JP6299344B2 - Method for forging disc-shaped products - Google Patents
Method for forging disc-shaped products Download PDFInfo
- Publication number
- JP6299344B2 JP6299344B2 JP2014073028A JP2014073028A JP6299344B2 JP 6299344 B2 JP6299344 B2 JP 6299344B2 JP 2014073028 A JP2014073028 A JP 2014073028A JP 2014073028 A JP2014073028 A JP 2014073028A JP 6299344 B2 JP6299344 B2 JP 6299344B2
- Authority
- JP
- Japan
- Prior art keywords
- forging
- disk
- grain size
- product
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Forging (AREA)
Description
この発明はディスク形状品の鍛造加工方法に関し、詳しくは自由逐次鍛造によるディスク形状品の鍛造加工方法に関する。 The present invention relates to a method for forging a disk-shaped product, and more particularly to a method for forging a disk-shaped product by free sequential forging.
Niを主成分として含有する耐熱合金は、高温における高い引張強度,疲労強度の要求される発電用タービンディスク等として広く使用されている。
この種Ni含有の耐熱合金の強化機構として固溶強化,炭化物析出強化,γ′(ガンマプライム)析出強化の3種類の強化機構が知られているが、特にNi3(Al,Ti)から成る金属間化合物のγ′相の析出による強化を用いたγ′強化機構は広く用いられている。
Nimonic Alloy 901(以下、アロイ901とする。NimonicはSpecial Metals社の商標)はその一例で、このNi含有耐熱合金では、炭化物の析出強化とγ′相の析出強化による複合的な強化が行われている。
Heat-resistant alloys containing Ni as a main component are widely used as power generation turbine disks that require high tensile strength and fatigue strength at high temperatures.
Three types of strengthening mechanisms, known as solid solution strengthening, carbide precipitation strengthening, and γ '(gamma prime) precipitation strengthening, are known as the strengthening mechanism of this kind of Ni-containing heat-resistant alloy, especially Ni 3 (Al, Ti). The γ 'strengthening mechanism using strengthening by precipitation of γ' phase of intermetallic compounds is widely used.
Nimonic Alloy 901 (hereinafter referred to as Alloy 901; Nimonic is a trademark of Special Metals) is an example. This Ni-containing heat-resistant alloy undergoes complex strengthening by precipitation strengthening of carbide and precipitation strengthening of γ 'phase. ing.
Ni含有耐熱合金から成る部材の高温引張強度や衝撃特性,疲労特性等の機械的特性は、Ni基耐熱合金の結晶粒の粒度に左右される。
そのためNi含有耐熱合金では、再結晶温度以上の温度での熱間鍛造により結晶を再結晶させ且つその際の再結晶粒の成長を抑制することで、結晶粒を微細化することが行われている。
Mechanical properties such as high-temperature tensile strength, impact properties, and fatigue properties of members made of Ni-containing heat-resistant alloys depend on the grain size of the Ni-based heat-resistant alloys.
Therefore, in Ni-containing heat-resistant alloys, the crystal grains are refined by recrystallizing the crystals by hot forging at a temperature higher than the recrystallization temperature and suppressing the growth of the recrystallized grains. Yes.
Ni基耐熱合金部材の高温引張強度や衝撃特性,疲労特性等の機械的特性は、結晶粒が微細であるほど高くなる。そこで一般には結晶粒を出来るだけ微細化させるように熱間鍛造を行う。
Ni基耐熱合金部材の引張強度や疲労強度に対しては、結晶粒界は転位の運動の障壁として働くため、粒界強度は粒内強度よりも大きく、従って結晶粒を微細化することが、上記の引張強度等の強度向上に有効であるとされている。
The mechanical properties such as high-temperature tensile strength, impact properties, and fatigue properties of Ni-base heat-resistant alloy members increase as the crystal grains become finer. Therefore, in general, hot forging is performed so as to make the crystal grains as fine as possible.
For the tensile strength and fatigue strength of Ni-base heat-resistant alloy members, the grain boundary works as a barrier for dislocation movement, so the grain boundary strength is larger than the intragranular strength, and therefore the grain can be refined. It is said that it is effective for improving the strength such as the tensile strength.
熱間鍛造による結晶粒の微細化の過程では、鍛造による歪み付与で結晶粒が変形を生じ、そして変形した結晶粒の粒界に沿って再結晶粒が生成する。
生成した再結晶粒はその後成長し、次第に大きくなって行くが、初期結晶粒が粗大であると、その結晶粒の芯部に到るまで再結晶による結晶成長が及ばずに、芯部が未再結晶部分として残り易い。
In the process of refining crystal grains by hot forging, the crystal grains are deformed by applying strain by forging, and recrystallized grains are generated along the grain boundaries of the deformed crystal grains.
The generated recrystallized grains then grow and gradually increase.However, if the initial crystal grains are coarse, crystal growth due to recrystallization does not reach the core of the crystal grains, and the core is not formed. It tends to remain as a recrystallized part.
特に、型彫りをした金型の中に材料を閉じ込めて成形する型鍛造では、一般に1回の鍛造で済ませてしまうためにこうした問題を生じ易い。
またこの型鍛造では、被加工材に付与される歪みが不均等となり易く、そして歪み不均等によって結晶粒が不均等となり易い。
In particular, in die forging in which a material is confined in a die-carved mold, the problem is likely to occur because one forging is generally performed.
In this die forging, the strain applied to the workpiece tends to be non-uniform, and the crystal grains tend to be non-uniform due to the non-uniform strain.
これに対して金敷で材料(被加工材)に打撃を加えてこれを2つの平面間で圧縮し(圧縮方向と直角な2方向では材料は拘束されない)、通常同じ個所に何回も打撃を加え、歪みを与える自由逐次鍛造では、再結晶粒の粒界からの再結晶生成が繰り返されるため、再結晶した領域が拡大し、芯部に到るまで被加工材全体に亘って結晶粒の粒度を効果的に均等化し且つ微細化し易いし、また加工度を調整することで結晶粒の粒度を制御し易い。 On the other hand, the material (work material) is struck with an anvil and compressed between two planes (the material is not constrained in two directions perpendicular to the compression direction) and is usually struck several times at the same location. In addition, in the free sequential forging that gives strain, recrystallization from the grain boundaries of the recrystallized grains is repeated, so that the recrystallized area expands and the crystal grains are spread over the entire workpiece until reaching the core. It is easy to effectively equalize and refine the grain size, and to control the grain size by adjusting the degree of processing.
従って発電ガスタービンにおけるタービンディスク等を鍛造にて成形する場合、このような自由逐次鍛造にて成形することが望ましい。
この種発電設備におけるタービンディスク等にあっては、各部の結晶粒度が出来るだけ均等であること、また中心の芯部に到るまでASTM#4以上の微細な結晶粒度であることが求められるが、自由逐次鍛造によればこのような組織が得られ易い。
Therefore, when forming a turbine disk or the like in a power generation gas turbine by forging, it is desirable to form by such free sequential forging.
In a turbine disk or the like in this kind of power generation facility, the crystal grain size of each part is required to be as uniform as possible, and it is required to have a fine crystal grain size of ASTM # 4 or more until reaching the central core part. According to free sequential forging, such a structure is easily obtained.
ところで、このような自由逐次鍛造にあっては同一個所に繰り返し打撃を加えることで再結晶範囲を拡げ、芯部に到るまで拡大して行く関係上、通常、打撃を加える鍛造ステップとリヒートステップとを繰り返し行うこととなる。
この場合、Ti,Mo等の炭化物やγ′の析出相を強化相とするアロイ901相当材を用いた鍛造加工では、加工条件によっては鍛造中にこれら炭化物相やγ′相が析出したり或いは逆に固溶したりし、またそのことによって結晶粒の粒成長挙動が大きく影響を受けることが危惧される。
而してこれら強化相となる炭化物相やγ′相の析出や固溶等の挙動によって結晶粒成長の不安定化の影響が生じると、ASTM#4以上の微細な結晶粒を仕上鍛造加工において安定して得ることが難しくなる。
By the way, in such a free sequential forging, the recrystallization range is expanded by repeatedly striking the same part, and the forging step and reheating step in which striking is usually applied because of expanding to the core part. Will be repeated.
In this case, in a forging process using a carbide such as Ti or Mo or an alloy 901 equivalent material having a precipitation phase of γ ′ as a strengthening phase, the carbide phase or γ ′ phase may precipitate during forging depending on the processing conditions. Contrary to this, it is feared that the solid solution is dissolved, and that the growth behavior of the crystal grains is greatly affected by this.
Thus, when the effect of destabilization of grain growth occurs due to the precipitation or solid solution behavior of the carbide phase and γ 'phase, which become the strengthening phase, fine crystal grains of ASTM # 4 or higher are produced in the finish forging process. It becomes difficult to obtain stably.
尚、本発明に対する先行技術として、下記特許文献1には「Ni基合金の鍛伸方法」についての発明が示され、そこにおいてNi基合金のインゴットからビレットを製造する方法として、加工用素材の送り方向と直交方向の1回の打撃による圧縮量を小さくして微小変形を累積して与えるようにし、1回目の打撃位置と次の打撃位置とをシフトさせて、鍛伸送り方向断面の結晶粒径の均一化を図るようにした点が開示されている。 As a prior art to the present invention, the following Patent Document 1 discloses an invention about a “Ni-base alloy forging method”, in which, as a method of manufacturing a billet from a Ni-base alloy ingot, The amount of compression by one stroke in the direction perpendicular to the feed direction is reduced so that minute deformation is accumulated, the first strike position and the next strike position are shifted, and the crystal in the forge and stretch feed direction cross section It is disclosed that the particle size is made uniform.
また下記特許文献2には「超合金材の製造方法」についての発明が示され、そこにおいて析出物固溶化温度以上に加熱して一次鍛造した後、一旦水冷以上の冷却速度で急冷し、一次鍛造によって生じた鍛造ひずみエネルギーを材料内部に残留させたままで、次に析出時効処理を行い、さらに析出物固溶しない温度で二次鍛造を行うようにした点が開示されている。
しかしながらこれら特許文献1,2に記載のものは、対象とする被加工材の組成が本願とは異なっているとともに、目的とする結晶粒度を得るための合計圧下率及びリヒート条件の組み合せについて具体的な開示はなく、本発明とは別異のものである。
Further, the following Patent Document 2 discloses an invention relating to a “method for producing a superalloy material”, in which a primary forging is performed by heating to a precipitate solid solution temperature or higher, followed by rapid cooling at a cooling rate of water cooling or higher. It is disclosed that the forging strain energy generated by the forging is left inside the material, the precipitation aging treatment is performed, and the secondary forging is performed at a temperature at which the precipitate does not dissolve.
However, those described in Patent Documents 1 and 2 are different from the present invention in the composition of the target material to be processed, and are specific about the combination of the total reduction ratio and reheat conditions for obtaining the target crystal grain size. There is no disclosure, which is different from the present invention.
本発明は以上のような事情を背景とし、アロイ901相当材を用いてディスク形状品を鍛造成形するに際し、仕上鍛造において、芯部に到るまで目標とするASTM結晶粒度#4以上の微細な組織を安定して容易に得ることのできる自由逐次鍛造によるディスク形状品の鍛造加工方法を提供することを目的としてなされたものである。 The present invention is based on the above circumstances, and when a disk-shaped product is forged using an alloy 901 equivalent material, fine grain size of # 4 or more, which is the target until the core is reached in finish forging. The object of the present invention is to provide a method for forging a disk-shaped product by free sequential forging, in which a structure can be obtained stably and easily.
而して請求項1の鍛造加工方法は、質量%でC:0.02〜0.06%,Ni:40〜45%,Cr:12〜14%,Mo:6〜7%,Ti:2.5〜3.5%,Al:0.12〜0.30%,B:0.010〜0.020%,残部Fe及び不可避的不純物の組成を有するNi基耐熱合金から成る被加工材を、仕上鍛造において、炭化物析出によるピン止め作用の下で、合計圧下率10%以上で圧下を行う鍛造ステップと950〜1060℃で1時間以上保持するリヒートステップとをそれぞれ1回以上繰り返し、同一個所に少なくとも2回以上の打撃を加える自由逐次鍛造を施してディスク形状に鍛造成形し、ASTM結晶粒度#4以上の組織のディスク品を得ることを特徴とする。 Thus, the forging method according to claim 1 is C: 0.02 to 0.06%, Ni: 40 to 45%, Cr: 12 to 14%, Mo: 6 to 7%, Ti: 2.5 to 3.5% in mass%. Al: 0.12 to 0.30%, B: 0.010 to 0.020%, the work piece made of Ni- base heat-resistant alloy having the composition of the balance Fe and unavoidable impurities, in finish forging, under the pinning action by carbide precipitation The disc is subjected to free sequential forging in which a forging step for reducing at a reduction rate of 10% or more and a reheating step for holding at 950 to 1060 ° C. for 1 hour or more are repeated one or more times, and at least two times of impact are applied to the same location It is forged into a shape to obtain a disk product having a structure of ASTM grain size # 4 or more.
本発明者らは、上記組成のアロイ901相当材を用い、ディスク形状品の組織として、優れた高温引張強度,衝撃強度,疲労強度を実現可能なASTM結晶粒度#4以上の組織を自由逐次鍛造による鍛造加工にて得るべく、以下の予備試験を行って、先ずはアロイ901相当材を鍛造加工した際の粒成長挙動を調べた。 The present inventors use alloy 901 equivalent material having the above composition, and as a disk-shaped product structure, a structure of ASTM grain size # 4 or more capable of realizing excellent high-temperature tensile strength, impact strength, and fatigue strength is subjected to free sequential forging. In order to obtain by forging by the following, the following preliminary test was performed, and first, the grain growth behavior when forging an alloy 901 equivalent material was examined.
図1(A)に示すように、仕上鍛造加工前の粗鍛造加工により得たASTM結晶粒度#4の組織を有する直径φ15mm,高さ22.5mmの円柱形状のテストピース10を用意し、これを図1(B)に示すように先ず1100℃に加熱して60秒保持した後降温し、そして各種試験温度で高さ19.80mmまで(圧下率12%)、及び16.88mmまで(圧下率25%)据込鍛造し、その後各試験温度に所定時間保持した後に水冷し、試験温度ごと及び保持時間ごとに結晶粒の粒成長を調べた。 As shown in FIG. 1 (A), a cylindrical test piece 10 having a diameter of 15 mm and a height of 22.5 mm having a structure of ASTM grain size # 4 obtained by rough forging before finish forging is prepared. As shown in FIG. 1 (B), the temperature is first heated to 1100 ° C. and held for 60 seconds, then the temperature is lowered, and at various test temperatures, the height is 19.80 mm (rolling rate 12%) and 16.88 mm (rolling). (Rate 25%) Upset forging, then held at each test temperature for a predetermined time and then water-cooled, and the grain growth of the crystal grains was examined for each test temperature and each holding time.
図1(C)に、テストピース10初期粒度のときの写真が、また図2に、圧下率を12%としたときの保持温度ごと及び保持時間ごとの組織写真が、更に図3に、圧下率25%としたときの保持温度ごと及び保持時間ごとの組織写真がそれぞれ示してある。
更に図4に、各種試験温度ごとの、保持時間の長さと結晶粒度との関係、即ち結晶粒の粒度変化(粒成長)挙動が示してある。
尚図2及び図3の組織写真は光学顕微鏡写真である。
FIG. 1 (C) shows a photograph of the test piece 10 at the initial grain size, FIG. 2 shows a structure photograph for each holding temperature and holding time when the rolling reduction is 12%, and FIG. Structure photographs for each holding temperature and holding time when the rate is 25% are shown.
Further, FIG. 4 shows the relationship between the length of the holding time and the crystal grain size, that is, the behavior of grain size change (grain growth) for each test temperature.
2 and FIG. 3 are optical micrographs.
以上の予備試験の結果次のことが判明した。
1)即ち初期粒度ASTM#4の段階で、既に組織中には旧結晶粒界上にTi,Moの炭化物が析出していること(図1(C)の写真中黒く点状に表れているのが炭化物で、この炭化物は粗鍛造としてのビレット鍛造終了時の空冷処理によって生じたものである。即ち、粗鍛造終了時の空冷処理は炭化物の析出処理ということになる)、
2)初期粒度の写真及び鍛造後に各種温度にそれぞれ所定時間保持した後の組織写真上にはγ′の析出相は認められないこと、つまり鍛造ステップ及びその後の加熱保持の際にγ′相は析出していないこと、
3)圧下率=12%(歪み=0.128),保持温度980℃以上で再結晶が生じていること、
4)圧下率=25%(歪み=0.288)の下では、保持温度1100℃で1800s(30分)以上で結晶粒が急激に粗大化していること、またこのときの組織写真中から、炭化物が急激に減少していることが認められる一方で、980℃〜1060℃の温度範囲内では炭化物は目立って減少することはなく、結晶粒の粒成長は抑制され、最終的に一定の結晶粒度に収束する傾向にあることが認められた。
As a result of the above preliminary test, the following was found.
1) That is, at the stage of the initial grain size ASTM # 4, Ti and Mo carbides are already precipitated on the old grain boundaries in the structure (shown in black dots in the photograph of FIG. 1C). This carbide is produced by air cooling treatment at the end of billet forging as rough forging, that is, air cooling treatment at the end of rough forging is carbide precipitation treatment).
2) The precipitation phase of γ 'is not observed on the initial grain size photograph and the structure photograph after holding at various temperatures for a predetermined time after forging, that is, the γ' phase is not changed during the forging step and the subsequent heating and holding. Not depositing,
3) Reduction ratio = 12% (strain = 0.128), recrystallization occurs at a holding temperature of 980 ° C. or higher,
4) Under a rolling reduction of 25% (strain = 0.288), the crystal grains are rapidly coarsened at a holding temperature of 1100 ° C. over 1800 s (30 minutes), and from the structure photograph at this time, While it is recognized that the carbide is rapidly decreased, the carbide is not significantly decreased within the temperature range of 980 ° C. to 1060 ° C., and the grain growth of the crystal grains is suppressed, and finally a constant crystal A tendency to converge to particle size was observed.
このことは圧下率25%,1100℃保持の下では、保持時間が1800s以上になると炭化物が固溶して炭化物による結晶粒のピン止め効果が失われ、結晶粒が急激に粒成長する一方、980℃〜1060℃の範囲内では、長時間保持しても結晶粒は一定の結晶粒度に収束して行くだけで、過剰に結晶粒成長することはないことを意味している。 This means that under a rolling reduction of 25% and holding at 1100 ° C., if the holding time is 1800 s or more, the carbide dissolves and the crystal pinning effect by the carbide is lost, and the crystal grains grow rapidly, Within the range of 980 ° C. to 1060 ° C., it means that the crystal grains only converge to a certain crystal grain size and do not grow excessively even if kept for a long time.
尚、図2及び図3では980℃以上での加熱保持による結晶粒の粒度変化が示してあるが、950℃以上の温度であれば結晶粒が再結晶し且つ炭化物の存在によるピン止め効果によって粒成長が抑制されることが確認されている。 2 and 3 show the change in the grain size of the crystal grains due to heating and holding at 980 ° C. or higher. If the temperature is 950 ° C. or higher, the crystal grains are recrystallized and the pinning effect due to the presence of carbides. It has been confirmed that grain growth is suppressed.
本発明は以上のような知見に基づいてなされたもので、アロイ901相当材を用いて自由逐次鍛造によりディスク形状品を鍛造加工するに際し、仕上鍛造において、炭化物析出によるピン止め作用の下で、合計圧下率10%以上(望ましくは12%以上,45%以下)での鍛造ステップと、950〜1060℃で1時間以上保持するリヒートステップとをそれぞれ1回以上繰り返し、同一個所に少なくとも2回以上の打撃を加える自由逐次鍛造を施して、Niを主成分として含有した耐熱合金のディスク形状品を得るもので、かかる本発明によれば、引張強度,衝撃強度,疲労強度等の機械的特性に優れたASTM結晶粒度#4以上の組織を安定して容易に得ることができる。
尚本発明においての圧下率とはリヒートとリヒートとの間において同一個所に何回も圧下を加えた場合には、各打撃ごとの圧下量を合計した圧下量の圧下前寸法に対する比率(圧下量を圧下前寸法で除した値に100を掛けた値)を意味する。
The present invention has been made based on the above knowledge, and when forging a disk-shaped product by free sequential forging using an alloy 901 equivalent material, in finish forging, under the pinning action by carbide precipitation, Repeat the forging step at a total rolling reduction of 10% or more (preferably 12% or more and 45% or less) and the reheating step of holding at 950 to 1060 ° C. for 1 hour or more at least once, and at least twice or more at the same location. To obtain a disk-shaped product of a heat-resistant alloy containing Ni as a main component, and according to the present invention, the mechanical properties such as tensile strength, impact strength, and fatigue strength are obtained. A structure having an excellent ASTM crystal grain size # 4 or more can be obtained stably and easily.
In the present invention, the reduction ratio is the ratio of the total amount of reduction for each impact to the dimension before reduction when the reduction is applied several times at the same location between reheats (reduction amount). Is a value obtained by dividing 100 by the dimension before rolling and multiplying by 100).
以上のことから明らかなように、本発明は炭化物析出状態を保持した状態で、熱間鍛造、詳しくは鍛造ステップ及びリヒートステップを実行することにより、芯部に到るまで結晶粒の再結晶を生ぜしめつつ、炭化物によるピン止め効果を発揮させることで、結晶粒が過剰に粒成長してしまうのを抑制(粒成長抑制)するもので、本発明によれば、実操業においてリヒート時間を長く設定することができ、実操業に際してリヒート時間が設定時間に対し多少前後することがあったとしても、所望の結晶粒度即ちASTM#4以上の結晶粒度を安定して得ることが可能である。 As is clear from the above, the present invention maintains the carbide precipitation state, and performs hot forging, specifically, forging step and reheating step, thereby recrystallizing crystal grains until reaching the core. It suppresses the excessive growth of crystal grains (grain growth suppression) by exerting the pinning effect by carbides, and according to the present invention, the reheat time is increased in actual operation. Even if the reheat time may slightly vary with respect to the set time during actual operation, it is possible to stably obtain a desired crystal grain size, that is, a crystal grain size of ASTM # 4 or higher.
尚、高温クリープ強度が求められる場合には、最終の結晶粒度をASTM#7以下とすること、即ちそのような結晶粒度となるように鍛造パスを設定しておくことが望ましい。 When high temperature creep strength is required, it is desirable to set the final crystal grain size to ASTM # 7 or less, that is, to set a forging pass so as to obtain such a crystal grain size.
発電ガスタービンにおけるタービンディスク等には、高温での高速回転に伴う遠心力によってクリープ変形が生じることがあり、そうしたクリープ変形に対する強度を強くすることが求められる場合がある。
このような高温クリープ強度については、結晶粒が過剰に微細であると却って特性が劣化することが知られている。
これは、高温におけるクリープ変形のような歪み速度の小さい場合は粒界滑りが生じて、粒界で破壊するようになること、その際に結晶粒が過剰に微細であると粒界面積が大となって、粒界での破壊が生じ易くなること、等の理由によるものと考えられている。
従って高温クリープ強度が特に求められる場合には、結晶粒を過剰に微細化させない方が良く、そうした場合には結晶粒度をASTM#7以下としておくことが望ましい。
A turbine disk or the like in a power generation gas turbine may be subject to creep deformation due to centrifugal force accompanying high-speed rotation at a high temperature, and it may be required to increase the strength against such creep deformation.
With respect to such high temperature creep strength, it is known that if the crystal grains are excessively fine, the characteristics deteriorate.
This is because when the strain rate is low, such as creep deformation at high temperature, grain boundary slip occurs and breaks at the grain boundary. At that time, if the crystal grains are excessively fine, the grain boundary area is large. This is considered to be due to the fact that breakage at the grain boundaries is likely to occur.
Therefore, when high temperature creep strength is particularly required, it is better not to make the crystal grains excessively fine. In such a case, it is desirable to set the crystal grain size to ASTM # 7 or less.
本発明では、最終の鍛造ステップに続いてディスク成形品を加熱処理し、成形品の結晶粒を上記結晶粒度まで粒成長させる粒成長ステップを実行することができる(請求項2)。
このようにすることで、より一層所望の結晶粒度の組織が得られ易い。
In the present invention, following the final forging step, the disk molded product can be heat-treated, and a grain growth step can be performed in which the crystal grains of the molded product are grown to the crystal grain size (Claim 2).
By doing so, it is easier to obtain a structure having a desired crystal grain size.
その際粒成長処理は970℃〜1010℃の温度範囲で1時間以上の保持時間の条件で行うことが望ましい。 In that case, it is desirable that the grain growth treatment be performed in a temperature range of 970 ° C. to 1010 ° C. under a condition of holding time of 1 hour or more.
本発明は、発電ガスタービンにおけるタービンディスクの鍛造加工方法として特に有用なものである(請求項3)。 The present invention is particularly useful as a method for forging a turbine disk in a power generation gas turbine.
本発明では、Niを主成分として含有する耐熱合金としてアロイ901相当材を用いる。
以下に本発明における各化学成分について述べる。
C:0.02〜0.06%
C元素は結晶格子間に侵入して固溶し、ひずみを発生させてマトリックスを強化する固溶強化元素として働く。またTiC,MoC等の炭化物を析出させる。その働きのため、0.02〜0.06%の範囲内で含有させる。
In the present invention, alloy 901 equivalent material is used as a heat-resistant alloy containing Ni as a main component.
The chemical components in the present invention are described below.
C: 0.02 to 0.06%
The C element works as a solid solution strengthening element that penetrates between crystal lattices and dissolves, and generates strain to strengthen the matrix. Also, carbides such as TiC and MoC are precipitated. For its function, it is contained in the range of 0.02 to 0.06%.
Ni:40〜45%
Ni元素はFeと並ぶ母相合金元素であり、Ti,AlとNi3X相(γ′相)を強化相として形成する。その働きのため、本発明ではNiを40〜45%で含有させる。
Ni: 40-45%
Ni element is a parent phase alloy element along with Fe, and forms Ti, Al and Ni 3 X phase (γ ′ phase) as a strengthening phase. Because of its function, the present invention contains Ni at 40 to 45%.
Cr:12〜14%
Cr元素はNiと置換型でマトリックスに固溶し、高温耐食性を向上させる。その働きのため12〜14%で含有させる。
Cr: 12-14%
Cr element is a substitutional form with Ni and dissolves in the matrix to improve high temperature corrosion resistance. For its function, it is contained at 12-14%.
Mo:6〜7%
Mo元素はNiと置換型でマトリックスに固溶し、高温強度を向上させる。その働きのため6〜7%で含有させる。
Mo: 6-7%
Mo element is substituted for Ni and is dissolved in the matrix to improve the high temperature strength. For its function, it is contained at 6-7%.
Ti:2.5〜3.5%
Ti元素はNiと置換型でマトリックスに固溶し、主にNi3Ti相(γ′相)として整合析出し、高温強度を大きく向上させる。その働きのため2.5〜3.5%で含有させる。
Ti: 2.5-3.5%
Ti element is a substitutional form of Ni and dissolves in the matrix, and coherently precipitates mainly as Ni 3 Ti phase (γ 'phase), greatly improving the high temperature strength. For its function, it is contained at 2.5 to 3.5%.
Al:0.12〜0.30%
Al元素はNiと置換型でマトリックスに固溶し、主にNi3Al相(γ′相)として整合析出し、高温強度を大きく向上させる。その働きのため0.12〜0.30%で含有させる。
Al: 0.12 to 0.30%
Al element is a substitutional solution with Ni and dissolves in the matrix, mainly coherently precipitated as the Ni 3 Al phase (γ 'phase), greatly improving the high-temperature strength. For its function, it is contained at 0.12 to 0.30%.
B:0.010〜0.020%
B元素は粒界にごく微細に析出し、粒界強度を向上させる働きを有する。その働きのため0.010〜0.020%で含有させる。
B: 0.010-0.020%
Element B precipitates very finely at the grain boundary and has the function of improving the grain boundary strength. For its function, it is contained at 0.010 to 0.020%.
以上のような本発明によれば、ディスク形状品を鍛造加工するに際して、引張強度,衝撃強度,疲労強度等の機械的特性に優れたASTM結晶粒度#4以上の組織を安定して容易に得ることができる。 According to the present invention as described above, when forging a disk-shaped product, a structure having ASTM crystal grain size # 4 or more excellent in mechanical properties such as tensile strength, impact strength, fatigue strength and the like can be obtained stably and easily. be able to.
次に本発明をタービンディスクの鍛造に適用した場合の実施例を以下に説明する。
表1に示す化学組成のNiを主成分として含有した合金(アロイ901相当材)を真空誘導炉(VIF)にて溶解し、更に真空アーク炉(VAR)にて再溶解して2.5トンのインゴットを得た。
その後、前鍛造(粗鍛造)としてのビレット鍛造を施して、断面寸法が450mm,軸方向寸法が1170mmの図5に示す断面8角形状の柱状の加工品即ちビレット(被加工材)12を得た。
このビレット鍛造では、当初鋳造組織であったもの(結晶粒度はASTM#−3)をビレット12の段階でASTM#2としている。
但しこの結晶粒度は、後の仕上鍛造としてのディスク鍛造のプロセスにおける据込(1)の前の加熱(1060℃×4hr)後の結晶粒度である。
Next, an embodiment when the present invention is applied to forging of a turbine disk will be described below.
An alloy containing Ni having a chemical composition shown in Table 1 as a main component (alloy 901 equivalent material) is melted in a vacuum induction furnace (VIF), and further remelted in a vacuum arc furnace (VAR) to 2.5 tons. Got the ingot.
Thereafter, billet forging as pre-forging (rough forging) is performed to obtain a columnar processed article, ie, billet (workpiece) 12 having an octagonal cross section shown in FIG. 5 having a cross-sectional dimension of 450 mm and an axial dimension of 1170 mm. It was.
In this billet forging, the initial cast structure (grain size is ASTM # -3) is ASTM # 2 at the billet 12 stage.
However, this crystal grain size is the crystal grain size after heating (1060 ° C. × 4 hr) before upsetting (1) in the process of disc forging as the subsequent finish forging.
ビレット鍛造にて得られた図5のビレット12をスタート材として、仕上鍛造としてのディスク鍛造を表2に示すプロセスに従って実行した。
表2に示しているように、このディスク鍛造のプロセスでは、初期の加熱の工程後において結晶粒度がASTM#2の粒度のビレット12に対して、先ず金敷を用いて据込(1)のステップを実行し、軸方向寸法を1170mmから800mmまで圧縮した。尚このとき径方向寸法は544mmに変化している。
尚据込(1)のプロセスでの圧下率は、表2に示しているように31.6%である。
Using the billet 12 of FIG. 5 obtained by billet forging as a starting material, disk forging as finish forging was performed according to the process shown in Table 2.
As shown in Table 2, in this disk forging process, after the initial heating step, the billet 12 having a grain size of ASTM # 2 is first placed using an anvil in the step (1). And the axial dimension was compressed from 1170 mm to 800 mm. At this time, the radial dimension is changed to 544 mm.
The rolling reduction in the upsetting (1) process is 31.6% as shown in Table 2.
続いて1060℃×4hrの条件でリヒート(1)のステップを実行した後に、金敷を用いて据込(2)のステップを実行し、軸方向寸法を更に500mmまで圧縮し、径方向寸法を688mmとした。
この据込(2)のステップでの圧下率は表2に示すように37.5%である。
更にこれに続いて再び1060℃×4hrの条件でリヒート(2)のステップを実行した。
そしてその後に十字鍛造のステップを実行した。
Subsequently, after performing the reheat (1) step under the condition of 1060 ° C. × 4 hr, the upsetting (2) step is performed using an anvil, the axial dimension is further compressed to 500 mm, and the radial dimension is 688 mm. It was.
As shown in Table 2, the rolling reduction in this upsetting (2) step is 37.5%.
Following this, the reheat (2) step was again performed under the condition of 1060 ° C. × 4 hr.
After that, the cross forging step was executed.
ここで十字鍛造とは、図6に示しているように中間の加工品14に対して、その径方向寸法よりも幅寸法の小さな金敷16を軸方向の一方の面に当てて打撃を加え、その後金敷16の加工品14に対する回転方向の位置を相対変化させて、再び加工品14に対し打撃を加え、以後同様の手順で金敷16が加工品14に対して相対的に回転方向に1周するまで打撃を加える加工方法である。
尚実際には、ターンテーブル18の上に加工品14を載せて、ターンテーブル18により加工品14を少しずつ回転移動させることで、金敷16による加工品14に対する打撃位置を異ならせるようにしている。
Here, the cross forging is applied to the intermediate workpiece 14 as shown in FIG. 6 by hitting an anvil 16 having a width smaller than the radial dimension against one surface in the axial direction, Thereafter, the position of the anvil 16 relative to the workpiece 14 is changed relative to each other, and the workpiece 14 is hit again. Thereafter, the anvil 16 makes one turn in the rotation direction relative to the workpiece 14 in the same procedure. It is a processing method that applies a blow until
Actually, the workpiece 14 is placed on the turntable 18 and the workpiece 14 is rotated little by little by the turntable 18 so that the striking position of the anvil 16 against the workpiece 14 is varied. .
この実施例では、以上のような十字鍛造(1)のステップによって先ず加工品14の高さを、加工前の500から460mmに圧縮した。
その後、続いて十字鍛造(2)のステップを実行し、その高さ(厚み)が460から420mmとなるまで、同様にして金敷16にて加工品14に対し打撃を加えた。
尚この十字鍛造(1),(2),(3),(4)では、平坦部200mm幅の金敷を用いて加工を行った。
In this example, the height of the processed product 14 was first compressed from 500 to 460 mm before processing by the step of cross forging (1) as described above.
Subsequently, the cross forging (2) step was performed, and the workpiece 14 was similarly hit with the anvil 16 until the height (thickness) became 460 to 420 mm.
In the cross forging (1), (2), (3), (4), the flat part was processed using an anvil with a width of 200 mm.
以上の十字鍛造(1),(2)のステップを終えたところで、次に加工品14を表裏逆向きにして、それまで表面であったのを裏面とし、また裏面であった面を表面とするように、ターンテーブル18上で加工品14を反転させ、以後上記と同様の手法によって十字鍛造(3)のステップと、十字鍛造(4)のステップとを実行した。
ここで十字鍛造(3)のステップでは、高さ寸法を420から385mmとし、また十字鍛造(4)のステップでは更に高さ寸法385から350mmとした。
尚十字鍛造(1),(2),(3),(4)それぞれの圧下量及び合計の圧下率は表2に示している通りである。
以上の十字鍛造のプロセスを実行した後、3度目のリヒート(3)のステップを1060℃×4hrの条件で実行した。
After completing the steps of cross forging (1) and (2) above, the processed product 14 is then turned upside down so that the front surface is the back surface, and the back surface is the front surface. As described above, the workpiece 14 was inverted on the turntable 18, and thereafter, the cross forging (3) step and the cross forging (4) step were executed by the same method as described above.
Here, in the cross forging (3) step, the height dimension was set to 420 to 385 mm, and in the cross forging (4) step, the height dimension was further set to 385 to 350 mm.
Table 2 shows the reduction amount and the total reduction ratio of the cross forgings (1), (2), (3), and (4).
After performing the above cross forging process, the third reheat (3) step was performed under the condition of 1060 ° C. × 4 hr.
次にリヒート(3)のステップに続いて、放射鍛造(1),(2),(3),(4)の各ステップを実行した。
図6(B)に放射鍛造の方法が示してある。
図示のようにここでは、加工品14に対して金敷20の一端側が加工品14の中心近傍に位置し、また他端が加工品14から径方向外方に突き出すような位置関係で、金敷20にて加工品14に打撃を与え、その後金敷20を加工品14に対して相対的に回転方向(周方向)に位置を僅かに変化させて同様の打撃を金敷20にて加工品14に加え、以後同じピッチで金敷20を加工品14の周方向に位置変化させながら次々と同様の打撃を、金敷20が加工品14に対し1周する位置に到るまで加え、加工品14を圧下する。
Next, following the step of reheat (3), each step of radiation forging (1), (2), (3), (4) was performed.
FIG. 6B shows a method of radiation forging.
As shown in the figure, here, the anvil 20 is positioned such that one end side of the anvil 20 is located near the center of the workpiece 14 and the other end protrudes radially outward from the workpiece 14 with respect to the workpiece 14. The workpiece 14 is hit with the anvil, and then the anvil 20 is slightly changed in the rotational direction (circumferential direction) relative to the workpiece 14, and the same hammer is applied to the workpiece 14 with the anvil 20. After that, the same striking is applied one after another while changing the position of the anvil 20 in the circumferential direction of the workpiece 14 at the same pitch until the anvil 20 reaches a position that makes one round with respect to the workpiece 14, thereby reducing the workpiece 14. .
ここで放射鍛造(1)は、金敷20を加工品14に対して1周させるまでの加工であり、また放射鍛造(2)は、その後に再び金敷20で加工品14の同じ面を叩きながら金敷20を加工品14に対し1周する位置まで移動させ、その間打撃を順次加えて行く加工である。
放射鍛造(3)は、加工品14の向きを表裏逆転させて同様の加工を行うものであり、放射鍛造(4)は、更に同様の加工を2回目の加工として実行するものである。
Here, the radial forging (1) is a process until the anvil 20 is rotated once with respect to the workpiece 14, and the radial forging (2) is performed while hitting the same surface of the workpiece 14 again with the anvil 20 after that. In this process, the anvil 20 is moved to a position that makes one turn with respect to the processed product 14, and hits are sequentially applied during that time.
The radial forging (3) performs the same processing by reversing the direction of the processed product 14, and the radial forging (4) further executes the same processing as the second processing.
以上の放射鍛造(1)では高さ寸法を300mmとし、また放射鍛造(2)では更に厚みを260mmとした。
そして厚みがこの寸法となったところで、加工品14を表裏逆向きとして放射鍛造(3)を実行し、高さを225mmとした。そして放射鍛造(4)によって高さが195mmで径方向寸法が1102mmの最終寸法,形状のディスク形状品を得た。
尚以上の放射鍛造(1),(2),(3),(4)では、平坦部が100mm幅の金敷を用いて加工を行った。
尚この放射鍛造(1)では圧下量が50mm,放射鍛造(2)では圧下量が40mm,放射鍛造(3)では圧下量が35mm,放射鍛造(4)では圧下量が30mmで、放射鍛造(1),(2),(3),(4)全体を合計した圧下率は表2に示しているように44.3%である。
In the above radial forging (1), the height was set to 300 mm, and in the radial forging (2), the thickness was further set to 260 mm.
And when thickness became this dimension, the radial forging (3) was performed by making the processed goods 14 into the reverse direction, and height was set to 225 mm. Then, a disk-shaped product having a final size and shape of 195 mm in height and 1102 mm in the radial direction was obtained by radiation forging (4).
In the above radial forging (1), (2), (3), (4), the flat portion was processed using an anvil with a width of 100 mm.
The radial forging (1) has a reduction amount of 50 mm, the radial forging (2) has a reduction amount of 40 mm, the radial forging (3) has a reduction amount of 35 mm, the radial forging (4) has a reduction amount of 30 mm, and the radial forging ( As shown in Table 2, the total reduction ratio of 1), (2), (3), and (4) is 44.3%.
以上の鍛造及びリヒートのプロセスを実行した後、空冷(AC)に続いてディスク成形品を1010℃×4hrの条件で粒成長処理を行った。
この粒成長処理は、放射鍛造プロセスでディスク成形品に加えられた歪みに基づいて結晶を再結晶させ且つ目標とする結晶粒度まで粒成長させる工程である。
尚、この粒成長処理はST処理(固溶化熱処理)を兼ねて行うようにしても良い。
因みに以上のような仕上鍛造の各プロセスごとの結晶粒度の変化を図7に示している。
After performing the above forging and reheating processes, the disk molded product was subjected to grain growth treatment under conditions of 1010 ° C. × 4 hr following air cooling (AC).
This grain growth process is a process in which crystals are recrystallized based on the strain applied to the disk molded product in the radial forging process and grown to a target crystal grain size.
Note that this grain growth process may also be performed as an ST process (solution heat treatment).
Incidentally, the change in crystal grain size for each process of finish forging as described above is shown in FIG.
図7から、当初結晶粒度ASTM#2であったものが、鍛造ステップの実行によって結晶粒が微細化し、続くリヒートステップで粒成長し、それらが交互に繰り返されることで最終に結晶粒度がASTM#6強の結晶粒度が得られており、求める結晶粒度ASTM#4以上の微細な結晶粒度を達成することができた。
尚結晶粒度の測定は、各ステップ後の組織を光学顕微鏡で撮影し、写真中一定面積内にある結晶粒の数により結晶粒度を求めた(6視野の平均)。
From FIG. 7, the initial crystal grain size ASTM # 2 is refined by executing the forging step, grown in the subsequent reheat step, and alternately repeated so that the final crystal grain size is ASTM #. A crystal grain size of 6 or more was obtained, and a fine crystal grain size larger than the required crystal grain size ASTM # 4 could be achieved.
The crystal grain size was measured by taking the structure after each step with an optical microscope and determining the crystal grain size from the number of crystal grains within a certain area in the photograph (average of 6 fields of view).
12 ビレット
14 加工品
16,20 金敷
18 ターンテーブル
12 Billets 14 Processed products 16, 20 Anvil 18 Turntable
Claims (3)
C:0.02〜0.06%
Ni:40〜45%
Cr:12〜14%
Mo:6〜7%
Ti:2.5〜3.5%
Al:0.12〜0.30%
B:0.010〜0.020%
残部Fe及び不可避的不純物の組成を有するNi基耐熱合金から成る被加工材を、仕上鍛造において、炭化物析出によるピン止め作用の下で、合計圧下率10%以上で圧下を行う鍛造ステップと950〜1060℃で1時間以上保持するリヒートステップとをそれぞれ1回以上繰り返し、同一個所に少なくとも2回以上の打撃を加える自由逐次鍛造を施してディスク形状に鍛造成形し、ASTM結晶粒度#4以上の組織のディスク品を得ることを特徴とするディスク形状品の鍛造加工方法。
By mass% C: 0.02 to 0.06%
Ni: 40-45%
Cr: 12-14%
Mo: 6-7%
Ti: 2.5-3.5%
Al: 0.12 to 0.30%
B: 0.010-0.020%
A forging step in which a work piece made of a Ni- base heat-resistant alloy having a composition of the balance Fe and inevitable impurities is subjected to reduction at a total reduction ratio of 10% or more in finish forging under a pinning action by carbide precipitation; The reheating step held at 1060 ° C. for 1 hour or more is repeated at least once each time, subjected to free sequential forging that strikes at least twice at the same location, forged into a disk shape, and has a structure of ASTM grain size # 4 or more A disc-shaped forging method characterized by obtaining a disc product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014073028A JP6299344B2 (en) | 2014-03-31 | 2014-03-31 | Method for forging disc-shaped products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014073028A JP6299344B2 (en) | 2014-03-31 | 2014-03-31 | Method for forging disc-shaped products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015193030A JP2015193030A (en) | 2015-11-05 |
JP6299344B2 true JP6299344B2 (en) | 2018-03-28 |
Family
ID=54432589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014073028A Active JP6299344B2 (en) | 2014-03-31 | 2014-03-31 | Method for forging disc-shaped products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6299344B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105642804B (en) * | 2016-02-03 | 2016-11-16 | 中南大学 | A kind of forging method improving large scale magnesium alloy forging cake structural homogenity |
CN111069492B (en) * | 2019-12-31 | 2022-11-15 | 中钢集团邢台机械轧辊有限公司 | Cold-type blank forging method for centrifugal machine |
CN114277221A (en) * | 2021-12-17 | 2022-04-05 | 无锡派克新材料科技股份有限公司 | Method for improving flaw detection quality of X22CrMoV12-1 disk of gas turbine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3871928A (en) * | 1973-08-13 | 1975-03-18 | Int Nickel Co | Heat treatment of nickel alloys |
JP2586023B2 (en) * | 1987-01-08 | 1997-02-26 | 日本鋼管株式会社 | Method for producing TiA1-based heat-resistant alloy |
JPH08311626A (en) * | 1995-05-17 | 1996-11-26 | Japan Steel Works Ltd:The | Production of superalloy material |
JP3909406B2 (en) * | 2002-02-06 | 2007-04-25 | 大同特殊鋼株式会社 | Method for producing Ni-based alloy material |
JP2003251429A (en) * | 2002-03-01 | 2003-09-09 | Daido Steel Co Ltd | Method for cogging nickel base alloy |
JP2008200730A (en) * | 2007-02-21 | 2008-09-04 | Daido Steel Co Ltd | METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY |
-
2014
- 2014-03-31 JP JP2014073028A patent/JP6299344B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015193030A (en) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6422045B1 (en) | Ni-base superalloy and manufacturing method thereof | |
JP6171762B2 (en) | Method of forging Ni-base heat-resistant alloy | |
JP6150192B2 (en) | Method for producing Ni-base superalloy | |
US10196724B2 (en) | Method for manufacturing Ni-based super-heat-resistant alloy | |
US20200048750A1 (en) | Ni-Based Alloy Product and Method for Producing Same, and Ni-Based Alloy Member and Method for Producing Same | |
JP6252704B2 (en) | Method for producing Ni-base superalloy | |
JP6889418B2 (en) | Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy | |
JP5652730B1 (en) | Ni-base superalloy and manufacturing method thereof | |
JP6079294B2 (en) | Free forging method of Ni-base heat-resistant alloy member | |
JP2009007672A (en) | Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloy | |
JP2008200730A (en) | METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY | |
KR20150130961A (en) | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys | |
JPH05508194A (en) | Superalloy forging method | |
JP5994951B2 (en) | Method for producing Fe-Ni base superalloy | |
JP2009506210A5 (en) | ||
US20220154311A1 (en) | Ni-BASED SUPERALLOY AND METHOD FOR MANUFACTURING Ni-BASED SUPERALLOY | |
JP6315320B2 (en) | Method for producing Fe-Ni base superalloy | |
JP2014161861A5 (en) | ||
JP6120200B2 (en) | Ni-base superalloy and turbine disk using the same | |
JPH09508670A (en) | Superalloy forging method and related composition | |
JP6299344B2 (en) | Method for forging disc-shaped products | |
JP2019183263A (en) | Ni BASED SUPERALLOY MATERIAL FOR COLD WORKING | |
JP6060714B2 (en) | Manufacturing method of disk-shaped forged products | |
JP2024085717A (en) | METHOD FOR PRODUCING Ni-BASED ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20161222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170120 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6299344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |