(S5a)工程では、γ”相ソルバス温度以上の温度T2で時間H2’の保持によってδ相粒子を析出させる。同様に、例えば、Alloy718を用いた場合、温度T1を870℃、温度T2を915℃として、時間H1を10時間、時間H2’を10時間とし得る。つまり、少なくとも保持時間の合計では従来法よりも短時間とし得る。 On the other hand, as shown in FIG. 3(b), in the method of this embodiment, in the γ'' phase particle precipitation (S4a) step, the γ'' Precipitating phase particles. In the δ phase particle precipitation (S5a) step, δ phase particles are precipitated by maintaining the temperature T2 equal to or higher than the γ'' phase solvus temperature for a time H2'. Similarly, for example, when Alloy 718 is used, the temperature T1 can be 870°C, the temperature T2 can be 915°C, the time H1 can be 10 hours, and the time H2' can be 10 hours. In other words, at least the total retention time can be shorter than that of the conventional method.
また、δ相粒子3を比較的小さくすることで、熱間鍛造(S5b)工程では、δ相粒子をより小さな粒子に分断できて、より細かくて均一な分散とさせ得る。その結果、再結晶(S5c)工程では、δ相粒子のピン止め効果を効率よく得て、再結晶粒子の成長をより強く抑制し得る。 Further, by making the δ phase particles 3 relatively small, the δ phase particles can be divided into smaller particles in the hot forging (S5b) step, and finer and more uniform dispersion can be achieved. As a result, in the recrystallization (S5c) step, the pinning effect of the δ phase particles can be efficiently obtained, and the growth of the recrystallized particles can be suppressed more strongly.
以上のようにして、本実施例におけるNi基熱間鍛造材を得ることができる。 In the manner described above, the Ni-based hot forged material of this example can be obtained.
なお、Ni基熱間鍛造材は、この後、必要に応じて機械加工され、時効処理によってγ”相を析出されて強化されることになるが、これについては公知であるため詳述しない。 Note that the Ni-based hot forged material is then machined as necessary and strengthened by precipitating the γ'' phase through aging treatment, but since this is well known, it will not be described in detail.
また、析出制御(S4)工程において析出させるδγ”相粒子は100nm以上の平均粒径を有することが好ましく、これによって、δ相粒子析出(S5a)工程においてδ相粒子を結晶粒内で析出させ易くし得る。 Further, it is preferable that the δγ'' phase particles precipitated in the precipitation control (S4) step have an average particle size of 100 nm or more, so that the δ phase particles are precipitated within the crystal grains in the δ phase particle precipitation (S5a) step. It can be made easier.
また、鍛造・再結晶化(S5)工程の熱間鍛造(S5b)工程前において、δ相粒子は断面面積率で5%以上であることが好ましく、8%以上がより好ましく、15%以上が一層好ましい。これによって再結晶(S5c)工程で再結晶粒の成長を抑制するピン止め効果をより高くして結晶粒を細かく維持し得る。 Further, before the hot forging (S5b) step of the forging/recrystallization (S5) step, the cross-sectional area ratio of the δ phase particles is preferably 5% or more, more preferably 8% or more, and 15% or more. More preferred. This makes it possible to further enhance the pinning effect of suppressing the growth of recrystallized grains in the recrystallization (S5c) step, thereby maintaining fine crystal grains.
[製造試験]
次に、上記した製造方法によってNi基熱間鍛造材の製造試験を行った結果について、図1、図4~図6を用いて説明する。
[Manufacturing test]
Next, the results of a manufacturing test of a Ni-based hot forged material using the above-described manufacturing method will be explained using FIGS. 1 and 4 to 6.
本試験においては、Ni-Cr-Fe系合金としてAlloy718を用いた。用いた合金の成分組成は、質量%で、Ni:53.6%、Cr:18.18%、Nb:5.48%、Mo:2.92%、Ti:0.98%、Al:0.41%、C:0.02%、B:0.0007%、Mg:0.0006%(残部Fe)であった。 In this test, Alloy 718 was used as the Ni-Cr-Fe alloy. The composition of the alloy used is, in mass%, Ni: 53.6%, Cr: 18.18%, Nb: 5.48%, Mo: 2.92%, Ti: 0.98%, Al: 0 .41%, C: 0.02%, B: 0.0007%, Mg: 0.0006% (remaining Fe).
図1を参照すると、かかる合金を用いて、合金塊準備(S1)、高温熱処理(S2)、及び、粗鍛造(S3)の各工程を経て得た合金塊から10mm×10mm×5mmの寸法を有する複数の試験片を切り出した。そして、複数の試験片のうち、一部を実施例として析出制御(S4)工程によってγ”相粒子を析出させ、残りの一部については比較例としてそのまま次の工程へ進めた。なお、高温熱処理(S2)工程では1050℃で4時間保持し、析出制御(S4)工程では870℃で10時間保持した。 Referring to FIG. 1, dimensions of 10 mm x 10 mm x 5 mm were obtained from an alloy ingot obtained through the steps of alloy ingot preparation (S1), high temperature heat treatment (S2), and rough forging (S3) using such an alloy. A plurality of test pieces were cut out. Then, among the multiple test pieces, some of them were used as examples and γ'' phase particles were precipitated in the precipitation control (S4) process, and the remaining parts were used as comparative examples and proceeded to the next process as they were. In the heat treatment (S2) step, the temperature was maintained at 1050° C. for 4 hours, and in the precipitation control (S4) step, the temperature was maintained at 870° C. for 10 hours.
次いで、実施例及び比較例の試験片それぞれについて、δ相粒子析出(S5a)工程によってδ相粒子を析出させた。δ相粒子析出(S5a)工程では、保持温度を915℃とし、実施例及び比較例の両者に対して1時間、3時間、10時間、29時間、36時間、100時間の6通りの保持時間とした。各試験片については、断面を研磨し電解エッチングして、SEM(走査型電子顕微鏡)によって観察し組織写真を撮影した。また、断面を研磨し化学エッチングして撮影したSEM観察写真について画像解析してδ相粒子の断面面積率を測定した。また、併せてビッカース硬さも測定した。なお、実施例及び比較例に用いたものと同一の成分組成で同一の処理をした試験片のそれぞれについて、加熱保持前のδ相粒子の断面面積率も測定し、0時間の保持時間として記録した。 Next, δ phase particles were precipitated for each of the test pieces of the example and the comparative example by a δ phase particle precipitation (S5a) step. In the δ phase particle precipitation (S5a) step, the holding temperature was 915°C, and six holding times were applied for both the example and the comparative example: 1 hour, 3 hours, 10 hours, 29 hours, 36 hours, and 100 hours. And so. For each test piece, the cross section was polished, electrolytically etched, observed with a SEM (scanning electron microscope), and a photograph of the structure was taken. Further, the cross-sectional area ratio of the δ phase particles was measured by image analysis of the SEM observation photograph taken after polishing and chemically etching the cross section. In addition, Vickers hardness was also measured. In addition, for each test piece that had the same component composition and the same treatment as those used in the Examples and Comparative Examples, the cross-sectional area ratio of the δ phase particles before heating and holding was also measured and recorded as the holding time of 0 hours. did.
図4に示すように、保持時間を3時間とした場合、比較例(a)ではδ相粒子が粒界のみで析出し、粒界から粒内に向けて針状に成長し始めている様子が観察された。δ相粒子の成長は部分的であり、成長するδ相粒子の到達していない部分が粒内に多く観察された。これに対して、実施例(b)では、粒界にδ相粒子の析出が観察される一方、粒内にもδ相粒子の析出が観察された。δ相粒子の断面面積率は、比較例で4%、実施例で9%であった。硬さについては、比較例では178HVであり、実施例ではこれより硬く187HVであった。つまり、δ相粒子の晶出及び成長は実施例の方が速いと言える。なお、実施例については、析出制御(S4)工程でのγ”相粒子の析出によって一旦は硬くなるが、δ相粒子析出(S5a)工程でγ”相ソルバス温度以上の温度で1時間も保持すればγ”相粒子を全て固溶させる。よって、実施例の硬さについて、γ”相粒子の残存によるものとは考えられない。 As shown in Figure 4, when the holding time was 3 hours, in Comparative Example (a), the δ phase particles precipitated only at the grain boundaries and began to grow in an acicular shape from the grain boundaries toward the interior of the grains. observed. The growth of the δ-phase particles was partial, and many parts within the grains that were not reached by the growing δ-phase particles were observed. On the other hand, in Example (b), precipitation of δ phase particles was observed at the grain boundaries, while precipitation of δ phase particles was also observed within the grains. The cross-sectional area ratio of the δ phase particles was 4% in the comparative example and 9% in the example. Regarding the hardness, the comparative example had a hardness of 178 HV, and the working example had a hardness of 187 HV. In other words, it can be said that the crystallization and growth of the δ phase particles is faster in the example. In addition, in the example, although it becomes hard once due to the precipitation of γ'' phase particles in the precipitation control (S4) step, it is maintained at a temperature equal to or higher than the γ'' phase solvus temperature for 1 hour in the δ phase particle precipitation (S5a) step. If this is done, all the γ'' phase particles are dissolved in solid solution. Therefore, it is unlikely that the hardness of the examples is due to the remaining γ'' phase particles.
図5に示すように、保持時間を10時間とした場合、比較例(a)ではδ相粒子の成長による粒内への到達は未だ部分的であり、δ相粒子の到達していない部分が粒内に多く観察された。これに対して実施例(b)では、δ相粒子が成長して粒内のほぼ全域に到達した様子が観察された。δ相粒子の断面面積率は、比較例で5%、実施例で19%であった。硬さについては、比較例では183HVで、実施例では225HVとさらに硬かった。 As shown in Figure 5, when the holding time is 10 hours, in Comparative Example (a), the growth of the δ-phase particles still reaches the inside of the grains only partially, and the portions that the δ-phase particles have not reached are Many were observed within the grains. On the other hand, in Example (b), it was observed that the δ phase particles grew and reached almost the entire area inside the particles. The cross-sectional area ratio of the δ phase particles was 5% in the comparative example and 19% in the example. The hardness was 183HV in the comparative example and 225HV in the example, which was even harder.
図6に示すように、保持時間を36時間とした場合、比較例(b)では、δ相粒子が成長して粒内のほぼ全域に到達した様子が観察された。実施例(b)では、δ相粒子の成長が過剰であるように観察された。δ相粒子の断面面積率は、比較例で19%と保持時間を10時間とした実施例と同等であり、実施例では22%であった。硬さについては、比較例では229HVで、実施例では234HVとさらに硬かった。 As shown in FIG. 6, when the holding time was 36 hours, in Comparative Example (b), it was observed that the δ phase particles grew and reached almost the entire area inside the particles. In Example (b), excessive growth of δ phase particles was observed. The cross-sectional area ratio of the δ phase particles was 19% in the comparative example, which is the same as in the example where the holding time was 10 hours, and was 22% in the example. The hardness was 229HV in the comparative example and 234HV in the example, which was even harder.
図7に示すように、保持時間を0~100時間まで変えたときのδ相粒子の断面面積率は、実施例及び比較例の両者ともに短時間側で急速に増加し、その後の緩やかに増加した。比較例では20時間までδ相粒子の断面面積率を10%未満としたのに対し、実施例では10時間で15%を超えた。 As shown in Figure 7, when the holding time was changed from 0 to 100 hours, the cross-sectional area ratio of the δ phase particles increased rapidly on the short time side in both Examples and Comparative Examples, and then gradually increased. did. In the comparative example, the cross-sectional area ratio of the δ phase particles was less than 10% until 20 hours, whereas in the example it exceeded 15% after 10 hours.
以上のように、析出制御(S4)工程によってγ”相粒子を予め析出させてからδ相粒子を析出させた実施例によれば、従来法による比較例に対して、短い時間でδ相粒子を十分成長させ得ることが判った。なお、従来法ではδ相粒子の析出のための加熱保持において、保持時間を36時間必要とした。これに対し、上記した実施例によれば、δ相粒子析出(S5a)工程における保持時間は10時間で足り、熱間鍛造(S5b)工程、再結晶(S5c)工程を経て得られるNi基熱間鍛造材の結晶粒を微細に維持するために十分であると判断された。 As described above, according to the example in which the γ'' phase particles were precipitated in the precipitation control (S4) step and then the δ phase particles were precipitated, the δ phase particles were precipitated in a shorter time than in the comparative example using the conventional method. It was found that it was possible to sufficiently grow the δ-phase particles.In addition, in the conventional method, 36 hours of holding time was required for heating and holding to precipitate the δ-phase particles.On the other hand, according to the above-mentioned example, the δ-phase particles The holding time in the particle precipitation (S5a) step is sufficient for 10 hours, which is sufficient to maintain fine crystal grains in the Ni-based hot forged material obtained through the hot forging (S5b) and recrystallization (S5c) steps. It was determined that
なお、Ni3Nbの準安定相であるγ”相による強化機構を与えるNi-Cr-Fe系合金であれば、Ni3Nbの安定相であるδ相粒子を析出させ得るから、本実施例と同様に鍛造・再結晶化(S5)工程のδ相粒子析出(S5a)工程に先立って析出制御(S4)工程でγ”相粒子を析出させて、同様にNi基熱間鍛造材を得ることができる。つまり、上記したAlloy718以外のγ”相による強化機構を与えるNi-Cr-Fe系合金、例えば、Alloy718plus、Alloy706、Alloy625、FX550などの合金であっても本実施例と同様である。 Note that if the Ni-Cr-Fe alloy provides a strengthening mechanism by the γ'' phase, which is the metastable phase of Ni 3 Nb, it is possible to precipitate δ phase particles, which are the stable phase of Ni 3 Nb . Similarly, γ'' phase particles are precipitated in the precipitation control (S4) process prior to the δ phase particle precipitation (S5a) process in the forging/recrystallization (S5) process, and a Ni-based hot forged material is similarly obtained. be able to. In other words, the present embodiment is applicable to Ni-Cr-Fe based alloys other than Alloy718 described above that provide a strengthening mechanism by the γ'' phase, such as Alloy718plus, Alloy706, Alloy625, and FX550.
以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although typical embodiments of the present invention have been described above, the present invention is not necessarily limited to these, and those skilled in the art will understand without departing from the spirit of the present invention or the scope of the appended claims. , various alternative embodiments and modifications may be found.
1 結晶粒
2 γ”相粒子
3 δ相粒子
S4 析出制御(工程)
S5 鍛造・再結晶化(工程)
1 Crystal grain 2 γ” phase particle 3 δ phase particle S4 Precipitation control (process)
S5 Forging/recrystallization (process)
Claims (5)
γ”相ソルバス温度以上の温度でNi3Nbの安定相であるδ相粒子を析出させておき、再結晶温度以上で、熱間鍛造し加熱保持して再結晶化させるにあたって前記δ相粒子で再結晶粒の粒径成長を抑制させる鍛造・再結晶化工程を含み、
前記鍛造・再結晶化工程に先立って、前記γ”相ソルバス温度以下の温度でγ”相粒子を析出させて、前記δ相粒子の析出を制御する析出制御工程を含むことを特徴とするNi基熱間鍛造材の製造方法。 A method for producing a Ni-based hot forged material made of a Ni-Cr-Fe alloy that provides a strengthening mechanism by the γ'' phase, which is a metastable phase of Ni 3 Nb, comprising:
The δ phase particles, which are the stable phase of Ni 3 Nb, are precipitated at a temperature higher than the γ'' phase solvus temperature, and the δ phase particles are hot-forged and heated and held at a temperature higher than the recrystallization temperature for recrystallization. Includes a forging and recrystallization process that suppresses the grain size growth of recrystallized grains,
Prior to the forging/recrystallization step, the Ni method includes a precipitation control step of precipitating γ” phase particles at a temperature below the γ” phase solvus temperature to control precipitation of the δ phase particles. A method for producing base hot forged material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124069A JP7340154B2 (en) | 2019-07-02 | 2019-07-02 | Method for manufacturing Ni-based hot forged material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124069A JP7340154B2 (en) | 2019-07-02 | 2019-07-02 | Method for manufacturing Ni-based hot forged material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021008660A JP2021008660A (en) | 2021-01-28 |
JP7340154B2 true JP7340154B2 (en) | 2023-09-07 |
Family
ID=74199662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019124069A Active JP7340154B2 (en) | 2019-07-02 | 2019-07-02 | Method for manufacturing Ni-based hot forged material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7340154B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115323297A (en) * | 2022-08-11 | 2022-11-11 | 江苏大学 | Method for improving friction and wear performance of GH4169 high-temperature alloy, wear-resistant GH4169 high-temperature alloy and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003226950A (en) | 2002-02-06 | 2003-08-15 | Daido Steel Co Ltd | METHOD FOR MANUFACTURING Ni ALLOY MATERIAL |
JP2014051698A (en) | 2012-09-06 | 2014-03-20 | Hitachi Ltd | Ni-BASED FORGING ALLOY, AND GAS TURBINE USING THE SAME |
JP2014161861A (en) | 2013-02-22 | 2014-09-08 | Daido Steel Co Ltd | FREE-FORGING PROCESSING METHOD OF Ni GROUP THERMOSTABLE ALLOY MEMBER |
JP2014237884A (en) | 2013-06-10 | 2014-12-18 | 三菱日立パワーシステムズ株式会社 | Ni BASED FORGED ALLOY, AND TURBINE DISK, TURBIN SPACER AND GAS TURBIN USING THE SAME |
WO2015151318A1 (en) | 2014-03-31 | 2015-10-08 | 日立金属株式会社 | METHOD FOR PRODUCING Fe-Ni-BASED SUPER HEAT-RESISTANT ALLOY |
-
2019
- 2019-07-02 JP JP2019124069A patent/JP7340154B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003226950A (en) | 2002-02-06 | 2003-08-15 | Daido Steel Co Ltd | METHOD FOR MANUFACTURING Ni ALLOY MATERIAL |
JP2014051698A (en) | 2012-09-06 | 2014-03-20 | Hitachi Ltd | Ni-BASED FORGING ALLOY, AND GAS TURBINE USING THE SAME |
JP2014161861A (en) | 2013-02-22 | 2014-09-08 | Daido Steel Co Ltd | FREE-FORGING PROCESSING METHOD OF Ni GROUP THERMOSTABLE ALLOY MEMBER |
JP2014237884A (en) | 2013-06-10 | 2014-12-18 | 三菱日立パワーシステムズ株式会社 | Ni BASED FORGED ALLOY, AND TURBINE DISK, TURBIN SPACER AND GAS TURBIN USING THE SAME |
WO2015151318A1 (en) | 2014-03-31 | 2015-10-08 | 日立金属株式会社 | METHOD FOR PRODUCING Fe-Ni-BASED SUPER HEAT-RESISTANT ALLOY |
Also Published As
Publication number | Publication date |
---|---|
JP2021008660A (en) | 2021-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4995570B2 (en) | Nickel base alloy and heat treatment method of nickel base alloy | |
JP6823827B2 (en) | Heat-resistant Ti alloy and its manufacturing method | |
CN108118193B (en) | Method for producing Ni-based superalloy material | |
US10344367B2 (en) | Method for producing Ni-based superalloy material | |
JP6826235B2 (en) | Ni-based alloy softened powder and method for producing the softened powder | |
WO2012026354A1 (en) | Co-based alloy | |
WO2020195049A1 (en) | Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy | |
EP3290536B1 (en) | Grain refinement in superalloys using laves phase precipitation | |
JP6315319B2 (en) | Method for producing Fe-Ni base superalloy | |
WO2018043187A1 (en) | Tial alloy and method for producing same | |
JP6079404B2 (en) | Method for forging disc-shaped products | |
JP7340154B2 (en) | Method for manufacturing Ni-based hot forged material | |
JPH06340955A (en) | Production of ti-al series intermetallic compound base alloy | |
TWI564398B (en) | Nickel-based alloy and method of producing thereof | |
WO2024185610A1 (en) | Tial-based alloy and method for producing same | |
JP3049567B2 (en) | Manufacturing method of Ni-base heat-resistant alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230728 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7340154 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |