JP6826235B2 - Ni-based alloy softened powder and method for producing the softened powder - Google Patents

Ni-based alloy softened powder and method for producing the softened powder Download PDF

Info

Publication number
JP6826235B2
JP6826235B2 JP2020509554A JP2020509554A JP6826235B2 JP 6826235 B2 JP6826235 B2 JP 6826235B2 JP 2020509554 A JP2020509554 A JP 2020509554A JP 2020509554 A JP2020509554 A JP 2020509554A JP 6826235 B2 JP6826235 B2 JP 6826235B2
Authority
JP
Japan
Prior art keywords
phase
powder
less
based alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020509554A
Other languages
Japanese (ja)
Other versions
JPWO2020110326A1 (en
Inventor
敦夫 太田
敦夫 太田
今野 晋也
晋也 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Application granted granted Critical
Publication of JP6826235B2 publication Critical patent/JP6826235B2/en
Publication of JPWO2020110326A1 publication Critical patent/JPWO2020110326A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Description

本発明は、Ni(ニッケル)基合金材の技術に関し、特に、強析出強化Ni基合金材料からなり、かつ粉末冶金技術に好適なNi基合金軟化粉末および該軟化粉末の製造方法に関するものである。 The present invention relates to a technique for a Ni (nickel) -based alloy material, and more particularly to a Ni-based alloy softened powder which is composed of a strongly precipitation-reinforced Ni-based alloy material and is suitable for powder metallurgy technology, and a method for producing the softened powder. ..

航空機や火力発電プラントのタービン(ガスタービン、蒸気タービン)において、熱効率向上を目指した主流体温度の高温化は一つの技術トレンドになっており、タービン高温部材における高温の機械的特性の向上は、重要な技術課題である。最も過酷な環境に曝されるタービン高温部材(例えば、タービン動翼、タービン静翼、ロータディスク、燃焼器部材、ボイラー部材)は、運転中の回転遠心力や振動や起動/停止に伴う熱応力を繰り返し受けることから、機械的特性(例えば、クリープ特性、引張特性、疲労特性)の向上は大変重要になる。 In turbines (gas turbines, steam turbines) of aircraft and thermal power plants, increasing the temperature of the main fluid with the aim of improving thermal efficiency has become a technological trend, and improving the mechanical properties of high temperatures in turbine high-temperature members is This is an important technical issue. Turbine high temperature components exposed to the harshest environments (eg, turbine vanes, turbine vanes, rotor disks, combustor components, boiler components) are subject to rotational centrifugal force during operation, vibration, and thermal stress associated with start / stop. It is very important to improve the mechanical properties (for example, creep properties, tensile properties, fatigue properties).

要求される種々の機械的特性を満たすため、タービン高温部材の材料としては、析出強化Ni基合金材が広く利用されている。特に高温特性が重要になる場合は、母相となるγ(ガンマ)相中に析出させるγ’(ガンマ プライム)相(例えばNi3(Al,Ti)相)の比率を高めた強析出強化Ni基合金材(例えば、γ’相を30体積%以上析出させるNi基合金材)が使用される。Precipitation-hardened Ni-based alloy materials are widely used as materials for turbine high-temperature members in order to satisfy various required mechanical properties. When high temperature characteristics are particularly important, strong precipitation strengthened Ni with an increased ratio of the γ'(gamma prime) phase (for example, Ni 3 (Al, Ti) phase) precipitated in the γ (gamma) phase that is the parent phase. A base alloy material (for example, a Ni base alloy material that precipitates 30% by volume or more of the γ'phase) is used.

主たる製造方法としては、タービン動翼やタービン静翼のような部材では、クリープ特性の観点から、従来から精密鋳造法(特に、一方向凝固法、単結晶凝固法)が用いられてきた。一方、タービンディスクや燃焼器部材では、引張特性や疲労特性の観点から、しばしば熱間鍛造法が用いられてきた。 As the main manufacturing method, precision casting methods (particularly, one-way solidification method and single crystal solidification method) have been conventionally used for members such as turbine blades and turbine blades from the viewpoint of creep characteristics. On the other hand, in turbine discs and combustor members, the hot forging method has often been used from the viewpoint of tensile characteristics and fatigue characteristics.

ただし、析出強化Ni基合金材は、高温部材の高温特性をより高めるためにγ’相の体積率を更に高めようとすると、加工性・成形性が悪化して、高温部材の製造歩留まりが低下する(すなわち製造コストが増大する)という弱点があった。そのため、高温部材の特性向上の研究と並行して、該高温部材を安定して製造する技術の研究も種々行われてきた。 However, in the precipitation-strengthened Ni-based alloy material, if the volume fraction of the γ'phase is further increased in order to further enhance the high temperature characteristics of the high temperature member, the workability and moldability deteriorate and the production yield of the high temperature member decreases. There was a weakness that it did (that is, the manufacturing cost increased). Therefore, in parallel with the research on improving the characteristics of the high temperature member, various studies on the technique for stably manufacturing the high temperature member have been conducted.

例えば、特許文献1(特開平9-302450)には、制御された結晶粒度を有するNi基超合金物品を鍛造用プリフォームから製造する方法であって、γ相とγ’相との混合物を含むミクロ組織、再結晶温度及びγ’ソルバス温度を有するNi基超合金プリフォームを準備し(ここで、γ’相はNi基超合金の少なくとも30容量%を占める)、約1600°F以上であるがγ’ソルバス温度よりは低い温度で、歪み速度を毎秒約0.03〜約10として前記超合金プリフォームを熱間金型鍛造し、得られた熱間金型鍛造超合金工作物を等温鍛造して加工済物品を形成し、こうして仕上げた物品をスーパーソルバス熱処理して略ASTM 6〜8の実質的に均一な粒子ミクロ組織を生成させ、物品をスーパーソルバス熱処理温度から冷却する、ことからなる方法が開示されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 9-302450) describes a method for producing a Ni-based superalloy article having a controlled crystal grain size from a preform for forging, wherein a mixture of a γ phase and a γ'phase is prepared. Prepare Ni-based superalloy preforms with microstructure, including microstructure, recrystallization temperature and γ'solvus temperature (where the γ'phase accounts for at least 30% by volume of the Ni-based superalloy) at about 1600 ° F and above. However, at a temperature lower than the γ'solvus temperature, the superalloy preform was hot-molded with a strain rate of about 0.03 to about 10 per second, and the obtained hot-mold forged superalloy work was forged at isothermal. The processed article is formed by supersolvent heat treatment of the finished article to produce a substantially uniform particle microstructure of approximately ASTM 6-8, and the article is cooled from the supersolvent heat treatment temperature. A method consisting of is disclosed.

特開平9−302450号公報Japanese Unexamined Patent Publication No. 9-302450 特許第5869624号公報Japanese Patent No. 5869624 米国特許第5649280号明細書U.S. Pat. No. 5,649,280

特許文献1によると、γ’相の体積率が高いNi基合金材であっても、ひび割れさせることなく高い製造歩留まりで鍛造品を製造できるとされている。しかしながら、特許文献1の技術は、低ひずみ速度による超塑性変形の熱間鍛造工程およびその後に等温鍛造工程を行うことから、特殊な製造装置が必要であるとともに長いワークタイムを必要とする(すなわち、装置コストおよびプロセスコストが高い)という弱点がある。 According to Patent Document 1, even a Ni-based alloy material having a high volume fraction of the γ'phase can be forged with a high production yield without cracking. However, the technique of Patent Document 1 requires a special manufacturing apparatus and a long working time because a hot forging step of superplastic deformation with a low strain rate and a isothermal forging step are performed thereafter (that is,). , Equipment cost and process cost are high).

工業製品に対しては、当然のことながら低コスト化の強い要求があり、製品を低コストで製造する技術の確立は、最重要課題のうちの一つである。 As a matter of course, there is a strong demand for cost reduction for industrial products, and establishment of technology for manufacturing products at low cost is one of the most important issues.

例えば、特許文献2(特許第5869624)には、γ’相の固溶温度が1050℃以上であるNi基合金からなるNi基合金軟化材の製造方法であって、次の工程で軟化処理を実施するためのNi基合金素材を準備する素材準備工程と、前記Ni基合金素材を軟化させて加工性を向上させる軟化処理工程と、を含み、前記軟化処理工程は、前記γ’相の固溶温度未満の温度領域でなされる工程であり、前記Ni基合金素材を前記γ’相の固溶温度未満の温度で熱間鍛造する第1の工程と、前記γ’相の固溶温度未満の温度から100℃/h以下の冷却速度で徐冷をすることにより前記Ni基合金の母相であるγ相の結晶粒の粒界上に析出した非整合なγ’相の結晶粒の量を増加させて20体積%以上としたNi基合金軟化材を得る第2の工程と、を含むことを特徴とするNi基合金軟化材の製造方法、が開示されている。特許文献2で報告された技術は、強析出強化Ni基合金材を低コストで加工・成形できるという点で画期的な技術と言える。 For example, Patent Document 2 (Patent No. 5869624) describes a method for producing a Ni-based alloy softening material composed of a Ni-based alloy having a γ'phase solidification temperature of 1050 ° C. or higher, wherein the softening treatment is performed in the next step. The softening treatment step includes a material preparation step of preparing a Ni-based alloy material to be carried out and a softening treatment step of softening the Ni-based alloy material to improve workability, and the softening treatment step is a solidification of the γ'phase. This is a step performed in a temperature range lower than the melting temperature, and is a first step of hot forging the Ni-based alloy material at a temperature lower than the solid melting temperature of the γ'phase and a step lower than the solid melting temperature of the γ'phase. The amount of unmatched γ'phase crystal grains precipitated on the grain boundaries of the γ phase crystal grains, which is the parent phase of the Ni-based alloy, by slowly cooling from the above temperature at a cooling rate of 100 ° C./h or less. A second step of obtaining a Ni-based alloy softening material having an amount of 20% by volume or more is disclosed, and a method for producing a Ni-based alloy softening material, which comprises the method. The technique reported in Patent Document 2 can be said to be an epoch-making technique in that a strong precipitation strengthened Ni-based alloy material can be processed and molded at low cost.

ただし、γ’相の体積率が45体積%以上のような超強析出強化Ni基合金材(例えば、γ’相を45〜80体積%析出させるNi基合金材)では、γ’相の固溶温度未満の温度(γ相とγ’相との二相共存の温度領域)で熱間鍛造する工程において、通常の鍛造装置(特別な加熱保温機構を装備していない鍛造装置)を用いた場合に鍛造プロセス中の温度低下(それによるγ’相の望まない析出)に起因して製造歩留まりが低下し易い。 However, in an ultra-strong precipitation-strengthened Ni-based alloy material in which the volume ratio of the γ'phase is 45% by volume or more (for example, a Ni-based alloy material that precipitates 45 to 80% by volume of the γ'phase), the γ'phase is solid. In the process of hot forging at a temperature lower than the melting temperature (temperature range where two phases of γ phase and γ'phase coexist), a normal forging device (forging device not equipped with a special heat insulation mechanism) was used. In some cases, the production yield tends to decrease due to the temperature decrease during the forging process (resulting in unwanted precipitation of the γ'phase).

近年における省エネルギーおよび地球環境保護の観点から、タービンの熱効率向上を目指した主流体温度の高温化や、タービン翼の長尺化によるタービンの高出力化は、今後ますます進展するものと思われる。それは、タービン高温部材の使用環境が今後ますます厳しくなることを意味し、タービン高温部材には、更なる機械的特性の向上が要求される。一方、前述したように、工業製品の低コスト化(特に、成形加工性/成型加工性の向上、製造歩留まりの向上)は最重要課題のうちの一つである。 From the viewpoint of energy saving and protection of the global environment in recent years, it is expected that the temperature of the main fluid will be increased to improve the thermal efficiency of the turbine and the output of the turbine will be increased by lengthening the turbine blades. This means that the usage environment of turbine high temperature members will become more and more severe in the future, and turbine high temperature members are required to further improve their mechanical properties. On the other hand, as described above, cost reduction of industrial products (particularly, improvement of molding processability / molding processability, improvement of manufacturing yield) is one of the most important issues.

一方、難加工材料の成形体/成型体を低コストで製造する技術の一つとして、金属粉末を用いた粉末冶金技術がある。 On the other hand, there is a powder metallurgy technique using a metal powder as one of the techniques for producing a molded body / molded body of a difficult-to-process material at low cost.

例えば、特許文献3(米国特許第5649280)には、微細粒Ni基超合金予備成形体(例えば、固めた金属粉末予備成形体)に対して、後工程の熱処理で完全に再結晶させて均一で微小粒径の微細組織を形成するための残留ひずみを付与するように鍛造する工程と、当該鍛造材に対して、再結晶温度より高くかつγ’相ソルバス温度より低い温度において長時間のサブソルバス熱処理を施す工程と、引き続いて、当該合金材中にγ’相を析出させ分布を制御するために当該サブソルバス温度から所定の冷却速度で冷却する工程とを行って、Ni基超合金材の粒径を制御する方法が開示されている。 For example, in Patent Document 3 (US Patent No. 5649280), a fine-grained Ni-based superalloy preform (for example, a hardened metal powder preform) is completely recrystallized by a heat treatment in a subsequent step to be uniform. In the process of forging so as to impart residual strain for forming a fine structure of fine particle size, and for the forged material, a long-time subsolvus at a temperature higher than the recrystallization temperature and lower than the γ'phase sorbus temperature. A step of performing a heat treatment and subsequently, a step of precipitating the γ'phase in the alloy material and cooling it from the subsolvus temperature at a predetermined cooling rate in order to control the distribution are performed to obtain grains of the Ni-based superalloy material. A method of controlling the diameter is disclosed.

しかしながら、特許文献3の方法は、最終的なNi基超合金材の粒径を制御するために、鍛造しようとする予備成形体の粒径を微細化する手段として粉末冶金技術を利用しているに過ぎず、難加工材料の成形加工性/成型加工性を向上させる技術は、教示・示唆されていない。 However, the method of Patent Document 3 utilizes powder metallurgy technology as a means for reducing the particle size of the preformed body to be forged in order to control the particle size of the final Ni-based superalloy material. However, no technique has been taught or suggested to improve the moldability / moldability of difficult-to-process materials.

強析出強化Ni基合金材料は、たとえ粉末であっても、各粉末粒子の硬さ故に成形加工性/成型加工性が極めて良好とは言い難い。そのため、従来は、粉末冶金技術を適用する際に高温および/または高圧力の加工が必要となり、強析出強化Ni基合金部材の製造コストを劇的に低減するのは困難であった。言い換えると、もしも成形加工性/成型加工性が高く粉末冶金技術に好適なNi基合金粉末が存在すれば、強析出強化Ni基合金部材の製造コストを劇的に低減できるようになることが期待される。 Even if the strong precipitation strengthened Ni-based alloy material is powder, it cannot be said that the molding processability / molding processability is extremely good due to the hardness of each powder particle. Therefore, conventionally, when applying powder metallurgy technology, high temperature and / or high pressure processing is required, and it has been difficult to dramatically reduce the manufacturing cost of a strong precipitation strengthened Ni-based alloy member. In other words, if there is a Ni-based alloy powder that has high molding processability / molding processability and is suitable for powder metallurgy technology, it is expected that the manufacturing cost of the strong precipitation strengthened Ni-based alloy member can be dramatically reduced. Will be done.

本発明は、かかる問題に鑑みてなされたものであり、その目的は、強析出強化Ni基合金材料を用いながら、従来よりも成形加工性/成型加工性が良好な粉末であり、粉末冶金技術に好適なNi基合金軟化粉末および該軟化粉末の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to obtain a powder having better molding processability / molding processability than conventional ones while using a strong precipitation strengthened Ni-based alloy material. It is an object of the present invention to provide a Ni-based alloy softened powder suitable for the above and a method for producing the softened powder.

(I)本発明の一態様は、Ni基合金軟化粉末であって、
前記Ni基合金軟化粉末は、母相となるγ相中に析出するγ’相の700℃における平衡析出量が30体積%以上80体積%以下となる化学組成を有し、該軟化粉末の平均粒度が5μm以上500μm以下であり、該軟化粉末の粒子が前記γ相の微細結晶の多結晶体で構成される粉末であり、
前記粒子を構成する前記γ相の微細結晶の粒界上に20体積%以上の前記γ’相が析出しており、
前記粒子の室温のビッカース硬さが370 Hv以下であることを特徴とするNi基合金軟化粉末、を提供するものである。
(I) One aspect of the present invention is a Ni-based alloy softened powder.
The Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase precipitated in the γ phase as the parent phase at 700 ° C. is 30% by volume or more and 80% by volume or less, and the average of the softened powders. The powder has a particle size of 5 μm or more and 500 μm or less, and the particles of the softened powder are composed of polycrystals of fine crystals of the γ phase.
20% by volume or more of the γ'phase is precipitated on the grain boundaries of the fine crystals of the γ phase constituting the particles.
Provided is a Ni-based alloy softened powder, characterized in that the Vickers hardness of the particles at room temperature is 370 Hv or less.

本発明は、上記のNi基合金軟化粉末(I)において、以下のような改良や変更を加えることができる。
(i)前記化学組成は、5質量%以上25質量%以下のCr(クロム)と、0質量%超30質量%以下のCo(コバルト)と、1質量%以上8質量%以下のAl(アルミニウム)と、合計1質量%以上10質量%以下のTi(チタン)、Nb(ニオブ)およびTa(タンタル)と、10質量%以下のFe(鉄)と、10質量%以下のMo(モリブデン)と、8質量%以下のW(タングステン)と、0.1質量%以下のZr(ジルコニウム)と、0.1質量%以下のB(ホウ素)と、0.2質量%以下のC(炭素)と、2質量%以下のHf(ハフニウム)と、5質量%以下のRe(レニウム)と、0.003質量%以上0.05質量%以下のO(酸素)とを含有し、残部がNiおよび不可避不純物からなる。
(ii)前記化学組成は、前記γ’相の固溶温度が1100℃以上となる化学組成である。
(iii)前記Ni基合金軟化粉末は、前記γ’相の700℃における前記平衡析出量が45体積%以上80体積%以下となる化学組成を有する。
(iv)前記粒子の室温のビッカース硬さが350 Hv以下である。
The present invention can make the following improvements and modifications to the above-mentioned Ni-based alloy softened powder (I).
(I) The chemical composition consists of Cr (chromium) of 5% by mass or more and 25% by mass or less, Co (cobalt) of more than 0% by mass and 30% by mass or less, and Al (aluminum) of 1% by mass or more and 8% by mass or less. ), Ti (titanium), Nb (niob) and Ta (tantal) of 1% by mass or more and 10% by mass or less, Fe (iron) of 10% by mass or less, and Mo (molybdenum) of 10% by mass or less. , W (tungsten) of 8% by mass or less, Zr (zirconium) of 0.1% by mass or less, B (boron) of 0.1% by mass or less, C (carbon) of 0.2% by mass or less, and 2% by mass or less. It contains Hf (hafnium), Re (renium) of 5% by mass or less, and O (oxygen) of 0.003% by mass or more and 0.05% by mass or less, and the balance consists of Ni and unavoidable impurities.
(Ii) The chemical composition is such that the solid solution temperature of the γ'phase is 1100 ° C. or higher.
(Iii) The Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase at 700 ° C. is 45% by volume or more and 80% by volume or less.
(Iv) The Vickers hardness of the particles at room temperature is 350 Hv or less.

(II)本発明の他の一態様は、上記のNi基合金軟化粉末を製造する方法であって、
前記製造方法は、
前記化学組成を有し粉末粒子が前記γ相の微細結晶の多結晶体で構成される前駆体粉末を用意する前駆体粉末用意工程と、
前記前駆体粉末に対して、前記γ’相の固溶温度以上で前記γ相の融点未満の温度(本発明では、高温と称することにする)に加熱して前記γ’相を前記γ相中に固溶させた後、当該温度から前記γ’相の前記固溶温度より低い温度まで100℃/h以下の冷却速度で徐冷する高温−徐冷熱処理を施すことにより、前記粉末粒子を構成する前記γ相の微細結晶の粒界上に前記γ’相が20体積%以上析出した前記Ni基合金軟化粉末を作製する粉末軟化高温−徐冷熱処理工程と、を有することを特徴とするNi基合金軟化粉末の製造方法、を提供するものである。
(II) Another aspect of the present invention is a method for producing the above-mentioned Ni-based alloy softened powder.
The manufacturing method is
A precursor powder preparation step of preparing a precursor powder having the chemical composition and having powder particles composed of polycrystals of fine crystals of the γ phase.
The precursor powder is heated to a temperature equal to or higher than the solid solution temperature of the γ'phase and lower than the melting point of the γ phase (referred to as a high temperature in the present invention) to heat the γ'phase to the γ phase. The powder particles are subjected to a high-temperature slow-cooling heat treatment in which the powder particles are slowly cooled from the temperature to a temperature lower than the solid solution temperature of the γ'phase at a cooling rate of 100 ° C./h or less. It is characterized by having a powder softening high temperature-slow cooling heat treatment step for producing the Ni-based alloy softened powder in which 20% by volume or more of the γ'phase is precipitated on the grain boundaries of the fine crystals of the γ phase. It provides a method for producing a Ni-based alloy softened powder.

(III)本発明の更に他の一態様は、上記のNi基合金軟化粉末を製造する方法であって、
前記製造方法は、
前記化学組成を有し粉末粒子が前記γ相の単相微細結晶の多結晶体で構成される単相前駆体粉末を用意する単相前駆体粉末用意工程と、
前記単相前駆体粉末に対して、前記γ’相の固溶温度よりも80℃低い温度以上で該固溶温度未満の温度(本発明では、亜高温と称することにする)に加熱して、当該温度から100℃/h以下の冷却速度で徐冷する亜高温−徐冷熱処理を施すことにより、前記単相前駆体粉末の粒子を構成する前記γ相の単相微細結晶の粒界上に前記γ’相が20体積%以上析出した前記Ni基合金軟化粉末を作製する粉末軟化亜高温−徐冷熱処理工程と、を有することを特徴とするNi基合金軟化粉末の製造方法、を提供するものである。
(III) Yet another aspect of the present invention is a method for producing the above-mentioned Ni-based alloy softened powder.
The manufacturing method is
A single-phase precursor powder preparation step of preparing a single-phase precursor powder having the chemical composition and having powder particles composed of polycrystals of the γ-phase single-phase fine crystals.
The single-phase precursor powder is heated to a temperature 80 ° C. lower than the solid solution temperature of the γ'phase and lower than the solid solution temperature (referred to as subhigh temperature in the present invention). By performing a sub-high temperature-slow cooling heat treatment that slowly cools the temperature at a cooling rate of 100 ° C./h or less, on the grain boundaries of the γ-phase single-phase fine crystals constituting the particles of the single-phase precursor powder. Provided is a method for producing a Ni-based alloy softened powder, which comprises a powder softening subhigh temperature-slow cooling heat treatment step for producing the Ni-based alloy softened powder in which the γ'phase is precipitated in an amount of 20% by volume or more. To do.

(IV)本発明の更に他の一態様は、上記のNi基合金軟化粉末を製造する方法であって、
前記製造方法は、
前記化学組成を有し粉末粒子が前記γ相の単相微細結晶の多結晶体で構成される単相前駆体粉末を用意する単相前駆体粉末用意工程と、
前記単相前駆体粉末に対して、前記γ’相の固溶温度以上で前記γ相の融点未満の温度に加熱した後、当該温度から前記γ’相の前記固溶温度より低い温度まで100℃/h以下の冷却速度で徐冷する高温−徐冷熱処理を施すことにより、前記単相前駆体粉末の粒子を構成する前記γ相の単相微細結晶の粒界上に前記γ’相が20体積%以上析出した前記Ni基合金軟化粉末を作製する粉末軟化高温−徐冷熱処理工程と、を有することを特徴とするNi基合金軟化粉末の製造方法、を提供するものである。
(IV) Yet another aspect of the present invention is a method for producing the above-mentioned Ni-based alloy softened powder.
The manufacturing method is
A single-phase precursor powder preparation step of preparing a single-phase precursor powder having the chemical composition and having powder particles composed of polycrystals of the γ-phase single-phase fine crystals.
The single-phase precursor powder is heated to a temperature equal to or higher than the solid solution temperature of the γ'phase and lower than the melting point of the γ phase, and then from that temperature to a temperature lower than the solid solution temperature of the γ'phase. By performing a high-temperature-slow cooling heat treatment in which the solid solution is slowly cooled at a cooling rate of ° C./h or less, the γ'phase is formed on the grain boundaries of the single-phase fine crystals of the γ-phase constituting the particles of the single-phase precursor powder. Provided is a method for producing a Ni-based alloy softened powder, which comprises a powder softening high temperature-slow cooling heat treatment step for producing the Ni-based alloy softened powder precipitated in an amount of 20% by volume or more.

本発明は、上記のNi基合金軟化粉末の製造方法(II)〜(IV)において、以下のような改良や変更を加えることができる。
(v)前記前駆体粉末用意工程または前記単相前駆体粉末用意工程は、アトマイズ素工程を含む。
In the present invention, the following improvements and changes can be made in the above-mentioned methods (II) to (IV) for producing a Ni-based alloy softened powder.
(V) The precursor powder preparation step or the single-phase precursor powder preparation step includes an atomizing elementary step.

なお、本発明において、γ’相の700℃における平衡析出量と固溶温度およびγ相の融点(固相線温度)は、Ni基合金材料の化学組成に基づいた熱力学計算から求められる平衡析出量および温度を用いることができる。 In the present invention, the equilibrium precipitation amount of the γ'phase at 700 ° C., the solid dissolution temperature, and the melting point of the γ phase (solid phase line temperature) are the equilibrium obtained from the thermodynamic calculation based on the chemical composition of the Ni-based alloy material. The amount of precipitation and temperature can be used.

本発明によれば、強析出強化Ni基合金材料を用いながら、従来よりも成形加工性/成型加工性が良好な粉末であり、粉末冶金技術に好適なNi基合金軟化粉末および該軟化粉末の製造方法を提供することができる。また、当該Ni基合金軟化粉末を用いて粉末冶金技術を適用することにより、高い製造歩留まりで(すなわち、従来よりも低コストで)強析出強化Ni基合金部材を提供することができるようになる。 According to the present invention, a powder having better molding processability / molding processability than the conventional one while using a strong precipitation strengthened Ni-based alloy material, and a Ni-based alloy softened powder suitable for powder metallurgy technology and the softened powder. A manufacturing method can be provided. Further, by applying the powder metallurgy technique using the Ni-based alloy softened powder, it becomes possible to provide a strong precipitation strengthened Ni-based alloy member with a high production yield (that is, at a lower cost than the conventional one). ..

析出強化Ni基合金材中のγ相とγ’相との関係を示す模式図であり、(a)γ相の結晶粒内にγ’相が析出する場合、(b)γ相の結晶粒の粒界上にγ’相が析出する場合である。It is a schematic diagram showing the relationship between the γ phase and the γ'phase in the precipitation-strengthened Ni-based alloy material. When the γ'phase is precipitated in the crystal grains of (a) γ phase, (b) the crystal grains of γ phase This is the case where the γ'phase is precipitated on the grain boundaries of. 本発明に係るNi基合金軟化粉末を用いるNi基合金部材の製造方法の工程例を示すフロー図である。It is a flow chart which shows the process example of the manufacturing method of the Ni-based alloy member using the Ni-based alloy softened powder which concerns on this invention. 本発明に係る製造方法におけるNi基合金粉末の微細組織の変化例を示す模式図である。It is a schematic diagram which shows the change example of the microstructure of the Ni-based alloy powder in the manufacturing method which concerns on this invention. 本発明に係るNi基合金軟化粉末を用いるNi基合金部材の製造方法の他の工程例を示すフロー図である。It is a flow chart which shows the other process example of the manufacturing method of the Ni-based alloy member using the Ni-based alloy softened powder which concerns on this invention. 単相前駆体粉末用意工程〜粉末軟化亜高温−徐冷熱処理工程におけるNi基合金粉末の微細組織の変化例を示す模式図である。It is a schematic diagram which shows the change example of the microstructure of the Ni group alloy powder in the process of preparing a single-phase precursor powder-powder softening subhigh temperature-slow cooling heat treatment process. 本発明に係るNi基合金軟化粉末を用いるNi基合金部材の製造方法の更に他の工程例を示すフロー図である。It is a flow chart which shows still another process example of the manufacturing method of the Ni-based alloy member which uses the Ni-based alloy softened powder which concerns on this invention.

[本発明の基本思想]
本発明は、特許文献2(特許第5869624)に記載されたγ’相析出Ni基合金材における析出強化/軟化のメカニズムをベースにしている。図1は、析出強化Ni基合金材中のγ相とγ’相との関係を示す模式図であり、(a)γ相の結晶粒内にγ’相が析出する場合、(b)γ相の結晶粒の粒界上にγ’相が析出する場合である。
[Basic Thought of the Present Invention]
The present invention is based on the mechanism of precipitation strengthening / softening in the γ'phase precipitation Ni-based alloy material described in Patent Document 2 (Patent No. 5869624). FIG. 1 is a schematic view showing the relationship between the γ phase and the γ'phase in the precipitation-strengthened Ni-based alloy material. When the γ'phase is precipitated in the crystal grains of (a) γ phase, (b) γ This is the case where the γ'phase is precipitated on the grain boundaries of the crystal grains of the phase.

図1(a)に示したように、γ相の結晶粒内にγ’相が析出する場合、γ相を構成する原子1とγ’相を構成する原子2とが整合界面3を構成する(γ相に格子整合しながらγ’相が析出する)。このようなγ’相を粒内γ’相と称する(整合γ’相と称する場合もある)。粒内γ’相は、γ相と整合界面3を構成するが故にγ相結晶粒内での転位の移動を妨げると考えられ、それにより、Ni基合金材の機械的強度を向上させていると考えられる。析出強化したNi基合金材とは、通常、図1(a)の状態を意味する。 As shown in FIG. 1A, when the γ'phase is precipitated in the crystal grains of the γ phase, the atom 1 constituting the γ phase and the atom 2 forming the γ'phase form the matching interface 3. (The γ'phase is precipitated while lattice-matching with the γ phase). Such a γ'phase is referred to as an intragranular γ'phase (sometimes referred to as a matched γ'phase). Since the intragranular γ'phase constitutes the matching interface 3 with the γ phase, it is considered to hinder the movement of dislocations in the γ phase crystal grains, thereby improving the mechanical strength of the Ni-based alloy material. it is conceivable that. The precipitation-strengthened Ni-based alloy material usually means the state shown in FIG. 1 (a).

一方、図1(b)に示したように、γ相の結晶粒の粒界上に(言い換えると、γ相の結晶粒の間に)γ’相が析出する場合、γ相を構成する原子1とγ’相を構成する原子2とは非整合界面4を構成する(γ相と格子整合しない状態でγ’相が析出する)。このようなγ’相を粒界γ’相と称する(粒間γ’相や非整合γ’相と称する場合もある)。粒界γ’相は、γ相と非整合界面4を構成するためγ相結晶粒内での転位の移動を妨げない。その結果、粒界γ’相は、Ni基合金材の強化にほとんど寄与しないと考えられる。これらのことから、Ni基合金材において、粒内γ’相の代わりに粒界γ’相を積極的に析出させれば、該合金材が軟化した状態となり成形加工性を飛躍的に向上させることができる。 On the other hand, as shown in FIG. 1 (b), when the γ'phase is precipitated on the grain boundaries of the γ phase crystal grains (in other words, between the γ phase crystal grains), the atoms constituting the γ phase 1 and the atom 2 that constitutes the γ'phase form an unmatched interface 4 (the γ'phase is precipitated in a state where it is not lattice-matched with the γ phase). Such a γ'phase is referred to as a grain boundary γ'phase (sometimes referred to as an intergranular γ'phase or an unmatched γ'phase). Since the grain boundary γ'phase forms an unmatched interface 4 with the γ phase, it does not hinder the movement of dislocations in the γ phase crystal grains. As a result, it is considered that the grain boundary γ'phase hardly contributes to the strengthening of the Ni-based alloy material. From these facts, in the Ni-based alloy material, if the grain boundary γ'phase is positively precipitated instead of the intragranular γ'phase, the alloy material is in a softened state and the molding processability is dramatically improved. be able to.

本発明は、特許文献2のように合金塊(インゴット)に対してγ相/γ’相の二相共存温度領域の熱間鍛造を行うことによって粒界γ’相を析出させるのではなく、粉末粒子がγ相の微細結晶または単相微細結晶の多結晶体で構成されるNi基合金の前駆体粉末/単相前駆体粉末を形成すること、および該前駆体粉末/単相前駆体粉末に対して所定の熱処理を施すことによって粉末粒子を構成するγ相の微細結晶の粒界上に粒界γ’相を20体積%以上析出させた軟化粉末を作製することに大きな特徴がある。当該Ni基合金前駆体粉末/単相前駆体粉末がキーポイントの一つと言える。 In the present invention, the grain boundary γ'phase is not precipitated by hot forging the alloy ingot in the two-phase coexistence temperature region of the γ phase / γ'phase as in Patent Document 2. Forming a precursor powder / single-phase precursor powder of a Ni-based alloy in which the powder particles are composed of γ-phase fine crystals or polycrystals of single-phase fine crystals, and the precursor powder / single-phase precursor powder. A major feature is that a softened powder in which 20% by volume or more of the grain boundary γ'phase is precipitated on the grain boundaries of the γ phase fine crystals constituting the powder particles is produced by subjecting the powder particles to a predetermined heat treatment. The Ni-based alloy precursor powder / single-phase precursor powder can be said to be one of the key points.

γ’相の析出には、基本的にγ’相を形成する原子の拡散・再配列が必要であるため、鋳造材のようにγ相結晶粒が大きい場合には、通常、原子の拡散・再配列の距離が短くて済むγ相結晶粒内にγ’相が優先的に析出すると考えられる。なお、鋳造材であってもγ相結晶の粒界上にγ’相が析出することを否定するものではない。 Since the precipitation of the γ'phase basically requires the diffusion and rearrangement of the atoms forming the γ'phase, when the γ-phase crystal grains are large as in a cast material, the atoms are usually diffused and rearranged. It is considered that the γ'phase is preferentially precipitated in the γ-phase crystal grains that require a short rearrangement distance. It should be noted that even in the case of a cast material, it is not denied that the γ'phase is precipitated on the grain boundaries of the γ phase crystal.

一方、γ相結晶粒が微細になると、結晶粒界までの距離が短くなる上に、結晶粒の体積エネルギーに比して粒界エネルギーが高くなることから、γ’相形成原子がγ相の結晶粒内で固相拡散して再配列するよりも、γ相の結晶粒界上を拡散して該粒界上で再配列する方がエネルギー的に有利になり優先して起こり易くなると考えられる。 On the other hand, when the γ-phase crystal grains become finer, the distance to the grain boundaries becomes shorter and the grain boundary energy becomes higher than the volume energy of the crystal grains. Therefore, the γ'phase forming atoms are of the γ phase. It is considered that it is more energetically advantageous and more likely to occur by diffusing on the grain boundaries of the γ phase and rearranging on the grain boundaries than by solid-phase diffusion and rearrangement in the crystal grains. ..

ここで、γ相の結晶粒界上でのγ’相形成を促進するためには、少なくともγ’相形成原子が拡散し易い温度領域(例えば、γ’相の固溶温度近傍)においてγ相結晶粒を微細な状態に維持する(言い換えると、γ相結晶粒の粒成長を抑制する)ことが重要になる。そこで、本発明者等は、γ’相の固溶温度近傍や固溶温度以上の温度領域であってもγ相結晶粒の粒成長を抑制する技術について鋭意研究を行った。 Here, in order to promote the formation of the γ'phase on the grain boundaries of the γ phase, the γ phase is at least in a temperature region in which the γ'phase-forming atoms are likely to diffuse (for example, near the solid solution temperature of the γ'phase). It is important to maintain the crystal grains in a fine state (in other words, to suppress the grain growth of the γ-phase crystal grains). Therefore, the present inventors have conducted intensive research on a technique for suppressing grain growth of γ-phase crystal grains even in a temperature range near the solid solution temperature of the γ'phase or above the solid solution temperature.

その結果、所定量の酸素成分を制御して含有させたNi基合金粉末を形成することによって、粉末粒子がγ相微細結晶の多結晶体で構成されるようになること(粉末粒子が複数のγ相微細結晶からなる、粉末粒子の内部にγ相微細結晶の粒界が存在する状態になる)を見出した。さらに、そのような粉末粒子は、γ’相の固溶温度近傍や固溶温度以上の温度まで昇温してもγ相微細結晶の粒成長を抑制できること(粉末粒子がγ相の単結晶体とはならずに多結晶体を維持する)、および当該温度から徐冷することによって、γ相微細結晶の粒界上に粒界γ’相を積極的に析出・成長させられることを見出した。本発明は当該知見に基づくものである。 As a result, by forming a Ni-based alloy powder containing a predetermined amount of oxygen components in a controlled manner, the powder particles are composed of polycrystals of γ-phase fine crystals (a plurality of powder particles are present). (The grain boundary of the γ-phase fine crystal is present inside the powder particle, which is composed of the γ-phase fine crystal). Furthermore, such powder particles can suppress the grain growth of γ-phase fine crystals even if the temperature is raised to near the solid-melt temperature of the γ'phase or above the solid-melt temperature (single crystals in which the powder particles are in the γ-phase). It was found that the grain boundary γ'phase can be positively precipitated and grown on the grain boundary of the γ phase fine crystal by (maintaining the polycrystal without becoming) and slowly cooling from the temperature. .. The present invention is based on this finding.

以下、図面を参照しながら、本発明に係る実施形態を説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined with a known technique or improved based on the known technique without departing from the technical idea of the invention. ..

[Ni基合金軟化粉末の製造方法]
図2は、本発明に係るNi基合金軟化粉末を用いるNi基合金部材の製造方法の工程例を示すフロー図である。図2に示したように、本発明のNi基合金軟化粉末を用いたNi基合金部材の製造方法は、概略的に、所定の化学組成を有し粉末粒子がγ相微細結晶の多結晶体で構成される前駆体粉末を用意する前駆体粉末用意工程(S1)と、該前駆体粉末に対して所定の高温−徐冷熱処理を施すことにより粒界γ’相を20体積%以上析出させたNi基合金軟化粉末を作製する粉末軟化高温−徐冷熱処理工程(S2)と、該軟化粉末を用いて粉末冶金技術により所望の形状を有する成型加工体を形成する成型加工工程(S3)と、該成型加工体に対して粒界γ’相をγ相中に固溶させる溶体化熱処理およびγ相の結晶粒内に粒内γ’相を析出させる時効熱処理を施す溶体化−時効熱処理工程(S4)と、を有する。前駆体粉末用意工程S1と粉末軟化高温−徐冷熱処理工程S2とが、本発明に係るNi基合金軟化粉末の製造方法である。
[Manufacturing method of Ni-based alloy softened powder]
FIG. 2 is a flow chart showing a process example of a method for manufacturing a Ni-based alloy member using the Ni-based alloy softened powder according to the present invention. As shown in FIG. 2, the method for producing a Ni-based alloy member using the Ni-based alloy softened powder of the present invention generally has a predetermined chemical composition and the powder particles are polycrystals of γ-phase fine crystals. The grain boundary γ'phase is precipitated by 20% by volume or more by subjecting the precursor powder to a predetermined high temperature-slow cooling heat treatment in the precursor powder preparation step (S1) for preparing the precursor powder composed of the above. A powder softening high temperature-slow cooling heat treatment step (S2) for producing a softened Ni-based alloy powder, and a molding processing step (S3) for forming a molded product having a desired shape by powder metallurgy technology using the softened powder. , A solution heat treatment step in which the grain boundary γ'phase is solidified in the γ phase and an aging heat treatment for precipitating the intragranular γ'phase in the crystal grains of the γ phase is performed on the molded product. (S4) and. The precursor powder preparation step S1 and the powder softening high temperature-slow cooling heat treatment step S2 are methods for producing a Ni-based alloy softened powder according to the present invention.

なお、前駆体粉末とは、粉末粒子がγ相微細結晶の多結晶体で構成されているが、γ相微細結晶の粒界上にγ’相が析出していない状態(少なくとも意図的には粒界γ’相を析出させていない状態)の粉末を言う。軟化粉末とは、γ相微細結晶の粒界上に粒界γ’相が20体積%以上析出した状態の粉末を言う。 The precursor powder is a state in which the powder particles are composed of polycrystals of γ-phase fine crystals, but the γ'phase is not precipitated on the grain boundaries of the γ-phase fine crystals (at least intentionally). A powder in which the grain boundary γ'phase is not precipitated). The softened powder refers to a powder in which 20% by volume or more of the grain boundary γ'phase is precipitated on the grain boundary of the γ phase fine crystal.

図3は、本発明に係る製造方法におけるNi基合金粉末の微細組織の変化例を示す模式図である。まず、前駆体粉末用意工程によって用意するNi基合金前駆体粉末は、平均粒度が500μm以下の粉末であり、粉末粒子がγ相微細結晶の多結晶体からなる。厳密には前駆体粉末が形成される過程の温度履歴(例えば、冷却速度)の影響を強く受けるが、該γ相微細結晶内にγ’相(整合γ’相)が析出していないγ相微細結晶と、粒内γ’相が一部析出しているγ相微細結晶とが混在することもある。粒内γ’相が析出していないγ相微細結晶やγ相微細結晶で粒内γ’相が析出していない領域は、γ’相の過飽和状態やγ’相が形成される前の組成ゆらぎ状態になっていると考えられる。 FIG. 3 is a schematic view showing an example of changes in the microstructure of the Ni-based alloy powder in the production method according to the present invention. First, the Ni-based alloy precursor powder prepared by the precursor powder preparation step is a powder having an average particle size of 500 μm or less, and the powder particles are composed of polycrystals of γ-phase fine crystals. Strictly speaking, it is strongly influenced by the temperature history (for example, cooling rate) of the process of forming the precursor powder, but the γ'phase (matched γ'phase) is not precipitated in the γ phase fine crystal. Fine crystals and γ-phase fine crystals in which an intragranular γ'phase is partially precipitated may coexist. The γ-phase fine crystal in which the intragranular γ'phase is not precipitated and the region in which the intragranular γ'phase is not precipitated in the γ-phase fine crystal are the composition before the hypersaturation state of the γ'phase or the formation of the γ'phase. It is considered to be in a fluctuating state.

また、前駆体粉末の粒子は、基本的に1粒子がγ相微細結晶の多結晶体からなるが、一部に1粒子がγ相単結晶からなるものが混在することを否定するものではない。言い換えると、前駆体粉末は、大部分の粒子がγ相微細結晶の多結晶体からなるが、γ相単結晶からなる粒子が混在する可能性もある。 Further, the particles of the precursor powder are basically composed of polycrystals in which one particle is composed of γ-phase fine crystals, but it does not deny that some particles are composed of γ-phase single crystals. .. In other words, the precursor powder is composed mostly of polycrystals of γ-phase fine crystals, but particles of γ-phase single crystals may be mixed.

次に、前駆体粉末をγ’相の固溶温度以上でγ相の融点未満の温度まで加熱昇温する。加熱温度がγ’相の固溶温度以上になると、熱平衡的には全てのγ’相がγ相中に固溶してγ相単相となる。本発明においては、この段階で粉末粒子がγ相微細結晶の多結晶体からなる状態を維持する(γ相微細結晶の過剰粗大化を防止する)ことが重要である。 Next, the precursor powder is heated to a temperature above the solid solution temperature of the γ'phase and below the melting point of the γ phase. When the heating temperature becomes equal to or higher than the solid solution temperature of the γ'phase, all the γ'phases are solid-solved in the γ phase to become a single phase of the γ phase in thermal equilibrium. In the present invention, it is important to maintain the state in which the powder particles are composed of polycrystals of γ-phase fine crystals at this stage (prevent excessive coarsening of γ-phase fine crystals).

次に、当該加熱温度から100℃/h以下の冷却速度で徐冷すると、粉末粒子のγ相微細結晶の粒界上に20体積%以上の粒界γ’相が析出した軟化粉末が得られる。軟化粉末は、粒内γ’相の析出量が十分に少ないことから析出強化のメカニズムが作用せず、成形加工性/成型加工性が飛躍的に向上した状態となる。粉末粒子の表面はγ相微細結晶の粒界の一種と見なせることから、粉末粒子の表面上に析出したγ’相も粒界γ’相と見なす。 Next, when the powder is slowly cooled from the heating temperature at a cooling rate of 100 ° C./h or less, a softened powder in which 20% by volume or more of the grain boundary γ'phase is precipitated on the grain boundaries of the γ phase fine crystals of the powder particles can be obtained. .. Since the amount of precipitation of the γ'phase in the grains is sufficiently small in the softened powder, the mechanism of precipitation strengthening does not work, and the molding processability / molding processability is dramatically improved. Since the surface of the powder particles can be regarded as a kind of grain boundaries of γ phase fine crystals, the γ'phase precipitated on the surface of the powder particles is also regarded as the grain boundary γ'phase.

なお、図2に示したように、次に、得られた軟化粉末を用い粉末冶金技術を適用して所望形状の成型加工体を形成する(成型加工工程S3)。このとき、本発明の軟化粉末は、従来の強析出強化Ni基合金粉末に比して成型加工性が飛躍的に向上していることから、成型加工の際の温度および/または圧力を従来よりも下げることができる。これは、成型加工にあたって、装置コストおよび/またはプロセスコストを低減できることを意味する。 As shown in FIG. 2, next, the obtained softened powder is used and powder metallurgy technology is applied to form a molded product having a desired shape (molding processing step S3). At this time, since the softened powder of the present invention has dramatically improved molding processability as compared with the conventional strong precipitation strengthened Ni-based alloy powder, the temperature and / or pressure during the molding process is higher than before. Can also be lowered. This means that the equipment cost and / or the process cost can be reduced in the molding process.

その後、所望形状を有する成型加工体に対して、大部分の粒界γ’相をγ相中に固溶させる(例えば、粒界γ’相を10体積%以下にする)溶体化熱処理を施し、続いてγ相の結晶粒内に粒内γ’相を30体積%以上析出させる時効熱処理を施す(溶体化−時効熱処理工程S4)。その結果、所望形状を有しかつ十分に析出強化された強析出強化Ni基合金部材が得られる。本発明の軟化粉末を用いることによる成型プロセスの容易性は、装置コストの低減、プロセスコストの低減、製造歩留まりの向上(すなわち、Ni基合金部材の製造コストの低減)につながる。 Then, the molded processed product having a desired shape is subjected to solution heat treatment in which most of the grain boundary γ'phase is solidified in the γ phase (for example, the grain boundary γ'phase is reduced to 10% by volume or less). Subsequently, aging heat treatment is performed to precipitate 30% by volume or more of the intragranular γ'phase in the crystal grains of the γ phase (solution hardening-aging heat treatment step S4). As a result, a strongly precipitation-strengthened Ni-based alloy member having a desired shape and being sufficiently precipitation-hardened can be obtained. The ease of the molding process by using the softened powder of the present invention leads to reduction of equipment cost, reduction of process cost, and improvement of manufacturing yield (that is, reduction of manufacturing cost of Ni-based alloy member).

得られる強析出強化Ni基合金部材は、次世代のタービン高温部材(例えば、タービン動翼、タービン静翼、ロータディスク、燃焼器部材、ボイラー部材、耐熱コーティング材)として好適に利用できる。 The obtained strong precipitation strengthened Ni-based alloy member can be suitably used as a next-generation turbine high-temperature member (for example, turbine rotor blade, turbine stationary blade, rotor disk, combustor member, boiler member, heat-resistant coating material).

前述したように、特許文献2の技術は、整合γ’相(粒内γ’相)を意図的に残しながら非整合γ’相(粒界γ’相、粒間γ’相)を析出させた軟化体を作製するため、精度の高い制御が必要になる。これに対し、本発明の技術は、粒内γ’相を一旦消失させた後に粒界γ’相を析出させた軟化粉末を作製する。本発明では、工業的難度の低い前駆体粉末形成工程S1と工業的難度の低い粉末軟化高温−徐冷熱処理工程S2との組合せによって軟化粉末を得られることから、特許文献2の技術よりも汎用性が高く、製造プロセス全体としての低コスト化が可能である。特に、γ’相の体積率が45体積%以上のような超強析出強化Ni基合金材料からなる軟化粉末の製造に効果的である。 As described above, the technique of Patent Document 2 deposits the unmatched γ'phase (grain boundary γ'phase, intergranular γ'phase) while intentionally leaving the matched γ'phase (intra-grain γ'phase). In order to produce a softened body, highly accurate control is required. On the other hand, the technique of the present invention produces a softened powder in which the intergranular γ'phase is once eliminated and then the grain boundary γ'phase is precipitated. In the present invention, since a softened powder can be obtained by combining a precursor powder forming step S1 having a low industrial difficulty and a powder softening high temperature-slow cooling heat treatment step S2 having a low industrial difficulty, it is more versatile than the technique of Patent Document 2. It has high characteristics and can reduce the cost of the entire manufacturing process. In particular, it is effective in producing a softened powder made of an ultra-strong precipitation-strengthened Ni-based alloy material having a volume fraction of γ'phase of 45% by volume or more.

以下、上記S1〜S2の各工程についてより詳細に説明する。 Hereinafter, each step of S1 to S2 will be described in more detail.

(前駆体粉末用意工程S1)
本工程S1は、所定の化学組成を有する(特に、所定量の酸素成分を意図的に含有させた)Ni基合金前駆体粉末を用意する工程である。前駆体粉末を用意する方法・手法としては、基本的に従前の方法・手法を利用できる。例えば、所定の化学組成となるように原料を混合・溶解・鋳造して母合金塊(マスターインゴット)を作製する母合金塊作製素工程(S1a)と、該母合金塊から前駆体粉末を形成するアトマイズ素工程(S1b)とを行えばよい。また、必要に応じて、前駆体粉末の粒度を揃えるための分級素工程(S1c)を行ってもよい。
(Precursor powder preparation step S1)
This step S1 is a step of preparing a Ni-based alloy precursor powder having a predetermined chemical composition (particularly, intentionally containing a predetermined amount of oxygen component). As a method / method for preparing the precursor powder, basically the conventional method / method can be used. For example, a mother alloy ingot production element step (S1a) in which raw materials are mixed, melted, and cast so as to have a predetermined chemical composition to produce a mother alloy ingot (master ingot), and a precursor powder is formed from the mother alloy ingot. The atomizing elementary process (S1b) to be performed may be performed. Further, if necessary, a classification element step (S1c) for making the particle size of the precursor powder uniform may be performed.

酸素含有量の制御はアトマイズ素工程S1bで行うことが好ましい。アトマイズ方法は、Ni基合金中の酸素含有量を制御する以外は従前の方法・手法を利用できる。例えば、アトマイズ雰囲気中の酸素量(酸素分圧)を制御しながらのガスアトマイズ法や遠心力アトマイズ法を好ましく用いることができる。 The oxygen content is preferably controlled in the atomizing step S1b. As the atomizing method, conventional methods / methods can be used except for controlling the oxygen content in the Ni-based alloy. For example, a gas atomizing method or a centrifugal force atomizing method while controlling the amount of oxygen (oxygen partial pressure) in the atomizing atmosphere can be preferably used.

前駆体粉末における酸素成分の含有量(含有率と称する場合もある)は、0.003質量%(30 ppm)以上0.05質量%(500 ppm)以下が望ましく、0.005質量%以上0.04質量%以下がより望ましく、0.007質量%以上0.02質量%以下が更に望ましい。0.003質量%未満ではγ相微細結晶の粒成長抑制の効果が少なく、0.05質量%超含有すると最終的なNi基合金部材の機械的強度や延性を低下させる。なお、酸素原子は、粉末粒子の内部に固溶したり表面や内部で酸化物の核を生成したりしていると考えられる。 The content (sometimes referred to as the content) of the oxygen component in the precursor powder is preferably 0.003% by mass (30 ppm) or more and 0.05% by mass (500 ppm) or less, and more preferably 0.005% by mass or more and 0.04% by mass or less. , 0.007% by mass or more and 0.02% by mass or less is more desirable. If it is less than 0.003% by mass, the effect of suppressing the grain growth of γ-phase fine crystals is small, and if it is more than 0.05% by mass, the mechanical strength and ductility of the final Ni-based alloy member are lowered. It is considered that the oxygen atom is solid-solved inside the powder particles and forms oxide nuclei on the surface and inside.

強析出強化の観点および粒界γ’相粒の形成の効率化の観点から、Ni基合金の化学組成としては、γ’相の固溶温度が1020℃以上となるものを採用することが好ましく、1050℃以上となるものを採用することがより好ましく、1100℃以上となるものを採用することが更に好ましい。酸素成分以外の化学組成の詳細については後述する。 From the viewpoint of strengthening strong precipitation and improving the efficiency of grain boundary γ'phase grain formation, it is preferable to use a Ni-based alloy having a solid solution temperature of γ'phase of 1020 ° C. or higher. , It is more preferable to use the one having a temperature of 1050 ° C. or higher, and it is further preferable to use the one having a temperature of 1100 ° C. or higher. Details of the chemical composition other than the oxygen component will be described later.

前駆体粉末の粒度は、平均粒度で、5μm以上500μm以下が好ましく、10μm以上300μm以下がより好ましく、20μm以上200μm以下が更に好ましい。前駆体粉末の平均粒度が5μm未満になると、次工程S2でのハンドリング性が低下するとともに、次工程S2中に粉末粒子同士が合体し易くなって軟化粉末の平均粒度の制御が難しくなる。前駆体粉末の平均粒径が500μm超になると、後の成型加工工程の際に成型加工体の形状制御性や形状精度が低下する要因となる。前駆体粉末の平均粒度は、例えば、レーザ回折式粒度分布測定装置を用いて測定することができる。 The average particle size of the precursor powder is preferably 5 μm or more and 500 μm or less, more preferably 10 μm or more and 300 μm or less, and further preferably 20 μm or more and 200 μm or less. When the average particle size of the precursor powder is less than 5 μm, the handleability in the next step S2 is lowered, and the powder particles are easily coalesced during the next step S2, making it difficult to control the average particle size of the softened powder. If the average particle size of the precursor powder exceeds 500 μm, the shape controllability and shape accuracy of the molded product will deteriorate in the subsequent molding process. The average particle size of the precursor powder can be measured using, for example, a laser diffraction type particle size distribution measuring device.

なお、前述したように、前駆体粉末の粒子は、基本的に1粒子がγ相微細結晶の多結晶体からなるが、粉末粒子におけるγ相微細結晶の平均結晶粒径としては5μm以上50μm以下が好ましい。また、アトマイズ法のように急速凝固によって前駆体粉末を形成した場合、通常、γ相微細結晶の粒界上にγ’相(例えば、液相から直接晶出する共晶γ’相)は析出しない。 As described above, the particles of the precursor powder are basically composed of polycrystals of γ-phase fine crystals, but the average crystal grain size of the γ-phase fine crystals in the powder particles is 5 μm or more and 50 μm or less. Is preferable. Further, when the precursor powder is formed by rapid solidification as in the atomizing method, the γ'phase (for example, the eutectic γ'phase directly crystallized from the liquid phase) is usually precipitated on the grain boundaries of the γ-phase fine crystals. do not.

(粉末軟化高温−徐冷熱処理工程S2)
本工程S2は、前工程S1で用意した前駆体粉末に対して、γ’相の固溶温度以上の温度に加熱してγ’相をγ相中に一旦固溶させた後、当該温度から徐冷することで粒界γ’相を生成・増加させて軟化粉末を作製する工程である。本工程中におけるγ相微細結晶の望まない粗大化をできるだけ抑制するため、徐冷開始温度は、γ相の融点未満(固相線温度未満)が好ましく、γ’相の固溶温度より35℃高い温度以下がより好ましく、γ’相の固溶温度より25℃高い温度以下が更に好ましい。
(Powder softening high temperature-slow cooling heat treatment process S2)
In this step S2, the precursor powder prepared in the previous step S1 is heated to a temperature equal to or higher than the solid solution temperature of the γ'phase to once dissolve the γ'phase in the γ phase, and then from that temperature. This is a step of producing a softened powder by forming and increasing the grain boundary γ'phase by slow cooling. The slow cooling start temperature is preferably below the melting point of the γ phase (less than the solidus temperature), and is 35 ° C. above the solid dissolution temperature of the γ'phase in order to suppress unwanted coarsening of the γ phase fine crystals in this step. A high temperature or lower is more preferable, and a temperature 25 ° C. higher than the solidification temperature of the γ'phase is further preferable.

なお、γ相の融点が「γ’相の固溶温度+35℃」や「γ’相の固溶温度+25℃」よりも低い場合は、当然のことながら「γ相の融点未満」を優先する。 If the melting point of the γ phase is lower than "the solid solution temperature of the γ'phase + 35 ° C" or "the solid solution temperature of the γ'phase + 25 ° C", naturally "less than the melting point of the γ phase" is prioritized. ..

熱処理雰囲気は、Ni基合金粉末の望まない酸化(前工程S1で制御した酸素含有量を超える酸化)を防止ための非酸化性雰囲気(酸化を生じさせるような分圧の酸素を含まない雰囲気)であれば特段の限定はなく、還元性雰囲気(例えば、水素ガス雰囲気)がより好ましい。 The heat treatment atmosphere is a non-oxidizing atmosphere (an atmosphere that does not contain oxygen at a partial pressure that causes oxidation) to prevent unwanted oxidation of the Ni-based alloy powder (oxidation exceeding the oxygen content controlled in the previous step S1). If so, there is no particular limitation, and a reducing atmosphere (for example, a hydrogen gas atmosphere) is more preferable.

また、本工程S2は、高温−徐冷熱処理の結果として粒内γ’相が完全に消失せず、わずかに存在することまでを否定するものではない。例えば、粒界γ’相が20体積%以上析出していることを前提として、粒内γ’相の存在量が10体積%以下であれば、後の成型加工工程における成型加工性を強く阻害するものではないことから許容される。粒内γ’相の存在量は、5体積%以下がより好ましく、3体積%以下が更に好ましい。 Further, in this step S2, it cannot be denied that the intragranular γ'phase is not completely eliminated as a result of the high temperature-slow cooling heat treatment and is slightly present. For example, assuming that the grain boundary γ'phase is precipitated by 20% by volume or more, if the abundance of the intragranular γ'phase is 10% by volume or less, the molding processability in the subsequent molding process is strongly impaired. It is acceptable because it is not something to do. The abundance of the intragranular γ'phase is more preferably 5% by volume or less, further preferably 3% by volume or less.

ここで、特許文献2の技術においては、溶解・鋳造・鍛造プロセスで得られるNi基合金鍛造素材をγ’相の固溶温度以上に加熱昇温すると、γ相結晶の粒界移動をピン止めしていたγ’相が消失するため、γ相結晶粒の急激な粗大化が生じ易い。その結果、本工程S2のようにγ’相の固溶温度以上に加熱昇温した後に徐冷を行っても、粒界γ’相の析出・成長はほとんど促進されない。 Here, in the technique of Patent Document 2, when the Ni-based alloy forged material obtained in the melting / casting / forging process is heated to a temperature higher than the solid solution temperature of the γ'phase, the grain boundary movement of the γ phase crystal is pinned. Since the γ'phase that has been formed disappears, rapid coarsening of γ-phase crystal grains is likely to occur. As a result, even if the temperature is raised above the solid solution temperature of the γ'phase and then slowly cooled as in the present step S2, the precipitation and growth of the grain boundary γ'phase are hardly promoted.

これに対し、本発明においては、前駆体粉末用意工程S1で用意した前駆体粉末が、合金組成として酸素成分を従来のNi基合金材よりも多く含有している(酸素成分を多く含有するように制御されている)。そして、そのような前駆体粉末に対してγ’相の固溶温度以上の熱処理を施すと、含有する酸素原子が合金の金属原子と化合して局所的な酸化物を形成すると考えられる。 On the other hand, in the present invention, the precursor powder prepared in the precursor powder preparation step S1 contains a larger amount of oxygen component as an alloy composition than the conventional Ni-based alloy material (so that it contains a large amount of oxygen component). Is controlled by). Then, when such a precursor powder is heat-treated at a solid solution temperature or higher of the γ'phase, it is considered that the contained oxygen atoms combine with the metal atoms of the alloy to form a local oxide.

このとき形成した酸化物はγ相微細結晶の粒界移動(すなわち、γ相微細結晶の粒成長)を抑制すると考えられる。すなわち、本工程S2においてγ’相を消失させても、γ相微細結晶の粗大化を防げると考えられる。 The oxide formed at this time is considered to suppress the grain boundary movement of the γ-phase fine crystals (that is, the grain growth of the γ-phase fine crystals). That is, it is considered that even if the γ'phase disappears in this step S2, the coarsening of the γ-phase fine crystals can be prevented.

析出強化Ni基合金材の強化機構は、前述したように、γ相とγ’相とが整合界面を形成することで強化に寄与するというものであり、非整合界面は強化に寄与しない。粒内γ’相(整合γ’相)の量を減少させ、粒界γ’相(粒間γ’相、非整合γ’相)の量を増加させることで、優れた成型加工性を有する軟化粉末を得ることができる。 As described above, the strengthening mechanism of the precipitation-strengthened Ni-based alloy material is that the γ phase and the γ'phase contribute to strengthening by forming a matched interface, and the non-matched interface does not contribute to strengthening. It has excellent molding processability by reducing the amount of intragranular γ'phase (matched γ'phase) and increasing the amount of grain boundary γ'phase (intergranular γ'phase, unmatched γ'phase). A softened powder can be obtained.

徐冷過程における冷却速度は低くする方が粒界γ’相の析出・成長に優位となる。冷却速度は、100℃/h以下が好ましく、50℃/h以下がより好ましく、10℃/h以下が更に好ましい。冷却速度が100℃/hより高いと、粒内γ’相が優先析出して、本発明の作用効果を十分に得ることができない。 Lowering the cooling rate in the slow cooling process is superior to the precipitation and growth of the grain boundary γ'phase. The cooling rate is preferably 100 ° C./h or less, more preferably 50 ° C./h or less, and even more preferably 10 ° C./h or less. If the cooling rate is higher than 100 ° C./h, the intragranular γ'phase is preferentially precipitated, and the effects of the present invention cannot be sufficiently obtained.

具体的には、優れた成形加工性/成型加工性を確保するため、粒界γ’相の析出量が20体積%以上となる温度以下まで徐冷することが好ましく、粒界γ’相の析出量を30体積%以上とすることがより好ましい。このとき、粒内γ’相の析出量は10体積%以下とすることが好ましく、5体積%以下がより好ましい。γ’相の析出量は、微細組織観察および画像解析(例えば、ImageJ、米国National Institutes of Health開発のパブリックドメインソフトウェア)により測定することができる。 Specifically, in order to ensure excellent molding processability / molding processability, it is preferable to slowly cool the grain boundary γ'phase to a temperature at which the precipitation amount of the grain boundary γ'phase is 20% by volume or more, and the grain boundary γ'phase It is more preferable that the amount of precipitation is 30% by volume or more. At this time, the precipitation amount of the intragranular γ'phase is preferably 10% by volume or less, more preferably 5% by volume or less. The amount of γ'phase precipitated can be measured by microstructure observation and image analysis (eg, ImageJ, public domain software developed by the National Institutes of Health, USA).

徐冷過程の終了温度の例示としては、γ’相固溶温度が比較的低い1020℃以上1100℃未満の場合、γ’相固溶温度から50℃以上低い温度が好ましく、γ’相固溶温度から100℃以上低い温度がより好ましく、γ’相固溶温度から150℃以上低い温度が更に好ましい。また、γ’相固溶温度が比較的高い1100℃以上の場合、徐冷過程の終了温度は、γ’相固溶温度から100℃以上低い温度が好ましく、γ’相固溶温度から150℃以上低い温度がより好ましく、γ’相固溶温度から200℃以上低い温度が更に好ましい。より具体的には、1000℃以下800℃以上の温度まで徐冷することが好ましい。 As an example of the end temperature of the slow cooling process, when the γ'phase solidification temperature is relatively low, 1020 ° C. or higher and lower than 1100 ° C., the temperature preferably 50 ° C. or higher lower than the γ'phase solidification temperature is preferable. A temperature 100 ° C. or higher lower than the temperature is more preferable, and a temperature 150 ° C. or higher lower than the γ'phase solidification temperature is further preferable. When the γ'phase solidification temperature is relatively high at 1100 ° C. or higher, the end temperature of the slow cooling process is preferably 100 ° C. or higher lower than the γ'phase solidification temperature, and 150 ° C. from the γ'phase solidification temperature. A lower temperature is more preferable, and a temperature 200 ° C. or higher lower than the γ'phase solidification temperature is further preferable. More specifically, it is preferable to slowly cool to a temperature of 1000 ° C. or lower and 800 ° C. or higher.

徐冷終了温度からの冷却は、冷却中の粒内γ’相の析出を抑制するため(例えば、粒内γ’相の析出量を10体積%以下とするため)冷却速度が高い方が好ましく、例えば、水冷やガス冷が好ましい。 Cooling from the slow cooling end temperature is preferably performed at a high cooling rate in order to suppress the precipitation of the intragranular γ'phase during cooling (for example, to reduce the precipitation amount of the intragranular γ'phase to 10% by volume or less). For example, water cooling or gas cooling is preferable.

成形加工性/成型加工性の指標としては、軟化粉末の室温におけるビッカース硬さ(Hv)を採用することができる。本工程S2を行うことで得られる軟化粉末は、γ’相の700℃における平衡析出量が45体積%以上となるような超強析出強化Ni基合金材料であっても、室温ビッカース硬さが370 Hv以下のものを得ることができる。当該室温ビッカース硬さが350 Hv以下となるようにすることがより好ましく、330 Hv以下となるようにすることが更に好ましい。 As an index of moldability / moldability, Vickers hardness (Hv) of the softened powder at room temperature can be adopted. The softened powder obtained by performing this step S2 has a Vickers hardness at room temperature even if it is an ultra-strong precipitation-strengthened Ni-based alloy material in which the equilibrium precipitation amount of the γ'phase at 700 ° C is 45% by volume or more. You can get less than 370 Hv. It is more preferable that the room temperature Vickers hardness is 350 Hv or less, and it is further preferable that the room temperature Vickers hardness is 330 Hv or less.

図4は、本発明に係るNi基合金軟化粉末を用いるNi基合金部材の製造方法の他の工程例を示すフロー図である。図4に示したように、本発明のNi基合金軟化粉末を用いたNi基合金部材の他の製造方法は、Ni基合金軟化粉末の製造方法(単相前駆体粉末用意工程S1’および粉末軟化亜高温−徐冷熱処理工程S2’)において図2の工程と異なり、成型加工工程S3と溶体化−時効熱処理工程S4とを図2の工程と同じにするものである。図5は、工程S1’〜S2’におけるNi基合金粉末の微細組織の変化例を示す模式図である。 FIG. 4 is a flow chart showing another process example of a method for manufacturing a Ni-based alloy member using the Ni-based alloy softened powder according to the present invention. As shown in FIG. 4, another method for producing the Ni-based alloy member using the Ni-based alloy softened powder of the present invention is a method for producing a Ni-based alloy softened powder (single-phase precursor powder preparation step S1'and powder. In the softening subhigh temperature-slow cooling heat treatment step S2'), unlike the step of FIG. 2, the molding process step S3 and the solution solution-aging heat treatment step S4 are the same as the step of FIG. FIG. 5 is a schematic view showing an example of changes in the microstructure of the Ni-based alloy powder in steps S1'to S2'.

以下、上記工程S1’〜S2’(すなわち、本発明に係るNi基合金軟化粉末の他の製造方法)について、図4〜5を参照しながら前述した工程S1〜S2との差異の部分を中心に説明する。 Hereinafter, the differences between the above steps S1'to S2'(that is, other methods for producing the Ni-based alloy softened powder according to the present invention) from the above-mentioned steps S1 to S2 will be mainly focused on with reference to FIGS. 4 to 5. Explain to.

(単相前駆体粉末用意工程S1’)
本工程S1’は、所定の化学組成を有し粉末粒子がγ相の単相微細結晶の多結晶体で構成される単相前駆体粉末を用意する工程である。本発明において、単相前駆体粉末とは、走査型電子顕微鏡−エネルギー分散型X線分析装置(SEM-EDX)および/またはX線回折装置(XRD)での測定によってγ相単相(γ’相が検出されない)と判断できる粉末を意味する。透過型電子顕微鏡(TEM)や走査型透過電子顕微鏡(STEM)レベルの厳密性を求めるものではない。
(Single-phase precursor powder preparation step S1')
This step S1'is a step of preparing a single-phase precursor powder having a predetermined chemical composition and having powder particles composed of polycrystals of single-phase fine crystals of γ-phase. In the present invention, the monophase precursor powder is a γ-phase single-phase (γ') measured by a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX) and / or an X-ray diffractometer (XRD). It means a powder that can be judged to have no phase detected). It does not require the level of rigor of a transmission electron microscope (TEM) or scanning transmission electron microscope (STEM).

本工程S1’は、工程S1と同様の母合金塊作製素工程(S1a)と、単相前駆体粉末を形成するためのアトマイズ素工程(S1’b)とを行い、必要に応じて、工程S1と同様の分級素工程(S1c)を行えばよい。アトマイズ素工程S1’bは、γ’相が生成・析出し易い温度領域(例えば、1100℃〜600℃)の平均冷却速度を制御する以外は、工程S1のアトマイズ素工程S1bと同様のアトマイズ方法を利用できる。制御する平均冷却速度としては、500℃/min以上が好ましく、1000℃/min以上がより好ましく、1500℃/min以上が更に好ましく、2000℃/min以上が最も好ましい。 In this step S1', the same mother alloy ingot production elementary step (S1a) as in step S1 and the atomizing elementary step (S1'b) for forming the single-phase precursor powder are performed, and if necessary, the steps The same classification process (S1c) as S1 may be performed. The atomizing elementary step S1'b is the same atomizing method as the atomizing elementary step S1b of the step S1 except that the average cooling rate in the temperature region where the γ'phase is easily formed and precipitated (for example, 1100 ° C to 600 ° C) is controlled. Can be used. The average cooling rate to be controlled is preferably 500 ° C./min or higher, more preferably 1000 ° C./min or higher, further preferably 1500 ° C./min or higher, and most preferably 2000 ° C./min or higher.

工程S1’(特に、アトマイズ素工程S1’b)の結果、図5に示したようにγ相の単相微細結晶の多結晶体からなる単相前駆体粉末が得られる。単相前駆体粉末における酸素成分の含有率、平均粒度、および単相微細結晶の平均結晶粒径に関しては、工程S1で得られる前駆体粉末のそれらと同様である。 As a result of step S1'(in particular, atomizing elementary step S1'b), a single-phase precursor powder composed of polycrystals of γ-phase single-phase fine crystals is obtained as shown in FIG. The content of oxygen components in the single-phase precursor powder, the average particle size, and the average crystal particle size of the single-phase fine crystals are the same as those of the precursor powder obtained in step S1.

(粉末軟化亜高温−徐冷熱処理工程S2’)
本工程S2’は、前工程S1’で用意した単相前駆体粉末に対して、所定の亜高温−徐冷熱処理を施すことにより粒界γ’相を20体積%以上析出させたNi基合金軟化粉末を作製する工程である。亜高温−徐冷熱処理とは、γ’相の固溶温度よりも80℃低い温度以上で該固溶温度未満の温度に加熱して、当該温度から100℃/h以下の冷却速度で徐冷する熱処理である。加熱温度(すなわち徐冷開始温度)は、γ’相の固溶温度よりも50℃低い温度以上がより好ましく、γ’相の固溶温度よりも30℃低い温度以上が更に好ましい。徐冷過程の冷却速度は、工程S2と同様に、50℃/h以下がより好ましく、10℃/h以下が更に好ましい。
(Powder softening subhigh temperature-slow cooling heat treatment process S2')
In this step S2', a Ni-based alloy in which a grain boundary γ'phase is precipitated by 20% by volume or more by subjecting the single-phase precursor powder prepared in the previous step S1' to a predetermined subhigh temperature-slow cooling heat treatment. This is a step of producing a softened powder. Sub-high temperature-slow cooling heat treatment is heating to a temperature below the solid solution temperature at a temperature 80 ° C lower than the solid solution temperature of the γ'phase, and slowly cooling at a cooling rate of 100 ° C / h or less from the temperature. It is a heat treatment to be performed. The heating temperature (that is, the slow cooling start temperature) is more preferably 50 ° C. lower than the solid solution temperature of the γ'phase, and further preferably 30 ° C. or higher than the solid solution temperature of the γ'phase. The cooling rate in the slow cooling process is more preferably 50 ° C./h or less, still more preferably 10 ° C./h or less, as in step S2.

単相前駆体粉末を用いることから、徐冷開始温度が亜高温の温度領域であっても、粒界γ’相が優先的に核生成・粒成長する(図5参照)。また、工程S2’における徐冷終了温度、徐冷終了温度からの冷却、亜高温−徐冷熱処理の結果としての粒界γ’相の析出量および粒内γ’相の存在量に関しては、工程S2で得られる軟化粉末のそれらと同様である。 Since the single-phase precursor powder is used, the grain boundary γ'phase preferentially nucleates and grows grains even when the slow cooling start temperature is in the subhigh temperature range (see FIG. 5). Regarding the precipitation amount of the grain boundary γ'phase and the abundance of the intragranular γ'phase as a result of the slow cooling end temperature, cooling from the slow cooling end temperature, and the subhigh temperature-slow cooling heat treatment in step S2', the step Similar to those of the softened powder obtained with S2.

ここで、単相前駆体粉末に対する亜高温−徐冷熱処理により、工程S2で得られる軟化粉末と同様の軟化粉末が得られる理由について、少し考察する。正確なメカニズムは現段階で未解明であるが、γ相の単相微細結晶の多結晶体で構成された単相前駆体粉末が重要ポイントになっている可能性があり、次のようなモデルが考えられる。 Here, the reason why a softened powder similar to the softened powder obtained in step S2 can be obtained by the sub-high temperature-slow cooling heat treatment on the single-phase precursor powder will be briefly considered. The exact mechanism has not been elucidated at this stage, but the single-phase precursor powder composed of polycrystals of γ-phase single-phase fine crystals may be an important point, and the following model Can be considered.

γ相の単相結晶にとって(γ’相が実質的に存在しない状況において)、γ’相の固溶温度よりも80℃低い温度以上で該固溶温度未満の温度(本発明では、亜高温と称している)は、γ’相の析出に関する過冷度が小さい温度領域と考えられる。また、γ相結晶内でのγ’相(すなわち粒内γ’相)の析出は、均質核生成の一種(少なくとも均質核生成に類似の現象)と考えられる。言い換えると、γ相単相結晶内において、亜高温の領域における粒内γ’相の核生成頻度は非常に小さいと考えられる。 For a γ-phase single-phase crystal (in a situation where the γ'phase is substantially absent), a temperature above the solid-dissolving temperature of the γ'phase and below the solid-dissolving temperature (in the present invention, subhigh temperature). Is considered to be the temperature region where the degree of supercooling related to the precipitation of the γ'phase is small. Further, the precipitation of the γ'phase (that is, the intragranular γ'phase) in the γ-phase crystal is considered to be a kind of homogeneous nucleation (at least a phenomenon similar to homogeneous nucleation). In other words, in the γ-phase single-phase crystal, the nucleation frequency of the intragranular γ'phase in the subhigh temperature region is considered to be very low.

一方、γ相の単相微細結晶の粒界には、前述したように、酸素原子が偏在したり微小酸化物を形成したりしていると考えられる。この場合、微細結晶の粒界は、γ’相にとって不均質核生成サイトとして作用する可能性が高いと考えられる。さらに、熱力学の観点から、不均質核生成は均質核生成よりも活性化エネルギーがはるかに低いため、過冷度が小さい状態であっても核生成頻度が十分に高くなることが知られている。 On the other hand, it is considered that oxygen atoms are unevenly distributed or microoxides are formed at the grain boundaries of the γ-phase single-phase fine crystals as described above. In this case, it is considered that the grain boundaries of the fine crystals are likely to act as heterogeneous nucleation sites for the γ'phase. Furthermore, from a thermodynamic point of view, it is known that inhomogeneous nucleation has a much lower activation energy than homogeneous nucleation, so that the nucleation frequency is sufficiently high even in a state of low supercooling. There is.

これらを総合的に勘案すると、単相前駆体粉末に対する亜高温−徐冷熱処理とは、γ’相の過冷度が小さい温度領域で均質核生成と不均質核生成とを競合させることによって、不均質核生成に起因する粒界γ’相を優先的に核生成させた後、徐冷過程において生成した核を粒成長させる熱処理になっていると考えられる。当該考察(モデル)は、粉末軟化高温−徐冷熱処理工程S2における「粒界γ’相の優先的核生成およびその後の粒界γ’相の粒成長」に対しても適用できると考えられる。 Taking these factors into consideration, sub-high temperature-slow cooling heat treatment for single-phase precursor powder is performed by competing homogeneous nucleation and heterogeneous nucleation in the temperature region where the supercooling degree of the γ'phase is small. It is considered that the heat treatment is performed to preferentially nucleate the grain boundary γ'phase caused by heterogeneous nucleation and then grow the nuclei generated in the supercooling process. It is considered that this consideration (model) can also be applied to "preferred nucleation of grain boundary γ'phase and subsequent grain growth of grain boundary γ'phase" in the powder softening high temperature-slow cooling heat treatment step S2.

なお、本発明は、単相前駆体粉末に対して、粉末軟化高温−徐冷熱処理工程S2を適用することを否定するものではない。図6は、本発明に係るNi基合金軟化粉末を用いるNi基合金部材の製造方法の更に他の工程例を示すフロー図である。図6に示したように、本発明のNi基合金軟化粉末を用いたNi基合金部材の当該製造方法は、Ni基合金軟化粉末の製造において、単相前駆体粉末用意工程S1’の次に、粉末軟化高温−徐冷熱処理工程S2を行うものである。成型加工工程S3と溶体化−時効熱処理工程S4とは図2の工程と同じでよい。 The present invention does not deny the application of the powder softening high temperature-slow cooling heat treatment step S2 to the single-phase precursor powder. FIG. 6 is a flow chart showing still another process example of the method for manufacturing a Ni-based alloy member using the Ni-based alloy softened powder according to the present invention. As shown in FIG. 6, the method for producing a Ni-based alloy member using the Ni-based alloy softened powder of the present invention is described in the production of the Ni-based alloy softened powder after the single-phase precursor powder preparation step S1'. , Powder softening High temperature-slow cooling heat treatment step S2 is performed. The molding process S3 and the solution-aging heat treatment step S4 may be the same as those in FIG.

(Ni基合金軟化粉末の化学組成)
本発明で用いるNi基合金材料の化学組成について説明する。当該Ni基合金材料は、700℃におけるγ’相の平衡析出量が30体積%以上80体積%以下となる化学組成を有する。具体的には、質量%で、5%以上25%以下のCr、0%超30%以下のCo、1%以上8%以下のAl、TiとNbとTaの総和が1%以上10%以下、10%以下のFe、10%以下のMo、8%以下のW、0.1%以下のZr、0.1%以下のB、0.2%以下のC、2%以下のHf、および5%以下のRe、および0.003%以上0.05%以下のOを含有し、残部がNiおよび不可避不純物である化学組成が好ましい。以下、各成分について説明する。
(Chemical composition of Ni-based alloy softened powder)
The chemical composition of the Ni-based alloy material used in the present invention will be described. The Ni-based alloy material has a chemical composition in which the equilibrium precipitation amount of the γ'phase at 700 ° C. is 30% by volume or more and 80% by volume or less. Specifically, in mass%, Cr of 5% or more and 25% or less, Co of more than 0% and 30% or less, Al of 1% or more and 8% or less, and the sum of Ti, Nb and Ta are 1% or more and 10% or less. , 10% or less Fe, 10% or less Mo, 8% or less W, 0.1% or less Zr, 0.1% or less B, 0.2% or less C, 2% or less Hf, and 5% or less Re, A chemical composition containing 0.003% or more and 0.05% or less of O, and the balance being Ni and unavoidable impurities is preferable. Hereinafter, each component will be described.

Cr成分は、γ相中に固溶すると共に、Ni基合金材の実使用環境下で表面に酸化物被膜(Cr2O3)を形成して耐食性と耐酸化性とを向上させる効果がある。タービン高温部材へ適用するためには、5質量%以上の添加が必須である。一方、過剰の添加は有害相の生成を助長するため、25質量%以下とすることが好ましい。The Cr component dissolves in the γ phase and has the effect of improving corrosion resistance and oxidation resistance by forming an oxide film (Cr 2 O 3 ) on the surface in the actual use environment of the Ni-based alloy material. .. In order to apply it to high temperature turbine members, it is essential to add 5% by mass or more. On the other hand, excessive addition promotes the formation of a harmful phase, so the content is preferably 25% by mass or less.

Co成分は、Niに近い元素でありNiと置換する形でγ相中に固溶し、クリープ強度を向上させると共に耐食性を向上させる効果がある。さらに、γ’相の固溶温度を下げる効果もあり、高温延性を向上する。ただし、過剰の添加は有害相の生成を助長するため、0%超30質量%以下とすることが好ましい。 The Co component is an element close to Ni and dissolves in the γ phase in the form of replacing Ni, which has the effect of improving creep strength and corrosion resistance. Furthermore, it also has the effect of lowering the solid solution temperature of the γ'phase, improving high temperature ductility. However, since excessive addition promotes the formation of a harmful phase, it is preferably more than 0% and 30% by mass or less.

Al成分は、Ni基合金の析出強化相であるγ’相を形成するための必須成分である。さらに、Ni基合金材の実使用環境下で表面に酸化物被膜(Al2O3)を形成することで耐酸化性と耐食性との向上に寄与する。所望のγ’相析出量に応じて、1質量%以上8質量%以下とすることが好ましい。The Al component is an essential component for forming the γ'phase, which is the precipitation strengthening phase of the Ni-based alloy. Furthermore, forming an oxide film (Al 2 O 3 ) on the surface of the Ni-based alloy material in the actual use environment contributes to the improvement of oxidation resistance and corrosion resistance. It is preferably 1% by mass or more and 8% by mass or less, depending on the desired amount of γ'phase precipitation.

Ti成分、Nb成分およびTa成分は、Al成分と同様にγ’相を形成し高温強度を向上させる効果がある。また、Ti成分およびNb成分は、耐食性を向上させる効果もある。ただし、過剰の添加は有害相の生成を助長するため、Ti、NbおよびTa成分の総和を1質量%以上10質量%以下とすることが好ましい。 The Ti component, the Nb component, and the Ta component have the effect of forming a γ'phase and improving the high temperature strength in the same manner as the Al component. In addition, the Ti component and the Nb component also have the effect of improving corrosion resistance. However, since excessive addition promotes the formation of a harmful phase, the total sum of Ti, Nb and Ta components is preferably 1% by mass or more and 10% by mass or less.

Fe成分は、Co成分やNi成分と置換することで、合金の材料コストを低減する効果がある。ただし、過剰の添加は有害相の生成を助長するため、10質量%以下とすることが好ましい。 By substituting the Fe component with the Co component or Ni component, there is an effect of reducing the material cost of the alloy. However, since excessive addition promotes the formation of a harmful phase, it is preferably 10% by mass or less.

Mo成分およびW成分は、γ相中に固溶して高温強度を向上させる(固溶強化する)効果があり、少なくともどちらかは添加することが好ましい成分である。また、Mo成分は、耐食性を向上させる効果もある。ただし、過剰の添加は有害相の生成を助長したり延性や高温強度を低下させたりするため、Mo成分は10質量%以下、W成分は8質量%以下とすることが好ましい。 The Mo component and the W component have the effect of improving the high temperature strength (strengthening the solid solution) by solid solution in the γ phase, and at least one of them is preferably added. The Mo component also has the effect of improving corrosion resistance. However, since excessive addition promotes the formation of harmful phases and reduces ductility and high-temperature strength, it is preferable that the Mo component is 10% by mass or less and the W component is 8% by mass or less.

Zr成分、B成分およびC成分は、γ相の結晶粒界を強化して(γ相の結晶粒界に垂直な方向の引張強さを強化して)、高温延性やクリープ強度を向上させる効果がある。ただし、過剰の添加は成形加工性を悪化させるため、Zr成分は0.1質量%以下、Bは0.1質量%以下、Cは0.2質量%以下とすることが好ましい。 The Zr component, B component, and C component have the effect of strengthening the grain boundaries of the γ phase (strengthening the tensile strength in the direction perpendicular to the grain boundaries of the γ phase) and improving high-temperature ductility and creep strength. There is. However, since excessive addition deteriorates molding processability, it is preferable that the Zr component is 0.1% by mass or less, B is 0.1% by mass or less, and C is 0.2% by mass or less.

Hf成分は、耐酸化性を向上させる効果がある。ただし、過剰の添加は有害相の生成を助長するため、2質量%以下とすることが好ましい。 The Hf component has the effect of improving oxidation resistance. However, since excessive addition promotes the formation of a harmful phase, it is preferably 2% by mass or less.

Re成分は、γ相の固溶強化に寄与すると共に、耐食性の向上に寄与する効果がある。ただし、過剰の添加は有害相の生成を助長する。また、Reは高価な元素であるため、添加量の増加は合金の材料コストを増加するデメリットがある。よって、Reは5質量%以下とすることが好ましい。 The Re component has the effect of contributing to the enhancement of the solid solution of the γ phase and the improvement of corrosion resistance. However, excessive addition promotes the formation of harmful phases. Further, since Re is an expensive element, increasing the addition amount has a demerit of increasing the material cost of the alloy. Therefore, Re is preferably 5% by mass or less.

O成分は、通常は不純物として扱われ、できるだけ低減しようとする成分であるが、本発明においては、前述したようにγ相微細結晶の粒成長を抑制して粒界γ’相粒の形成を促進するための必須成分である。O含有量は、0.003質量%以上0.05質量%以下とすることが好ましい。 The O component is usually treated as an impurity and is a component to be reduced as much as possible. However, in the present invention, as described above, the grain growth of γ-phase fine crystals is suppressed to form grain boundary γ'phase grains. It is an essential ingredient to promote. The O content is preferably 0.003% by mass or more and 0.05% by mass or less.

Ni基合金材の残部成分は、Ni成分およびO成分以外の不可避不純物となる。O成分以外の不可避不純物としては、例えば、N(窒素)、P(リン)、S(硫黄)が挙げられる。 The remaining components of the Ni-based alloy material are unavoidable impurities other than the Ni component and the O component. Examples of unavoidable impurities other than the O component include N (nitrogen), P (phosphorus), and S (sulfur).

以下、種々の実験により本発明をさらに具体的に説明する。ただし、本発明はこれらの実験に限定されるものではない。 Hereinafter, the present invention will be described in more detail by various experiments. However, the present invention is not limited to these experiments.

[実験1]
(Ni基合金の前駆体粉末PP1〜PP8、単相前駆体粉末PP9〜PP10の作製)
Ni基合金の原料を混合・溶解・鋳造してマスターインゴット(10 kg)を用意した。溶解は真空誘導加熱溶解法により行った。次に、得られたマスターインゴットを再溶解し、アトマイズ雰囲気中の酸素分圧を制御しながらのガスアトマイズ法によりNi基合金粉末を作製した。
[Experiment 1]
(Preparation of Ni-based alloy precursor powders PP1 to PP8 and single-phase precursor powders PP9 to PP10)
A master ingot (10 kg) was prepared by mixing, melting, and casting the raw materials of the Ni-based alloy. Melting was carried out by a vacuum induction heating melting method. Next, the obtained master ingot was redissolved to prepare a Ni-based alloy powder by a gas atomization method while controlling the partial pressure of oxygen in the atomizing atmosphere.

ガスアトマイズ法によるNi基合金粉末作製において、一部の合金粉末で1100℃〜600℃の平均冷却速度が500℃/min以上であることを確認した。また、500℃/min以上の平均冷却速度を確認した合金粉末に対して、SEM-EDXを用いて1000倍の倍率で粉末粒子の微細組織を観察したところ、γ’相を検知できずγ相単相であると判断した。なお、ガスアトマイズ法による合金粉末作製時に平均冷却速度を確認しなかった粉末に対しては、粉末粒子の微細組織観察を行わなかった。 In the production of Ni-based alloy powder by the gas atomization method, it was confirmed that the average cooling rate of 1100 ° C to 600 ° C was 500 ° C / min or more for some alloy powders. In addition, when the fine structure of the powder particles was observed at a magnification of 1000 times using SEM-EDX for the alloy powder whose average cooling rate was confirmed to be 500 ° C / min or more, the γ'phase could not be detected and the γ phase could not be detected. It was judged to be monophasic. The fine structure of the powder particles was not observed for the powder for which the average cooling rate was not confirmed when the alloy powder was prepared by the gas atomization method.

次に、得られたNi基合金粉末を分級して粒度が25〜150μmの範囲の合金粉末を選別し、Ni基合金の前駆体粉末PP1〜PP8および単相前駆体粉末PP9〜PP10を用意した。得られた粉末PP1〜PP10の化学組成を表1に示す。 Next, the obtained Ni-based alloy powder was classified to select alloy powders having a particle size in the range of 25 to 150 μm, and Ni-based alloy precursor powders PP1 to PP8 and single-phase precursor powders PP9 to PP10 were prepared. .. The chemical compositions of the obtained powders PP1 to PP10 are shown in Table 1.

Figure 0006826235
Figure 0006826235

[実験2]
(実施例1〜11および比較例1〜12のNi基合金軟化粉末の作製と成型加工性評価)
実験1で得られた前駆体粉末PP1〜PP8および単相前駆体粉末PP9〜PP10に対して、後述する表2に示した熱処理条件(徐冷開始温度、徐冷過程の冷却速度)で粉末軟化処理を施して、実施例1〜11および比較例1〜12のNi基合金軟化粉末を作製した。徐冷過程の終了温度は、比較例1,12以外は950℃とした。比較例1,12では、徐冷開始温度から室温までガス冷却によって急冷した。
[Experiment 2]
(Preparation of softened Ni-based alloy powders of Examples 1 to 11 and Comparative Examples 1 to 12 and evaluation of moldability)
The precursor powders PP1 to PP8 and the single-phase precursor powders PP9 to PP10 obtained in Experiment 1 were softened under the heat treatment conditions (slow cooling start temperature, cooling rate in the slow cooling process) shown in Table 2 described later. The treatment was carried out to prepare Ni-based alloy softened powders of Examples 1 to 11 and Comparative Examples 1 to 12. The end temperature of the slow cooling process was 950 ° C. except for Comparative Examples 1 and 12. In Comparative Examples 1 and 12, the mixture was rapidly cooled by gas cooling from the slow cooling start temperature to room temperature.

得られた各Ni基合金軟化粉末に対して、微細組織観察(粒界γ’相の析出量)および室温ビッカース硬さ測定を行い、成型加工性を評価した。 For each of the obtained Ni-based alloy softened powders, microstructure observation (precipitation amount of grain boundary γ'phase) and room temperature Vickers hardness measurement were performed to evaluate moldability.

粒界γ’相の析出量は、軟化粉末の電子顕微鏡観察および画像解析(ImageJ)により求めた。軟化粉末の室温ビッカース硬さは、10粒子をランダムに抽出し、マイクロビッカース硬度計(株式会社明石製作所、型式:MVK-E)を用いて測定した。10粒子の室温ビッカース硬さのうち、最大値と最小値とを除いた8粒子の室温ビッカース硬さの平均値を、当該軟化粉末の室温ビッカース硬さとした。成型加工性評価は、370 Hv以下の室温ビッカース硬さを「合格」と判定し、370 Hv超の室温ビッカース硬さを「不合格」と判定した。 The amount of the grain boundary γ'phase precipitated was determined by electron microscope observation and image analysis (ImageJ) of the softened powder. The room temperature Vickers hardness of the softened powder was measured by randomly extracting 10 particles and using a micro Vickers hardness tester (Akashi Seisakusho Co., Ltd., model: MVK-E). The average value of the room temperature Vickers hardness of 8 particles excluding the maximum value and the minimum value among the room temperature Vickers hardness of 10 particles was taken as the room temperature Vickers hardness of the softened powder. In the moldability evaluation, the room temperature Vickers hardness of 370 Hv or less was judged as "pass", and the room temperature Vickers hardness of more than 370 Hv was judged as "fail".

実施例1〜11および比較例1〜12のNi基合金軟化粉末の諸元および評価結果を表2に示す。表2において、γ’相の700℃におけるγ’相の平衡析出量および固溶温度は、表1の合金組成から熱力学計算に基づいて求めたものである。 Table 2 shows the specifications and evaluation results of the Ni-based alloy softened powders of Examples 1 to 11 and Comparative Examples 1 to 12. In Table 2, the equilibrium precipitation amount and the solid solution temperature of the γ'phase at 700 ° C. of the γ'phase were obtained from the alloy composition of Table 1 based on the thermodynamic calculation.

Figure 0006826235
Figure 0006826235

表2に示したように、高温−徐冷熱処理における徐冷過程の開始温度および/または冷却速度が本発明の規定を外れる比較例1〜7の軟化粉末は、粒界γ’相の析出量が20体積%未満であり(その代わり、粒内γ’相析出量の増加が確認され)、室温ビッカース硬さが370 Hv超である。その結果、成型加工性が不合格と判定された。高温−徐冷熱処理における徐冷開始温度(すなわち、加熱温度)が低過ぎたり、徐冷過程の冷却速度が高過ぎたりすると、粒界γ’相がほとんど析出・成長しないため、十分な成型加工性が確保できないことが確認された。 As shown in Table 2, the softened powders of Comparative Examples 1 to 7 in which the starting temperature and / or the cooling rate of the slow cooling process in the high temperature-slow cooling heat treatment deviates from the specification of the present invention are the precipitation amount of the grain boundary γ'phase. Is less than 20% by volume (instead, an increase in the amount of intragranular γ'phase precipitation is confirmed), and the room temperature Vickers hardness is over 370 Hv. As a result, it was determined that the molding processability was unacceptable. If the slow cooling start temperature (that is, the heating temperature) in the high temperature-slow cooling heat treatment is too low, or if the cooling rate in the slow cooling process is too high, the grain boundary γ'phase hardly precipitates and grows, so that sufficient molding is performed. It was confirmed that the sex could not be secured.

700℃におけるγ’相の平衡析出量が本発明の規定を外れる前駆体粉末PP8を用いた比較例8の軟化粉末は、γ’相の平衡析出量が30体積%未満であり、本発明が対象とする強析出強化Ni基合金材料に当てはまらない。ただし、γ’相析出量が絶対的に少ないため、従来から成形加工性/成型加工性に特段の問題はない。 The softened powder of Comparative Example 8 using the precursor powder PP8 in which the equilibrium precipitation amount of the γ'phase at 700 ° C. is out of the specification of the present invention has an equilibrium precipitation amount of the γ'phase of less than 30% by volume. This does not apply to the target strong precipitation strengthened Ni-based alloy material. However, since the amount of γ'phase precipitation is absolutely small, there is no particular problem in molding processability / molding processability.

これら比較例1〜8に対し、実施例1〜7の軟化粉末では、いずれも粒界γ’相の析出量が20体積%以上であり、室温ビッカース硬さが370 Hv以下である。その結果、成型加工性が合格と判定された。すなわち、本発明の作用効果が確認された。 In contrast to these Comparative Examples 1 to 8, in each of the softened powders of Examples 1 to 7, the precipitation amount of the grain boundary γ'phase was 20% by volume or more, and the room temperature Vickers hardness was 370 Hv or less. As a result, the molding processability was judged to be acceptable. That is, the action and effect of the present invention were confirmed.

また、単相前駆体粉末PP9〜PP10を用いた実施例8〜9の軟化粉末は、徐冷開始温度をγ’相の固溶温度未満とした亜高温−徐冷熱処理であっても、粒界γ’相の析出量が20体積%以上であり、室温ビッカース硬さが370 Hv以下である。その結果、成型加工性が合格と判定された。すなわち、本発明の作用効果が確認された。 Further, the softened powders of Examples 8 to 9 using the single-phase precursor powders PP9 to PP10 have grains even in the sub-high temperature-slow cooling heat treatment in which the slow cooling start temperature is lower than the solid solution temperature of the γ'phase. The amount of boundary γ'phase precipitated is 20% by volume or more, and the room temperature Vickers hardness is 370 Hv or less. As a result, the molding processability was judged to be acceptable. That is, the action and effect of the present invention were confirmed.

さらに、単相前駆体粉末PP9〜PP10に対して高温−徐冷熱処理を適用した実施例10〜11の軟化粉末も、粒界γ’相の析出量が20体積%以上であり、室温ビッカース硬さが370 Hv以下である。その結果、成型加工性が合格と判定された。すなわち、本発明の作用効果が確認された。 Further, the softened powders of Examples 10 to 11 in which the high temperature-slow cooling heat treatment was applied to the single phase precursor powders PP9 to PP10 also had a grain boundary γ'phase precipitation amount of 20% by volume or more and were Vickers hardness at room temperature. The value is 370 Hv or less. As a result, the molding processability was judged to be acceptable. That is, the action and effect of the present invention were confirmed.

一方、単相前駆体粉末PP9〜PP10を用いても軟化処理における徐冷過程の開始温度または冷却速度が本発明の規定を外れる比較例9〜12の軟化粉末は、粒界γ’相の析出量が20体積%未満であり、室温ビッカース硬さが370 Hv超である。その結果、成型加工性が不合格と判定された。亜高温−徐冷熱処理における徐冷開始温度が低過ぎたり、高温−徐冷熱処理における徐冷過程の冷却速度が高過ぎたりすると、粒界γ’相がほとんど析出・成長しないため、十分な成型加工性が確保できないことが確認された。 On the other hand, even if the single-phase precursor powders PP9 to PP10 are used, the softened powders of Comparative Examples 9 to 12 in which the start temperature or the cooling rate of the slow cooling process in the softening treatment deviates from the specification of the present invention are the precipitation of the grain boundary γ'phase. The amount is less than 20% by volume and the room temperature Vickers hardness is over 370 Hv. As a result, it was determined that the molding processability was unacceptable. If the slow cooling start temperature in the sub-high temperature-slow cooling heat treatment is too low, or if the cooling rate in the slow cooling process in the high temperature-slow cooling heat treatment is too high, the grain boundary γ'phase hardly precipitates and grows, so that sufficient molding is performed. It was confirmed that workability could not be ensured.

以上の結果から、本発明に係るNi基合金軟化粉末の製造方法を適用することで、強析出強化Ni基合金材料や超強析出強化Ni基合金材料であっても、良好な成形加工性/成型加工性を示す軟化粉末を提供できることが示された。当該Ni基合金軟化粉末を用いて粉末冶金技術を適用することにより、強析出強化Ni基合金部材を低コストで提供できることが期待される。 From the above results, by applying the method for producing a Ni-based alloy softened powder according to the present invention, even a strong precipitation-strengthened Ni-based alloy material or an ultra-strong precipitation-strengthened Ni-based alloy material has good molding processability. It was shown that a softened powder exhibiting moldability can be provided. By applying powder metallurgy technology using the Ni-based alloy softened powder, it is expected that a strong precipitation strengthened Ni-based alloy member can be provided at low cost.

上述した実施形態や実験例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実験例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and experimental examples have been described for the purpose of assisting the understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, it is possible to replace a part of the configuration of the embodiment with the configuration of common general technical knowledge of those skilled in the art, and it is also possible to add the configuration of common general technical knowledge of those skilled in the art to the configuration of the embodiment. That is, in the present invention, a part of the configurations of the embodiments and experimental examples of the present specification may be deleted, replaced with other configurations, or added to other configurations without departing from the technical idea of the invention. It is possible.

1…γ相を構成する原子、2…γ’相を構成する原子、 3…γ相とγ’相との整合界面、4…γ相とγ’相との非整合界面。 Atoms that make up 1 ... γ phase, atoms that make up 2 ... γ'phase, 3 ... matching interface between γ phase and γ'phase, 4 ... unmatched interface between γ phase and γ'phase.

Claims (13)

Ni基合金軟化粉末であって、
前記Ni基合金軟化粉末は、母相となるγ相中に析出するγ’相の700℃における平衡析出量が30体積%以上80体積%以下となる化学組成を有し、該軟化粉末の平均粒度が5μm以上500μm以下であり、該軟化粉末の粒子が前記γ相の微細結晶の多結晶体で構成される粉末であり、
前記粒子を構成する前記γ相の微細結晶の粒界上に20体積%以上の前記γ’相が析出しており、
前記粒子の室温のビッカース硬さが370 Hv以下であることを特徴とするNi基合金軟化粉末。
Ni-based alloy softened powder
The Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase precipitated in the γ phase as the parent phase at 700 ° C. is 30% by volume or more and 80% by volume or less, and the average of the softened powders. The powder has a particle size of 5 μm or more and 500 μm or less, and the particles of the softened powder are composed of polycrystals of fine crystals of the γ phase.
20% by volume or more of the γ'phase is precipitated on the grain boundaries of the fine crystals of the γ phase constituting the particles.
A Ni-based alloy softened powder characterized in that the Vickers hardness of the particles at room temperature is 370 Hv or less.
請求項1に記載のNi基合金軟化粉末において、
前記化学組成は、
5質量%以上25質量%以下のCrと、
0質量%超30質量%以下のCoと、
1質量%以上8質量%以下のAlと、
合計1質量%以上10質量%以下のTi、NbおよびTaと、
10質量%以下のFeと、
10質量%以下のMoと、
8質量%以下のWと、
0.1質量%以下のZrと、
0.1質量%以下のBと、
0.2質量%以下のCと、
2質量%以下のHfと、
5質量%以下のReと、
0.003質量%以上0.05質量%以下のOとを含有し、
残部がNiおよび不可避不純物からなることを特徴とするNi基合金軟化粉末。
In the Ni-based alloy softened powder according to claim 1,
The chemical composition is
Cr of 5% by mass or more and 25% by mass or less,
Co with more than 0% by mass and less than 30% by mass,
Al of 1% by mass or more and 8% by mass or less,
Ti, Nb and Ta with a total of 1% by mass or more and 10% by mass or less,
Fe of 10% by mass or less and
Mo of 10% by mass or less and
W of 8% by mass or less and
Zr of 0.1% by mass or less and
B of 0.1% by mass or less and
C of 0.2% by mass or less and
Hf of 2% by mass or less and
Re of 5% by mass or less and
Contains O of 0.003% by mass or more and 0.05% by mass or less,
A Ni-based alloy softened powder characterized in that the balance consists of Ni and unavoidable impurities.
請求項1または請求項2に記載のNi基合金軟化粉末において、
前記化学組成は、前記γ’相の固溶温度が1100℃以上となる化学組成であることを特徴とするNi基合金軟化粉末。
In the Ni-based alloy softened powder according to claim 1 or 2.
The chemical composition is a Ni-based alloy softened powder having a chemical composition in which the solid solution temperature of the γ'phase is 1100 ° C. or higher.
請求項3に記載のNi基合金軟化粉末において、
前記Ni基合金軟化粉末は、前記γ’相の700℃における前記平衡析出量が45体積%以上80体積%以下となる化学組成を有することを特徴とするNi基合金軟化粉末。
In the Ni-based alloy softened powder according to claim 3,
The Ni-based alloy softened powder is a Ni-based alloy softened powder having a chemical composition in which the equilibrium precipitation amount of the γ'phase at 700 ° C. is 45% by volume or more and 80% by volume or less.
請求項1から請求項4のいずれか一項に記載のNi基合金軟化粉末において、
前記粒子の室温のビッカース硬さが350 Hv以下であることを特徴とするNi基合金軟化粉末。
In the Ni-based alloy softened powder according to any one of claims 1 to 4.
A Ni-based alloy softened powder characterized in that the Vickers hardness of the particles at room temperature is 350 Hv or less.
Ni基合金軟化粉末の製造方法であって、
前記Ni基合金軟化粉末は、母相となるγ相中に析出するγ’相の700℃における平衡析出量が30体積%以上80体積%以下となる化学組成を有し、該軟化粉末の平均粒度が5μm以上500μm以下であり、該軟化粉末の粒子が前記γ相の微細結晶の多結晶体で構成される粉末であり、
前記粒子の室温のビッカース硬さが370 Hv以下であり、
前記製造方法は、
前記化学組成を有し粉末粒子が前記γ相の微細結晶の多結晶体で構成される前駆体粉末を用意する前駆体粉末用意工程と、
前記前駆体粉末に対して、前記γ’相の固溶温度以上で前記γ相の融点未満の温度に加熱して前記γ’相を前記γ相中に固溶させた後、当該温度から前記γ’相の前記固溶温度より低い温度まで100℃/h以下の冷却速度で徐冷する高温−徐冷熱処理を施すことにより、前記前駆体粉末の粒子を構成する前記γ相の微細結晶の粒界上に前記γ’相が20体積%以上析出した前記Ni基合金軟化粉末を作製する粉末軟化高温−徐冷熱処理工程と、を有することを特徴とするNi基合金軟化粉末の製造方法。
A method for producing softened Ni-based alloy powder.
The Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase precipitated in the γ phase as the parent phase at 700 ° C. is 30% by volume or more and 80% by volume or less, and the average of the softened powders. The powder has a particle size of 5 μm or more and 500 μm or less, and the particles of the softened powder are composed of polycrystals of fine crystals of the γ phase.
The Vickers hardness of the particles at room temperature is 370 Hv or less.
The manufacturing method is
A precursor powder preparation step of preparing a precursor powder having the chemical composition and having powder particles composed of polycrystals of fine crystals of the γ phase.
The precursor powder is heated to a temperature equal to or higher than the solid dissolution temperature of the γ'phase and lower than the melting point of the γ phase to dissolve the γ'phase in the γ phase, and then the temperature is increased. The fine crystals of the γ phase constituting the particles of the precursor powder are subjected to a high-temperature-slow-cooling heat treatment in which the γ'phase is slowly cooled to a temperature lower than the solid solution temperature at a cooling rate of 100 ° C./h or less. A method for producing a Ni-based alloy softened powder, which comprises a powder softening high-temperature-slow-cooling heat treatment step for producing the Ni-based alloy softened powder in which 20% by volume or more of the γ'phase is precipitated on the grain boundary.
Ni基合金軟化粉末の製造方法であって、
前記Ni基合金軟化粉末は、母相となるγ相中に析出するγ’相の700℃における平衡析出量が30体積%以上80体積%以下となる化学組成を有し、該軟化粉末の平均粒度が5μm以上500μm以下であり、該軟化粉末の粒子が前記γ相の微細結晶の多結晶体で構成される粉末であり、
前記粒子の室温のビッカース硬さが370 Hv以下であり、
前記製造方法は、
前記化学組成を有し粉末粒子が前記γ相の単相微細結晶の多結晶体で構成される単相前駆体粉末を用意する単相前駆体粉末用意工程と、
前記単相前駆体粉末に対して、前記γ’相の固溶温度よりも80℃低い温度以上で該固溶温度未満の温度に加熱して、当該温度から100℃/h以下の冷却速度で徐冷する亜高温−徐冷熱処理を施すことにより、前記単相前駆体粉末の粒子を構成する前記γ相の単相微細結晶の粒界上に前記γ’相が20体積%以上析出した前記Ni基合金軟化粉末を作製する粉末軟化亜高温−徐冷熱処理工程と、を有することを特徴とするNi基合金軟化粉末の製造方法。
A method for producing softened Ni-based alloy powder.
The Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase precipitated in the γ phase as the parent phase at 700 ° C. is 30% by volume or more and 80% by volume or less, and the average of the softened powders. The powder has a particle size of 5 μm or more and 500 μm or less, and the particles of the softened powder are composed of polycrystals of fine crystals of the γ phase.
The Vickers hardness of the particles at room temperature is 370 Hv or less.
The manufacturing method is
A single-phase precursor powder preparation step of preparing a single-phase precursor powder having the chemical composition and having powder particles composed of polycrystals of the γ-phase single-phase fine crystals.
The single-phase precursor powder is heated to a temperature 80 ° C. lower than the solid solution temperature of the γ'phase and lower than the solid solution temperature, and at a cooling rate of 100 ° C./h or less from the temperature. By performing a sub-high temperature-slow cooling heat treatment for slow cooling, 20% by volume or more of the γ'phase is precipitated on the grain boundaries of the single phase fine crystals of the γ phase constituting the particles of the single phase precursor powder. A method for producing a Ni-based alloy softened powder, which comprises a powder softening subhigh temperature-slow cooling heat treatment step for producing a Ni-based alloy softened powder.
Ni基合金軟化粉末の製造方法であって、
前記Ni基合金軟化粉末は、母相となるγ相中に析出するγ’相の700℃における平衡析出量が30体積%以上80体積%以下となる化学組成を有し、該軟化粉末の平均粒度が5μm以上500μm以下であり、該軟化粉末の粒子が前記γ相の微細結晶の多結晶体で構成される粉末であり、
前記粒子の室温のビッカース硬さが370 Hv以下であり、
前記製造方法は、
前記化学組成を有し粉末粒子が前記γ相の単相微細結晶の多結晶体で構成される単相前駆体粉末を用意する単相前駆体粉末用意工程と、
前記単相前駆体粉末に対して、前記γ’相の固溶温度以上で前記γ相の融点未満の温度に加熱した後、当該温度から前記γ’相の前記固溶温度より低い温度まで100℃/h以下の冷却速度で徐冷する高温−徐冷熱処理を施すことにより、前記単相前駆体粉末の粒子を構成する前記γ相の単相微細結晶の粒界上に前記γ’相が20体積%以上析出した前記Ni基合金軟化粉末を作製する粉末軟化高温−徐冷熱処理工程と、を有することを特徴とするNi基合金軟化粉末の製造方法。
A method for producing softened Ni-based alloy powder.
The Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase precipitated in the γ phase as the parent phase at 700 ° C. is 30% by volume or more and 80% by volume or less, and the average of the softened powders. The powder has a particle size of 5 μm or more and 500 μm or less, and the particles of the softened powder are composed of polycrystals of fine crystals of the γ phase.
The Vickers hardness of the particles at room temperature is 370 Hv or less.
The manufacturing method is
A single-phase precursor powder preparation step of preparing a single-phase precursor powder having the chemical composition and having powder particles composed of polycrystals of the γ-phase single-phase fine crystals.
The single-phase precursor powder is heated to a temperature equal to or higher than the solid solution temperature of the γ'phase and lower than the melting point of the γ phase, and then from that temperature to a temperature lower than the solid solution temperature of the γ'phase. By performing a high-temperature-slow cooling heat treatment in which the solid solution is slowly cooled at a cooling rate of ° C./h or less, the γ'phase is formed on the grain boundaries of the single-phase fine crystals of the γ-phase constituting the particles of the single-phase precursor powder. A method for producing a Ni-based alloy softened powder, which comprises a powder softening high temperature-slow cooling heat treatment step for producing the Ni-based alloy softened powder precipitated in 20% by volume or more.
請求項6から請求項8のいずれか一項に記載のNi基合金軟化粉末の製造方法において、
前記化学組成は、
5質量%以上25質量%以下のCrと、
0質量%超30質量%以下のCoと、
1質量%以上8質量%以下のAlと、
合計1質量%以上10質量%以下のTi、NbおよびTaと、
10質量%以下のFeと、
10質量%以下のMoと、
8質量%以下のWと、
0.1質量%以下のZrと、
0.1質量%以下のBと、
0.2質量%以下のCと、
2質量%以下のHfと、
5質量%以下のReと、
0.003質量%以上0.05質量%以下のOとを含有し、
残部がNiおよび不可避不純物からなることを特徴とするNi基合金軟化粉末の製造方法。
The method for producing a Ni-based alloy softened powder according to any one of claims 6 to 8.
The chemical composition is
Cr of 5% by mass or more and 25% by mass or less,
Co with more than 0% by mass and less than 30% by mass,
Al of 1% by mass or more and 8% by mass or less,
Ti, Nb and Ta with a total of 1% by mass or more and 10% by mass or less,
Fe of 10% by mass or less and
Mo of 10% by mass or less and
W of 8% by mass or less and
Zr of 0.1% by mass or less and
B of 0.1% by mass or less and
C of 0.2% by mass or less and
Hf of 2% by mass or less and
Re of 5% by mass or less and
Contains O of 0.003% by mass or more and 0.05% by mass or less,
A method for producing a Ni-based alloy softened powder, wherein the balance is composed of Ni and unavoidable impurities.
請求項6から請求項9のいずれか一項に記載のNi基合金軟化粉末の製造方法において、
前記前駆体粉末用意工程または前記単相前駆体粉末用意工程は、アトマイズ素工程を含むことを特徴とするNi基合金軟化粉末の製造方法。
The method for producing a Ni-based alloy softened powder according to any one of claims 6 to 9.
The method for producing a Ni-based alloy softened powder, wherein the precursor powder preparation step or the single-phase precursor powder preparation step includes an atomizing element step.
請求項6から請求項10のいずれか一項に記載のNi基合金軟化粉末の製造方法において、
前記化学組成は、前記γ’相の前記固溶温度が1100℃以上となる化学組成であることを特徴とするNi基合金軟化粉末の製造方法。
The method for producing a Ni-based alloy softened powder according to any one of claims 6 to 10.
The method for producing a Ni-based alloy softened powder, wherein the chemical composition is such that the solid solution temperature of the γ'phase is 1100 ° C. or higher.
請求項11に記載のNi基合金軟化粉末の製造方法において、
前記Ni基合金軟化粉末は、前記γ’相の700℃における前記平衡析出量が45体積%以上80体積%以下となる化学組成を有することを特徴とするNi基合金軟化粉末の製造方法。
In the method for producing a Ni-based alloy softened powder according to claim 11.
A method for producing a Ni-based alloy softened powder, wherein the Ni-based alloy softened powder has a chemical composition in which the equilibrium precipitation amount of the γ'phase at 700 ° C. is 45% by volume or more and 80% by volume or less.
請求項6から請求項12のいずれか一項に記載のNi基合金軟化粉末の製造方法において、
前記粒子の室温のビッカース硬さが350 Hv以下であることを特徴とするNi基合金軟化粉末の製造方法。
The method for producing a Ni-based alloy softened powder according to any one of claims 6 to 12.
A method for producing a Ni-based alloy softened powder, wherein the Vickers hardness of the particles at room temperature is 350 Hv or less.
JP2020509554A 2018-11-30 2019-02-04 Ni-based alloy softened powder and method for producing the softened powder Active JP6826235B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018224833 2018-11-30
JP2018224833 2018-11-30
PCT/JP2019/003833 WO2020110326A1 (en) 2018-11-30 2019-02-04 Ni-based alloy softened powder, and method for producing said softened powder

Publications (2)

Publication Number Publication Date
JP6826235B2 true JP6826235B2 (en) 2021-02-03
JPWO2020110326A1 JPWO2020110326A1 (en) 2021-02-15

Family

ID=70851954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509554A Active JP6826235B2 (en) 2018-11-30 2019-02-04 Ni-based alloy softened powder and method for producing the softened powder

Country Status (7)

Country Link
US (1) US20210340644A1 (en)
EP (1) EP3685942A4 (en)
JP (1) JP6826235B2 (en)
KR (1) KR102443966B1 (en)
CN (1) CN111629852B (en)
SG (1) SG11202012579YA (en)
WO (1) WO2020110326A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281099A (en) * 2020-10-13 2021-01-29 江苏联捷冶金设备有限公司 Tungsten-cobalt alloy sink roll and preparation method thereof
EP4001445A1 (en) * 2020-11-18 2022-05-25 Siemens Energy Global GmbH & Co. KG Nickel based superalloy with high corrosion resistance and good processability
DE102021204745A1 (en) * 2021-05-11 2022-11-17 Siemens Energy Global GmbH & Co. KG Alloy, powder, process and component
JP2023032514A (en) * 2021-08-27 2023-03-09 国立研究開発法人物質・材料研究機構 Nickel-based superalloy and powder thereof, and method for manufacturing nickel-based superalloy shaped body
CN115233074A (en) * 2022-07-12 2022-10-25 北京科技大学 Cobalt-nickel-based high-temperature alloy for gas turbine moving blade and preparation method thereof
CN116043066A (en) * 2022-12-21 2023-05-02 东方电气集团东方汽轮机有限公司 Low-diffusivity activation auxiliary agent, application thereof, repairing agent and preparation method and alloy repairing method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061324A (en) * 1990-04-02 1991-10-29 General Electric Company Thermomechanical processing for fatigue-resistant nickel based superalloys
US5649280A (en) 1996-01-02 1997-07-15 General Electric Company Method for controlling grain size in Ni-base superalloys
US5759305A (en) 1996-02-07 1998-06-02 General Electric Company Grain size control in nickel base superalloys
US8992699B2 (en) * 2009-05-29 2015-03-31 General Electric Company Nickel-base superalloys and components formed thereof
US20100329876A1 (en) * 2009-06-30 2010-12-30 General Electric Company Nickel-base superalloys and components formed thereof
JP6131186B2 (en) * 2010-07-09 2017-05-17 ゼネラル・エレクトリック・カンパニイ Nickel-based alloy, its processing, and components formed therefrom
WO2015008343A1 (en) * 2013-07-17 2015-01-22 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY PRODUCT AND METHOD FOR PRODUCING SAME, AND Ni-BASED ALLOY MEMBER AND METHOD FOR PRODUCING SAME
EP2949768B1 (en) * 2014-05-28 2019-07-17 Ansaldo Energia IP UK Limited Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
JP5869624B2 (en) * 2014-06-18 2016-02-24 三菱日立パワーシステムズ株式会社 Ni-base alloy softening material and method for manufacturing Ni-base alloy member
JP2017532440A (en) * 2014-08-18 2017-11-02 ゼネラル・エレクトリック・カンパニイ Reinforced superalloy with zirconium addition
WO2016158705A1 (en) * 2015-03-30 2016-10-06 日立金属株式会社 METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT SUPERALLOY
WO2018092204A1 (en) * 2016-11-16 2018-05-24 三菱日立パワーシステムズ株式会社 Method for producing nickel-based alloy high temperature material
JP6809169B2 (en) * 2016-11-28 2021-01-06 大同特殊鋼株式会社 Manufacturing method of Ni-based superalloy material
JP6931545B2 (en) * 2017-03-29 2021-09-08 三菱重工業株式会社 Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model
WO2018216067A1 (en) * 2017-05-22 2018-11-29 川崎重工業株式会社 High temperature component and method for producing same
CN108396269B (en) * 2018-03-02 2019-11-08 河北工业大学 A kind of enhancing polycrystalline Ni3The heat treatment method of Al based high-temperature alloy deformation stability

Also Published As

Publication number Publication date
US20210340644A1 (en) 2021-11-04
KR102443966B1 (en) 2022-09-19
CN111629852B (en) 2023-03-31
JPWO2020110326A1 (en) 2021-02-15
SG11202012579YA (en) 2021-06-29
EP3685942A4 (en) 2021-03-24
KR20210024119A (en) 2021-03-04
EP3685942A1 (en) 2020-07-29
CN111629852A (en) 2020-09-04
WO2020110326A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6793689B2 (en) Manufacturing method of Ni-based alloy member
JP6826235B2 (en) Ni-based alloy softened powder and method for producing the softened powder
JP5696995B2 (en) Heat resistant superalloy
JP7012468B2 (en) Manufacturing method of superalloy articles and related articles
KR102193336B1 (en) Ni-based forged alloy material and turbine high-temperature member using the same
KR102403029B1 (en) Precipitation hardenable cobalt-nickel based superalloys and articles made therefrom
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
WO2020203460A1 (en) Ni-BASED SUPER-HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
JP7073051B2 (en) Manufacturing method of superalloy articles and related articles
CN107794471B (en) Grain refinement IN IN706 using Laves phase precipitation
JP2017514998A (en) Precipitation hardening nickel alloy, parts made of said alloy, and method for producing the same
JP5047456B2 (en) Precipitation strengthened nickel-iron-chromium alloy and method of processing the same
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
JP7223878B2 (en) Cobalt-based alloy product and manufacturing method thereof
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP7324254B2 (en) Co-Based Alloy Material, Co-Based Alloy Product, and Method for Making Same
JP7237222B1 (en) Cobalt-based alloy shaped article and method for manufacturing cobalt-based alloy product
EP3904548A1 (en) Co-BASED ALLOY STRUCTURE AND PRODUCTION METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6826235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150