JP2007321176A - Titanium alloy rod wire for coil spring and production method therefor - Google Patents

Titanium alloy rod wire for coil spring and production method therefor Download PDF

Info

Publication number
JP2007321176A
JP2007321176A JP2006149837A JP2006149837A JP2007321176A JP 2007321176 A JP2007321176 A JP 2007321176A JP 2006149837 A JP2006149837 A JP 2006149837A JP 2006149837 A JP2006149837 A JP 2006149837A JP 2007321176 A JP2007321176 A JP 2007321176A
Authority
JP
Japan
Prior art keywords
titanium alloy
coil spring
wire
rod wire
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006149837A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006149837A priority Critical patent/JP2007321176A/en
Publication of JP2007321176A publication Critical patent/JP2007321176A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium alloy rod wire for a coil spring which can simultaneously and more stably enhance three characteristics of a diameter deviation of the rod wire to be used as a base material, formability for the coil spring, and the uniformity of a distribution of cross-sectional hardness after having been subjected to aging heat treatment, and to provide a production method therefor. <P>SOLUTION: The diameter deviation of the rod wire can be improved and the deformation resistance of the rod wire can be reduced by applying a drawing rate controlled to as low as 3 to 20% to the titanium alloy rod wire of a base material for the coil spring, when cold-drawing the titanium alloy rod wire. At the same time, by setting the β transformation temperature of the β titanium alloy to 780°C or higher, the precipitation of an α phase is accelerated during aging heat treatment, and the variation of hardness distribution in a cross section can be reduced even when the rod wire is drawn at the low drawing rate and heat-treated for a short period of time. Furthermore, by controlling a metallographic structure of the rod wire before being cold-drawn to a fine unrecrystallized structure or a recrystallized structure having a grain size of 10 μm or less, the variation of the hardness distribution in the cross section after having been heat-treated can be extremely decreased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二輪および四輪自動車のサスペンションスプリングやエンジンバルブスプリングなどに代表されるコイルばねを製造する際に用いられるチタン合金棒線およびその製造方法に関する。   The present invention relates to a titanium alloy rod used for manufacturing a coil spring typified by suspension springs and engine valve springs of two-wheeled and four-wheeled vehicles, and a method for manufacturing the same.

所定の荷重Pとばね定数Rを実現するコイルばねについて、コイルばねの質量Wは材料の物性値に基づいて(1)式で表される。(1)式より、荷重Pおよびばね定数Rの設計条件が一定の場合には、Wは、材料のせん断強度τ、横弾性係数G、密度ρで決まり、τが大きく、Gとρが小さいほど軽量になる。
W=(2G・ρ・P2)/(τ2・R) ・・・(1)式
ここで、W:コイルばねの質量、G:横弾性係数、ρ:材料の密度、P:荷重、τ:材料のせん断強度、R:ばね定数である。
For a coil spring that achieves a predetermined load P and a spring constant R, the mass W of the coil spring is expressed by equation (1) based on the physical properties of the material. From the formula (1), when the design conditions of the load P and the spring constant R are constant, W is determined by the shear strength τ, the lateral elastic modulus G, and the density ρ of the material, τ is large, and G and ρ are small. It becomes lighter.
W = (2G · ρ · P 2 ) / (τ 2 · R) (1) where W: mass of the coil spring, G: transverse elastic modulus, ρ: density of the material, P: load, τ: material shear strength, R: spring constant.

鋼に比べて比強度(密度に対する強度)が高く弾性率が小さいチタン合金は、コイルばねを軽量化するのに適した材料として知られており、その中でも時効熱処理によるα相の析出強化能が高いβ型チタン合金は1400MPa以上の強度が得られることから二輪および四輪自動車のコイルばねとして多くの適応例がある。一般的に、β型チタン合金は、β変態点前後の高温域から冷却しβ相を残存させた状態から、α+β二相域である400〜600℃の低温で7,8〜20時間の時効熱処理を施すことによってβ相内に微細なα相が析出する。いわゆる析出強化が非常に有効に活用できる材料である。   Titanium alloys with high specific strength (strength with respect to density) and low elastic modulus compared to steel are known as materials suitable for reducing the weight of coil springs. Among them, the ability to precipitate and strengthen the α phase by aging heat treatment is known. Since a high β-type titanium alloy has a strength of 1400 MPa or more, it has many applications as a coil spring for two-wheeled and four-wheeled vehicles. In general, a β-type titanium alloy is aged from 7,8 to 20 hours at a low temperature of 400 to 600 ° C., which is an α + β two-phase region, from a state where the β phase remains after cooling from a high temperature region around the β transformation point. By performing the heat treatment, a fine α phase is precipitated in the β phase. So-called precipitation strengthening is a material that can be used very effectively.

一方で、コイルばねの特性を決めるばね常数Rは(2)式で表される。
R=(G・d4)/(8n・D3) ・・・(2)式
ここで、R:ばね定数、G:材料の横弾性係数、d:素材棒線の直径、n:コイルばねの巻き数、D:コイルばねの外径である。
On the other hand, the spring constant R that determines the characteristics of the coil spring is expressed by equation (2).
R = (G · d 4 ) / (8n · D 3 ) (2) where R: spring constant, G: transverse elastic modulus of material, d: diameter of material rod, n: coil spring , D: the outer diameter of the coil spring.

(2)式より、ばね定数Rは、素材となる棒線の直径dとコイルばねの外径Dの影響を大きく受けることがわかる。このことから、dに影響する素材棒線の直径偏差が小さいほど、言い換えれば真円度が高いほど、成形後のDが安定しているほど、安定したばね常数が得られる。より直径偏差が小さい棒線を得るためには、熱間加工後或いは熱間加工後に溶体化加熱処理を施した後の棒線をシェービングや冷間伸線する方法が有効である。   From the equation (2), it can be seen that the spring constant R is greatly affected by the diameter d of the bar wire as the material and the outer diameter D of the coil spring. From this, the more stable the spring constant is obtained the smaller the diameter deviation of the material rod that affects d, in other words, the higher the roundness and the more stable D after molding. In order to obtain a bar wire having a smaller diameter deviation, a method of shaving or cold-drawing the bar wire after being subjected to solution heat treatment after hot working or after hot working is effective.

シェービングは刃先の付いた円形の孔型ダイスに棒線を通材して所定量を切削する方法であり、当然ながら切り屑が歩留まりロスになる。また、β型チタン合金は高強度且つ低ヤング率であるため切削刃先への反力が大きくチタンが焼き付き、刃先が欠損しやすい。コイル状の素材などを連続的にシェービングする上で、刃先の欠損が起きた場合には安定した直径偏差を得ることが困難になる。従って、棒線の直径偏差を改善する手段として、シェービングよりも冷間伸線が多く用いられる。   Shaving is a method of cutting a predetermined amount by passing a bar wire through a circular hole die having a blade edge, and naturally, chips are lost in yield. In addition, since the β-type titanium alloy has high strength and low Young's modulus, the reaction force against the cutting edge is large, and titanium is seized and the edge tends to be lost. When continuously shaving a coil-shaped material or the like, it is difficult to obtain a stable diameter deviation when the cutting edge is damaged. Therefore, cold drawing is more often used than means for shaving as a means for improving the diameter deviation of the bar wire.

β型チタン合金棒線を用いたコイルばねは、一般的に、棒線の冷間伸線、コイリング(コイルばね形状に成形)、時効熱処理、ショットピーニングの順に製造されることが知られている(特許文献1参照)。この場合、冷間伸線が付与されているため素材棒線の真円度も比較的高まっている。ここで、時効熱処理前の冷間伸線の断面減少率は、特許文献1ではTi−3Al−8V−6Cr−4Mo−4Zr(以降、BetaC)で70%以上とすること、特許文献2ではα+β二相域で熱延或いは溶体化処理後に30〜95%とすること、特許文献3ではTi−V−Mo−Zr−Al−Fe−Cr系で30%とする例が示されている。また、非特許文献1ではBetaCとTi−13V−11Cr−3Alで33〜50%とする例が、非特許文献2ではBetaCとTi−13V−11Cr−3Alで40,80,90%とする例が、非特許文献3ではTi−13V−11Cr−3Alで80%とする例が示されている。このように、高強度を得るために冷間伸線の断面減少率は30〜95%と、少なくとも30%である。以降、冷間伸線の断面減少率を「伸線率」と表記する。   It is known that coil springs using β-type titanium alloy rods are generally manufactured in the order of cold drawing of rods, coiling (molded into a coil spring shape), aging heat treatment, and shot peening. (See Patent Document 1). In this case, since the cold drawing is given, the roundness of the material rod is also relatively high. Here, the cross-sectional reduction rate of cold drawing before aging heat treatment is set to 70% or more in Ti-3Al-8V-6Cr-4Mo-4Zr (hereinafter BetaC) in Patent Document 1, and α + β in Patent Document 2 An example of 30% to 95% after hot rolling or solution treatment in the two-phase region and 30% for Ti-V-Mo-Zr-Al-Fe-Cr system is shown in Patent Document 3. In Non-patent Document 1, BetaC and Ti-13V-11Cr-3Al have an example of 33 to 50%. In Nonpatent Document 2, BetaC and Ti-13V-11Cr-3Al have an example of 40, 80, and 90%. However, Non-Patent Document 3 shows an example in which Ti-13V-11Cr-3Al is 80%. Thus, in order to obtain high strength, the cross-sectional reduction rate of cold drawing is 30 to 95%, which is at least 30%. Hereinafter, the cross-sectional reduction rate of cold drawing is referred to as “drawing rate”.

特開平05−195175号公報JP 05-195175 A 特開平04−074856号公報Japanese Patent Laid-Open No. 04-074856 特開2005−154850号公報JP 2005-154850 A R.R.Boyerら、「Beta Titanium Alloys in The 1980’s」、1983年、AIME発行、295〜305頁R.R.Boyer et al., "Beta Titanium Alloys in The 1980's", 1983, issued by AIME, pages 295-305. M.Murakamiら、「SAE Technical Paper Series, No.890470」、1989年M.Murakami et al., “SAE Technical Paper Series, No. 890470”, 1989 籔下毅士ら、「ばね論文集」,第40号、1996年、1〜5頁Takeshi Shigeshita et al., “Spring Papers”, No. 40, 1996, 1-5

コイルばね用β型チタン合金棒線を冷間伸線により製造するに際し、伸線率が高まると、低ヤング率に加えて棒線の変形抵抗が高まるため潤滑が維持できなくなり伸線ダイスにチタンが焼き付き、その結果、棒線表面に欠陥を生じる場合がある。さらに、二輪および四輪自動車のサスペンションスプリングは棒線の直径が10〜20mmを超えるほど太いため、伸線ダイスへの負荷が大きく、より焼き付きが生じやすい条件となる。また、棒線からコイリングする際にも、伸線率が高まると上述同様に低ヤング率、高変形抵抗が影響して、コイリングの成形治具に焼き付きやすく成形性が低下するといった課題がある。   When manufacturing β-type titanium alloy rods for coil springs by cold drawing, if the wire drawing rate increases, the deformation resistance of the rod wire increases in addition to the low Young's modulus, so that lubrication cannot be maintained and the wire drawing die is made of titanium. May result in defects on the bar surface. Furthermore, since the suspension springs of two-wheel and four-wheel automobiles are thicker as the diameter of the rod exceeds 10 to 20 mm, the load on the wire drawing dies is large and the seizure is more likely to occur. Further, when coiling from a bar wire, if the wire drawing rate is increased, the low Young's modulus and the high deformation resistance are similarly affected as described above, and there is a problem that the moldability is easily baked on the coiling jig.

即ち、伸線率の高い冷間伸線では、β型チタン合金棒線が伸線のダイスに焼き付き、ダイスに欠損が生じた場合には安定した直径偏差を得ることが困難になるとともに、高い伸線率を付与したβ型チタン合金棒線は変形抵抗が高く成形性が低下しているためにコイリング成形治具へも焼き付きやすいといった課題がある。   That is, in cold wire drawing with a high wire drawing rate, a β-type titanium alloy bar wire sticks to a wire drawing die, and it is difficult to obtain a stable diameter deviation when the die is damaged, Since the β-type titanium alloy bar wire provided with the wire drawing rate has a high deformation resistance and a low formability, there is a problem that the coiling forming jig is easily seized.

これに対して、伸線率を小さくすることによって、β型チタン合金棒線の変形抵抗の上昇が抑えられて、伸線ダイスやコイリング成形治具への焼き付きが抑制できる。結果として、安定して良好な直径偏差が得られることになる。しかしながら、伸線率が小さい場合には、棒線断面内に付与された歪み量が、棒線断面の中心部と表層部で差が大きく、表層に多いために、コイリング後に実施される時効熱処理の時間を、10,20時間を超えるほど、十分に長くとらないと、コイルばね製品の段階で棒線断面内の硬さ分布に大きなばらつきを生じる場合がある。つまり、断面内で表層と内部で強度差がある状態で製品となる可能性がある。短時間の時効熱処理で生じるこの硬さのばらつきは、冷間伸線で付与された歪み、つまり格子欠陥が、時効熱処理にはα相の析出サイトとなるため、歪み量が大きい場所ではα相の析出サイトが多く早期にα相が析出して十分に硬化するが、これに対して歪み量が小さい場所ではα相の析出が遅く硬化量も小さいままの状態になるためである。   On the other hand, by reducing the wire drawing rate, an increase in deformation resistance of the β-type titanium alloy bar wire can be suppressed, and seizure to the wire drawing die or coiling jig can be suppressed. As a result, a good diameter deviation can be obtained stably. However, when the wire drawing rate is small, the strain applied in the cross section of the bar wire has a large difference between the central part and the surface layer part of the bar wire cross section, and is large in the surface layer. If this time is not long enough to exceed 10, 20 hours, there may be a large variation in the hardness distribution in the bar wire cross section at the stage of the coil spring product. That is, there is a possibility that the product is in a state where there is a difference in strength between the surface layer and the inside in the cross section. This hardness variation caused by short-term aging heat treatment is caused by strain applied by cold drawing, that is, lattice defects become α-phase precipitation sites during aging heat treatment. This is because the α phase precipitates early and is sufficiently hardened, but the α phase is deposited slowly and the hardening amount remains small in a place where the strain amount is small.

そこで、本発明は、1)素材となる棒線の直径偏差、2)コイルばねへの成形性、3)時効熱処理後の断面硬さ分布の均一性の3つを、同時により安定して高めるコイルばね用チタン合金棒線の製造方法を提供することを目的とするものである。また、コイルばね製造に適したチタン合金棒線を提供することを目的とするものである。   Therefore, the present invention simultaneously and stably increases three of the following: 1) diameter deviation of the bar wire used as the material, 2) formability to the coil spring, and 3) uniformity of the cross-sectional hardness distribution after the aging heat treatment. It aims at providing the manufacturing method of the titanium alloy bar wire for coil springs. Moreover, it aims at providing the titanium alloy bar wire suitable for coil spring manufacture.

上記課題を解決するために本発明の要旨は、以下のとおりである。
(1) β変態点が780℃以上のβ型チタン合金からなり、0.2%耐力が1300MPa未満、表面から1mm深さと中心の断面ビッカース硬さの差が20以上、棒線の直径偏差が±0.08mm以下であることを特徴とする、コイルばね用チタン合金棒線。
(2) 前記β型チタン合金が、Feを2〜8mass%含み且つVが0.1mass%以下であることを特徴とする、上記(1)に記載のコイルばね用チタン合金棒線。
(3) β変態点が780℃以上のβ型チタン合金を熱間加工した、或いは熱間加工後にさらに溶体化熱処理した棒線を用い、断面減少率で3〜20%の冷間伸線を実施することを特徴とする、コイルばね用チタン合金棒線の製造方法。
(4) 冷間伸線前の金属組織が未再結晶組織或いは結晶粒径10μm以下の再結晶組織であることを特徴とする、上記(3)に記載のコイルばね用チタン合金棒線の製造方法。
(5) 前記β型チタン合金が、Feを2〜8mass%含み且つVが0.1mass%以下であることを特徴とする、上記(3)または(4)に記載のコイルばね用チタン合金棒線の製造方法。
(6) 冷間伸線にて孔型ダイスを用いることを特徴とする、上記(3)ないし(5)のいずれか1項に記載のコイルばね用チタン合金棒線の製造方法。
In order to solve the above problems, the gist of the present invention is as follows.
(1) β-type titanium alloy having a β transformation point of 780 ° C. or higher, 0.2% proof stress is less than 1300 MPa, 1 mm depth from the surface, the difference in cross-section Vickers hardness is 20 or more, and the rod diameter deviation is A titanium alloy bar wire for coil springs, characterized in that it is ± 0.08 mm or less.
(2) The titanium alloy bar wire for coil springs according to (1) above, wherein the β-type titanium alloy contains 2 to 8 mass% of Fe and V is 0.1 mass% or less.
(3) Using a rod wire obtained by hot-working a β-type titanium alloy having a β transformation point of 780 ° C. or higher, or by further solution heat treatment after hot working, a cold drawing of 3 to 20% in terms of the cross-sectional reduction rate The manufacturing method of the titanium alloy bar wire for coil springs characterized by implementing.
(4) Production of titanium alloy rod for coil spring according to (3) above, wherein the metal structure before cold drawing is an unrecrystallized structure or a recrystallized structure having a crystal grain size of 10 μm or less. Method.
(5) The titanium alloy rod for coil spring according to (3) or (4) above, wherein the β-type titanium alloy contains 2 to 8 mass% of Fe and V is 0.1 mass% or less. Wire manufacturing method.
(6) The method for producing a titanium alloy rod for a coil spring according to any one of (3) to (5) above, wherein a hole die is used in cold wire drawing.

本発明において、棒線同一断面の最大直径と最小直径とを測定し、最大直径−狙い直径を「+差」、狙い直径−最小直径を「−差」としたとき、+差と−差の双方を棒線の直径偏差と呼ぶ。   In the present invention, when the maximum diameter and the minimum diameter of the same cross section of the bar wire are measured and the maximum diameter-target diameter is "+ difference" and the target diameter-minimum diameter is "-difference", Both are called the rod diameter deviation.

本発明によって、コイルばね用チタン合金棒線の1)直径偏差、2)コイルばねへの成形性、3)時効熱処理後の断面硬さ分布の均一性の3つを、同時により安定して高める製造方法およびコイルばね用チタン合金棒線を提供できる。本発明では伸線率を、従来技術の30%以上に対して、比較的小さくできることから、製造コスト面でも効果がある。   According to the present invention, three of the titanium alloy bar wire for coil springs 1) diameter deviation, 2) formability to coil springs, and 3) uniformity of cross-sectional hardness distribution after aging heat treatment are simultaneously and more stably enhanced. A manufacturing method and a titanium alloy bar wire for a coil spring can be provided. In the present invention, the wire drawing rate can be made relatively small compared to 30% or more of the prior art, so that it is also effective in terms of manufacturing cost.

本発明者らは、コイルばね用チタン合金棒線の1)直径偏差、2)コイルばねへの成形性、3)時効熱処理後の断面硬さ分布の均一性の3つを、同時により安定して高める方法について、鋭意研究を重ねた結果、以下のことを見出した。コイルばねの素材となるチタン合金棒線に付与する冷間伸線の伸線率を3〜20%、好ましくは3〜10%と低く抑えることによって棒線の変形抵抗も低く抑えることができて、伸線ダイスとの焼き付きが防止されるために安定した直径偏差が得られるとともに、コイルばねへの成形性も十分に確保できる。加えて、β変態点が780℃以上、好ましくは790℃以上のβ型チタン合金を適用することによって、時効熱処理時のα相の析出が比較的速くなるため、α相の析出に対して伸線で付与された歪み分布の影響が小さくなり、短時間の時効熱処理でも断面内の硬さ分布のばらつきを小さく抑えることができる。さらに、冷間伸線前の棒線を微細な金属組織である未再結晶組織或いは結晶粒径10μm以下の再結晶組織にすることによって、時効熱処理後の断面内硬さ分布のばらつきを極めて小さくすることができる。   The inventors of the present invention have simultaneously stabilized three of the titanium alloy rods for coil springs: 1) diameter deviation, 2) formability into coil springs, and 3) uniformity of cross-sectional hardness distribution after aging heat treatment. As a result of earnest research on how to improve the results, we found the following. The deformation resistance of the bar wire can be kept low by keeping the cold wire drawing rate applied to the titanium alloy rod used as the material of the coil spring as low as 3 to 20%, preferably 3 to 10%. Further, since seizure with the wire drawing die is prevented, a stable diameter deviation can be obtained, and the moldability to the coil spring can be sufficiently secured. In addition, by applying a β-type titanium alloy having a β transformation point of 780 ° C. or higher, preferably 790 ° C. or higher, the precipitation of the α phase during aging heat treatment becomes relatively fast. The influence of the strain distribution given by the lines is reduced, and the variation in the hardness distribution in the cross section can be kept small even with a short aging heat treatment. Furthermore, by making the bar wire before cold drawing into a non-recrystallized structure which is a fine metal structure or a recrystallized structure having a crystal grain size of 10 μm or less, variation in the hardness distribution in the cross section after aging heat treatment is extremely small. can do.

以下に本発明の各要素の設定根拠について説明する。   The basis for setting each element of the present invention will be described below.

第一に、冷間伸線の断面減少率(伸線率)について説明する。   First, the cross-section reduction rate (drawing rate) of cold drawing will be described.

熱間圧延、さらにはデスケ酸洗した棒線の偏径差は0.2〜0.5mm程度あることから、棒線の直径がおおよそ10〜20mmに対して伸線率は少なくとも3%は必要となる。図5に、棒線の実績直径の狙い直径に対する偏差と伸線率の関係を示す。伸線率3%以上において偏差が±0.08mm以下となっていることがわかる。したがって、伸線率の下限は3%とした。   Since the deviation of the diameter of the bar wire subjected to hot rolling and further deske pickled is about 0.2 to 0.5 mm, the wire drawing ratio is required to be at least 3% for the diameter of the bar wire of about 10 to 20 mm. It becomes. FIG. 5 shows the relationship between the deviation of the actual diameter of the bar wire from the target diameter and the wire drawing rate. It can be seen that the deviation is ± 0.08 mm or less at a drawing rate of 3% or more. Therefore, the lower limit of the wire drawing rate is 3%.

伸線率の上限は、冷間伸線後の変形抵抗の指標となる0.2%耐力の増加率によって制限した。図1に伸線率と冷間伸線ままの0.2%耐力およびその増加率の関係を示す。図1より0.2%耐力の増加率は伸線率と同等にほぼ比例して増加することがわかる。一方で、棒線の0.2%耐力が1300MPaを超えると表面の潤滑が維持できなくなり冷間伸線時に伸線ダイスとの焼き付きが顕著に発生する傾向にある。また、1300MPaを超えた高強度になると、コイリングの際にも成形治具との焼き付き発生頻度やスプリングバック量が大きくなる傾向にあり、ばね成形性におけるこれらの課題が顕在化する場合がある。図1では伸線率がゼロ、つまり初期の状態の0.2%耐力が1069MPaと1000MPaを超えた比較的高強度な材料の場合を示したものであることから、本発明の請求項1では高強度な材料でも冷間伸線後に0.2%耐力が1300MPaを超えないようにするために、伸線率の上限を0.2%耐力が約20%増加する20%とした。好ましくは0.2%耐力が約10%増加する10%である。なお、図1では、伸線率が10%の場合、0.2%耐力は1200MPa未満となっている。   The upper limit of the wire drawing rate was limited by the rate of increase in 0.2% yield strength, which is an index of deformation resistance after cold drawing. FIG. 1 shows the relationship between the wire drawing rate, the 0.2% proof stress as cold drawing and the rate of increase. As can be seen from FIG. 1, the rate of increase in 0.2% proof stress increases almost in proportion to the wire drawing rate. On the other hand, if the 0.2% proof stress of the bar wire exceeds 1300 MPa, surface lubrication cannot be maintained, and seizure with the wire drawing die tends to occur significantly during cold wire drawing. Further, when the strength exceeds 1300 MPa, the frequency of seizure with the forming jig and the amount of spring back tend to increase during coiling, and these problems in spring formability may become apparent. FIG. 1 shows a case of a relatively high-strength material in which the drawing rate is zero, that is, the 0.2% proof stress in the initial state exceeds 1069 MPa and 1000 MPa. In order to prevent the 0.2% yield strength from exceeding 1300 MPa after cold drawing even for a high-strength material, the upper limit of the wire drawing rate was set to 20%, which is about a 20% increase in 0.2% yield strength. Preferably, 0.2% proof stress is 10% which increases by about 10%. In FIG. 1, when the wire drawing rate is 10%, the 0.2% proof stress is less than 1200 MPa.

また、冷間伸線前に既に冷間加工が加わったままの棒線は、加工硬化によって0.2%耐力が増加していることから、0.2%耐力を低く抑えるために、本発明では冷間伸線前の棒線を熱間加工した状態或いは熱間加工後に溶体化熱処理した状態とする。なお、冷間伸線前に熱間加工や熱処理のスケールを除去する脱スケール工程や冷間伸線のための潤滑処理を適宜加えても良い。   In addition, since the 0.2% proof stress of the bar wire that has already been cold-worked before cold drawing has increased by 0.2% due to work hardening, the present invention has been described in order to keep the 0.2% proof stress low. Then, it is set as the state which carried out the solution heat treatment after the hot processing of the rod wire before cold drawing, or hot processing. In addition, you may add suitably the descaling process which removes the scale of hot processing or heat processing, and the lubrication process for cold drawing before cold drawing.

第2にβ型チタン合金のβ変態点について説明する。   Second, the β transformation point of the β-type titanium alloy will be described.

図2の(1),(2),(3)に各々、β型チタン合金であるBetaC、Ti−15V−3Cr−3Sn−3Al(以降、Ti−15−3)、Ti−1.5Al−6.8Mo−4.5Fe(以降、LCB)の時効熱処理時間による断面ビッカース硬さの変化(時効硬化曲線)を示す。ここで、各素材とも時効熱処理前に棒線は直径14mmから13.5mmに伸線率7%で冷間伸線したものを用いた。時効熱処理によって到達する硬さがビッカース硬さで410〜430程度になるように、時効熱処理温度はBetaC,Ti−15−3,LCBで各々490,510,530℃で実施した。断面内の表層と内部の硬さの差を評価するために、T断面にて表層から1mm深さと中央の2箇所のビッカース硬さを測定した。図2にて、表層1mm深さと中央の硬化挙動を比較すると、(1)のBetaCと(2)のTi−15−3は表層の方が内部よりも歪みが多く付与されているため時効硬化が速く起きており、3〜8時間の短時間側では表層1mmと中央の硬さの差が比較的大きい。BetaCでは48時間、Ti−15−3では14時間の時効熱処理で表層と中央の差がほぼ解消される。一方、(3)のLCBは表層1mmと中央の時効硬化挙動の差が非常に小さく、比較的短い3時間の時効熱処理で硬さの差がほぼ解消される。生産性や大気熱処理の場合にはスケール発生の観点から、時効熱処理は短時間ほど好ましい。   In (1), (2), and (3) of FIG. 2, BetaC, Ti-15V-3Cr-3Sn-3Al (hereinafter referred to as Ti-15-3), Ti-1.5Al-, which are β-type titanium alloys, respectively. The change (age hardening curve) of the cross-sectional Vickers hardness by the aging heat processing time of 6.8Mo-4.5Fe (henceforth, LCB) is shown. Here, before the aging heat treatment, each of the materials used was a bar wire that had been cold-drawn from a diameter of 14 mm to 13.5 mm at a drawing rate of 7%. The aging heat treatment temperatures were 490, 510, and 530 ° C. for BetaC, Ti-15-3, and LCB, respectively, so that the hardness reached by the aging heat treatment was about 410 to 430 in terms of Vickers hardness. In order to evaluate the difference in hardness between the surface layer in the cross section and the internal hardness, the Vickers hardness at 1 mm depth from the surface layer and the center at two locations were measured in the T cross section. In FIG. 2, when the surface layer 1 mm depth and the curing behavior at the center are compared, the BetaC of (1) and Ti-15-3 of (2) are age hardened because the surface layer is given more strain than the inside. Is occurring quickly, and on the short time side of 3 to 8 hours, the difference in hardness between the surface layer of 1 mm and the center is relatively large. The difference between the surface layer and the center is almost eliminated by aging heat treatment of BetaC for 48 hours and Ti-15-3 for 14 hours. On the other hand, the LCB of (3) has a very small difference between the age hardening behavior of the surface layer of 1 mm and the center, and the hardness difference is almost eliminated by a relatively short aging heat treatment for 3 hours. In the case of productivity and atmospheric heat treatment, an aging heat treatment is preferable for a short time from the viewpoint of scale generation.

これらのβ型チタン合金はβ変態点が大きく異なっており、BetaC,Ti−15−3,LCBで各々730,760,805℃である。β変態点が異なるβ型チタン合金にて同程度のα相を析出させるためには、β変態点が低いものほど時効温度を低くする必要がある。時効熱処理温度が低いほど拡散速度は小さくα相の析出が遅くなり、その結果、硬化も遅く最高硬さに達する時効熱時間が長くなってしまう。その反対にβ変態点が高いほど時効熱処理温度を高くすることができ、時効硬化が速く起きることになる。   These β-type titanium alloys are greatly different in β-transformation point and are 730, 760, and 805 ° C. for BetaC, Ti-15-3, and LCB, respectively. In order to precipitate the same α phase in β-type titanium alloys having different β transformation points, it is necessary to lower the aging temperature as the β transformation point is lower. The lower the aging heat treatment temperature, the smaller the diffusion rate and the slower the precipitation of the α phase. As a result, the curing is slow and the aging heat time for reaching the maximum hardness is prolonged. On the contrary, the higher the β transformation point, the higher the aging heat treatment temperature, and the faster age hardening occurs.

冷間伸線によって付与された歪み、つまり格子欠陥は、α相の析出サイトとして作用するため、歪み量が多いほどα相の析出サイトが多くなり、その結果、α相が速く析出し硬化も速くなる。伸線率が小さい場合には、表層と中央で歪み分布が生じ、歪み量が多い表層ほど時効硬化が速くなる。β変態点が低く時効硬化が遅いBetaCやTi−15−3では、短時間側で、冷間伸線による歪み量の影響が顕著に現れ、図2の(1),(2)のような断面内に硬さの差が生じると考えられる。これに対して、β変態点が高いLCBは歪みが無くとも元々時効硬化が速いため、歪み量の影響が小さく、図2の(3)のように短時間の時効熱処理でも断面内の硬さの差がほとんどないと考えられる。   The strain imparted by cold drawing, that is, lattice defects, acts as α-phase precipitation sites. Therefore, the greater the amount of strain, the more α-phase precipitation sites. As a result, the α-phase precipitates faster and hardens. Get faster. When the wire drawing rate is small, strain distribution occurs between the surface layer and the center, and age hardening becomes faster as the surface layer has a larger amount of strain. In BetaC and Ti-15-3, which have a low β transformation point and a slow age hardening, the effect of strain due to cold drawing appears significantly on the short time side, as shown in (1) and (2) of FIG. It is considered that a difference in hardness occurs in the cross section. On the other hand, LCB with a high β transformation point has an early age hardening even if there is no strain, so the effect of the strain is small, and the hardness in the cross section can be reduced even with a short aging heat treatment as shown in (3) of FIG. There seems to be almost no difference.

このように、伸線率が小さい場合に短時間の時効熱処理でも断面内の硬さのばらつきを抑えるためには、β変態点を高めることが有効である。そこで、図2の結果を用いて、β型チタン合金のβ変態点と断面内の硬さのばらつきΔHV(ΔHVは、表層1mmと中央のビッカース硬さの差)の関係を整理した。その結果を図3に示す。図3では時効熱処理時間が短い側を比較するために、3時間と8時間の2条件を示す。図3より、3時間の時効の場合にはβ変態点が790℃以上で、8時間の時効の場合にはβ変態点が780℃以上で、ΔHVは十分に10以下になる。また、図3より、β変態点が780℃のとき時効時間が3時間の場合でもΔHVは約15と比較的小さい。ここで、ΔHVが10〜15は各々、ビッカース硬さ410〜430に対して3〜5%未満に相当し、小さいことがわかる。   As described above, it is effective to raise the β transformation point in order to suppress the variation in hardness in the cross section even in a short time aging heat treatment when the wire drawing rate is small. Therefore, the relationship between the β transformation point of the β-type titanium alloy and the hardness variation ΔHV (ΔHV is the difference between the surface layer of 1 mm and the center Vickers hardness) was arranged using the results of FIG. The result is shown in FIG. FIG. 3 shows two conditions of 3 hours and 8 hours in order to compare the shorter aging heat treatment time. From FIG. 3, the β transformation point is 790 ° C. or more in the case of aging for 3 hours, the β transformation point is 780 ° C. or more in the case of aging for 8 hours, and ΔHV is sufficiently 10 or less. Further, from FIG. 3, even when the aging time is 3 hours when the β transformation point is 780 ° C., ΔHV is relatively small at about 15. Here, it can be seen that ΔHV of 10 to 15 corresponds to less than 3 to 5% with respect to Vickers hardness of 410 to 430 and is small.

さらに、伸線率のみを7%から3%に変更し、上記と同様の処理を行った。その結果、伸線率7%の場合と同様、ΔHVが10以下になる条件は、時効時間が8時間の場合にβ変態点が780℃以上、時効時間が3時間の場合にはβ変態点が790℃以上であった。   Furthermore, only the wire drawing rate was changed from 7% to 3%, and the same treatment as above was performed. As a result, as in the case of the drawing rate of 7%, the condition that ΔHV is 10 or less is that the β transformation point is 780 ° C. or more when the aging time is 8 hours, and the β transformation point when the aging time is 3 hours. Was 790 ° C. or higher.

以上のことから、本発明の請求項1では、用いるβ型チタン合金のβ変態点を780℃以上とした。また、時効時間がより短い側でもΔHVが小さくなることから、好ましくはβ変態点が790℃以上である。   From the above, in claim 1 of the present invention, the β transformation point of the β-type titanium alloy used is 780 ° C. or higher. Moreover, since ΔHV is reduced even on the shorter aging time side, the β transformation point is preferably 790 ° C. or higher.

以上総合して、コイルばね製造に適したチタン合金棒線について説明する。   Overall, a titanium alloy bar wire suitable for coil spring production will be described.

本発明のコイルばね用チタン合金棒線は、図4に示すように、伸線率が3〜20%では冷間伸線ままの状態なのでΔHVが20以上である。なお、ΔHVの上限は実質的に70〜80程度となる。図4から分かるように、伸線率が小さい場合や大きすぎる場合には、かえってΔHVは小さくなり20未満となる。   As shown in FIG. 4, the titanium alloy rod for coil spring of the present invention is in a state of cold drawing when the drawing rate is 3 to 20%, and therefore ΔHV is 20 or more. The upper limit of ΔHV is substantially about 70-80. As can be seen from FIG. 4, when the drawing rate is small or too large, ΔHV is rather small and less than 20.

図5は、横軸が伸線率であり、縦軸は狙いの直径に対する実績直径の偏差である。縦軸の偏差については、棒線同一断面の最大直径と最小直径とを測定し、最大直径−狙い直径を「+差」、狙い直径−最小直径を「−差」とした。図5に示すように、伸線率3%以上の冷間伸線を実施することによって、狙いの直径に対する実績直径の偏差は、+差、−差ともに少なくとも±0.08mm以下となり、容易に±0.05mm以下のものが得られる。ここでは、孔型ダイスを用いた冷間伸線の結果である。ばね常数は(2)式より、直径10〜20mmの棒線を前提にした場合、偏差±0.08mmで±1.6〜3.2%以下、偏差±0.05mmで±1〜2%以下の範囲に収まることになる。当然ながら、偏差±0.05mmの方が好ましい。なお、伸線率が20%を超えると0.2%耐力が1300MPa超え、伸線時の焼き付きが発生する。そのような場合には、伸線の途中で再潤滑を行うことにより冷間伸線を完遂した。ただし、棒線の実生産においては、冷間伸線で再潤滑を行うと、その分の製造費が嵩むという問題が発生する。さらに上述したように0.2%耐力が1300MPa超えた状態ではコイリング時に成形治具と焼き付くといった問題が発生する。   In FIG. 5, the horizontal axis is the wire drawing rate, and the vertical axis is the deviation of the actual diameter from the target diameter. Regarding the deviation on the vertical axis, the maximum diameter and the minimum diameter of the same cross section of the bar wire were measured, and the maximum diameter−target diameter was “+ difference” and the target diameter−minimum diameter was “−difference”. As shown in FIG. 5, by performing cold drawing with a drawing rate of 3% or more, the deviation of the actual diameter with respect to the target diameter becomes at least ± 0.08 mm or less for both the + difference and the − difference. A product of ± 0.05 mm or less is obtained. Here, it is the result of the cold wire drawing using the hole die. Based on the formula (2), the spring constant is ± 1.6 to 3.2% with a deviation of ± 0.08 mm and ± 1 to 2% with a deviation of ± 0.05 mm, assuming a rod with a diameter of 10 to 20 mm. It will be in the following range. Of course, a deviation of ± 0.05 mm is preferable. When the wire drawing rate exceeds 20%, the 0.2% proof stress exceeds 1300 MPa, and seizure occurs during wire drawing. In such a case, cold drawing was completed by relubrication in the middle of drawing. However, in the actual production of the bar wire, if re-lubrication is performed by cold drawing, there is a problem that the manufacturing cost correspondingly increases. Further, as described above, when the 0.2% proof stress exceeds 1300 MPa, there arises a problem of seizing with the forming jig during coiling.

このように、冷間伸線を実施された本発明の請求項1の棒線は、ΔHVが20以上で、直径偏差が±0.08mm以下好ましくは±0.05mm以下となる。   Thus, the bar wire of claim 1 of the present invention which has been cold drawn has a ΔHV of 20 or more and a diameter deviation of ± 0.08 mm or less, preferably ± 0.05 mm or less.

したがって、本発明の請求項1に係る発明では、安定したばね定数と均一な材質を有するコイルばねを製造することができるコイルばね用チタン合金として、β変態点が780℃以上のβ型チタン合金からなり、0.2%耐力が1300MPa未満、表面から1mm深さと中心の断面ビッカース硬さの差(ΔHV)が20以上、棒線の直径偏差が±0.08mm以下とした。好ましくは、上述のように、各々、β型チタン合金のβ変態点が790℃以上、0.2%耐力が1200MPa未満、棒線の直径偏差が±0.05mm以下である。なお、冷間伸線ままの0.2%耐力の下限は、小さくとも900MPa程度である。   Therefore, in the invention according to claim 1 of the present invention, as a titanium alloy for a coil spring capable of producing a coil spring having a stable spring constant and a uniform material, a β-type titanium alloy having a β transformation point of 780 ° C. or higher. The 0.2% proof stress was less than 1300 MPa, the difference between the depth of 1 mm from the surface and the central cross-section Vickers hardness (ΔHV) was 20 or more, and the diameter deviation of the bar wire was ± 0.08 mm or less. Preferably, as described above, each of the β-type titanium alloy has a β transformation point of 790 ° C. or higher, a 0.2% proof stress of less than 1200 MPa, and a rod wire diameter deviation of ± 0.05 mm or less. In addition, the minimum of 0.2% yield strength as cold drawing is at least about 900 MPa.

第3に、β型チタン合金の好ましい成分系について説明する。   Third, a preferred component system of the β-type titanium alloy will be described.

より廉価な合金化元素を使用した方がコストパフォーマンスの観点から好ましいことから、β化安定化元素として、比較的高価なVは添加せず、比較的廉価なFeを添加した方が好ましい。また、同様にβ化安定化元素であるMoやCrをFeが含有されているフェロモリブデン(Fe−Mo)やフェロクロム(Fe−Cr)で添加する方法もあり、その場合にもFeが添加される。Feは、β相を安定化させるために少なくとも2mass%以上必要であり、一方、溶解凝固時に偏析しやすいことから最大でも8mass%以下が好ましい。以上より、本発明の請求項2では、Vを添加しないことからVは不可避的に含まれる量として0.1mass%以下とし、Feを2〜8mass%含むβ型チタン合金とした。なお、Feの添加は、鉄単体でも、フェロモリブデンやフェロクロム或いは鋼のスクラップや酸化鉄などFeを含有した原料で添加した場合も含む。   Since it is preferable to use a cheaper alloying element from the viewpoint of cost performance, it is preferable not to add relatively expensive V as a β-stabilizing element but to add relatively inexpensive Fe. Similarly, there is a method in which Mo or Cr, which is a β stabilization element, is added with ferromolybdenum (Fe—Mo) or ferrochromium (Fe—Cr) containing Fe, in which case Fe is also added. The Fe needs to be at least 2 mass% in order to stabilize the β phase. On the other hand, it is preferably at most 8 mass% because it tends to segregate during dissolution and solidification. From the above, according to claim 2 of the present invention, since V is not added, V is inevitably contained in an amount of 0.1 mass% or less, and a β-type titanium alloy containing 2 to 8 mass% of Fe. The addition of Fe includes a case where iron is added alone, or a raw material containing Fe such as ferromolybdenum, ferrochrome, steel scrap, or iron oxide.

次に本発明のコイルばね用チタン合金棒線の製造方法について説明する。   Next, the manufacturing method of the titanium alloy bar wire for coil springs of this invention is demonstrated.

本発明の請求項3に係る製造方法では、β変態点が780℃以上のβ型チタン合金を用い、断面減少率で3〜20%の冷間伸線を実施するが、その理由は前述のとおりである。また前述のとおり、冷間伸線前に既に冷間加工が加わったままの棒線は、加工硬化によって0.2%耐力が増加していることから、0.2%耐力を低く抑えるために、冷間伸線前の棒線を熱間加工した状態或いは熱間加工後に溶体化熱処理した状態とする。なお、冷間伸線前に熱間加工や熱処理のスケールを除去する脱スケール工程や冷間伸線のための潤滑処理を適宜加えても良い。   In the manufacturing method according to claim 3 of the present invention, a β-type titanium alloy having a β transformation point of 780 ° C. or higher is used, and cold drawing is performed at a cross-section reduction rate of 3 to 20%. It is as follows. In addition, as described above, since the 0.2% yield strength of the bar wire that has already been cold-worked before cold drawing has increased by 0.2% due to work hardening, to keep the 0.2% yield strength low. The rod wire before cold drawing is in a hot-worked state or a solution heat treatment state after hot working. In addition, you may add suitably the descaling process which removes the scale of hot processing or heat processing, and the lubrication process for cold drawing before cold drawing.

本発明の請求項3に係る製造方法によって製造されたチタン合金棒線を適用することによって、コイルばねへの成形性が確保され、安定したばね定数と均一な材質を有するコイルばねを製造することができる。   By applying the titanium alloy bar wire manufactured by the manufacturing method according to claim 3 of the present invention, a coil spring having a stable spring constant and a uniform material is ensured by ensuring the formability to the coil spring. Can do.

本発明の請求項4では請求項3の発明において、時効熱処理でα相の析出をより均一に進行させるため、微細な組織が好ましいことから、冷間伸線前の金属組織を未再結晶組織或いは結晶粒径10μm以下の再結晶組織とした。なお、本発明では未再結晶組織でも、冷間加工ままの状態ではなく、上述したように熱間加工ままかその後に溶体化処理を実施していることから、回復現象が起きており、ある程度歪みが除去されて軟質化している。   According to claim 4 of the present invention, in the invention of claim 3, in order to advance the α phase precipitation more uniformly by aging heat treatment, a fine structure is preferable. Alternatively, a recrystallized structure having a crystal grain size of 10 μm or less was used. In the present invention, even in the non-recrystallized structure, it is not in the state of cold working, but as described above, since the solution treatment is performed in the hot working state or after that, a recovery phenomenon occurs, and to some extent Distortion is removed and softened.

本発明の請求項5ではFeを2〜8mass%含み且つVが0.1mass%以下であることとした。その理由は前述のとおりである。   According to claim 5 of the present invention, Fe is contained in an amount of 2 to 8 mass% and V is 0.1 mass% or less. The reason is as described above.

冷間伸線に用いるダイス、いわゆる伸線ダイスには、一般的にローラーダイスと孔型ダイスがある。冷間伸線後の直径偏差をより改善するためには、円形の孔内を通材させる孔型ダイスの方が好ましい。したがって、本発明の請求項6に係る発明では、冷間伸線にて孔型ダイスを用いることとした。   As a die used for cold wire drawing, so-called wire drawing die, there are generally a roller die and a hole die. In order to further improve the diameter deviation after the cold wire drawing, a hole die that passes through a circular hole is more preferable. Therefore, in the invention according to claim 6 of the present invention, a hole die is used for cold drawing.

本発明を、以下の実施例を用いて更に詳細に説明する。表1〜5において、本発明範囲から外れる数値にアンダーラインを付している。   The invention is explained in more detail using the following examples. In Tables 1 to 5, numerical values that deviate from the scope of the present invention are underlined.

表1に、供試材である記号A,B,C,Dの成分組成とβ変態点を示す。記号A,B,C,Dのβ変態点は、各々730,760,787,805℃である。Vを添加していない記号Cと記号DのV濃度はいずれも0.02mass%である。なお、供試材はいずれも、表記した元素の他に不可避的にFe,O,C,N,Hなどを含んでいる。記号Cと記号Dは、本発明の請求項3および請求項6のVが0.1mass%以下でFeが2〜8mass%添加されている成分系に該当する。   Table 1 shows component compositions and β transformation points of symbols A, B, C, and D as test materials. The β transformation points of symbols A, B, C, and D are 730, 760, 787, and 805 ° C., respectively. The V concentrations of Symbol C and Symbol D to which V is not added are both 0.02 mass%. In addition, all the test materials inevitably contain Fe, O, C, N, H and the like in addition to the elements described. Symbols C and D correspond to the component systems according to claims 3 and 6 of the present invention in which V is 0.1 mass% or less and Fe is added in an amount of 2-8 mass%.

Figure 2007321176
Figure 2007321176

表1の各組成からなるビレットを熱間で圧延した棒を作製し、素材として用いた。熱間圧延ままの棒或いは溶体化処理を施した棒を、脱スケールし表面潤滑処理を実施し冷間伸線に供した。冷間伸線後の棒線が、本発明のコイルばね用チタン合金棒線に相当する。なお、冷間伸線は全て孔型ダイスを使用した。冷間伸線時に焼き付きが発生した場合には、発生した時点で再潤滑を施した。その結果、焼き付きが発生する水準においても冷間伸線を完遂することができた。さらに冷間伸線後に時効熱処理を実施した。コイリング後に行う熱処理を想定したものである。   Bars obtained by hot rolling billets having the respective compositions shown in Table 1 were prepared and used as materials. A hot-rolled rod or a solution-treated rod was descaled and subjected to surface lubrication treatment and subjected to cold drawing. The rod after cold drawing corresponds to the titanium alloy rod for coil spring of the present invention. In addition, all the cold drawing used the hole type | mold die. If seizure occurred during cold drawing, re-lubrication was performed at the time of occurrence. As a result, it was possible to complete cold drawing even at the level where seizure occurred. Further, aging heat treatment was performed after cold drawing. The heat treatment performed after coiling is assumed.

表2と表3に、使用したβ合金の種類、冷間伸線前の状態、冷間伸線率と時効熱処理の条件、冷間伸線後の0.2%耐力、時効熱処理後のT断面における各部位のビッカース硬さとそのΔHVを示す。表2には記号A,B、表3には記号C,Dのβ型チタン合金の例を示す。なお、ビッカース硬さは荷重1kgfで測定した。   Tables 2 and 3 show the types of β alloys used, the state before cold drawing, the conditions of cold drawing and aging heat treatment, 0.2% proof stress after cold drawing, and T after aging heat treatment. The Vickers hardness of each part in a cross section and its ΔHV are shown. Table 2 shows examples of β-type titanium alloys of symbols A and B, and Table 3 of symbols C and D. The Vickers hardness was measured with a load of 1 kgf.

Figure 2007321176
Figure 2007321176

Figure 2007321176
Figure 2007321176

表2より、β変態点が730℃,760℃と本発明よりも低い記号A,Bのβ型チタン合金を用いた場合には、伸線率が7および13.8%と小さく時効熱処理の時間が3時間と短いNo.A1,A2,A5,A6,B1,B2は、時効熱処理後のΔHVが19〜54と10を超えている。これに対して伸線率が43.8%と大きくなるとΔHVは減少するが、それでもNo.A3,A7のようにΔHVは10を超え、あるいはB3のように10程度であり、改善効果はあるものの当然ながら伸線費用が嵩むことになる。また、No.A7は冷間伸線後の0.2%耐力が1300MPaを超えており、冷間伸線やコイルばね成形時にダイスや治具と焼き付く可能性が高まることになる。伸線率が7%と小さいが時効熱処理の時間を48時間や14時間と長くすれば、No.A4とB4のようにΔHVが5以下と小さくなる。しかし、時効熱処理の時間が10時間を超えており、生産性が低く且つ大気熱処理の場合にはスケール発生など酸化進行などの懸念が生じる。このように、β変態点が780℃未満の730℃,760℃と低い場合には、伸線率が7%や13.8%と20%より小さいと、8時間以下の短時間の時効熱処理では10以下のΔHVには達していない。   From Table 2, when β-type titanium alloys with symbols A and B having β transformation points of 730 ° C. and 760 ° C., which are lower than those of the present invention, are used, the drawing rate is as small as 7 and 13.8%. No. is as short as 3 hours. In A1, A2, A5, A6, B1, and B2, ΔHV after the aging heat treatment exceeds 19 to 54 and 10. On the other hand, when the drawing rate increases to 43.8%, ΔHV decreases. ΔHV exceeds 10 as in A3 and A7, or about 10 as in B3, and although there is an improvement effect, the wire drawing cost naturally increases. No. A7 has a 0.2% proof stress after cold drawing exceeding 1300 MPa, which increases the possibility of seizing with a die or jig during cold drawing or coil spring molding. Although the wire drawing rate is as small as 7%, if the aging heat treatment time is increased to 48 hours or 14 hours, no. As in A4 and B4, ΔHV is as small as 5 or less. However, the aging heat treatment time exceeds 10 hours, the productivity is low, and in the case of the atmospheric heat treatment, there is a concern of oxidation progress such as generation of scale. Thus, in the case where the β transformation point is as low as 730 ° C. and 760 ° C. below 780 ° C., if the wire drawing rate is smaller than 7% or 13.8% and 20%, the heat treatment is performed for a short time of 8 hours or less. However, it does not reach ΔHV of 10 or less.

表3より、β変態点が787℃,805℃と高く本発明の780℃以上に該当する記号C,Dのβ型チタン合金を用いた場合には、本発明の伸線率上限である20%を超えているNo.C11,D11,D12ではΔHVが1以下と非常に小さいが、冷間伸線後の0.2%耐力が1300MPaを超えており、冷間伸線やコイルばね成形時にダイスや治具と焼き付く可能性が高まってしまう。これに対して、伸線率が20%以下であるNo.C1〜C10,D1〜D10では冷間伸線後の0.2%耐力が1280MPa以下に抑えられており、ΔHVも10以下と小さい。さらに、伸線率が10%以下と小さいNo.C1,C2,C3,C5,C6,C8,C9,D1,D2,D4,D5,D7,D8は、冷間伸線後の0.2%耐力が1053〜1152MPaと1200MPa未満に抑えられている。なお、表3の時効熱処理の時間はいずれも短時間で、No.C1は8時間、その他は全て3時間である。   From Table 3, when β-type titanium alloys having high C transformation points of 787 ° C. and 805 ° C. and symbols C and D corresponding to 780 ° C. or higher of the present invention are used, the upper limit of the drawing rate of the present invention is 20 No. exceeding 50% In C11, D11, and D12, ΔHV is very small at 1 or less, but the 0.2% yield strength after cold drawing exceeds 1300 MPa, and it is possible to seize with dies and jigs when forming cold drawing or coil springs. Will increase. On the other hand, No. with a wire drawing rate of 20% or less. In C1 to C10 and D1 to D10, the 0.2% yield strength after cold drawing is suppressed to 1280 MPa or less, and ΔHV is also as small as 10 or less. Furthermore, the wire drawing rate is as small as 10% or less. C1, C2, C3, C5, C6, C8, C9, D1, D2, D4, D5, D7, and D8 have a 0.2% proof stress after cold drawing of 1053 to 1152 MPa, which is suppressed to less than 1200 MPa. . In Table 3, all of the aging heat treatment times are short. C1 is 8 hours and all others are 3 hours.

同等な伸線率と時効熱処理条件で記号Cと記号Dを比較すると,β変態点が790℃以上と高い方である記号Dの方が、ΔHVが安定して小さくなっていることがわかる。例えば、No.C2〜C4とNo.D1〜D3を比較すると、β変態点が805℃と高いNo.D1〜D3の方はΔHVが5以下と小さい。   Comparing symbol C and symbol D under the same wire drawing rate and aging heat treatment conditions, it can be seen that symbol HV, which has a higher β transformation point of 790 ° C. or higher, has a smaller and smaller ΔHV. For example, no. C2-C4 and No. When D1 to D3 are compared, the β transformation point is as high as 805 ° C. For D1 to D3, ΔHV is as small as 5 or less.

さらに、冷間伸線前の金属組織の影響を比較すると、結晶粒径が10μm以下と微細な組織であるか或いは未再結晶組織であるNo.C5〜C10,D1〜D10の方が、同等な伸線率と時効熱処理条件で比較するとNo.C1〜C4,D1〜D3よりも、ΔHVが安定して小さくなっている。   Furthermore, when the influence of the metal structure before cold drawing is compared, No. 1 is a fine structure with a crystal grain size of 10 μm or less or an unrecrystallized structure. C5 to C10 and D1 to D10 are No. when compared with the same wire drawing rate and aging heat treatment conditions. ΔHV is stably smaller than C1 to C4 and D1 to D3.

表4、5に、使用したβ合金の種類、冷間伸線前の状態、冷間伸線率、冷間伸線時の再潤滑の有無、冷間伸線後の直径偏差、冷間伸線後の0.2%耐力、冷間伸線ままのT断面における各部位のビッカース硬さとそのΔHVを示す。表4のNo.A0,B0,C0,D0は冷間伸線なしの状態に該当する。それ以外は冷間伸線したもので、表2,表3に示したNo.と共通するものである。なお、ビッカース硬さは荷重1kgfで測定した。記号Cと記号Dは、表1に示したように、本発明の請求項7のVが0.1mass%以下でFeが2〜8mass%添加されている成分系に該当する。冷間伸線を行った水準については、実施例・比較例いずれも、冷間伸線後の棒の直径偏差は良好であった。   Tables 4 and 5 show the types of β alloys used, the state before cold drawing, the cold drawing rate, the presence or absence of re-lubrication during cold drawing, the diameter deviation after cold drawing, and cold drawing. The Vickers hardness and ΔHV of each part in the T cross-section of 0.2% proof stress after cold drawing and cold drawing are shown. No. in Table 4 A0, B0, C0, and D0 correspond to the state without cold drawing. Other than that, it was cold-drawn. Is in common. The Vickers hardness was measured with a load of 1 kgf. As shown in Table 1, the symbols C and D correspond to a component system in which V of claim 7 of the present invention is 0.1 mass% or less and Fe is added in an amount of 2-8 mass%. As for the level at which cold drawing was performed, the diameter deviation of the rod after cold drawing was good in both Examples and Comparative Examples.

Figure 2007321176
Figure 2007321176

Figure 2007321176
Figure 2007321176

表4、5より、本発明の請求項1,請求項2、請求項3にて、製造された実施例(表4の備考参照)は、β変態点が780℃以上のβ型チタン合金からなり、0.2%耐力が1300MPa未満、表面から1mm深さと中心の断面ビッカース硬さの差(ΔHV)が20以上であり、冷間伸線時に焼き付きが発生しなかったために再潤滑が不要であり、直径偏差が±0.08mm以下のチタン合金棒線となっている。したがって、これらを用いることによって、安定したばね定数と均一な材質を有するコイルばねを製造することができる。   From Tables 4 and 5, the examples manufactured in claims 1, 2 and 3 of the present invention (see the remarks in Table 4) are made from β-type titanium alloys having a β transformation point of 780 ° C. or higher. Since the 0.2% proof stress is less than 1300 MPa, the difference between the 1 mm depth from the surface and the center cross-section Vickers hardness (ΔHV) is 20 or more, and seizure did not occur during cold drawing, re-lubrication is unnecessary. There is a titanium alloy bar wire having a diameter deviation of ± 0.08 mm or less. Therefore, by using these, a coil spring having a stable spring constant and a uniform material can be manufactured.

よりコイルばねを製造に適したものとして、結晶粒径が10μm以下と微細な組織であるか或いは未再結晶組織である表4のNo.C5〜C10とD4〜D10が該当する。好ましくは、β変態点が790℃以上である表4のNo.D1〜D10、0.2%耐力が1200MPa未満である表4のNo.C1,C3〜C6,C8,C9,D1,D2,D4,D5,D7,D8、棒線の直径偏差が±0.05mm以下である表4のNo.C3〜C10,D2〜D6,D8〜D10である。   As a coil spring more suitable for manufacturing, the crystal grain size of 10 μm or less is a fine structure or an unrecrystallized structure No. 4 in Table 4. C5-C10 and D4-D10 correspond. Preferably, No. 4 in Table 4 in which the β transformation point is 790 ° C. or higher. D1-D10, No. of Table 4 whose 0.2% yield strength is less than 1200 MPa. C1, C3 to C6, C8, C9, D1, D2, D4, D5, D7, D8, No. in Table 4 in which the diameter deviation of the bar is ± 0.05 mm or less. C3-C10, D2-D6, D8-D10.

一方、冷間伸線なしのNo.A0,B0,C0,D0は、当然ながらΔHVは小さく、0.2%耐力も低いが、直径偏差が±0.1mm以上と大きい。   On the other hand, no. A0, B0, C0, and D0 naturally have a small ΔHV and a low 0.2% proof stress, but have a large diameter deviation of ± 0.1 mm or more.

また、伸線率が高く20%を超えたNo.C11,D11,D12は、0.2%耐力が1300MPaを超えている。   In addition, No. with a high wire drawing rate exceeding 20%. C11, D11, and D12 have a 0.2% proof stress exceeding 1300 MPa.

β型チタン合金における伸線率と冷間伸線ままの0.2%耐力およびその増加率の関係を示す図である。It is a figure which shows the relationship between the wire drawing rate in 0.2 type titanium alloy, 0.2% proof stress as it is cold wire drawing, and its increase rate. β変態点が異なる3種類のβ型チタン合金における冷間伸線後の時効熱処理時間による断面ビッカース硬さの変化を示す図である。It is a figure which shows the change of a cross-section Vickers hardness by the aging heat processing time after cold drawing in three types of (beta) type titanium alloys from which (beta) transformation point differs. β変態点が異なる3種類のβ型チタン合金における冷間伸線後の時効熱処理時間による断面ビッカース硬さの変化を示す図である。It is a figure which shows the change of a cross-section Vickers hardness by the aging heat processing time after cold drawing in three types of (beta) type titanium alloys from which (beta) transformation point differs. β型チタン合金のβ変態点と時効熱処理後の断面内の硬さのばらつきΔHV(表層1mmと中央のビッカース硬さの差)の関係を示す図である。It is a figure which shows the relationship of (beta) transformation point of beta type titanium alloy, and dispersion | variation (DELTA) HV of the hardness in the cross section after an aging heat processing (difference of surface layer 1mm and center Vickers hardness). 伸線率と冷間伸線ままの断面ビッカース硬さおよびΔHVの関係を示す図である。It is a figure which shows the relationship between a drawing rate, the cross-section Vickers hardness with a cold drawing, and (DELTA) HV. 伸線率と狙い直径に対する偏差の関係を示す図である。It is a figure which shows the relationship of the deviation with respect to a drawing rate and a target diameter.

Claims (6)

β変態点が780℃以上のβ型チタン合金からなり、0.2%耐力が1300MPa未満、表面から1mm深さと中心の断面ビッカース硬さの差が20以上、棒線の直径偏差が±0.08mm以下であることを特徴とする、コイルばね用チタン合金棒線。   It is made of a β-type titanium alloy having a β transformation point of 780 ° C. or higher, a 0.2% proof stress is less than 1300 MPa, a 1 mm depth from the surface and a difference in cross-section Vickers hardness of 20 or more, and a rod wire diameter deviation of ± 0. A titanium alloy bar wire for coil springs, characterized in that it is not more than 08 mm. 前記β型チタン合金が、Feを2〜8mass%含み且つVが0.1mass%以下であることを特徴とする、請求項1に記載のコイルばね用チタン合金棒線。   2. The titanium alloy rod for coil spring according to claim 1, wherein the β-type titanium alloy contains 2 to 8 mass% of Fe and V is 0.1 mass% or less. β変態点が780℃以上のβ型チタン合金を熱間加工した、或いは熱間加工後にさらに溶体化熱処理した棒線を用い、断面減少率で3〜20%の冷間伸線を実施することを特徴とする、コイルばね用チタン合金棒線の製造方法。   Use a wire rod that has been hot worked on a β-type titanium alloy with a β transformation point of 780 ° C. or higher, or that has undergone solution heat treatment after hot working, and cold-drawing at a cross-section reduction rate of 3 to 20%. A method for producing a titanium alloy bar wire for a coil spring. 冷間伸線前の金属組織が未再結晶組織或いは結晶粒径10μm以下の再結晶組織であることを特徴とする、請求項3に記載のコイルばね用チタン合金棒線の製造方法。   4. The method for producing a titanium alloy rod for coil spring according to claim 3, wherein the metal structure before cold drawing is an unrecrystallized structure or a recrystallized structure having a crystal grain size of 10 [mu] m or less. 前記β型チタン合金が、Feを2〜8mass%含み且つVが0.1mass%以下であることを特徴とする、請求項3または4に記載のコイルばね用チタン合金棒線の製造方法。   5. The method for producing a titanium alloy rod for a coil spring according to claim 3, wherein the β-type titanium alloy contains 2 to 8 mass% of Fe and V is 0.1 mass% or less. 冷間伸線にて孔型ダイスを用いることを特徴とする、請求項3ないし5のいずれか1項に記載のコイルばね用チタン合金棒線の製造方法。   The method for producing a titanium alloy rod for coil spring according to any one of claims 3 to 5, wherein a hole die is used in cold wire drawing.
JP2006149837A 2006-05-30 2006-05-30 Titanium alloy rod wire for coil spring and production method therefor Withdrawn JP2007321176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149837A JP2007321176A (en) 2006-05-30 2006-05-30 Titanium alloy rod wire for coil spring and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149837A JP2007321176A (en) 2006-05-30 2006-05-30 Titanium alloy rod wire for coil spring and production method therefor

Publications (1)

Publication Number Publication Date
JP2007321176A true JP2007321176A (en) 2007-12-13

Family

ID=38854251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149837A Withdrawn JP2007321176A (en) 2006-05-30 2006-05-30 Titanium alloy rod wire for coil spring and production method therefor

Country Status (1)

Country Link
JP (1) JP2007321176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503486B2 (en) 2020-12-11 2024-06-20 株式会社豊田中央研究所 Non-magnetic member and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503486B2 (en) 2020-12-11 2024-06-20 株式会社豊田中央研究所 Non-magnetic member and method of manufacturing same

Similar Documents

Publication Publication Date Title
EP2078760B1 (en) Beta titanium alloy
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
CN112105751B (en) High strength titanium alloy
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
US20030168138A1 (en) Method for processing beta titanium alloys
TWI776050B (en) A steel wire, a method for manufacturing the same, and method for manufacturing a spring or medical wire products
CN111868287A (en) Method for producing Ni-based superalloy and Ni-based superalloy
JP2019178405A (en) Production method of steel wire
JP3308090B2 (en) Fe-based super heat-resistant alloy
KR20180033202A (en) A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel
JP5729213B2 (en) Manufacturing method of hot press member
JPH0885838A (en) Ni-base superalloy
JPS63500950A (en) Ultra-high carbon steel containing aluminum and its processing method
JP2007247001A (en) High-strength steel sheet for die quenching
JP5437669B2 (en) Hot and hot forging die
JP2005133153A (en) Steel for case hardening superior in cold forgeability and grain coarsening resistance during case hardening treatment, and manufacturing method therefor
JP5210874B2 (en) Cold workable titanium alloy
EP4317497A1 (en) Material for the manufacture of high-strength fasteners and method for producing same
JP2007321176A (en) Titanium alloy rod wire for coil spring and production method therefor
JP2004277873A (en) Titanium alloy incorporated with boron added
JP2014125642A (en) Aluminum alloy sheet excellent in press formability and its manufacturing method
JP5097047B2 (en) Steel for hot forging and method for producing the same
JPH04235260A (en) Manufacture of ni-base alloy stock
JP2003041339A (en) Steel material for constant velocity joint outer
JPS63310941A (en) High strength spring steel for hot forming

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804