JPH04191353A - Production of ni-base heat resisting alloy stock - Google Patents

Production of ni-base heat resisting alloy stock

Info

Publication number
JPH04191353A
JPH04191353A JP31980490A JP31980490A JPH04191353A JP H04191353 A JPH04191353 A JP H04191353A JP 31980490 A JP31980490 A JP 31980490A JP 31980490 A JP31980490 A JP 31980490A JP H04191353 A JPH04191353 A JP H04191353A
Authority
JP
Japan
Prior art keywords
weight
billet
grain size
less
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31980490A
Other languages
Japanese (ja)
Other versions
JP3049567B2 (en
Inventor
Motoaki Imamura
今村 元昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2319804A priority Critical patent/JP3049567B2/en
Publication of JPH04191353A publication Critical patent/JPH04191353A/en
Application granted granted Critical
Publication of JP3049567B2 publication Critical patent/JP3049567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain an Ni-base alloy having uniform microstructure and excellent in heat resistance by applying heat treatment to a billet of Ni-base alloy having a specific composition containing Cr, Ti, Al, etc., to form its structure into a state of graded coarse grains and then exerting finish working at respectively specified temp. and draft. CONSTITUTION:An ingot of an Ni-base alloy having a composition consisting of, by weight, <0.2% C, <1% Si, <2% Mn, 13-25% Cr, <5% Ti, <5% Al, and the balance Ni is hot-worked under the temp. condition of >=1200 deg.C at >=30% draft and formed into an Ni-base alloy billet. Then, heat treatment is applied to this billet to form its structure into a graded structure, consisting of recrystallized grains having a grain size of grain size No.1 or above specified by JISG0551 and having graded grain size in spite of its coarseness, to the central part. Successively, this billet is heated to 1100-1160 deg.C and subjected to finish working at >==30% draft, by which the Ni-base heat resisting alloy stock having a structure which is fine and uniform to the inner part even in the case of large-sized shape can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はNi基耐熱合金素材の製造方法に関し、更に詳
しくは、Ni基耐熱合金素材か大型形状であっても、そ
の金属組織を内部まで微細化するためのNi基耐熱合金
素材の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a Ni-based heat-resistant alloy material, and more specifically, a method for manufacturing a Ni-based heat-resistant alloy material, even if the material has a large shape. The present invention relates to a method for manufacturing a Ni-based heat-resistant alloy material for miniaturization.

(従来の技術) Ni基耐熱合金は650℃以上の高温下においても優れ
た機械的特性を維持する材料であり、ガスタービンの分
野などに使用されている。
(Prior Art) Ni-based heat-resistant alloys are materials that maintain excellent mechanical properties even at high temperatures of 650° C. or higher, and are used in the field of gas turbines and the like.

この材料は、概ね、所望組成のNi基耐熱合金を真空誘
導溶解や真空アーク溶解などの方法で溶製し、そのイン
ゴットに所望の鍛練比で通常複数回の分塊鍛造あるいは
圧延をおこなってビレットを製造し、そのビレットに型
打鍛造などの仕上げ加工を行ったのち、熱処理を施して
製造されている。
This material is generally made by melting a Ni-based heat-resistant alloy with a desired composition by a method such as vacuum induction melting or vacuum arc melting, and then blooming or rolling the resulting ingot multiple times at a desired forging ratio to form a billet. The billet is then subjected to finishing processes such as die forging, and then heat treated.

(発明が解決しようとする課題) ところで、Ni基合金は、その再結晶温度が一般に高く
難加工性の材料である。そのため、インゴットに対して
は、小刻みに鍛練比をとりながら加工するのが通例であ
る。
(Problems to be Solved by the Invention) By the way, Ni-based alloys generally have high recrystallization temperatures and are difficult-to-work materials. Therefore, it is customary to process ingots while adjusting the training ratio in small increments.

その結果、表層部付近の鋳造組織は破壊されるか中心部
にいくほとその組織は破壊されにくいという問題が生ず
る。
As a result, a problem arises in that the casting structure near the surface layer is destroyed, or the structure is less likely to be destroyed as it approaches the center.

このような鍛練の状態で再結晶処理を施したビレットの
場合、表層部は微細粒の組織になるか、しかし中心部で
は粗大粒の組織になってしまう。
In the case of a billet subjected to recrystallization treatment in such a forged state, the surface layer will have a fine-grained structure, but the center portion will have a coarse-grained structure.

そして、このビレットに仕上げ鍛造を施したとしても、
中心部の粗大粒を細粒にすることは非常に困難である。
Even if finish forging is applied to this billet,
It is very difficult to make coarse grains in the center into fine grains.

とりわけ、インゴットが大型になると、上記した傾向は
顕著に発現するようになり、時には、ビレットの中心部
に巨大な粗粒か発生する。
In particular, as the ingot becomes larger, the above-mentioned tendency becomes more pronounced, and sometimes huge coarse grains are generated in the center of the billet.

このような巨大粒は型打鍛造時のデッドゾーンにあると
殆ど解消せずにそのまま残存し、材料の疲労やクリープ
強度などの機械的特性の低下を引き起こしてしまう。
If such giant grains are present in the dead zone during die forging, they will remain as they are without being completely resolved, causing fatigue of the material and deterioration of mechanical properties such as creep strength.

本発明はこのような問題を解決し、大型のサイズの材料
であっても、その中心部に巨大粒か存在せず、中心部ま
で均一なミクロ組織のN1基耐熱合金素材を製造する方
法の提供を目的とする。
The present invention solves these problems and provides a method for producing an N1-based heat-resistant alloy material that does not have giant grains in the center and has a uniform microstructure all the way to the center, even if the material is large in size. For the purpose of providing.

(課題を解決するための手段・作用) 上記した問題を解決するために、本発明においては、C
・0.2重量%以下、Si:1重量%以下。
(Means/effects for solving the problem) In order to solve the above problem, in the present invention, C
- 0.2% by weight or less, Si: 1% by weight or less.

Mn:2重量%以下、Cr:13〜25重量%。Mn: 2% by weight or less, Cr: 13-25% by weight.

Ti:5重量%以下、Al・5重量%以下、残部:Ni
を必須成分とするNi基耐熱合金のインゴットに120
0°C以上の温度で加工率30%以上の熱間加工を施し
てビレットを得る工程(以下、第1工程という)、得ら
れたビレットに熱処理を加えて、前記ビレットの粒組織
を1.J I S 0551で規定する結晶粒度番号が
1番以上の再結晶粒から成る整粗粒組織にする工程(以
下、第2工程という)、および、前記処理品を1100
〜1160℃に加熱し加工率30%以上の仕上げ加工を
施す工程(以下、第3工程という):を必須の工程とし
て備えていることを特徴とするNi基耐熱合金素材の製
造方法が提供される。
Ti: 5% by weight or less, Al: 5% by weight or less, balance: Ni
120 to an ingot of a Ni-based heat-resistant alloy containing as an essential component
A step (hereinafter referred to as the first step) of obtaining a billet by performing hot working at a temperature of 0° C. or higher and a processing rate of 30% or higher (hereinafter referred to as the first step), heat treatment is applied to the obtained billet to change the grain structure of the billet to 1. A step of forming a coarse-grained structure consisting of recrystallized grains having a crystal grain size number of 1 or more as defined in JIS 0551 (hereinafter referred to as the second step), and
Provided is a method for producing a Ni-based heat-resistant alloy material, which comprises as an essential step a step of heating to ~1160° C. and finishing with a processing rate of 30% or more (hereinafter referred to as the third step). Ru.

まず、第1の工程は、インゴットの鋳造組織を破壊する
ためであると同時に、この工程に続けて行う第2の工程
において、後述するように、粗粒ではあるがその粒径が
整っている整粗粒組織をビレットの中心部に成長させる
ことを目的として行われる。
First, the first step is to destroy the cast structure of the ingot, and at the same time, in the second step that follows this step, the grain size is adjusted even though it is coarse, as will be described later. This is done to grow a coarse grained structure in the center of the billet.

この第1の工程では、まず、上記した組成のNi基合金
が常法によって溶製され、それからインゴットが製造さ
れる。
In this first step, first, a Ni-based alloy having the above-mentioned composition is melted by a conventional method, and then an ingot is manufactured.

合金において、Cは高温における延性向上に寄与する成
分であるが、しかしあまり多量に含有させると熱間加工
性を損なうことになるのでその上限値は0.2重量%と
する。
In alloys, C is a component that contributes to improving ductility at high temperatures; however, if too large a content is included, hot workability will be impaired, so the upper limit is set at 0.2% by weight.

Siは溶製における脱酸に寄与する成分であるが、しか
しあまり多量に含有させると延性を損なうことになるの
でその上限値は1重量%とする。
Si is a component that contributes to deoxidation during melting, but if it is contained in too large a quantity, it will impair ductility, so the upper limit is set at 1% by weight.

Mnは合金の溶製における脱酸に寄与し、また熱間加工
性を高めるための成分であるが、しかしあまり多量に含
有させると、熱間加工性および金属組織的安定性を損な
うという問題が生ずるのでその上限値は2重量%とする
Mn is a component that contributes to deoxidation during melting of alloys and improves hot workability, but if it is included in too large a quantity, there is a problem that hot workability and metallographic stability are impaired. Therefore, the upper limit is set at 2% by weight.

Crは合金の耐酸化性や耐熱性を高めるための成分であ
る。その含有量が13重量%未満の場合は耐酸化性や耐
熱性が損なわれ、また25重量%を超えると熱間加工性
や組織的安定性を損なうことになるので、その含有量は
13〜25重量%にする。
Cr is a component for increasing the oxidation resistance and heat resistance of the alloy. If the content is less than 13% by weight, oxidation resistance and heat resistance will be impaired, and if it exceeds 25% by weight, hot workability and structural stability will be impaired. Make it 25% by weight.

T i、 A Iはいずれも、ベースであるN1との間
で金属間化合物Ni3(Ti、A1)を生成して合金の
析出強化に寄与する成分であるか、しかしあまり多量に
含有させると、熱間加工性が損なわれるので、その含有
量の上限はいずれも5重量%とする。
Both T i and A I are components that generate the intermetallic compound Ni (Ti, A1) with the base N1 and contribute to precipitation strengthening of the alloy, but if they are included in too large a quantity, Since hot workability is impaired, the upper limit of the content is set at 5% by weight.

本発明に用いる合金は、更に、Nb : 5重量%以下
、W:10重量%以下、Mo:20重量%以下、Co:
30重量%以下の1種または2種以上が含有されていて
もよい。これらの成分を含有させると、高温における強
度を向上させることができる。
The alloy used in the present invention further contains Nb: 5% by weight or less, W: 10% by weight or less, Mo: 20% by weight or less, Co:
One or more types may be contained in an amount of 30% by weight or less. When these components are contained, the strength at high temperatures can be improved.

また、B、  Zr、 Hf、 Mg、 Y、希土類元
素などが数%以下含有されていてもよい。
Further, B, Zr, Hf, Mg, Y, rare earth elements, etc. may be contained in an amount of several percent or less.

インゴットの熱間加工は、温度1200℃以上。Hot processing of ingots is performed at a temperature of 1200°C or higher.

加工率30%以上の条件下で行われる。It is carried out under conditions of a processing rate of 30% or more.

上記条件を満たさない熱間加工を行った場合には、第2
の工程において、ビレット中心部まで、再結晶によって
整粗粒組織を成長させることかできず、結局は、仕上げ
加工を行っても中心部までを微細粒のミクロ組織にする
ことが困難になる。
If hot working is performed that does not meet the above conditions, the second
In the process, it is not possible to grow a coarse-grained microstructure up to the center of the billet by recrystallization, and in the end, it becomes difficult to create a fine-grained microstructure up to the center even if finishing is performed.

第2の工程は、第1の工程で得られたビレットに熱処理
を施して、その中心部までを粗粒ではあるがその粒径が
整っている組織にすることを目的として行われる。
The second step is carried out for the purpose of heat-treating the billet obtained in the first step to create a structure with coarse grains up to the center but with a uniform grain size.

また、整粗粒組織とは、J I SG0551で規定す
る結晶粒度番号が1番以上である結晶粒から成る組織の
ことをいう。
In addition, the term "coarse-grained structure" refers to a structure consisting of crystal grains having a grain size number of 1 or higher as defined in J I SG0551.

中心部がこのような組織になっていると、次の第3の工
程で仕上げ加工を行うと、各粗粒が微細に破壊され、中
心部を微細粒が集合するミクロ組織にすることができる
If the center has such a structure, each coarse grain will be broken into fine particles when finishing processing is performed in the next third step, creating a microstructure in which fine grains gather in the center. .

この整粗粒組織を得るためには、第1の工程で得られた
ビレットを加熱炉の中で再加熱して、その中心部を12
00℃の温度で30分以上保持する熱処理が施される。
In order to obtain this coarse-grained structure, the billet obtained in the first step is reheated in a heating furnace, and the center part is
A heat treatment is performed at a temperature of 00°C for 30 minutes or more.

中心部温度を1200℃未満であるような熱処理を行う
と、再結晶が充分進行せず中心部に巨大な粗粒を残存さ
せてしまう。
If heat treatment is performed such that the center temperature is less than 1200° C., recrystallization will not proceed sufficiently and large coarse particles will remain in the center.

このような処理が施されることによって、ビレットの表
層部側の再結晶粒も温度上昇に伴って若干粗大になって
いくが、そのこと以上に中心部の巨大な粗粒は細粒化し
ていくので、全体としては比較的均一な組織のビレット
になる。
Due to this treatment, the recrystallized grains on the surface side of the billet become slightly coarser as the temperature rises, but more than that, the huge coarse grains in the center become finer. As a result, the billet has a relatively uniform structure as a whole.

第3の工程は、第2の工程で得られた処理品に仕上鍛造
あるいは圧延を施して、前記整粗粒組織を破壊して微細
粒組織にすることを目的として行われる。
The third step is performed for the purpose of subjecting the processed product obtained in the second step to finish forging or rolling to destroy the coarse-grained structure and turn it into a fine-grained structure.

このときの加工温度は1100℃〜1600℃の範囲に
管理し、また、加工率は30%以上とする。
The processing temperature at this time is controlled within the range of 1100°C to 1600°C, and the processing rate is set to 30% or more.

加工温度を1160℃より高くすると、加工によって整
粗粒組織の破壊が進行したとしても、得られた細粒が再
び粗粒に成長してい(過程も同時に起こり、整粗粒組織
の破壊を目的とする仕上げ加工の意味がなくなってしま
う。また、加工温度を1100℃より低くすると、仕上
げ加工の過程でワレ、カケなどの不都合が起こりはじめ
る。
If the processing temperature is higher than 1160°C, even if the destruction of the coarse grain structure progresses through processing, the obtained fine grains will grow back into coarse grains (the process also occurs at the same time, and the purpose is to destroy the coarse grain structure). In addition, if the processing temperature is lower than 1100°C, problems such as cracking and chipping will begin to occur during the finishing process.

更に、加工率が30%より小さい場合は、整粗粒組織が
充分に破壊されず、良好なミクロ組織を得ることができ
ない。
Furthermore, if the processing rate is less than 30%, the coarse grain structure will not be sufficiently destroyed, making it impossible to obtain a good microstructure.

(発明の実施例) C: 0.02重量%、Si:0.02重量%、 Mn
:0.01重量%、 P : 0.003重量%、  
S : 0.0004重量%、Cu:0.01重量%、
Cr:19.52重量%、Mo:4.17重量%、Co
:13.15重量%、Ti:3.12重量%、Ai’:
1.47重量%。
(Example of the invention) C: 0.02% by weight, Si: 0.02% by weight, Mn
: 0.01% by weight, P: 0.003% by weight,
S: 0.0004% by weight, Cu: 0.01% by weight,
Cr: 19.52% by weight, Mo: 4.17% by weight, Co
: 13.15% by weight, Ti: 3.12% by weight, Ai':
1.47% by weight.

Fe:0.33重量%、B:0.003重量%、Zr:
0.046を量%、Ni :balから成るNi基合金
を溶製し、そのインゴット(直径420mm)に、12
00℃の温度で加工率30%の熱間鍛造を行い、ついで
、得られた鍛造品を1200℃の均熱炉の中に15時間
保持した。
Fe: 0.33% by weight, B: 0.003% by weight, Zr:
A Ni-based alloy consisting of Ni:bal and 0.046% by weight was melted, and an ingot (diameter 420 mm) was made of 12
Hot forging was performed at a temperature of 00°C with a processing rate of 30%, and then the obtained forged product was held in a soaking furnace at 1200°C for 15 hours.

熱処理後の鍛造品を輪切りにし、その中心部の再結晶組
織を観察したところ、結晶粒度番号は1〜2の整粗粒組
織になっていた。ちなみに、前記鍛造品を1160℃で
1時間均熱して、その中心部の組織を観察したところ、
結晶粒度番号が−l〜−4程度の巨大な粗粒が認められ
、しかもこれは長手方向に存在していた。
When the forged product after heat treatment was sliced into rings and the recrystallized structure in the center was observed, it was found to be a coarse-grained structure with a grain size number of 1 to 2. By the way, when the forged product was soaked at 1160°C for 1 hour and the structure of its center was observed,
Huge coarse grains with grain size numbers of -1 to -4 were observed, and these were present in the longitudinal direction.

その後、熱処理したビレットに1160℃の温度で加工
率40%の仕上鍛造を行い、その中心部の組織を観察し
た。巨大な粗粒は全く認められず、中心部の結晶粒度番
号は3〜5の範囲内にあった。
Thereafter, the heat-treated billet was subjected to finish forging at a temperature of 1160° C. with a processing rate of 40%, and the structure of the center portion thereof was observed. No large coarse grains were observed, and the grain size number in the center was within the range of 3 to 5.

(発明の効果) 以上の説明で明らかなように、本発明方法によれば、中
心部に巨大粒が存在せず、結晶粒度番号が3以上の均一
なミクロ組織を有する大型形状のNi基耐熱合金素材を
製造することができる。したがって、本発明方法は、例
えば、産業用大型ガスタービンのディスク素材を製造す
る方法としてその工業的価値は大である。
(Effects of the Invention) As is clear from the above explanation, according to the method of the present invention, large-sized Ni-based heat-resistant particles having a uniform microstructure with a grain size number of 3 or more and no giant grains in the center can be produced. Alloy materials can be manufactured. Therefore, the method of the present invention has great industrial value, for example, as a method for manufacturing disk materials for large industrial gas turbines.

Claims (1)

【特許請求の範囲】[Claims] C:0.2重量%以下、Si:1重量%以下、Mn:2
重量%以下、Cr:13〜25重量%、Ti:5重量%
以下、Al:5重量%以下、残部:Niを必須成分とす
るNi基耐熱合金のインゴットに1200℃以上の温度
で加工率30%以上の熱間加工を施してビレットを得る
工程;得られたビレットに熱処理を加えて、前記ビレッ
トの粒組織を、JISG0551で規定する結晶粒度番
号が1番以上の再結晶粒から成る整粗粒組織にする工程
;および、前記処理品を1100〜1160℃に加熱し
加工率30%以上の仕上げ加工を施す工程;を必須の工
程として備えていることを特徴とするNi基耐熱合金素
材の製造方法。
C: 0.2% by weight or less, Si: 1% by weight or less, Mn: 2
Weight% or less, Cr: 13-25% by weight, Ti: 5% by weight
Hereinafter, a step of hot working an ingot of a Ni-based heat-resistant alloy having an essential component of Al: 5% by weight or less and the remainder: Ni at a temperature of 1200° C. or higher and a processing rate of 30% or higher to obtain a billet; Adding heat treatment to the billet to make the grain structure of the billet into a coarse grain structure consisting of recrystallized grains having a grain size number of 1 or more as defined in JIS G0551; and heating the treated product to 1100 to 1160°C. A method for producing a Ni-based heat-resistant alloy material, comprising as an essential step a step of heating and finishing at a processing rate of 30% or more.
JP2319804A 1990-11-22 1990-11-22 Manufacturing method of Ni-base heat-resistant alloy material Expired - Fee Related JP3049567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319804A JP3049567B2 (en) 1990-11-22 1990-11-22 Manufacturing method of Ni-base heat-resistant alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319804A JP3049567B2 (en) 1990-11-22 1990-11-22 Manufacturing method of Ni-base heat-resistant alloy material

Publications (2)

Publication Number Publication Date
JPH04191353A true JPH04191353A (en) 1992-07-09
JP3049567B2 JP3049567B2 (en) 2000-06-05

Family

ID=18114381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319804A Expired - Fee Related JP3049567B2 (en) 1990-11-22 1990-11-22 Manufacturing method of Ni-base heat-resistant alloy material

Country Status (1)

Country Link
JP (1) JP3049567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095949A (en) * 2011-10-31 2013-05-20 Nippon Steel & Sumitomo Metal Corp Austenitic heat resistant alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095949A (en) * 2011-10-31 2013-05-20 Nippon Steel & Sumitomo Metal Corp Austenitic heat resistant alloy

Also Published As

Publication number Publication date
JP3049567B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP6150192B2 (en) Method for producing Ni-base superalloy
EP2770081B1 (en) Nickel-base alloys and methods of heat treating nickel base alloys
EP0361524B1 (en) Ni-base superalloy and method for producing the same
JP5398123B2 (en) Nickel alloy
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
EP3327158B1 (en) Method for producing ni-based superalloy material
US10344367B2 (en) Method for producing Ni-based superalloy material
EP3526357B1 (en) High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
KR100187794B1 (en) Super alloy forging process and related composition
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JPH0138848B2 (en)
JP3369627B2 (en) Method of manufacturing fine crystal grain super heat resistant alloy member
JP7375489B2 (en) Manufacturing method of Ni-based heat-resistant alloy material
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
CN114929912A (en) Nickel-base superalloy
JPS6220847A (en) Metallic material having fine crystal grain and its production
WO2020235203A1 (en) Tial alloy production method and tial alloy
JPH04191353A (en) Production of ni-base heat resisting alloy stock
JPH0461057B2 (en)
JPH0364435A (en) Method for forging ni base superalloy
JPH04235261A (en) Manufacture of co-base alloy stock
JPS6323263B2 (en)
JPH08311626A (en) Production of superalloy material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees