JP6171762B2 - Method of forging Ni-base heat-resistant alloy - Google Patents
Method of forging Ni-base heat-resistant alloy Download PDFInfo
- Publication number
- JP6171762B2 JP6171762B2 JP2013187763A JP2013187763A JP6171762B2 JP 6171762 B2 JP6171762 B2 JP 6171762B2 JP 2013187763 A JP2013187763 A JP 2013187763A JP 2013187763 A JP2013187763 A JP 2013187763A JP 6171762 B2 JP6171762 B2 JP 6171762B2
- Authority
- JP
- Japan
- Prior art keywords
- forging
- grain size
- processed
- rough
- upsetting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Forging (AREA)
Description
この発明はNi基耐熱合金の鍛造加工方法に関し、詳しくは直径200mm超の太径の円柱状の鍛造品を得るための鍛造加工方法に関する。 The present invention relates to a Ni-base heat-resistant alloy forging method, and more particularly to a forging method for obtaining a thick cylindrical forged product having a diameter of more than 200 mm.
Ni基耐熱合金から成る被処理材を円柱状に加工する方法として、従来4面鍛造による加工方法が知られている。
この4面鍛造加工では、図7に示すように被処理材100の外周周りに90°ごと4面に配置した工具102を、被処理材100に対して軸直角方向の4方向から同時に押し込んで打撃を加え、その動きを、被処理材100を少しずつ回転させながら、更には軸方向に少しずつ送りながら繰返し行って被処理材100に圧下を加え、断面円形に加工する。
As a method of processing a material to be processed made of a Ni-base heat-resistant alloy into a cylindrical shape, a processing method by four-side forging has been conventionally known.
In this four-side forging process, as shown in FIG. 7,
この4面鍛造加工では、被処理材を高速で加工することができ、従って難加工材であっても加工が可能である利点を有する。
加工の速度が遅ければ加工の途中で被処理材が冷えてしまい、その場合被処理材が難加工材であると加工不能に陥ってしまうが、4面鍛造加工では加工を高速で行うことができるため、即ち被処理材が冷えて硬く、変形抵抗が大きくなる前に加工を終了することが可能であるため、難加工材であっても加工が可能である。
The four-side forging process has an advantage that the material to be processed can be processed at a high speed, and therefore, even a difficult-to-process material can be processed.
If the processing speed is slow, the material to be processed cools in the middle of processing, and in this case, if the material to be processed is difficult to process, it becomes impossible to process. In other words, since it is possible to finish the processing before the material to be processed is cooled and hard and the deformation resistance becomes large, even a difficult-to-process material can be processed.
反面、この4面鍛造加工では、加工の圧下率を大きく取ることができず、加工により歪み付与できるのは表面から近い位置までの範囲に限られてしまう。
一般にこの4面鍛造加工では、直径が200mm近くなると被処理材の横断面の中心部に対し歪みを十分に付与することが難しくなり、加工可能な形状が直径200mm未満の小径のものに限定されてしまう問題がある。
横断面の中心部に十分な歪みが加わらないために、中心部の結晶粒を再結晶によって十分に微細化することが難しいからである。
On the other hand, in this four-side forging process, the reduction ratio of the process cannot be taken large, and the strain can be imparted by the process is limited to the range from the surface to the near position.
In general, in this four-side forging process, when the diameter is close to 200 mm, it becomes difficult to sufficiently impart distortion to the central portion of the cross section of the material to be processed, and the shape that can be processed is limited to a small diameter of less than 200 mm. There is a problem.
This is because sufficient strain is not applied to the central portion of the cross section, and it is difficult to sufficiently refine the crystal grains in the central portion by recrystallization.
Ni基耐熱合金から成る部材の高温引張強度や衝撃特性,疲労特性等の機械的特性は、Ni基耐熱合金の結晶粒の粒度に左右される。
Ni基耐熱合金はオーステナイト単相材料であるため、相変態を利用した結晶粒微細化ができず、再結晶温度以上の温度での熱間加工(熱間鍛造)により結晶を再結晶させることで結晶粒を微細化するが、4面鍛造加工では直径が200mmを超す太径の円柱状の部材になると、横断面中心部に対し、再結晶による結晶微細化の効果を十分に及ぼすことが難しいことから、直径が200mm未満の小径のものにその適用が限定されてしまうのである。
Mechanical properties such as high-temperature tensile strength, impact properties, and fatigue properties of Ni-base heat-resistant alloys depend on the grain size of the Ni-base heat-resistant alloys.
Ni-based heat-resistant alloy is an austenite single-phase material, so it is impossible to refine crystal grains using phase transformation, and by recrystallizing the crystal by hot working (hot forging) at a temperature higher than the recrystallization temperature. Although crystal grains are refined, in the case of a four-side forging process, when it becomes a large cylindrical member having a diameter exceeding 200 mm, it is difficult to sufficiently exert the effect of crystal refinement by recrystallization on the center of the cross section. Therefore, the application is limited to a small diameter of less than 200 mm.
直径が200mmを超えるようなNi基耐熱合金から成る太径の円柱状の部材の加工方法として、他に圧延による加工方法があるが、圧延による加工の場合もまた、太径の円柱状の部材に対して、その中心部に到るまで十分な歪みを付与することは難しい。
従って圧延加工の場合においても、中心部に十分な歪みを与えて結晶粒を再結晶により微細化するといったことは難しい。
As a method for processing a large-diameter columnar member made of a Ni-base heat-resistant alloy having a diameter exceeding 200 mm, there is another processing method by rolling, but also in the case of processing by rolling, a large-diameter columnar member On the other hand, it is difficult to give sufficient distortion until it reaches the center.
Accordingly, even in the case of rolling, it is difficult to refine the crystal grains by recrystallization while giving sufficient strain to the center.
尚本発明に対する先行技術として、下記特許文献1にはNi基耐熱合金の加工方法として、先ず被処理材に対する鍛伸加工を実施し、その後に鍛伸加工後の被処理材に対しコーナー圧下を行ってこれを多角形状化する整形加工を実施し、しかる後4面鍛造加工を施す点が開示されている。
しかしながらこの特許文献1に開示のものにおいて、粗鍛造加工に相当する鍛伸加工は、据込と鍛伸とを繰り返すものではなく、単に鍛伸加工を行うにすぎないものである点で本発明と異なる。
In addition, as prior art to the present invention, in Patent Document 1 below, as a method for processing a Ni-based heat-resistant alloy, first, forging is performed on a material to be processed, and then corner reduction is applied to the material to be processed after forging. It is disclosed that a shaping process is performed to make this polygonal, and then a four-side forging process is performed.
However, in the one disclosed in Patent Document 1, the forging process corresponding to the rough forging process does not repeat upsetting and forging process, but is merely a forging process. And different.
本発明に対する他の先行技術として、下記特許文献2には「Ni基耐熱合金の製造方法」についての発明が示され、そこにおいて940℃以上1000℃以下の鍛造温度で、1打撃当りの圧下率が7%以上となる加工を同一個所に少なくとも2回以上行うことで、結晶粒径を均一且つ微細にする点が開示されている。
しかしながらこの特許文献2においても、鍛伸を行う点が開示されているものの、据込と鍛伸とを組合せて粗鍛造を行う点の開示はなく、また直径200mm超の太径の柱状材を鍛造加工にて得る点の開示もなく、本発明とは異なる。
As another prior art to the present invention, the following
However, even in this
更に他の先行技術として、下記特許文献3には「Ni基超合金の鍛造方法」についての発明が示され、そこにおいてNi基超合金のインゴットを1050℃で加熱し高速4面鍛造機で鍛造し、φ200mmの1次鍛造品を形成した後、これよりも低い温度の960℃で高速4面鍛造機を用いて2次鍛造を行い、φ118mmの2次鍛造品を成形する点が開示されている。 Further, as another prior art, the following Patent Document 3 discloses an invention about a “forging method of a Ni-base superalloy”, in which a Ni-base superalloy ingot is heated at 1050 ° C. and forged by a high-speed four-side forging machine. Then, after forming a φ200 mm primary forging product, a secondary forging is performed using a high-speed four-side forging machine at a lower temperature of 960 ° C., and a φ118 mm secondary forging product is formed. Yes.
この特許文献3に開示の技術では、2次鍛造の温度を低くし、変形抵抗を上げることで内部にまで歪みが加わるようにし、結晶粒の細粒化を図っている。
但しこの特許文献3に開示のものにあっても、鍛伸を行う点が開示されているのみで、据込と鍛伸とを組み合せて粗鍛造を行う点、高速4面鍛造に先立って鍛伸と据込とを組み合せた粗鍛造を行う点等について開示するところはなく、本発明とは異なる。
In the technique disclosed in Patent Document 3, the temperature of secondary forging is lowered and the deformation resistance is increased so that strain is applied to the inside, thereby reducing the crystal grains.
However, even the one disclosed in Patent Document 3 only discloses the point for forging, the point for rough forging by combining upsetting and forging, and forging prior to high-speed four-side forging. There is no disclosure about the point of rough forging combined with stretching and upsetting, which is different from the present invention.
本発明は以上のような事情を背景とし、Ni基耐熱合金から成る直径200mm超の太径の円柱状の鍛造品を加工形成することができ、且つ中心部に到るまで結晶を微細化することのできる鍛造加工方法を提供することを目的としてなされたものである。 The present invention is based on the above circumstances, and can process and form a cylindrical forged product having a diameter of more than 200 mm made of a Ni-base heat-resistant alloy and refines the crystal until it reaches the center. It is made for the purpose of providing the forging method which can be used.
而して請求項1のものは、質量%でCr:17.0〜21.0%,Co:11.0〜13.0%,Mo:8.0〜12.0%,Al:1.0〜2.0%,Ti:2.5〜4.0%,Fe:≦6.0%,B:0.001〜0.020%,C:≦0.15%,残部Ni及び不可避的不純物の組成を有するNi基耐熱合金から成る被処理材に対して、前加工としての粗鍛造加工と、被処理材を断面形状が直径200mm超の太径の円柱状の鍛造品に加工し成形する仕上げ鍛造加工とを行い、該粗鍛造加工では、予め1180〜1280℃でのソーキングを行った上で、該ソーキング後の前記被処理材に対して、圧下率20%以上の据込と、圧下率20%以上の鍛伸とを2回以上繰り返し行うとともに、該粗鍛造加工における最終の据込及び鍛伸を含む終盤工程を結晶粒の粒度調整工程として、該粒度調整工程以前の据込及び鍛伸を1030〜1150℃の温度で、また前記終盤の粒度調整工程では据込及び鍛伸を1030〜1080℃の低温度で行って、粗鍛造加工後の被処理材の中心部に到るまでの組織を前記鍛造品に求められる設定結晶粒度以上の細粒組織となし、前記仕上げ鍛造加工では1080℃以下且つ1030℃以上の温度で、前記設定結晶粒度を確保しながら前記被処理材を目標形状の前記鍛造品に成形加工することを特徴とする。 Thus, the content of claim 1 is by mass: Cr: 17.0 to 21.0%, Co: 11.0 to 13.0%, Mo: 8.0 to 12.0%, Al: 1.0 to 2.0%, Ti: 2.5 to 4.0%, Fe: ≦ 6.0%, B: 0.001 to 0.020%, C: ≦ 0.15%, a rough forging process as a pre-processing for a workpiece made of a Ni-based heat-resistant alloy having a composition of the balance Ni and inevitable impurities, The forging process is performed by processing and forming the treated material into a cylindrical forged product having a cross-sectional diameter exceeding 200 mm in diameter, and in the rough forging process, after soaking at 1180 to 1280 ° C. in advance, The upsetting with a reduction ratio of 20% or more and the forging with a reduction ratio of 20% or more are repeated twice or more for the treated material after the soaking, and the final upsetting and forging in the rough forging process are performed. The final stage process including stretching is defined as a grain size adjusting process of crystal grains, and upsetting and forging before the grain size adjusting process are 1030 to 115. In the final stage particle size adjustment step, upsetting and forging are performed at a low temperature of 1030 to 1080 ° C., and the forging is performed until the core reaches the center of the processed material after rough forging. The forged product having a fine grain structure equal to or larger than the set crystal grain size required for a product, and having the target material in the target shape while ensuring the set crystal grain size at a temperature of 1080 ° C. or lower and 1030 ° C. or higher in the finish forging process. It is characterized in that it is molded.
請求項2のものは、請求項1において、前記粗鍛造加工における前記粒度調整工程以前の据込及び鍛伸を1100〜1150℃の温度で行うことを特徴とする。 According to a second aspect of the present invention, in the first aspect, the upsetting and forging before the grain size adjusting step in the rough forging process are performed at a temperature of 1100 to 1150 ° C.
請求項3のものは、請求項1,2の何れかにおいて、前記仕上げ鍛造加工として、前記粗鍛造加工後の断面4角形状の被処理材に対しコーナー圧下を行って該被処理材の断面形状を4角よりも角数の多い多角形状に鍛伸により整形する整形加工を準備加工として行った上で、軸直角方向の4方向から被処理材に同時に打撃を加える4面鍛造加工を行うことを特徴とする。 According to a third aspect of the present invention, in any one of the first and second aspects, as the finish forging process, a cross-section of the material to be processed is performed by performing corner reduction on the material to be processed having a quadrangular cross section after the rough forging process. A four-side forging process is performed, in which the shape is shaped into a polygonal shape with more than four corners by forging, as a preparatory process, and the workpiece is simultaneously hit from four directions perpendicular to the axis. It is characterized by that.
請求項4のものは、請求項1〜3の何れかにおいて、前記設定結晶粒度がASTM結晶粒度No.4以上であることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the set crystal grain size is ASTM crystal grain size No. 4 or more.
本発明におけるNi基耐熱合金はCrを17.0〜21.0%,Coを11.0〜13.0%,Moを8.0〜12.0%と多量に含有した、高温での引張強度の大きい高強度のNi基合金で、熱間加工の際の変形抵抗が大きい加工し難い難加工材である。 The Ni-base heat-resistant alloy in the present invention is a high-strength Ni-base alloy with a high tensile strength at high temperatures, containing 17.0-21.0% Cr, 11.0-13.0% Co, and 8.0-12.0% Mo. It is a difficult-to-machine material that has a large deformation resistance during inter-machining.
本発明では、このような加工し難いNi基耐熱合金を次のようにして直径200mm超の太径の円柱状の部材に鍛造加工する。
詳しくは、本発明では鍛造加工を前加工としての粗鍛造加工と、仕上げ鍛造加工とに分けて実行し、最終の求める鍛造品、即ち直径が200mmを超す太径の円柱状に成形加工する。
In the present invention, such a hard-to-process Ni-base heat-resistant alloy is forged into a thick cylindrical member having a diameter of more than 200 mm as follows.
Specifically, in the present invention, the forging process is divided into a rough forging process as a pre-process and a finish forging process, and is finally processed into a forged product, that is, a large-diameter column having a diameter exceeding 200 mm.
本発明では、粗鍛造加工と仕上げ鍛造加工とに、それぞれ次のように役割を分担させる。
本発明では仕上げ鍛造において4面鍛造加工を行う。
この4面鍛造加工は、前述したように高速且つ短時間で加工を終了することが可能であり、従って難加工材であっても加工を良好に完了することができる。
また4面鍛造加工では、被処理材に対して周方向に均等に加工を加えて、表層及びこれに近い領域に歪みを均等に付与することができ、従ってそれらの組織を周方向に均等化することができる。
In the present invention, roles are assigned to the rough forging process and the finish forging process as follows.
In the present invention, four-face forging is performed in finish forging.
As described above, this four-side forging process can be completed at a high speed and in a short time, and therefore, even a difficult-to-process material can be completed satisfactorily.
In the four-side forging process, the workpiece can be evenly processed in the circumferential direction, and the strain can be evenly applied to the surface layer and the area close to it, thus equalizing the structure in the circumferential direction. can do.
但しこの4面鍛造では、直径200mm超の太径の円柱状の部材に対して中心部に到るまで十分な歪みを付与すること、即ち中心部に付与した十分な歪みによって結晶粒を十分に微細化することは難しい。
そこで本発明では最終の鍛造品、即ち仕上げ鍛造加工後の円柱状の部材に求められる中心部までの組織の作り込みを、最初の粗鍛造加工で行う。即ち中心部に到るまでの組織の微細化を粗鍛造加工に役割分担させる。
However, in this four-sided forging, sufficient strain is applied to the cylindrical member having a diameter of more than 200 mm until reaching the center portion, that is, the crystal grains are sufficiently formed by the sufficient strain applied to the center portion. It is difficult to miniaturize.
Therefore, in the present invention, the formation of the structure up to the center portion required for the final forged product, that is, the cylindrical member after finish forging is performed by the first rough forging. In other words, the role of the fine forging process is assigned to the rough forging process until reaching the center.
そのため本発明では粗鍛造加工において、先ず1180〜1280℃でのソーキングを行った上で、ソーキング後の被処理材に対して温度1030〜1150℃の下での、圧下率20%以上の据込と、温度1030〜1150℃の下での圧下率20%以上の鍛伸とを合せて2回以上繰り返して行う。 For this reason, in the present invention, in the rough forging process, first, soaking at 1180 to 1280 ° C. is performed, and then the material to be treated after the soaking is set up at a reduction rate of 20% or more at a temperature of 1030 to 1150 ° C. And forging with a reduction rate of 20% or more at a temperature of 1030 to 1150 ° C. are repeated twice or more.
この粗鍛造加工のソーキングではMC型晶出物を母相に固溶させる。固溶したMC型晶出物は、鍛造完了後の時効処理時にM6C型炭化物を微細析出して粒界を強化する。
ここでソーキング温度を1180℃以上とするのは、これよりも低い温度であるとMC型晶出物を十分に固溶させることができないからである。
一方1280℃を超えるとNi基耐熱合金が局部溶融を起してしまう。
In this rough forging soaking, the MC crystallized product is dissolved in the matrix. The MC-type crystallized material that has been dissolved dissolves M6C-type carbides finely during the aging treatment after completion of forging, thereby strengthening the grain boundaries.
Here, the reason why the soaking temperature is set to 1180 ° C. or more is that the MC type crystallized product cannot be sufficiently dissolved at a temperature lower than this.
On the other hand, if it exceeds 1280 ° C., the Ni-base heat-resistant alloy will cause local melting.
本発明では、上記条件で据込と鍛伸とを組み合せて行うことで、粗鍛造加工により中心部に到るまで被処理材全体に十分な歪みを付与する。そしてこれにより据込及び鍛伸の加工直後において、中心部に到るまで被処理材の結晶粒を十分に微細化する。
即ち中心部に到るまで最終の鍛造品に求められる設定結晶粒度以上の細粒組織とする。
そして最終の仕上げ鍛造加工では、1080℃以下の温度の下で上記の設定結晶粒度を確保しながら、4面鍛造加工により被処理材を上記目標形状の鍛造品に成形加工する。
In the present invention, by performing a combination of upsetting and forging under the above conditions, sufficient strain is imparted to the entire material to be processed until reaching the center by rough forging. As a result, immediately after the upsetting and forging processes, the crystal grains of the material to be processed are sufficiently refined until reaching the center.
That is, a fine grain structure having a grain size larger than the set crystal grain size required for the final forged product until reaching the center.
In the final finish forging process, the material to be processed is formed into a forged product having the target shape by four-face forging while ensuring the set crystal grain size at a temperature of 1080 ° C. or lower.
本発明において、粗鍛造加工で圧下率20%以上の据込を行うのは、そのような圧下率で加工を行うことで被処理材の中心部に十分な歪み(歪み量0.22以上)を付与できることによる。
同様に圧下率20%以上の鍛伸を行うのは、その様な圧下率で加工を行うことで被処理材の中心部に十分な歪み(歪み量0.22以上)を付与できることによる。
換言すれば、本発明では粗鍛造加工において中心部に十分な歪み量0.22以上を付与できるように据込と鍛伸とを圧下率20%以上で行う。
尚ここで言うところの圧下率20%以上の加工とは、リヒートとリヒートとの間に行われる加工の合計の圧下率を意味している。
In the present invention, upsetting at a rolling reduction rate of 20% or more is performed by rough forging, and sufficient strain is applied to the central portion of the material to be processed (strain amount is 0.22 or more). By being able to give.
Similarly, forging at a reduction rate of 20% or more is because sufficient strain (a strain amount of 0.22 or more) can be imparted to the central portion of the material to be processed by processing at such a reduction rate.
In other words, in the present invention, upsetting and forging are performed at a rolling reduction of 20% or more so that a sufficient strain amount of 0.22 or more can be imparted to the central portion in rough forging.
In addition, the processing of 20% or more of rolling reduction said here means the total rolling reduction of the process performed between reheats.
またこの粗鍛造加工において、据込及び鍛伸をそれぞれ1030℃〜1150℃の温度で行うのは、1030℃未満では鍛錬比に関係なく被処理材に再結晶が発生せず、従って再結晶による結晶の微細化が望めないことによる。
一方1150℃超の温度では、温度が高過ぎて据込及び鍛伸の加工直後における結晶粒の粒成長速度が速くなり過ぎ、結晶粒の粗大化を招いてしまうことによる。
In this rough forging process, upsetting and forging are performed at a temperature of 1030 ° C. to 1150 ° C., respectively. If the temperature is less than 1030 ° C., recrystallization does not occur in the material to be processed regardless of the forging ratio. This is because crystal refinement cannot be expected.
On the other hand, when the temperature is higher than 1150 ° C., the temperature is too high, and the grain growth rate immediately after the upsetting and forging processes becomes too high, leading to the coarsening of the crystal grains.
尚この粗鍛造加工において、最終の据込及び鍛伸を含む終盤工程でも1150℃に近いような高温で加工を行ってしまうと、高温度の下で結晶粒の粒成長が速くなって粗大結晶粒となってしまい、最終の鍛造品に求められる設定結晶粒度を粗鍛造加工において確保できなくなってしまう。
そこで本発明では、最終の据込と鍛伸とを含む終盤工程を結晶粒の粒度調整工程として設定し、その粒度調整工程においては、据込及び鍛伸の加工を1080℃以下の低温度で行う。
In this rough forging process, if processing is performed at a high temperature close to 1150 ° C. even in the final process including final upsetting and forging, the grain growth of the crystal grains becomes faster at high temperatures, resulting in coarse crystals. Thus, the set crystal grain size required for the final forged product cannot be secured in the rough forging process.
Therefore, in the present invention, the final process including final upsetting and forging is set as the grain size adjustment process of the crystal grains, and in the grain size adjustment process, the upsetting and forging processes are performed at a low temperature of 1080 ° C. or less. Do.
以上のような本発明によれば、中心部に到るまで鍛造品の組織を設定結晶粒度以上の結晶粒度の細粒組織、例えばASTM結晶粒度No.4以上(請求項4)の結晶粒度の細粒組織としながら、直径200mm超の大径の円柱状の鍛造品に良好に加工成形することができる。 According to the present invention as described above, the structure of the forged product is set to a fine grain structure having a grain size equal to or larger than the set grain size, for example, the grain size of ASTM grain size No. 4 or more (Claim 4). While having a fine-grained structure, it can be satisfactorily processed into a large-diameter cylindrical forged product having a diameter of more than 200 mm.
本発明のNi基耐熱合金は難加工材であり、粗鍛造加工における上記の粒度調整工程以前においては、据込及び鍛伸の加工は変形抵抗を相対的に小さくできる1100〜1150℃の高い温度の下で行うことが望ましい(請求項2)。
このような温度で据込及び鍛伸を行うことで、良好にそれらの加工を行うことができる。
但しこのような高い温度の下では、再結晶にて生成した結晶粒が速やかに粒成長して粗大化してしまい易いが、本発明では粗鍛造工程の終盤の粒度調整工程において1080℃以下の低温度で据込及び鍛伸の加工を行うため、加工後の結晶粒の粒成長を抑制して、被処理材の組織を中心部に到るまで微細組織に留め置くことができる。
The Ni-base heat-resistant alloy of the present invention is a difficult-to-process material, and before the particle size adjustment step in the rough forging process, the upsetting and forging processes can be performed at a high temperature of 1100 to 1150 ° C. that can relatively reduce deformation resistance. (Claim 2).
By performing upsetting and forging at such a temperature, it is possible to satisfactorily process them.
However, under such a high temperature, the crystal grains generated by recrystallization tend to grow rapidly and become coarse, but in the present invention, the grain size adjustment process at the end of the rough forging process has a low temperature of 1080 ° C. or lower. Since the upsetting and forging processes are performed at a temperature, the growth of crystal grains after processing can be suppressed, and the structure of the material to be processed can be retained in the fine structure until it reaches the center.
本発明において、粗鍛造加工後の被処理材の断面形状は4角形状とすることができる。
一方仕上げ鍛造加工における上記の4面鍛造加工では、最終形状は断面円形状となる。この4面鍛造加工では、基本的に当初形状が円形に近い断面形状のものを断面円形状化し且つこれを繰り返すことで段階的に細径化して行く。
この場合、粗鍛造加工後の断面4角形状の被処理材に対して直接4面鍛造加工を加えることは難しい。
In this invention, the cross-sectional shape of the to-be-processed material after rough forging can be made into a square shape.
On the other hand, in the above-mentioned four-side forging process in the finish forging process, the final shape is a circular cross section. In this four-face forging process, a cross-sectional shape whose initial shape is close to a circle is basically made into a circular cross-section, and the diameter is gradually reduced by repeating this.
In this case, it is difficult to directly perform a four-side forging process on the workpiece having a quadrangular cross section after the rough forging process.
そこで請求項3に従い、仕上げ鍛造加工において4面鍛造加工前にその準備工程として、粗鍛造加工後の被処理材に対するコーナー圧下を行って、被処理材の断面形状を鍛伸により4角よりも角数の多い多角形状に形状整形する整形加工を行うのが望ましい(請求項3)。 Therefore, according to claim 3, as a preparatory process prior to four-side forging in finish forging, corner reduction is performed on the material to be processed after rough forging, so that the cross-sectional shape of the material to be processed is less than four by forging. It is desirable to perform a shaping process to shape the polygonal shape having a large number of corners.
この整形加工は、基本的にコーナー圧下により被処理材の断面形状を円形に近い形に整えるものであり、その加工の本質上、被処理材の中心部に到るまで十分な歪みを加えることは難しいが、本発明では粗鍛造加工で被処理材に必要な歪みを加えて組織を微細化し、仕上げ鍛造加工ではその微細な組織を保持するだけで良いので、仕上げ鍛造加工として上記の整形加工及び4面鍛造加工を行う場合であっても、鍛造品の組織を中心部に到るまで微細組織とすることができる。 This shaping process basically adjusts the cross-sectional shape of the material to be processed to a shape close to a circle by reducing the corners, and, due to the nature of the processing, applies sufficient strain until it reaches the center of the material to be processed. Although it is difficult, in the present invention, the rough forging process adds the necessary strain to the material to be refined, and the final forging process only holds the fine structure. And even when performing a four-face forging process, the microstructure of the forged product can be made a fine structure until it reaches the center.
ここで仕上げ鍛造加工では、被処理材の中心部に対して加工による一定以上の歪み、詳しくは結晶粒を粗鍛造加工後の結晶粒よりも更に微細化させるために必要な歪みを加えることは必要とせず、鍛造品に求められる最終の形状出しを行うための加工を行えば良い。
即ち仕上げ鍛造加工は、被処理材を最終の目標とする断面形状に成形加工すれば良い。本発明では仕上げ鍛造加工が形状出しのための役割を担っている。
Here, in the finish forging process, it is possible to apply a strain greater than a certain level due to processing to the central portion of the material to be processed, specifically, the strain necessary for making the crystal grains further finer than the crystal grains after the rough forging process. What is necessary is just to perform the process for performing the final shape required for a forged product.
That is, in the finish forging process, the material to be processed may be formed into a final cross-sectional shape. In the present invention, finish forging plays a role for shaping.
次に、本発明のNi基耐熱合金における各成分の添加理由及び添加量の限定理由を説明する。
Cr:17.0〜21.0%
Crは17.0%未満で耐熱性不足となり、一方21.0%を超えて過剰に含有させると、M23C6等の炭化物が多量に発生し延性低下となるため含有量を17.0〜21.0%とする。
Next, the reason for adding each component and the reason for limiting the amount added in the Ni-base heat-resistant alloy of the present invention will be described.
Cr: 17.0-21.0%
If Cr is less than 17.0%, heat resistance is insufficient, and if over 21.0% is contained, a large amount of carbides such as M 23 C 6 are generated and ductility is lowered, so the content is made 17.0-21.0%.
Co:11.0〜13.0%
Coは11.0%未満で耐熱性不足となり、13.0%を超えて過剰に含有すると、析出を意図しないAl,Tiとの化合物を形成し熱間強度不足となるため含有量を11.0〜13.0%とする。
Co: 11.0-13.0%
If Co is less than 11.0%, heat resistance is insufficient, and if it exceeds 13.0% and excessively contained, a compound with Al and Ti that does not intend to precipitate is formed, resulting in insufficient hot strength, so the content is made 11.0-13.0% .
Mo:8.0〜12.0%
Moは8.0%未満で耐熱性不足となり、12.0%を超えて過剰に含有すると、M2C等の炭化物過多となって延性低下となるため含有量を8.0〜12.0%とする。
Mo: 8.0-12.0%
If Mo is less than 8.0%, heat resistance is insufficient, and if it exceeds 12.0% and excessively contained, excessive carbides such as M 2 C and ductility are lowered, so the content is set to 8.0 to 12.0%.
Al:1.0〜2.0%
Alは1.0%未満でNi3(Al,Ti)不足による強度不足を生じ、2.0%を超えて過剰に含有させると、過度のNi3Al析出により延性が低下するため含有量を1.0〜2.0%とする。
Al: 1.0-2.0%
Al is less than 1.0%, causing insufficient strength due to Ni 3 (Al, Ti) deficiency. If it exceeds 2.0% and excessively contained, ductility decreases due to excessive Ni 3 Al precipitation, so the content is 1.0 to 2.0%. And
Ti:2.5〜4.0%
Tiは2.5%未満でNi3(Al,Ti)不足による強度不足を生じ、逆に4.0%を超えて過剰に含有させると、Ni3(Al,Ti)過剰となってTiC過多となり、延性が低下するため含有量を2.5〜4.0%とする。
Ti: 2.5-4.0%
When Ti is less than 2.5%, Ni 3 (Al, Ti) lacks strength, and when it exceeds 4.0%, Ni 3 (Al, Ti) becomes excessive and TiC becomes excessive, resulting in ductility. In order to decrease, the content is set to 2.5 to 4.0%.
Fe:≦6.0%
Feは各種化合物生成による本来意図しない成分変化を防止する為、6.0%以下に規制する。
Fe: ≤6.0%
Fe is restricted to 6.0% or less in order to prevent unintended changes in components due to the formation of various compounds.
B:0.001〜0.020%
Bは0.001%未満で粒界強度が不足し、目標とするクリープ特性を達成できず、0.020%を超えて過剰に含有させると、BN晶出による粒界強度が低下するため含有量を0.001〜0.020%とする。
B: 0.001 to 0.020%
When B is less than 0.001%, the grain boundary strength is insufficient, and the target creep characteristics cannot be achieved. If it exceeds 0.020%, the grain boundary strength due to BN crystallization decreases, so the content is 0.001 to 0.020%.
C:≦0.15%
Cは0.15%を超えて過剰に含有させると、TiC,CrC,MoC過多となって延性が低下するため含有量を0.15%以下とする。
C: ≤ 0.15%
If C is contained excessively exceeding 0.15%, TiC, CrC, MoC is excessive and ductility is lowered, so the content is made 0.15% or less.
次に本発明の実施例を以下に説明する。
表1に示す化学組成のNi基耐熱合金を真空誘導炉で溶解し、更にエレクトロスラグ再溶解(ESR)を行って2.5トンのNi基耐熱合金のインゴットを得た。
そしてそのインゴットから得た加工素材(被処理材)に対して以下に詳述する粗鍛造加工を施し、その後に鍛伸による整形加工及び4面鍛造加工を仕上げ鍛造加工として施し、最終の鍛造品である直径φ200mm超の、ここでは直径374mmの円柱状の鍛造品を得た。
以下にそのプロセスの内容を詳しく説明する。
Next, examples of the present invention will be described below.
The Ni-base heat-resistant alloy having the chemical composition shown in Table 1 was melted in a vacuum induction furnace, and further electroslag remelting (ESR) was performed to obtain a 2.5-ton Ni-base heat-resistant alloy ingot.
The processed material (material to be processed) obtained from the ingot is then subjected to rough forging as described in detail below, followed by shaping by forging and four-sided forging as final forging, and the final forged product A cylindrical forged product having a diameter of more than 200 mm and a diameter of 374 mm was obtained.
The details of the process will be described below.
表2及び図1は、最初の粗鍛造加工のプロセスの内容を具体的に示している。
これら表2及び図1に示しているように粗鍛造加工では、先ず最初に加工素材(被処理材)10(φ530mm×1245mm)に対して1200℃×30hrの条件でソーキング処理(均熱処理)を行った。このソーキング処理により加工素材10を中心部に到るまで均等に1200℃まで均熱し、またMC型晶出物を母相に固溶させた。
尚表2の鍛造温度の欄の数値は、表2中左端の欄の加工(但し鍛伸(4)を除く)開始時の温度(材料の表面温度)を示している。
Table 2 and FIG. 1 specifically show the contents of the first rough forging process.
As shown in Table 2 and FIG. 1, in the rough forging process, first, a soaking process (soaking process) is performed on a processed material (processed material) 10 (φ530 mm × 1245 mm) at 1200 ° C. × 30 hr. went. By this soaking treatment, the
The numerical value in the column of forging temperature in Table 2 indicates the temperature (material surface temperature) at the start of processing (except for forging (4)) in the leftmost column of Table 2.
次に加工素材10の温度を1150℃に低下させた状態で据込(1)を行って、φ750mm,長さが625mmの加工品(被処理材。以下同様)12-1とした。尚このときの打撃数は1とした。
その後に、加工品12-1に対して1150℃×3hrの条件でリヒート(1)を行った上で鍛伸(1)を行い、横断面が500×550mmで、長さが1000mmの断面4角形状の加工品12-2を得た。
Next, upsetting (1) was performed in a state where the temperature of the
Thereafter, rework (1) is performed on the processed product 12-1 under the conditions of 1150 ° C. × 3 hr, and forging (1) is performed. A
続いて加工品12-2に対して1150℃×3hrの条件でリヒート(2)を行い、その上で鍛伸(2)を行って横断面が500×500mm,長さが1100mmの断面4角形状の加工品12-3を得た。尚この鍛伸(2)での打撃数は8とした。
このときの鍛伸(2)での加工率は小さいもので、圧下率は20%未満である。
その後に更にリヒート(3)を、1150℃×3hrの条件で行い、続いて1150℃の下で加工品12-3に対し据込(2)を行って横断面が797×797mm,長さ550mmの断面4角形状の加工品12-4を得た。
Subsequently, rework (2) is performed on the processed product 12-2 under the condition of 1150 ° C. × 3 hr, and then forging (2) is performed, so that the cross section has a cross section of 500 × 500 mm and a length of 1100 mm. A shaped processed product 12-3 was obtained. The number of hits in this forge (2) was 8.
At this time, the processing rate in forging (2) is small, and the rolling reduction is less than 20%.
After that, reheat (3) is further performed under the conditions of 1150 ° C. × 3 hr, and then the workpiece 12-3 is placed (2) at 1150 ° C. to obtain a cross section of 797 × 797 mm and a length of 550 mm. A processed product 12-4 having a square cross section was obtained.
次に1080℃の温度の下で鍛伸(3)を行って、横断面が500×500mm,長さ1100mmの断面4角形状の加工品12-5を得た。
引続いて1080℃×3hrの条件でリヒート(4)を行った上で据込(3)を行い、横断面が797×797mmで長さが550mmの断面4角形状の加工品12-6を得た。
Next, forging (3) was performed at a temperature of 1080 ° C. to obtain a processed product 12-5 having a square cross section of 500 × 500 mm and a length of 1100 mm.
Subsequently, after reheating (4) under conditions of 1080 ° C. × 3 hr, upsetting (3) is performed, and a processed product 12-6 having a cross-sectional square shape having a cross section of 797 × 797 mm and a length of 550 mm is obtained. Obtained.
更に引続いて鍛伸(4)を行い、横断面が500×500mmで、長さが1100mmの断面4角形状の加工品12-7とした。
尚表2において鍛伸(4)は、リヒート(4)の後に据込(3)を行った後、これに続いて途中加熱することなく行っており、材料の表面温度は時間の経過した分1080℃よりも低下している。そのために表2中では鍛伸(4)に対応する温度を括弧付きで示している。
Subsequently, forging (4) was performed to obtain a processed product 12-7 having a square cross section of 500 × 500 mm in cross section and 1100 mm in length.
In Table 2, forging (4) is carried out after heating (3) after reheating (4) and without subsequent heating, and the surface temperature of the material is the amount of time elapsed. It is lower than 1080 ° C. Therefore, in Table 2, the temperature corresponding to forge (4) is shown in parentheses.
以上のような粗鍛造加工を行った際の各加工ごと(即ち各加工品12-1〜12-7)の中心部(長手方向及び径方向の中心部),D/4部(長手方向中心部における径方向の中心部と表層との中間部),表層(長手方向中心部での表層)の各部の加工直後の結晶粒度(ASTM結晶粒度番号)が図2に、また歪み量が図3にそれぞれ示してある。
これらの図に示しているようにこの粗鍛造加工では、鍛伸(2)を除く何れの加工でも、加工素材10及び各加工品に対して各部の歪み量が、再結晶による結晶粒微細化に必要な0.22を、特にここでは0.25を超えている。
Center part (longitudinal and radial center part), D / 4 part (longitudinal center) of each process (that is, each processed product 12-1 to 12-7) when rough forging as described above is performed 2 shows the crystal grain size (ASTM grain size number) immediately after processing of each part of the surface layer (the middle part between the radial center part and the surface layer) and the surface layer (surface layer at the longitudinal center part), and the amount of distortion is shown in FIG. Respectively.
As shown in these figures, in this rough forging process, in any process except forging (2), the amount of strain in each part of the processed
更に粗鍛造加工の終盤工程(ここでは鍛伸(3)及びこれ以降の工程)では、加工温度を1080℃以下の低い温度としているために、加工中及びその後の結晶粒の粒成長が効果的に抑制されており、粗鍛造加工後の被処理材、即ち加工品12-7の組織が、中心部に到るまでASTM結晶粒度No.4以上の結晶粒度の細粒組織となっている。
この細粒組織は最終の鍛造品、即ちφ374mmの円柱状の部材に求められる設定結晶粒度番号を満たす微細組織である。
Further, in the final stage of the rough forging process (here, forging (3) and subsequent processes), since the processing temperature is set to a low temperature of 1080 ° C. or less, the grain growth of the crystal grains during and after the processing is effective. The material to be processed after rough forging, that is, the structure of the processed product 12-7, has a fine grain structure with a grain size of ASTM grain size No. 4 or more until it reaches the center.
This fine-grained structure is a fine structure that satisfies the set grain size number required for the final forged product, that is, a φ374 mm cylindrical member.
以上のような粗鍛造加工を行った後、仕上げ鍛造加工を行った。仕上げ鍛造加工では、先ず最終の4面鍛造加工の前に、その準備工程である鍛伸による整形加工を実施した。
この整形加工では、図4に示しているように粗鍛造加工にて最終的に得られた断面形状が500×500の4角形状である加工品12-7に対して、先ず対角線方向に相対向する一対のコーナーに対する圧下(コーナー圧下)を行って断面形状を6角形状となし、続いて今一方の対角線方向に対向する一対のコーナーに対する圧下(コーナー圧下)を行って、横断面形状が8角形状の加工品14-2とした。加工品14-2の横断面の幅寸法は440mmである。
尚この鍛伸による整形加工では、コーナー圧下によって膨れを生じたコーナーとコーナーとの間の平面部に対する膨れを解消するための加工も併せて行っており、またその間にリヒートも行っている。
After performing the rough forging as described above, finish forging was performed. In the finish forging process, first, before the final four-side forging process, a shaping process by forging, which is a preparation process, was performed.
In this shaping process, as shown in FIG. 4, first, relative to the processed product 12-7 having a square shape of 500 × 500 in the cross-sectional shape finally obtained by the rough forging process, the diagonal direction is relatively set. The cross-sectional shape is reduced to a hexagonal shape by performing a reduction (corner reduction) on a pair of facing corners, and then a cross-sectional shape is obtained by performing a reduction (corner reduction) on a pair of corners facing in the opposite diagonal direction. An octagonal processed product 14-2 was obtained. The width dimension of the cross section of the processed product 14-2 is 440 mm.
In this shaping process by forging, a process for eliminating the swelling of the flat portion between the corners caused by the corner pressure is also performed, and reheating is performed during that time.
図4で示す鍛伸による整形加工では、中心部に対して再結晶により結晶を微細化するために必要な歪み量0.22以上、ここでは0.25以上が付与されていない。
即ちここでの鍛伸による整形加工は、中心部に対してそのような歪み量を付与しない加工量の小さな加工である。これは仕上げ鍛造加工が主として被処理材の断面形状を目標とする断面形状に整形することを目的とした加工であることによる。
In the shaping process by forging shown in FIG. 4, a strain amount of 0.22 or more required for refining the crystal by recrystallization is not applied to the central portion, and here 0.25 or more is not applied.
That is, the shaping process by forging here is a process with a small process amount that does not give such a strain amount to the central part. This is because the finish forging process is mainly intended to shape the cross-sectional shape of the material to be processed into a target cross-sectional shape.
以上のような整形加工を終了した後、最終鍛造加工としての4面鍛造加工を行った。
この4面鍛造加工では、図4に示す断面8角形状の最終の加工品14-2に対して、外周周りに90°ごと隔たった位置の4面に配置した工具を軸直角方向から同時に打ち込んで打撃を与え、図5に示すように先ず断面円形のφ420mmの加工品16-1となし、次いで漸次細径化を行って断面がφ400mmの加工品16-2,φ380mmの加工品16-3とし、そして最終的にφ374mmの鍛造品18とした。
After finishing the shaping process as described above, a four-side forging process was performed as a final forging process.
In this four-side forging process, tools placed on four sides at positions separated by 90 ° around the outer periphery are simultaneously driven into the final workpiece 14-2 having an octagonal cross section shown in FIG. As shown in FIG. 5, the workpiece 16-1 having a circular cross section of φ420 mm is first formed, and then the workpiece 16-2 having a cross section of φ400 mm and a workpiece 16-3 having a diameter of φ380 mm are formed by gradually reducing the diameter. Finally, a forged
このときの各加工ごとの、即ち各加工品16-1,16-2,16-3,鍛造品18における各部の歪み量は図5(B)に示す通りであった。
因みにこの4面鍛造加工後の最終の鍛造品18における結晶粒度は、中心部がASTM結晶粒度No.4,D/4部がNo.5,表層がNo.5であった。
The amount of distortion of each part in each process, that is, each processed product 16-1, 16-2, 16-3, and forged
Incidentally, the crystal grain size in the final forged
以上のようにこの実施形態では、直径374mmの太径の円柱状の鍛造品でありながら、中心部に到るまでASTM結晶粒度No.4以上の細粒組織を有するものが良好に得られた。
これは中心部に対して0.25の歪み量を加え得ない仕上げ鍛造加工の前に、粗鍛造加工によって最終の鍛造品18の中心部に求められるASTM結晶粒度以上の結晶粒度を有する加工品12-7を加工形成していることによる。
As described above, in this embodiment, although it was a cylindrical forged product having a diameter of 374 mm, a product having a fine grain structure of ASTM grain size No. 4 or more was obtained well until it reached the center. .
This is a processed product having a crystal grain size equal to or larger than the ASTM crystal grain size required for the central part of the final forged
因みに図6は比較例を示したもので、この図6において鍛伸(2)までは、本発明の実施例の粗鍛造工程における鍛伸(2)までの加工と同様の加工を行っている。従って各加工段階ごとの加工品のASTM結晶粒度は、実施例の場合と同様である。
但しこの比較例では、鍛伸(3)が最終の加工であり、しかもその加工を1150℃の高い温度の下で行っている。その結果、粗鍛造加工における最終加工品の中心部の結晶粒度は、ASTM結晶粒度No.2.5で、ASTM結晶粒度No.4よりも粒度番号の小さな、即ち結晶粒が粗く粗大なものであった。
Incidentally, FIG. 6 shows a comparative example. In FIG. 6, up to forging (2), the same processing as that up to forging (2) in the rough forging step of the embodiment of the present invention is performed. . Therefore, the ASTM grain size of the processed product at each processing stage is the same as that in the example.
However, in this comparative example, forging (3) is the final processing, and the processing is performed at a high temperature of 1150 ° C. As a result, the crystal grain size at the center of the final processed product in the rough forging process is ASTM crystal grain size No. 2.5, which is smaller in grain size number than ASTM crystal grain size No. 4, that is, the crystal grains are coarse and coarse. there were.
以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。 Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.
10 加工素材(被処理材)
12-1,12-2,12-3,12-4,12-5,12-6,12-7,14-1,14-2,16-1,16-2,16-3 加工品(被処理材)
18 鍛造品
10 Processed material (treated material)
12-1, 12-2, 12-3, 12-4, 12-5, 12-6, 12-7, 14-1, 14-2, 16-1, 16-2, 16-3 Material to be treated)
18 Forged products
Claims (4)
Cr:17.0〜21.0%
Co:11.0〜13.0%
Mo:8.0〜12.0%
Al:1.0〜2.0%
Ti:2.5〜4.0%
Fe:≦6.0%
B:0.001〜0.020%
C:≦0.15%
残部Ni及び不可避的不純物の組成を有するNi基耐熱合金から成る被処理材に対して、前加工としての粗鍛造加工と、被処理材を断面形状が直径200mm超の太径の円柱状の鍛造品に加工し成形する仕上げ鍛造加工とを行い
該粗鍛造加工では、予め1180〜1280℃でのソーキングを行った上で、該ソーキング後の前記被処理材に対して、圧下率20%以上の据込と、圧下率20%以上の鍛伸とを2回以上繰り返し行うとともに、該粗鍛造加工における最終の据込及び鍛伸を含む終盤工程を結晶粒の粒度調整工程として、該粒度調整工程以前の据込及び鍛伸を1030〜1150℃の温度で、また前記終盤の粒度調整工程では据込及び鍛伸を1030〜1080℃の低温度で行って、粗鍛造加工後の被処理材の中心部に到るまでの組織を前記鍛造品に求められる設定結晶粒度以上の細粒組織となし
前記仕上げ鍛造加工では1080℃以下且つ1030℃以上の温度で、前記設定結晶粒度を確保しながら前記被処理材を目標形状の前記鍛造品に成形加工することを特徴とするNi基耐熱合金の鍛造加工方法。 In mass%
Cr: 17.0-21.0%
Co: 11.0-13.0%
Mo: 8.0-12.0%
Al: 1.0-2.0%
Ti: 2.5-4.0%
Fe: ≤6.0%
B: 0.001 to 0.020%
C: ≤ 0.15%
A rough forging process as a pre-process for a material to be processed made of a Ni-base heat-resistant alloy having a composition of the balance Ni and inevitable impurities, and a cylindrical forging with a large diameter with a cross-sectional shape exceeding 200 mm in diameter. In the rough forging process, after soaking at 1180 to 1280 ° C. in advance, the reduction ratio is 20% or more with respect to the treated material after the soaking. The upsetting and forging with a reduction ratio of 20% or more are repeated twice or more, and the final stage including the upsetting and forging in the rough forging process is used as the grain size adjusting step for the grain size. The previous upsetting and forging are performed at a temperature of 1030 to 1150 ° C., and in the final stage particle size adjustment process, the upsetting and forging are performed at a low temperature of 1030 to 1080 ° C. The organization up to the center The fine forged product has a fine grain structure that is equal to or greater than the set crystal grain size. In the finish forging process, the forging of the target material is the target shape while securing the set crystal grain size at a temperature of 1080 ° C. or lower and 1030 ° C. or higher A forging method of a Ni-base heat-resistant alloy characterized by forming into a product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013187763A JP6171762B2 (en) | 2013-09-10 | 2013-09-10 | Method of forging Ni-base heat-resistant alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013187763A JP6171762B2 (en) | 2013-09-10 | 2013-09-10 | Method of forging Ni-base heat-resistant alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015054332A JP2015054332A (en) | 2015-03-23 |
JP6171762B2 true JP6171762B2 (en) | 2017-08-02 |
Family
ID=52819102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013187763A Active JP6171762B2 (en) | 2013-09-10 | 2013-09-10 | Method of forging Ni-base heat-resistant alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6171762B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111534771A (en) * | 2020-06-12 | 2020-08-14 | 无锡派克新材料科技股份有限公司 | Method for homogenizing nickel-based superalloy crystal grains |
CN111534718A (en) * | 2020-05-08 | 2020-08-14 | 华能国际电力股份有限公司 | Preparation process of high-aluminum and titanium deformation high-temperature alloy |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US9192981B2 (en) * | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
CN106903248B (en) * | 2015-12-22 | 2019-12-31 | 宁波创润新材料有限公司 | Forging method |
JP6857309B2 (en) * | 2017-03-24 | 2021-04-14 | 日立金属株式会社 | Forging material manufacturing method |
WO2020203460A1 (en) * | 2019-03-29 | 2020-10-08 | 日立金属株式会社 | Ni-BASED SUPER-HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY |
CN110434262A (en) * | 2019-08-12 | 2019-11-12 | 中国第一重型机械股份公司 | End sealing plate blank forging forging method |
CN110819922B (en) * | 2019-11-13 | 2021-07-27 | 中国航发动力股份有限公司 | Treatment method for improving GH4413G part organization |
CN116251918B (en) * | 2023-02-27 | 2024-01-23 | 四川钢研高纳锻造有限责任公司 | Difficult-to-deform superalloy forging and forging method thereof |
CN117344253B (en) * | 2023-12-04 | 2024-02-23 | 东方蓝天钛金科技有限公司 | Method for eliminating coarse crystals of solid solution state Waspaloy alloy bolt rod part |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364435A (en) * | 1989-08-01 | 1991-03-19 | Daido Steel Co Ltd | Method for forging ni base superalloy |
US5360496A (en) * | 1991-08-26 | 1994-11-01 | Aluminum Company Of America | Nickel base alloy forged parts |
JPH0711403A (en) * | 1993-06-29 | 1995-01-13 | Sumitomo Metal Ind Ltd | Production of ni-base alloy having intergranular fracture resistance |
JPH11342443A (en) * | 1998-05-29 | 1999-12-14 | Daido Steel Co Ltd | Processing of nickel-base heat resistant alloy |
EP1197570B1 (en) * | 2000-10-13 | 2004-12-29 | General Electric Company | Nickel-base alloy and its use in forging and welding operations |
JP2008200730A (en) * | 2007-02-21 | 2008-09-04 | Daido Steel Co Ltd | METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY |
JP2010235985A (en) * | 2009-03-30 | 2010-10-21 | Toshiba Corp | Nickel-based alloy for forged parts in steam-turbine excellent in high-temperature strength characteristics, forgeability and weldability, and member for steam-turbine |
-
2013
- 2013-09-10 JP JP2013187763A patent/JP6171762B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111534718A (en) * | 2020-05-08 | 2020-08-14 | 华能国际电力股份有限公司 | Preparation process of high-aluminum and titanium deformation high-temperature alloy |
CN111534718B (en) * | 2020-05-08 | 2021-11-19 | 华能国际电力股份有限公司 | Preparation process of high-aluminum and titanium deformation high-temperature alloy |
CN111534771A (en) * | 2020-06-12 | 2020-08-14 | 无锡派克新材料科技股份有限公司 | Method for homogenizing nickel-based superalloy crystal grains |
Also Published As
Publication number | Publication date |
---|---|
JP2015054332A (en) | 2015-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6171762B2 (en) | Method of forging Ni-base heat-resistant alloy | |
US11566313B2 (en) | Method for manufacturing Ni-based alloy member | |
US10858723B2 (en) | Copper-nickel-tin alloy with high toughness | |
EP2963135B1 (en) | Manufacturing process of ni based superalloy and member of ni based superalloy, ni based superalloy, member of ni based superalloy, forged billet of ni based superalloy, component of ni based superalloy, structure of ni based superalloy, boiler tube, combustor liner, gas turbine blade, and gas turbine disk | |
JP6252704B2 (en) | Method for producing Ni-base superalloy | |
JP6150192B2 (en) | Method for producing Ni-base superalloy | |
EP3023509B1 (en) | Ni-based alloy product and method for producing same | |
JP5652730B1 (en) | Ni-base superalloy and manufacturing method thereof | |
JP2008200730A (en) | METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY | |
WO2020195049A1 (en) | Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy | |
CN116000134B (en) | GH4738 alloy cold drawn bar and preparation method and application thereof | |
JP6079404B2 (en) | Method for forging disc-shaped products | |
JP7375489B2 (en) | Manufacturing method of Ni-based heat-resistant alloy material | |
JP6575756B2 (en) | Method for producing precipitation strengthened stainless steel | |
JP6299344B2 (en) | Method for forging disc-shaped products | |
JP5605546B2 (en) | α + β type titanium alloy, method for producing the same, and method for producing titanium alloy material | |
RU2371512C1 (en) | Method of product receiving from heatproof nickel alloy | |
JP2024518681A (en) | Materials for manufacturing high strength fasteners and methods for manufacturing same | |
TWI564398B (en) | Nickel-based alloy and method of producing thereof | |
TWI568862B (en) | Method for manufacturing austenitic alloy steel | |
JP2007321176A (en) | Titanium alloy rod wire for coil spring and production method therefor | |
JPH08225907A (en) | Production of titanium aluminum base alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160701 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20161222 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6171762 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |