JP3049567B2 - Manufacturing method of Ni-base heat-resistant alloy material - Google Patents
Manufacturing method of Ni-base heat-resistant alloy materialInfo
- Publication number
- JP3049567B2 JP3049567B2 JP2319804A JP31980490A JP3049567B2 JP 3049567 B2 JP3049567 B2 JP 3049567B2 JP 2319804 A JP2319804 A JP 2319804A JP 31980490 A JP31980490 A JP 31980490A JP 3049567 B2 JP3049567 B2 JP 3049567B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- resistant alloy
- less
- base heat
- billet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はNi基耐熱合金素材の製造方法に関し、更に詳
しくは、Ni基耐熱合金素材が大型形状であっても、その
金属組織を内部まで微細化するためのNi基耐熱合金素材
の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a Ni-base heat-resistant alloy material, and more particularly, to a metal structure even when a Ni-base heat-resistant alloy material has a large shape. The present invention relates to a method for manufacturing a Ni-base heat-resistant alloy material for miniaturization.
(従来の技術) Ni基耐熱合金は650℃以上の高温下においても優れた
機械的特性を維持する材料であり、ガスタービンの分野
などに使用されている。(Prior Art) Ni-base heat-resistant alloy is a material that maintains excellent mechanical properties even at a high temperature of 650 ° C. or higher, and is used in the field of gas turbines and the like.
この材料は、概ね、所望組織のNi基耐熱合金を真空誘
導溶解や真空アーク溶解などの方法で溶製し、そのイン
ゴットに所望の鍛錬比で通常複数回の分塊鍛造あるいは
圧延をおこなってビレットを製造し、そのビレットに型
打鍛造などの仕上げ加工を行ったのち、熱処理を施して
製造されている。In general, this material is prepared by melting a Ni-base heat-resistant alloy having a desired structure by vacuum induction melting or vacuum arc melting, and subjecting the ingot to multiple ingot forging or rolling at a desired forging ratio, usually in multiple rounds. The billet is subjected to finishing such as stamping and forging, and then subjected to a heat treatment.
(発明が解決しようとする課題) ところで、Ni基合金は、その再結晶温度が一般に高く
難加工性の材料である。そのため、インゴットに対して
は、小刻みに鍛錬比をとりながら加工するのが通例であ
る。(Problems to be Solved by the Invention) By the way, Ni-based alloys are generally difficult to process because of their high recrystallization temperatures. For this reason, it is customary to process the ingot while taking the forging ratio into small increments.
その結果、表層部付近の鍛造組織は破壊されるが中心
部にいくほどその組織は破壊されにくいという問題が生
ずる。As a result, there arises a problem that the forged structure near the surface layer is broken, but the structure is harder to be broken toward the center.
このような鍛造の状態で再結晶処理を施したビレット
の場合、表層部は微細粒の組織になるが、しかし中心部
では粗大粒の組織になってしまう。そして、このビレッ
トに仕上げ鍛造を施したとしても、中心部の粗大粒を細
粒にすることは非常に困難である。In the case of a billet recrystallized in such a forged state, the surface layer has a fine-grained structure, but the central portion has a coarse-grained structure. Even if this billet is subjected to finish forging, it is very difficult to make the coarse particles in the center part fine.
とりわげ、インゴットが大型になると、上記した傾向
は顕著に発現するようになり、時には、ビレットの中心
部に巨大な粗粒が発生する。In particular, when the size of the ingot is large, the above-mentioned tendency becomes noticeable, and sometimes a large coarse particle is generated at the center of the billet.
このような巨大粒は型打鍛造時のデッドゾーンにある
と殆ど解消せずにそのまま残存し、材料の疲労やクリー
プ強度などの機械的特性の低下を引き起こしてしまう。Such giant grains hardly disappear when they are in a dead zone during stamping and forging, and remain as they are, causing deterioration of mechanical properties such as fatigue and creep strength of the material.
本発明はこのような問題を解決し、大型のサイズの材
料であっても、その中心部に巨大粒が存在せず、中心部
まで均一なミクロ組織のNi基耐熱合金素材を製造する方
法の提供を目的とする。The present invention solves such a problem, and a method for producing a Ni-based heat-resistant alloy material having a microstructure having a uniform microstructure up to the center without the presence of giant grains even in the case of a large-sized material. For the purpose of providing.
(課題を解決するための手段・作用) 上記した問題を解決するために、本発明においては、
C:0.2重量%以下,Si:1重量%以下,Mn:2重量%以下,Cr:1
3〜25重量%,Ti:5重量%以下,Al:5重量%以下、残部:Ni
と不可避的不純物から成るNi基耐熱合金のインゴットに
1200℃以上の温度で加工率30%以上の熱間加工を施して
ビレットを得る工程(以下、第1工程という);得られ
たビレットに熱処理を加えて、前記ビレットの粒組織
を、JIS0551で規定する結晶粒度番号が1番以上の再結
晶粒から成る、粒径が整っている組織にする工程(以
下、第2工程という);および、前記処理品を1100〜11
60℃に加熱し加工率30%以上の仕上げ加工を施す工程
(以下、第3工程という);を必須の工程として備えて
いることを特徴とするNi基耐熱合金素材の製造方法が提
供される。(Means / Functions for Solving the Problems) In order to solve the above problems, in the present invention,
C: 0.2% by weight or less, Si: 1% by weight or less, Mn: 2% by weight or less, Cr: 1
3 to 25% by weight, Ti: 5% by weight or less, Al: 5% by weight or less, balance: Ni
Ni-base heat-resistant alloy ingots composed of unavoidable impurities
A step of obtaining a billet by performing hot working at a temperature of 1200 ° C. or more at a working ratio of 30% or more (hereinafter, referred to as a first step); applying heat treatment to the obtained billet to reduce the grain structure of the billet to JIS0551. A step of forming a structure having a uniform grain size, which comprises recrystallized grains having a prescribed grain size number of 1 or more (hereinafter referred to as a second step); and treating the treated product with 1100 to 11
A method for producing a Ni-based heat-resistant alloy material, characterized by comprising a step of heating to 60 ° C. and performing a finish processing at a processing rate of 30% or more (hereinafter, referred to as a third step); .
まず、第1の工程は、インゴットの鍛造組織を破壊す
るためであると同時に、この工程に続けて行う第2の工
程において、後述するように、粗粒ではあるがその粒径
が整っている組織をビレットの中心部に成長させること
を目的として行われる。First, the first step is for destroying the forged structure of the ingot, and at the same time, in the second step which is performed after this step, as described later, although the coarse grains are present, the grain sizes are uniform. The purpose is to grow the tissue in the center of the billet.
この第1の工程では、まず、上記した組織のNi基合金
が常法によって溶製され、それからインゴットが製造さ
れる。In the first step, first, a Ni-based alloy having the above-described structure is melted by an ordinary method, and then an ingot is manufactured.
合金において、Cは高温における延性向上に寄与する
成分であるが、しかもあまり多量に含有させると熱間加
工性を損なうことになるのでその上限値は0.2重量%と
する。In the alloy, C is a component that contributes to the improvement of ductility at high temperatures, but if it is contained in an excessively large amount, the hot workability is impaired, so the upper limit is set to 0.2% by weight.
Siは溶製における脱酸に寄与する成分であるが、しか
しあまり多量に含有させると延性を損なうことになるの
でその上限値は1重量%とする。Si is a component that contributes to deoxidation in smelting, but if contained in a large amount, ductility is impaired, so the upper limit is set to 1% by weight.
Mnは合金の溶製における脱酸に寄与し、また熱間加工
性を高めるための成分であるが、しかしあまり多量に含
有させると、熱間加工性および金属組織的安定性を損な
うという問題が生ずるのでその上限値は2重量%とす
る。Mn is a component that contributes to deoxidation during alloy smelting and enhances hot workability.However, if contained in a large amount, there is a problem that hot workability and metallographic stability are impaired. Therefore, its upper limit is set to 2% by weight.
Crは合金の耐酸化性や耐熱性を高めるための成分であ
る。その含有量が13重量%未満の場合は耐酸化性や耐熱
性が損なわれ、また25重量%を超えると熱間加工性や組
織的安定性を損なうことになるので、その含有量は13〜
25重量%にする。Cr is a component for improving the oxidation resistance and heat resistance of the alloy. If the content is less than 13% by weight, oxidation resistance and heat resistance are impaired, and if it exceeds 25% by weight, hot workability and organizational stability are impaired.
25% by weight.
Ti,Alはいずれも、ベースであるNiとの間で金属化合
物Ni3(Ti,Al)を生成して合金の析出強化に寄与する成
分であるが、しかしあまり多量に含有させると、熱間加
工性が損なわれるので、その含有量の上限はいずれも5
重量%とする。Both Ti and Al are components that contribute to the precipitation strengthening of the alloy by forming a metal compound Ni 3 (Ti, Al) with the base Ni, but if they are contained in a large amount, they become hot Since the processability is impaired, the upper limit of the content is 5
% By weight.
本発明に用いる合金は、更に、Nb:5重量%以下,W:10
重量%以下,Mo:20重量%以下,Co:30重量%以下の1種ま
たは2種以上が含有されていてもよい。これらの成分を
含有させると、高温における強度を向上させることがで
きる。The alloy used in the present invention further comprises Nb: 5% by weight or less, W: 10
One or more of the following by weight: Mo: 20% by weight, Co: 30% by weight or less. When these components are contained, the strength at high temperatures can be improved.
また、B,Zr,Hf,Mg,Y,希土類元素などが数%以下含有
されていてもよい。Further, B, Zr, Hf, Mg, Y, a rare earth element, and the like may be contained in several percent or less.
インゴットの熱間加工は、温度1200℃以上,加工率30
%以上の条件下で行われる。Hot working of ingot, temperature 1200 ℃ or more, working rate 30
%.
上記条件を満たさない熱間加工を行った場合には、第
2の工程において、ビレット中心部まで、再結晶によっ
て再結晶粒の粒径が整っている組織を成長させることが
できず、結局は、仕上げ加工を行っても中心部までを微
細粒のミクロ組織にすることが困難になる。When hot working that does not satisfy the above conditions is performed, in the second step, it is impossible to grow a structure in which the grain size of recrystallized grains is uniform by recrystallization up to the center of the billet. In addition, it is difficult to form a fine-grained microstructure up to the center even when the finish processing is performed.
第2の工程は、第1の工程で得られたビレットに熱処
理を施して、その中心部までを粗粒ではあるがその粒径
が整っている組織にすることを目的として行われる。The second step is performed for the purpose of subjecting the billet obtained in the first step to a heat treatment to form a structure in which the central portion is coarse but has a uniform particle size.
また、再結晶粒の粒径が整っている組織とは、JISG05
51で規定する結晶粒度番号が1番以上である結晶粒から
成る組織のことをいう。In addition, the structure in which the grain size of the recrystallized grains is uniform is JISG05
It refers to a structure composed of crystal grains whose crystal grain number specified by 51 is 1 or more.
中心部がこのような組織になっていると、次の第3の
工程で仕上げ加工を行うと、各粗粒が微細に破壊され、
中心部を微細粒が集合するミクロ組織にすることができ
る。When the central part has such a structure, when the finishing process is performed in the next third step, each coarse particle is finely broken,
The central portion can have a microstructure in which fine grains are aggregated.
この整粗粒組織を得るためには、第1の工程で得られ
たビレットを加熱炉の中で再加熱して、その中心部を12
00℃の温度で30分以上保持する熱処理が施される。中心
部温度を1200℃未満であるような熱処理を行うと、再結
晶が充分進行せず中心部に巨大な粗粒を残存させてしま
う。In order to obtain this coarse-grained structure, the billet obtained in the first step is re-heated in a heating furnace, and the center thereof is
Heat treatment is performed at a temperature of 00 ° C. for 30 minutes or more. If the heat treatment is performed such that the temperature of the central portion is lower than 1200 ° C., recrystallization does not sufficiently proceed, and huge coarse particles remain in the central portion.
このような処理が施されることによって、ビレットの
表層部側の再結晶粒も温度上昇に伴って若干粗大になっ
ていくが、そのこと以上に中心部の巨大な粗粒は細粒化
していくので、全体としては比較的均一な組織のビレッ
トになる。By performing such a treatment, the recrystallized grains on the surface layer side of the billet also become slightly coarser as the temperature rises, but the larger coarse grains in the center part become finer than that. As a result, the billet has a relatively uniform texture as a whole.
第3の工程は、第2の工程で得られた処理品に仕上鍛
造あるいは圧延を施して、前記再結晶粒の粒径が整って
いる組織を破壊して微細粒組織にすることを目的として
行われる。The third step is to subject the treated product obtained in the second step to finish forging or rolling to destroy a structure in which the recrystallized grains have a uniform grain size to obtain a fine grain structure. Done.
このときの加工温度は1100℃〜1600℃の範囲に管理
し、また、加工率は30%以上とする。The processing temperature at this time is controlled in the range of 1100 ° C to 1600 ° C, and the processing rate is 30% or more.
加工温度を1160℃より高くすると、加工によって再結
晶粒の粒径が整っている組織の破壊が進行したとして
も、得られた細粒が再び粗粒に成長していく過程も同時
に起こり、再結晶粒の粒径が整っている組織の破壊を目
的とする仕上げ加工の意味がなくなってしまう。また、
加工温度を1100℃より低くすると、仕上げ加工の過程で
ワレ,カケなどの不都合が起こりはじめる。When the processing temperature is higher than 1160 ° C, even if the fracture of the structure in which the grain size of the recrystallized grains is adjusted by the processing progresses, the process in which the obtained fine grains grow into coarse grains again occurs at the same time. There is no meaning in finishing work for the purpose of destroying a structure in which crystal grains have a uniform grain size. Also,
If the processing temperature is lower than 1100 ° C., inconveniences such as cracks and chips will begin to occur during the finishing process.
更に、加工率が30%より小さい場合は、再結晶粒の粒
径が整っている組織が充分に破壊されず、良好なミクロ
組織を得ることができない。Further, when the working ratio is smaller than 30%, the structure in which the grain size of the recrystallized grains is uniform is not sufficiently destroyed, and a good microstructure cannot be obtained.
(発明の実施例) C:0.02重量%,Si:0.02重量%,Mn:0.01重量%,P:0.003
重量%,S:0.0004重量%,Cu:0.01重量%,Cr:19.52重量
%,Mo:4.17重量%,Co:13.15重量%,Ti:3.12重量%,Al:
1.47重量%,Fe:0.33重量%,B:0.003重量%,Zr:0.046重
量%,Ni:balから成るNi基合金を溶製し、そのインゴッ
ト(直径420mm)に、1200℃の温度で加工率30%の熱間
鍛造を行い、ついで、得られた鍛造品を1200℃の均熱炉
の中に15時間保持した。(Example of the invention) C: 0.02% by weight, Si: 0.02% by weight, Mn: 0.01% by weight, P: 0.003%
% By weight, S: 0.0004% by weight, Cu: 0.01% by weight, Cr: 19.52% by weight, Mo: 4.17% by weight, Co: 13.15% by weight, Ti: 3.12% by weight, Al:
1.47 wt%, Fe: 0.33 wt%, B: 0.003 wt%, Zr: 0.046 wt%, Ni-based alloy consisting of Ni: bal is melted and the ingot (420mm in diameter) is processed at 1200 ° C temperature. A 30% hot forging was performed, and the obtained forged product was kept in a 1200 ° C. soaking furnace for 15 hours.
熱処理後の鍛造品を輪切りにし、その中心部の再結晶
組織を観察したところ、結晶粒度番号は1〜2の組織に
なっていた。ちなみに、前記鍛造品を1160℃で1時間均
熱して、その中心部の組織を観察したところ、結晶粒度
番号が−1〜−4程度の巨大な粗粒が認められ、しかも
これは長手方向に存在していた。When the forged product after the heat treatment was cut into slices and the recrystallized structure at the center was observed, the grain size number was 1-2. By the way, when the forged product was soaked at 1160 ° C. for 1 hour and the structure at the center was observed, huge coarse grains having a grain size number of about −1 to −4 were observed, and this was observed in the longitudinal direction. Existed.
その後、熱処理したビレットに1160℃の温度で加工率
40%の仕上鍛造を行い、その中心部の組織を観察した。
巨大な粗粒は全く認められず、中心部の結晶粒度番号は
3〜5の範囲内にあった。After that, the heat-treated billet is processed at a temperature of 1160 ° C.
A 40% finish forging was performed, and the structure at the center was observed.
No giant coarse grains were observed at all, and the grain size number at the center was in the range of 3-5.
(発明の効果) 以上の説明で明らかなように、本発明方法によれば、
中心部に巨大粒が存在せず、結晶粒度番号が3以上の均
一なミクロ組織を有する大型形状のNi基耐熱合金材料を
製造することができる。したがって、本発明方法は、例
えば、産業用大型ガスタービンのディスク素材を製造す
る方法としてその工業的価値は大である。(Effect of the Invention) As is clear from the above description, according to the method of the present invention,
A large-sized Ni-based heat-resistant alloy material having no microparticles at the center and having a uniform microstructure having a crystal grain size number of 3 or more can be produced. Therefore, the method of the present invention has great industrial value, for example, as a method for producing a disk material for a large industrial gas turbine.
Claims (3)
量%以下,Cr:13〜25重量%,Ti:5重量%以下,Al:5重量%
以下,残部:Niと不可避的不純物から成るNi基耐熱合金
のインゴットに1200℃以上の温度で加工率30%以上の熱
間加工を施してビレットを得る工程;得られたビレット
に熱処理を加えて、前記ビレットの粒組織を、JISG0551
で規定する結晶粒度番号が1番以上の再結晶粒から成
る、粒径が整っている組織にする工程;および、前記処
理品を1100〜1160℃に加熱し加工率30%以上に仕上げ加
工を施す工程;を必須の工程として備えていることを特
徴とするNi基耐熱合金素材の製造方法。C: 0.2% by weight or less, Si: 1% by weight or less, Mn: 2% by weight or less, Cr: 13 to 25% by weight, Ti: 5% by weight or less, Al: 5% by weight
The remainder: the process of obtaining a billet by subjecting an ingot of Ni-base heat-resistant alloy consisting of Ni and unavoidable impurities to hot working at a temperature of 1200 ° C or more at a working ratio of 30% or more; heat treatment of the obtained billet , The grain structure of the billet, JISG0551
A process of forming a structure having a uniform grain size, consisting of recrystallized grains having a grain size number of 1 or more specified in the above; and heating the processed product to 1100 to 1160 ° C. and finishing to a working rate of 30% or more. A method for producing a Ni-base heat-resistant alloy material, comprising the steps of:
以下,W:10重量%以下,Mo:2重量%以下,Co:30重量%以下
の1種または2種以上が含有されている特許請求の範囲
第1項に記載のNi基耐熱合金素材の製造方法。2. The Ni-base heat-resistant alloy further comprises Nb: 5% by weight.
The Ni-base heat-resistant alloy material according to claim 1, wherein one or more of W: 10% by weight or less, Mo: 2% by weight or less, and Co: 30% by weight or less are contained. Production method.
土類元素が含有されている特許請求の範囲第1項または
第2項に記載のNi基耐熱合金素材の製造方法。3. The Ni-base heat-resistant alloy material according to claim 1, wherein said Ni-base heat-resistant alloy contains B, Zr, Hf, Mg, Y, and a rare earth element. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2319804A JP3049567B2 (en) | 1990-11-22 | 1990-11-22 | Manufacturing method of Ni-base heat-resistant alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2319804A JP3049567B2 (en) | 1990-11-22 | 1990-11-22 | Manufacturing method of Ni-base heat-resistant alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04191353A JPH04191353A (en) | 1992-07-09 |
JP3049567B2 true JP3049567B2 (en) | 2000-06-05 |
Family
ID=18114381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2319804A Expired - Fee Related JP3049567B2 (en) | 1990-11-22 | 1990-11-22 | Manufacturing method of Ni-base heat-resistant alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3049567B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5899806B2 (en) * | 2011-10-31 | 2016-04-06 | 新日鐵住金株式会社 | Austenitic heat-resistant alloy with excellent liquefaction resistance in HAZ |
-
1990
- 1990-11-22 JP JP2319804A patent/JP3049567B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04191353A (en) | 1992-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6150192B2 (en) | Method for producing Ni-base superalloy | |
EP3327158B1 (en) | Method for producing ni-based superalloy material | |
JP6826879B2 (en) | Manufacturing method of Ni-based super heat-resistant alloy | |
JPS60228659A (en) | Malleable improvement for nickel base superalloy | |
CN107250416A (en) | The manufacture method of Ni base superalloy | |
JPH09310162A (en) | Production of preform for forging nickel base superalloy | |
JP6687118B2 (en) | TiAl alloy and method for producing the same | |
WO2020195049A1 (en) | Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy | |
JP6315319B2 (en) | Method for producing Fe-Ni base superalloy | |
CA2980063A1 (en) | Method for producing ni-based superalloy material | |
TWI789871B (en) | Manufacturing method of Wostian iron-based stainless steel strip | |
JP2018059184A5 (en) | ||
JP7375489B2 (en) | Manufacturing method of Ni-based heat-resistant alloy material | |
JPS63171862A (en) | Manufacture of heat resistant ti-al alloy | |
JPH0138848B2 (en) | ||
JP3909406B2 (en) | Method for producing Ni-based alloy material | |
JP3369627B2 (en) | Method of manufacturing fine crystal grain super heat resistant alloy member | |
JP3049567B2 (en) | Manufacturing method of Ni-base heat-resistant alloy material | |
WO2020235203A1 (en) | Tial alloy production method and tial alloy | |
JPS6220847A (en) | Metallic material having fine crystal grain and its production | |
EP1308529B1 (en) | Titanium aluminum intermetallic compound based alloy and method of fabricating a product from the alloy | |
JPH08144034A (en) | Production of titanium-aluminium intermetallic compound-base alloy | |
TWI564398B (en) | Nickel-based alloy and method of producing thereof | |
JPH0461057B2 (en) | ||
JPH03193851A (en) | Production of tial-base alloy having extremely superfine structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |