JP3369627B2 - Method of manufacturing fine crystal grain super heat resistant alloy member - Google Patents

Method of manufacturing fine crystal grain super heat resistant alloy member

Info

Publication number
JP3369627B2
JP3369627B2 JP08185693A JP8185693A JP3369627B2 JP 3369627 B2 JP3369627 B2 JP 3369627B2 JP 08185693 A JP08185693 A JP 08185693A JP 8185693 A JP8185693 A JP 8185693A JP 3369627 B2 JP3369627 B2 JP 3369627B2
Authority
JP
Japan
Prior art keywords
forging
less
resistant alloy
intermetallic compound
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08185693A
Other languages
Japanese (ja)
Other versions
JPH06293946A (en
Inventor
丈博 大野
毅 福井
芳孝 千葉
文夫 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP08185693A priority Critical patent/JP3369627B2/en
Publication of JPH06293946A publication Critical patent/JPH06293946A/en
Application granted granted Critical
Publication of JP3369627B2 publication Critical patent/JP3369627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に航空機用ジェット
エンジンおよびガスタービンエンジンのディスク等に用
いられる超耐熱合金部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a super heat-resistant alloy member mainly used for disks of jet engines for aircraft and gas turbine engines.

【0002】[0002]

【従来の技術】前記用途に使用される超耐熱合金部材
は、高温における高い引張強度および疲労強度が要求さ
れるが、結晶粒の微細化はそのための有効な方法であ
る。超耐熱合金部材の結晶粒を微細化するために、加工
と熱処理の組み合わせを厳密に制御する、いわゆる加工
熱処理が種々検討されてきた。特開昭46−6003号
には、インコネル718、インコロイ901、ワスパロ
イ等の超耐熱合金を加工熱処理および再結晶熱処理する
事によりASTMNo.10以上の微細な結晶粒を得る
方法が示されている。ここでは、合金の再結晶温度以上
で安定でかつ結晶粒成長を抑える作用をもつ金属間化合
物を利用する方法が述べられている。
2. Description of the Related Art The super heat-resistant alloy members used for the above-mentioned applications are required to have high tensile strength and fatigue strength at high temperatures, and refinement of crystal grains is an effective method therefor. Various so-called thermomechanical treatments, in which the combination of machining and heat treatment is strictly controlled, have been studied in order to refine the crystal grains of the superheat-resistant alloy member. Japanese Unexamined Patent Publication (Kokai) No. 46-6003 discloses that ASTM No. 718, Incoloy 901, Waspaloy, and other super heat-resistant alloys are processed by heat treatment and recrystallization heat treatment. A method for obtaining 10 or more fine crystal grains is shown. Here, a method of using an intermetallic compound which is stable above the recrystallization temperature of the alloy and has an action of suppressing the growth of crystal grains is described.

【0003】インコネル718を例にとるとこの金属間
化合物はNi3Nbからなる通常δ相と呼ばれる相であ
り、871〜927℃におけるδ相析出処理後、δ相固
溶温度の996℃以下で鍛造し、δ相固溶温度より14
〜28℃低い温度で固溶化処理を行って、微細結晶粒を
得る方法である。また特開平3−64435には、一次
鍛造を1025〜1100℃で行い、次いで1030℃
以下の温度で二次鍛造を行うことにより前記δ相の析出
処理を省略でき結晶粒度ASTMNo.8以上の微細結
晶粒が得られることが述べられている。
Taking Inconel 718 as an example, this intermetallic compound is a phase which is usually called δ phase and is composed of Ni 3 Nb. After the δ phase precipitation treatment at 871 to 927 ° C., it is forged at a δ phase solid solution temperature of 996 ° C. or lower. , From the δ phase solid solution temperature 14
It is a method of obtaining a fine crystal grain by carrying out a solution treatment at a temperature lower by ~ 28 ° C. Further, in JP-A-3-64435, primary forging is performed at 1025 to 1100 ° C., and then 1030 ° C.
By performing the secondary forging at the following temperature, the precipitation treatment of the δ phase can be omitted and the grain size ASTM No. It is stated that fine grains of 8 or more can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記方法
を実際の超耐熱合金の製造、特に型打鍛造のような速い
歪速度で大きな鍛造比をかける製造法に適用した場合、
必ずしも部材の全面にわたって微細な結晶粒を得ること
は難しいことがわかってきた。その原因について本発明
者らは種々検討した結果、部分的に結晶粒が粗いところ
では結晶粒成長抑制作用をもつδ相の固溶がかなり進ん
でいることを見いだした。このことは仕上げ鍛造前の加
熱温度がδ相固溶温度以下であるにもかかわらず、鍛造
中に部分的にδ相固溶温度以上に昇温したことを示唆し
ている。
However, when the above method is applied to the actual production of a super heat-resistant alloy, particularly to a production method for applying a large forging ratio at a high strain rate such as die forging,
It has been found that it is not always easy to obtain fine crystal grains over the entire surface of the member. As a result of various studies on the cause, the inventors have found that the solid solution of the δ phase, which has a crystal grain growth suppressing effect, is considerably advanced where the crystal grains are partially coarse. This suggests that even though the heating temperature before finish forging was not higher than the δ phase solid solution temperature, the temperature was partially raised above the δ phase solid solution temperature during forging.

【0005】プレス鍛造のような比較的遅い歪速度の加
工の場合にはこのような加工中の昇温は比較的少ない。
しかし複雑形状の部材をプレス鍛造で仕上げるためには
大容量のプレスを必要とし多額の設備を要するので、比
較的小規模の設備で効率よく生産できる型打鍛造による
製造が望まれている。本発明の目的は、例えば型打鍛造
など歪速度の大きい熱間塑性加工条件を制御すること
で、微細結晶粒の組織を得て、引張強度や疲労強度の高
い超耐熱合金部材の製造方法を提供することである。
In the case of processing at a relatively low strain rate such as press forging, the temperature rise during such processing is relatively small.
However, in order to finish a member having a complicated shape by press forging, a large-capacity press is required and a large amount of equipment is required. Therefore, it is desired to manufacture by die forging which can be efficiently produced by a relatively small equipment. An object of the present invention is to control the hot plastic working conditions with a large strain rate such as stamping and forging to obtain a structure of fine crystal grains, and a method for producing a super heat resistant alloy member having high tensile strength and fatigue strength. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の第一は、金属間
化合物であるδ相を析出するC0.1%以下、Si0.
5%以下、Mn0.5%以下、Ni40〜60%、Cr
15〜25%、Mo2〜4%、Al0.2〜1.0%、
Ti0.5〜1.5%、Nb+Ta4.0〜6.0%、
B0.001〜0.01%、残部Feおよび不純物から
なるNi−Fe系合金の超耐熱合金を当該金属間化合物
の固溶温度以下に加熱して行う仕上げ鍛造において、結
晶粒度ASTMNo.6以上の素材を用いて、かつ仕上
げ鍛造中の被鍛造物の温度が加工による昇温により当該
金属間化合物の固溶温度を越えることなく前記素材の結
晶粒を微細化させるように仕上げ鍛造を行い、該仕上げ
鍛造の少なくとも一部の工程が型打鍛造であり、かつ個
々の型打鍛造の鍛造比が高さ比で3以下であることを特
徴とする、結晶粒度ASTMNo.7以上の微細結晶粒
超耐熱合金部材の製造方法である。
The first aspect of the present invention is that 0.1% or less of C that precipitates a δ phase, which is an intermetallic compound , Si0.
5% or less, Mn 0.5% or less, Ni 40-60%, Cr
15-25%, Mo2-4%, Al0.2-1.0%,
Ti 0.5-1.5%, Nb + Ta 4.0-6.0%,
B 0.001-0.01%, balance Fe and impurities
In the final forging performed by heating the super-heat-resistant Ni-Fe alloy alloy to a temperature below the solid solution temperature of the intermetallic compound, the grain size ASTM No. 6 using the above materials, and the materials without the temperature of the forging in the finish forging exceeds the solid solution temperature of the intermetallic compound by heating due to processing focusing
Gastric row forging finishing so as to fine Akiratsubu, the finish
At least part of the forging process is stamping and forging, and
The grain size ASTM No. is characterized in that the forging ratio of each die forging is 3 or less in terms of height ratio . It is a method for producing a fine crystal grain super heat resistant alloy member having 7 or more grains.

【0007】本発明の第二は、金属間化合物であるδ相
を析出するC0.1%以下、Si0.5%以下、Mn
0.5%以下、Ni40〜60%、Cr15〜25%、
Mo2〜4%、Al0.2〜1.0%、Ti0.5〜
1.5%、Nb+Ta4.0〜6.0%、B0.001
〜0.01%、残部Feおよび不純物からなるNi−F
e系合金の超耐熱合金を当該金属間化合物の固溶温度以
下に加熱して行う仕上げ鍛造において、結晶粒度AST
MNo.6以上の素材を用いて、かつ前記素材の結晶粒
を微細化させるように仕上げ鍛造過程で鍛造を一旦中断
した後、再度加熱と鍛造の過程を少なくとも一回以上行
い、前記仕上げ鍛造の少なくとも一部の工程が型打鍛造
であり、かつ個々の型打鍛造の鍛造比が高さ比で3以下
であることを特徴とする、結晶粒度ASTMNo.7以
上の微細結晶粒超耐熱合金部材の製造方法である。
The second aspect of the present invention is the δ phase which is an intermetallic compound.
0.1% or less of C, 0.5% or less of Si, Mn
0.5% or less, Ni 40-60%, Cr 15-25%,
Mo2-4%, Al0.2-1.0%, Ti0.5-
1.5%, Nb + Ta 4.0-6.0%, B0.001
~ 0.01%, Ni-F consisting of balance Fe and impurities
The super heat-resistant alloy of e-based alloy is below the solid solution temperature of the intermetallic compound.
Grain size AST in finish forging performed by heating below
MNo. Using 6 or more materials, and crystal grains of said materials
To stop the forging in the finish forging process so as to refine
After that, repeat the heating and forging process at least once.
At least part of the finish forging is stamped forging
And the forging ratio of each stamping forging is 3 or less in height ratio.
Grain size ASTM No. 7 or more
It is a manufacturing method of the above-mentioned fine grain super heat-resistant alloy member.

【0008】[0008]

【作用】前述のように本発明の骨子は、特定の組成を有
するNi−Fe系合金の超耐熱合金において、少なくと
も一部の工程に型打鍛造を用いた仕上げ鍛造中の被鍛造
物の温度が加工による昇温により結晶粒粗大化抑止作用
をもつ金属間化合物であるδ相の固溶温度を越えること
なく仕上げ鍛造を行うことである。加工による昇温は同
一材料の場合、鍛造比が大きいほど、また歪速度が速い
ほど大きくなる。従って、型打鍛造のような高歪速度、
高鍛造比の鍛造法の場合は特に昇温が大である。型打鍛
造を用いる本発明ではこれを抑止するには鍛造比を調整
することが必要である。そのための最も簡単な方法は仕
上げの鍛造比を小さくすることである。型打鍛造の場合
の鍛造比は複雑であり正確に表すことは難しいが、円筒
形状の素材からディスク形状の部材を成形する場合の鍛
造後のディスクの高さに対する鍛造前の円筒の高さの比
の値をもって鍛造比とすれば、鍛造比3以下とすること
が必要となる。
As described above, the skeleton of the present invention has a specific composition.
In superalloys of Ni-Fe based alloy, less the
In some of the processes, the temperature of the object to be forged during finish forging using stamping forging does not exceed the solid solution temperature of the δ phase, which is an intermetallic compound that has the effect of suppressing grain coarsening due to the temperature rise due to processing. It is to perform finish forging. In the case of the same material, the temperature rise due to processing increases as the forging ratio increases and the strain rate increases. Therefore, high strain rate like die forging,
In the case of a forging method with a high forging ratio, the temperature rise is particularly large. In the present invention using stamping and forging, it is necessary to adjust the forging ratio to prevent this. The simplest way to do this is to reduce the finish forging ratio. The forging ratio in the case of stamping and forging is complicated and difficult to accurately represent, but in the case of forming a disk-shaped member from a cylindrical material, the height of the cylinder before forging relative to the height of the disk after forging is If the forging ratio is the value of the ratio, it is necessary to set the forging ratio to 3 or less.

【0009】しかし仕上げの鍛造比が小さいことは、仕
上げ鍛造中および/または続く固溶化処理中における再
結晶による結晶粒微細化のための駆動力が小さいことを
意味する。このために、仕上げ鍛造前の素材の結晶粒も
かなり微細化しておく必要があり、素材の結晶粒度をA
STMNo.6以上に限定した。また用いるインゴット
が小さい場合には型打ち鍛造素材の径も小さなものとな
る。この場合、仕上げの鍛造比をトータルで3以下とす
ることは困難となる。これを一度に鍛造すれば前述のよ
うに加工中の昇温により被鍛造物の温度は部分的にδ相
固溶温度を越えてしまう。従ってこのような場合は仕上
げ鍛造を一度に完了させず、δ相固溶温度に至る前に一
旦鍛造を中断し、再度加熱して鍛造することが必要であ
る。
However, the small finish forging ratio means that the driving force for grain refinement by recrystallization during the finish forging and / or the subsequent solution treatment is small. For this reason, it is necessary to considerably reduce the crystal grain size of the material before finish forging.
STM No. Limited to 6 or more. Further, when the ingot used is small, the diameter of the stamping and forging material is also small. In this case, it is difficult to reduce the total forging ratio to 3 or less. If this is forged at one time, the temperature of the object to be forged partially exceeds the δ phase solid solution temperature due to the temperature rise during processing as described above. Therefore, in such a case, it is necessary not to complete the finish forging all at once, but to temporarily stop the forging before reaching the δ phase solid solution temperature and heat it again for forging.

【0010】なおこの場合、プレス鍛造、型打鍛造を併
用することが可能であるが型打鍛造の場合には個々の鍛
造比を3以下とすることが必要である。さらにこのよう
に仕上げ鍛造を数回に分けて行うことは一度に行う場合
に比べて、仕上げ鍛造中および/または続く固溶化処理
中における再結晶による結晶粒微細化のための駆動力が
小さいため、素材の結晶粒度はASTMNo.6以上に
微細化しておくことが必要である。
In this case, it is possible to use both press forging and die forging, but in the case of die forging, it is necessary to set the individual forging ratio to 3 or less. Further, performing the finish forging in several times in this way has a smaller driving force than the case of performing the finish forging at the same time in order to refine the crystal grains by recrystallization during the finish forging and / or the subsequent solution treatment. , The grain size of the material is ASTM No. It is necessary to reduce the size to 6 or more.

【0011】ここで述べた製造方法は、金属間化合物で
あるδ相を析出する超耐熱合金であり、次の組成を有す
るものに用いることが重要であり、具体的には、C0.
1%以下、Si0.5%以下、Mn0.5%以下、Ni
40〜60%、Cr15〜25%、Mo2〜4%、Al
0.2〜1.0%、Ti0.5〜1.5%、Nb+Ta
4.0〜6.0%、B0.001〜0.01%、残部F
eおよび不純物からなる合金(インコネル718)に適
用した場合である。
[0011] manufacturing method described herein, Ri superalloys der to deposit δ phase which is an intermetallic compound, having a following composition
It is important to use C0.
1% or less, Si 0.5% or less, Mn 0.5% or less, Ni
40-60%, Cr 15-25%, Mo 2-4%, Al
0.2-1.0%, Ti 0.5-1.5%, Nb + Ta
4.0-6.0%, B0.001-0.01%, balance F
This is the case when applied to an alloy (Inconel 718) composed of e and impurities.

【0012】[0012]

【実施例】表1に示す組成(重量%)のNi−Fe系合
金の超耐熱合金を溶製し、分塊鍛造により直径150m
mの棒とし、鍛造素材として用いた。これを仕上げ鍛造
により直径300mm、高さ50mmのディスク形状に
仕上げた。この際、表2に示すように鍛造素材の高さを
変えることにより、鍛造比を調節した。表2に本発明お
よび比較例における素材の結晶粒度、仕上げ鍛造条件と
得られたディスクの結晶粒度および機械的性質を示す。
素材の結晶粒度はASTMNo.6.5であるが、比較
例2に対しては熱処理によりこれを意図的にNo.4.
5まで粗くして用いた。疲労試験は、500℃において
回転曲げ疲労試験により10回の疲労強度を求めた。
EXAMPLES Ni-Fe compounds having the composition (% by weight) shown in Table 1
150m in diameter by melting a super heat-resistant alloy of gold and slab forging
m rod and used as a forging material. This was finish-forged into a disk shape having a diameter of 300 mm and a height of 50 mm. At this time, the forging ratio was adjusted by changing the height of the forging material as shown in Table 2. Table 2 shows the grain sizes of the raw materials, finish forging conditions, and the grain sizes and mechanical properties of the obtained disks in the present invention and comparative examples.
The grain size of the material is ASTM No. Although it is 6.5, this is intentionally changed by heat treatment to Comparative Example 2. 4.
It was coarsely used up to 5. In the fatigue test, the fatigue strength was determined by rotating bending fatigue test at 500 ° C. for 10 7 times.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】本発明によればいずれも結晶粒度No.
7.0以上の微細結晶粒が得られ、しかも場所による差
はほとんどない。また機械的性質も良好である。一方、
比較例の1は、一回の鍛造で鍛造比3.5をかけたた
め、中心部がδ相固溶温度以上に昇温してしまい微細結
晶粒が得られていない。また比較例2においては鍛造条
件は本発明条件に合致しているが、素材の結晶粒度がN
o.4.5と粗かったために製品の結晶粒度は均一では
あるがNo.7以上には至っていない。また比較例3
は、結晶粒度No.6.5の素材を用いたものの鍛造加
熱温度がδ相固溶温度以上であったため、加熱中に結晶
粒が粗大化してしまい最終部材で微細結晶粒を得ること
ができなかった。これら比較例における機械的性質は、
いずれも結晶粒が粗いために、本発明よりも低い値を示
している。
According to the present invention, the grain size No.
A fine crystal grain of 7.0 or more was obtained, and there was almost no difference depending on the location. It also has good mechanical properties. on the other hand,
In Comparative Example 1, the forging ratio of 3.5 was applied in one forging, so that the central portion was heated to the δ phase solid solution temperature or higher and fine crystal grains were not obtained. Further, in Comparative Example 2, the forging condition matches the condition of the present invention, but the grain size of the material is N
o. The crystal grain size of the product was uniform because it was as coarse as 4.5, but No. It has not reached 7 or more. Comparative Example 3
Is the grain size No. Since the forging heating temperature of the material of 6.5 was not less than the δ phase solid solution temperature, the crystal grains became coarse during the heating, and it was not possible to obtain fine crystal grains in the final member. The mechanical properties in these comparative examples are
In each case, since the crystal grains are coarse, the value is lower than that of the present invention.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば従来
困難であった微細結晶粒超耐熱合金部材が型打鍛造によ
り効率よく製造でき、引張り強度、疲労強度の高い超耐
熱合金部材を得ることが可能である。
As described above, according to the present invention, it is possible to efficiently manufacture a fine grain super heat resistant alloy member which has hitherto been difficult by stamping and forging, and to obtain a super heat resistant alloy member having high tensile strength and fatigue strength. It is possible to obtain.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 650 C22F 1/00 650A 650D 651 651B 683 683 694 694A (56)参考文献 特開 平4−190941(JP,A) 特開 昭60−92458(JP,A) 特開 昭61−153254(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 1/10 C21D 8/00 - 8/10 B21J 5/00 C22C 19/00 - 19/05 C22C 30/00 Continuation of front page (51) Int.Cl. 7 identification code FI C22F 1/00 650 C22F 1/00 650A 650D 651 651B 683 683 694 694A (56) Reference JP-A-4-190941 (JP, A) Sho 60-92458 (JP, A) JP-A 61-153254 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/10 C21D 8/00-8/10 B21J 5 / 00 C22C 19/00-19/05 C22C 30/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属間化合物であるδ相を析出する
0.1%以下、Si0.5%以下、Mn0.5%以下、
Ni40〜60%、Cr15〜25%、Mo2〜4%、
Al0.2〜1.0%、Ti0.5〜1.5%、Nb+
Ta4.0〜6.0%、B0.001〜0.01%、残
部Feおよび不純物からなるNi−Fe系合金の超耐熱
合金を当該金属間化合物の固溶温度以下に加熱して行う
仕上げ鍛造において、結晶粒度ASTMNo.6以上の
素材を用いて、かつ仕上げ鍛造中の被鍛造物の温度が加
工による昇温により当該金属間化合物の固溶温度を越え
ることなく前記素材の結晶粒を微細化させるように仕上
げ鍛造を行い、該仕上げ鍛造の少なくとも一部の工程が
型打鍛造であり、かつ個々の型打鍛造の鍛造比が高さ比
で3以下であることを特徴とする、結晶粒度ASTMN
o.7以上の微細結晶粒超耐熱合金部材の製造方法。
1. A C which precipitates a δ phase which is an intermetallic compound.
0.1% or less, Si 0.5% or less, Mn 0.5% or less,
Ni 40-60%, Cr 15-25%, Mo 2-4%,
Al 0.2-1.0%, Ti 0.5-1.5%, Nb +
Ta 4.0 to 6.0%, B 0.001 to 0.01%, balance
In the final forging performed by heating the super-heat-resistant alloy of Ni—Fe alloy composed of Fe and impurities to the solid solution temperature of the intermetallic compound or less, grain size ASTM No. Finishing is performed by using 6 or more materials and by refining the crystal grains of the material without exceeding the solid solution temperature of the intermetallic compound due to the temperature rise of the forging object during finish forging. <Br /> have rows up forging, at least part of the process of the finish forging
It is stamping forging, and the forging ratio of each stamping forging is the height ratio.
Grain size ASTMN, characterized by 3 or less
o. 7. A method for producing a fine grain super heat resistant alloy member having 7 or more grains.
【請求項2】 金属間化合物であるδ相を析出する
0.1%以下、Si0.5%以下、Mn0.5%以下、
Ni40〜60%、Cr15〜25%、Mo2〜4%、
Al0.2〜1.0%、Ti0.5〜1.5%、Nb+
Ta4.0〜6.0%、B0.001〜0.01%、残
部Feおよび不純物からなるNi−Fe系合金の超耐熱
合金を当該金属間化合物の固溶温度以下に加熱して行う
仕上げ鍛造において、結晶粒度ASTMNo.6以上の
素材を用いて、かつ前記素材の結晶粒を微細化させるよ
うに仕上げ鍛造過程で鍛造を一旦中断した後、再度加熱
と鍛造の過程を少なくとも一回以上行い、前記仕上げ鍛
造の少なくとも一部の工程が型打鍛造であり、かつ個々
の型打鍛造の鍛造比が高さ比で3以下であることを特徴
とする、結晶粒度ASTMNo.7以上の微細結晶粒超
耐熱合金部材の製造方法。
2. C which precipitates a δ phase which is an intermetallic compound
0.1% or less, Si 0.5% or less, Mn 0.5% or less,
Ni 40-60%, Cr 15-25%, Mo 2-4%,
Al 0.2-1.0%, Ti 0.5-1.5%, Nb +
Ta 4.0 to 6.0%, B 0.001 to 0.01%, balance
In the final forging performed by heating the super-heat-resistant alloy of Ni—Fe alloy composed of Fe and impurities to the solid solution temperature of the intermetallic compound or less, grain size ASTM No. Use 6 or more materials and refine the crystal grains of the materials.
After temporarily interrupted forged at sea urchin finishing forging process, carried out over at least once the process of forging and heating again, the finish forging
At least part of the manufacturing process is stamping and forging, and
The grain size ASTM No. is characterized in that the forging ratio of the die forging is 3 or less in terms of height ratio . 7. A method for producing a fine grain super heat resistant alloy member having 7 or more grains.
JP08185693A 1993-04-08 1993-04-08 Method of manufacturing fine crystal grain super heat resistant alloy member Expired - Fee Related JP3369627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08185693A JP3369627B2 (en) 1993-04-08 1993-04-08 Method of manufacturing fine crystal grain super heat resistant alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08185693A JP3369627B2 (en) 1993-04-08 1993-04-08 Method of manufacturing fine crystal grain super heat resistant alloy member

Publications (2)

Publication Number Publication Date
JPH06293946A JPH06293946A (en) 1994-10-21
JP3369627B2 true JP3369627B2 (en) 2003-01-20

Family

ID=13758136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08185693A Expired - Fee Related JP3369627B2 (en) 1993-04-08 1993-04-08 Method of manufacturing fine crystal grain super heat resistant alloy member

Country Status (1)

Country Link
JP (1) JP3369627B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005233A1 (en) * 1998-12-23 2002-01-17 John J. Schirra Die cast nickel base superalloy articles
KR100331153B1 (en) * 1999-10-18 2002-04-01 황해웅 A heat treating method for fine structure of Ni-34at.%Al-0.5at.%B Alloy
JP4615120B2 (en) * 2000-12-06 2011-01-19 日本冶金工業株式会社 Ni-based alloy having uniform structure and method for producing the same
US6755924B2 (en) * 2001-12-20 2004-06-29 General Electric Company Method of restoration of mechanical properties of a cast nickel-based super alloy for serviced aircraft components
JP4543380B2 (en) * 2004-12-24 2010-09-15 日立金属株式会社 Fuel cell stack fastening bolt alloy
FR2953860B1 (en) * 2009-12-10 2015-05-15 Snecma METHOD FOR MANUFACTURING INCONEL 718 TYPE NICKEL SUPERBORTS
CN106702295B (en) * 2016-12-07 2018-10-12 陕西宏远航空锻造有限责任公司 A method of improving GH4698 disk forging tissues and the smooth fatigue behaviour of high temperature
CN111733346B (en) * 2020-08-04 2021-09-07 上海康晟航材科技股份有限公司 High-temperature alloy for hydrogen fuel cell air compressor bearing and preparation method thereof
CN112746231B (en) * 2020-12-29 2021-10-15 北京钢研高纳科技股份有限公司 Production process for gamma' phase pre-conditioning plasticization of high-performance high-temperature alloy
TW202328465A (en) * 2021-10-25 2023-07-16 日商山陽特殊製鋼股份有限公司 Ni alloy powder suited to additive manufacturing and additively manufactured article obtained using same

Also Published As

Publication number Publication date
JPH06293946A (en) 1994-10-21

Similar Documents

Publication Publication Date Title
US6059904A (en) Isothermal and high retained strain forging of Ni-base superalloys
EP0361524B1 (en) Ni-base superalloy and method for producing the same
US5573608A (en) Superplastic aluminum alloy and process for producing same
US5264055A (en) Method involving modified hot working for the production of a titanium alloy part
US5653828A (en) Method to procuce fine-grained lamellar microstructures in gamma titanium aluminides
US5558729A (en) Method to produce gamma titanium aluminide articles having improved properties
GB2060693A (en) Titanium alloys of the ti3al type
EP0312966B1 (en) Alloys containing gamma prime phase and process for forming same
GB2152076A (en) Improved forgeability in nickel base superalloys
US5571345A (en) Thermomechanical processing method for achieving coarse grains in a superalloy article
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
CN108118192A (en) The manufacturing method of Ni base superalloy materials
US4531981A (en) Component possessing high resistance to corrosion and oxidation, composed of a dispersion-hardened superalloy, and process for its manufacture
CA2010672A1 (en) Titanium aluminide alloys
JP3369627B2 (en) Method of manufacturing fine crystal grain super heat resistant alloy member
EP0260510B1 (en) Thermomechanical method of forming fatigue crack resistant nickel base superalloys and product formed
US5556484A (en) Method for reducing abnormal grain growth in Ni-base superalloys
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JPH0364435A (en) Method for forging ni base superalloy
US5171374A (en) Rapidly solidified superplastic aluminum-lithium alloys and process for making same
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPS6323263B2 (en)
JPH08232051A (en) Production of aluminum alloy forged product
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees