JP2003041339A - Steel material for constant velocity joint outer - Google Patents

Steel material for constant velocity joint outer

Info

Publication number
JP2003041339A
JP2003041339A JP2001234049A JP2001234049A JP2003041339A JP 2003041339 A JP2003041339 A JP 2003041339A JP 2001234049 A JP2001234049 A JP 2001234049A JP 2001234049 A JP2001234049 A JP 2001234049A JP 2003041339 A JP2003041339 A JP 2003041339A
Authority
JP
Japan
Prior art keywords
less
steel material
cold forging
constant velocity
velocity joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001234049A
Other languages
Japanese (ja)
Other versions
JP5008804B2 (en
Inventor
Takashi Iwamoto
岩本  隆
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Masayoshi Saga
正芳 嵯峨
Yutaka Terauchi
裕 寺内
Naohiro Ogura
尚宏 小倉
Yutaka Sato
佐藤  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
JFE Steel Corp
Original Assignee
Honda Motor Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kawasaki Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2001234049A priority Critical patent/JP5008804B2/en
Publication of JP2003041339A publication Critical patent/JP2003041339A/en
Application granted granted Critical
Publication of JP5008804B2 publication Critical patent/JP5008804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel material for a constant velocity joint outer of an automobile, superior in cold forgeability. SOLUTION: This steel material includes 0.4-0.6% C, 0.05% or less Si, 0.10-0.4% Mn, 0.10% or less Cr, Ti, B, and Al, or further Mo, and controlled S as an impurity of 0.004% or less, and further controlled O, N, and P of a reasonable value or less. The manufacturing method comprises sequentially hot rolling and softening annealing the above steel material, preferably to make the spheroidizing rate of cementite to be 30% or more. Thereby, components having complex shapes can be formed by cold forging, without performing intermediate annealing between many stages of cold forging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の構造部材
用鋼材に係り、とくに構造部材で重要な等速ジョイント
アウター用として好適な、冷間鍛造性に優れた鋼材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for a structural member of an automobile, and more particularly to a steel material having excellent cold forgeability, which is suitable for a constant velocity joint outer which is important for a structural member.

【0002】[0002]

【従来の技術】冷間鍛造は、材料を加熱することなく加
工を行うため、設備が簡易である、仕上げ寸法精度が優
れている、材料歩留りが高い、金型(工具)寿命が長
い、さらには成形後の切削加工量が少ない等の利点があ
り、等速ジョイントアウターをはじめとする自動車部品
の製造に適用されている。
2. Description of the Related Art In cold forging, processing is performed without heating the material, so that the equipment is simple, the finishing dimensional accuracy is excellent, the material yield is high, and the die (tool) life is long. Has advantages such as a small amount of cutting after molding, and is applied to the manufacture of automobile parts such as constant velocity joint outers.

【0003】しかしながら、冷間鍛造の温度域では、使
用する鋼材の変形抵抗は高く、変形能は低い。冷間鍛造
を工業的に実施するためには、使用する材料(鋼材)の
硬さを抑え低変形抵抗を実現することが肝要となるが、
低変形抵抗実現のために、焼入れ性向上元素の含有量を
低減すると高周波焼入れ性が低下するという問題があっ
た。自動車部品等の製造では、冷間鍛造で所定の寸法形
状に加工したのち高周波焼入れのような処理で表面硬化
させることが多く、焼入れ性の低下は問題となる。その
ため、冷間鍛造性と高周波焼入れ性がともに優れた鋼材
が要望されていた。
However, in the cold forging temperature range, the steel used has a high deformation resistance and a low deformability. In order to carry out cold forging industrially, it is important to suppress the hardness of the material (steel material) used and realize low deformation resistance,
If the content of the hardenability-improving element is reduced in order to achieve low deformation resistance, there is a problem that the induction hardenability deteriorates. In the manufacture of automobile parts and the like, after being processed into a predetermined size and shape by cold forging, the surface is often hardened by a treatment such as induction hardening, and deterioration of hardenability becomes a problem. Therefore, there has been a demand for a steel material having both excellent cold forgeability and induction hardenability.

【0004】このような要望に対し、例えば、特開平2-
129341号公報には、C:0.40〜0.60%、Si:0.05%以
下、Mn:0.20〜0.65%、Al:0.01〜0.05%、Cr:0.30%
以下として、さらにTi、Bを含有し、不純物としての
S、O、Nを所定量以下に低減した冷間鍛造性、高周波
焼入れ性に優れた機械構造用炭素鋼が提案されている。
また、特開平2-145745号公報には、C:0.25〜0.65%、
Si:0.15%以下、Mn:0.60%以下、B:0.0005〜0.0050
%、Ti:0.005 〜0.05%とし、さらにMo、V、を含有
し、かつSを0.015 %以下に低減した冷間鍛造用鋼が提
案されている。
In response to such a demand, for example, Japanese Patent Laid-Open No. 2-
No. 129341 discloses C: 0.40 to 0.60%, Si: 0.05% or less, Mn: 0.20 to 0.65%, Al: 0.01 to 0.05%, Cr: 0.30%.
As the following, a carbon steel for machine structural use has been proposed, which further contains Ti and B and is excellent in cold forgeability and induction hardenability in which S, O and N as impurities are reduced to a predetermined amount or less.
Further, in Japanese Patent Laid-Open No. 2-145745, C: 0.25 to 0.65%,
Si: 0.15% or less, Mn: 0.60% or less, B: 0.0005 to 0.0050
%, Ti: 0.005 to 0.05%, Mo, V, and S for 0.015% or less have been proposed for cold forging steel.

【0005】また、特開平9-268344号公報には、C:0.
45〜0.60%、Si:0.01〜0.15%、Mn:0.10〜1.00%、C
r:0.3 %以下、Al:0.015 〜0.050 %、として、さら
にTi、Bを含有し、平均粒径5μm 以下の炭化物を平均
粒子間隔で20μm 以下に分散させた冷間鍛造性に優れた
高周波焼入用鋼が提案されている。また、特開平10-960
47号公報には、C:0.25〜0.65%、Si:0.15%以下、M
n:0.60%以下、B:0.0005〜0.0050%、Ti:0.005 〜
0.05%とし、さらにMo、V、、Crを含有し、あるいはさ
らにNb、Ta、Zrを含み、かつSを0.015 %以下に低減し
た冷間鍛造用鋼が提案されている。
In Japanese Patent Laid-Open No. 9-268344, C: 0.
45 to 0.60%, Si: 0.01 to 0.15%, Mn: 0.10 to 1.00%, C
r: 0.3% or less, Al: 0.015 to 0.050%, further containing Ti and B, and carbides having an average particle size of 5 μm or less dispersed in an average particle interval of 20 μm or less and excellent in cold forgeability. Input steel has been proposed. In addition, JP-A-10-960
No. 47 discloses C: 0.25 to 0.65%, Si: 0.15% or less, M
n: 0.60% or less, B: 0.0005 to 0.0050%, Ti: 0.005 to
There has been proposed a cold forging steel containing 0.05%, further containing Mo, V, and Cr, or further containing Nb, Ta, and Zr, and having S reduced to 0.015% or less.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
2-129341号公報、特開平2-145745号公報、特開平9-2683
44号公報、特開平10-96047号公報等に記載された鋼材を
使用しても、図1に代表的な例を示す、自動車の等速ジ
ョイントアウターのような加工度が高く、複雑な形状の
部品においては、鋼材の割れ発生や、成形荷重の上昇を
防ぐ目的で、冷間鍛造を複数工程にし、しかも各鍛造工
程間で中間焼鈍を施し鋼材の変形能を回復したのち、冷
間鍛造成形を行っていた。
SUMMARY OF THE INVENTION
JP-A-2-129341, JP-A-2-145745, JP-A-9-2683
Even if the steel materials described in Japanese Patent Publication No. 44 and Japanese Patent Application Laid-Open No. 10-96047 are used, the workability is high and the complicated shape is similar to that of the constant velocity joint outer of an automobile, a typical example of which is shown in FIG. In order to prevent cracking of the steel material and increase of forming load, cold forging is performed in multiple steps and after performing intermediate annealing between each forging step to recover the deformability of the steel material. I was molding.

【0007】とくに、自動車の等速ジョイントアウター
の製造において、各段の冷間鍛造工程間で中間焼鈍を実
施することは、熱処理そのものに要する費用とともに、
プロセスの複雑化に伴い中間在庫を発生させることによ
る費用増加をもたらし、等速ジョイントアウターの製造
コストを上昇させるという問題があった。このようなこ
とから、加工度が高く、複雑な形状の製品を中間焼鈍な
しで製造できる等速ジョイントアウター用鋼材が熱望さ
れていた。
Particularly, in the production of constant velocity joint outers for automobiles, performing the intermediate annealing between the cold forging steps of the respective stages requires not only the cost required for the heat treatment itself but also the cost required for the heat treatment itself.
There has been a problem that the cost is increased due to the generation of intermediate inventory due to the complicated process, and the manufacturing cost of the constant velocity joint outer is increased. For these reasons, there has been a strong demand for a steel material for constant velocity joint outers, which is capable of manufacturing a product having a high degree of workability and a complicated shape without intermediate annealing.

【0008】本発明は、上記した従来技術の問題を有利
に解決し、安価で、冷間鍛造性に優れた自動車の等速ジ
ョイントアウター用鋼材を提案することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art advantageously, and to propose a steel material for an automobile constant velocity joint outer which is inexpensive and excellent in cold forgeability.

【0009】[0009]

【課題を解決するための手段】本発明者らは、まず自動
車用等速ジョイントアウターの冷間鍛造工程における中
間焼鈍の省略を可能にする要因について、種々研究し
た。まず、本発明者らは、中間焼鈍を実施することな
く、複雑な形状の部品を冷間鍛造により成形可能とする
ためには、鋼材の変形能向上が必須であるという考えの
もとに、冷間鍛造時の割れ発生について種々の実験・検
討を行った。
Means for Solving the Problems The present inventors first conducted various studies on factors that enable the omission of intermediate annealing in the cold forging process of the constant velocity joint outer for automobiles. First, the present inventors, without performing intermediate annealing, in order to be able to form a component having a complicated shape by cold forging, based on the idea that it is essential to improve the deformability of the steel material, Various experiments and studies were conducted on the occurrence of cracks during cold forging.

【0010】その結果、冷間鍛造時の割れは、主とし
て、鋼材のフェライト母相とMnS との界面の剥離により
生じた微細クラックを起点に生じていることを見いだし
た。また、本発明者らは、S含有量を 0.004mass%以下
と格段に低減することにより、鋼中のMnS 量が著しく減
少し、またそのサイズが微細化し、フェライト母相とMn
S との界面の剥離により生じる微細クラックの発生を抑
制することができることを見いだした。さらに、MnS サ
イズの微細化に伴って、鋼材変形能の異方性が大幅に軽
減されることも見いだした。
As a result, it was found that cracks during cold forging mainly originated from fine cracks caused by delamination of the interface between the ferrite matrix phase of steel and MnS. Moreover, the present inventors significantly reduced the S content to 0.004 mass% or less, whereby the amount of MnS in the steel was remarkably reduced, and the size was refined, and the ferrite matrix phase and Mn
It was found that the generation of fine cracks caused by the peeling of the interface with S can be suppressed. Furthermore, it was also found that the anisotropy of the deformability of steel material was significantly reduced with the miniaturization of the MnS size.

【0011】また、本発明者らは、冷間鍛造時の割れの
起点となる微細クラックは、棒状炭化物(セメンタイ
ト)の断裂により生じる場合もあることを見いだした。
このことから、本発明者らは、炭化物(セメンタイト)
の球状化率を所定値(30%)以上とすることも、冷間鍛
造時の割れ発生防止に有効であることを知見した。本発
明者らは、これらの手法を用いることにより、従来不可
能とされていた、高加工度でかつ複雑な形状の自動車用
等速ジョイントアウターを冷間鍛造により、中間焼鈍を
必要とすることなく成形できることを見いだした。
The present inventors have also found that fine cracks, which are the starting points of cracks during cold forging, may occur due to fracture of rod-shaped carbide (cementite).
From this, the present inventors have found that the carbide (cementite)
It was also found that setting the spheroidization ratio of the above to a predetermined value (30%) or more is also effective in preventing cracking during cold forging. By using these methods, the present inventors require intermediate annealing by cold forging of a constant velocity joint outerwear for automobiles having a high workability and a complicated shape, which has been conventionally impossible. I found that it can be molded without.

【0012】本発明は、上記した知見に基づき、さらに
検討を加え完成されたものである。すなわち、本発明
は、質量%で、C:0.4 〜0.6 %、Si:0.05%以下、M
n:0.10〜0.4 %、Cr:0.10%以下、Ti:0.005 〜0.05
%、B:0.0003〜0.0030%、Al:0.01〜0.05%、を含有
し、不純物としてのS、O、N、Pを、S:0.004 %以
下、O:0.0020%以下、N:0.007 %以下、P:0.010
%以下に制限し、残部Feおよび不可避的不純物からなる
組成を有することを特徴とする冷間鍛造性に優れた、自
動車の等速ジョイントアウター用鋼材であり、また、本
発明では、前記組成に加えて、さらに質量%で、Mo:0.
05〜0.2 %を含有することが好ましく、また、本発明で
は、次(1)式 (セメンタイト球状化率)=(アスペクト比が2未満のセメンタイト粒子数) /(全セメンタイト粒子数)………(1) で定義するセメンタイト球状化率Aが30%以上の組織を
有することが好ましい。
The present invention has been completed by further studies based on the above findings. That is, in the present invention, in mass%, C: 0.4 to 0.6%, Si: 0.05% or less, M
n: 0.10 to 0.4%, Cr: 0.10% or less, Ti: 0.005 to 0.05
%, B: 0.0003 to 0.0030%, Al: 0.01 to 0.05%, and S, O, N, and P as impurities, S: 0.004% or less, O: 0.0020% or less, N: 0.007% or less, P: 0.010
% Or less, excellent cold forgeability, characterized by having a composition consisting of balance Fe and unavoidable impurities, is a steel material for automobile constant velocity joint outer, in the present invention, the composition In addition, in further mass%, Mo: 0.
In the present invention, it is preferable that the content is 05 to 0.2%. Further, in the present invention, the following formula (1) (cementite spheroidization rate) = (the number of cementite particles having an aspect ratio of less than 2) / (the total number of cementite particles) ... It is preferable that the cementite spheroidization rate A defined in (1) has a structure of 30% or more.

【0013】[0013]

【発明の実施の形態】まず、本発明鋼材の組成限定理由
を詳細に説明する。以下、質量%は単に%と記す。 C:0.4 〜0.6 % Cは、高周波焼入れ時の表面硬さおよび有効硬化深さを
確保するうえで有効な元素であり、積極的に活用する。
しかし、Cが0.4 %未満では機械部品として必要な強度
を確保することが困難となり、一方、 0.6%を超えて含
有すると変形能の低下および変形抵抗の上昇を招き、冷
間鍛造性が劣化する。このため、Cは 0.4〜0.6 %の範
囲に限定した。
BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the composition of the steel material of the present invention will be described in detail. Hereinafter, mass% is simply referred to as%. C: 0.4 to 0.6% C is an element effective in ensuring the surface hardness and effective hardening depth during induction hardening, and is actively utilized.
However, if the C content is less than 0.4%, it becomes difficult to secure the strength required for machine parts, while if the C content exceeds 0.6%, the deformability and the deformation resistance increase, and the cold forgeability deteriorates. . Therefore, C is limited to the range of 0.4 to 0.6%.

【0014】Si:0.05%以下Siは、球状化焼鈍時にフェ
ライト基地中に固溶し冷間鍛造後の変形抵抗を上昇させ
るため、極力低減することが好ましいが、0.05%までは
許容できる。 Mn:0.10〜0.4 % Mnは、焼入れ性を確保する上で有効な元素であるが、同
時に冷間鍛造時の変形抵抗を上昇させる元素でもあり、
本発明では0.10〜0.4 %とする。Mnが0.10%未満では、
高周波焼入れ性が不足し、一方、0.4 %を超えて含有す
ると、変形抵抗が上昇し、冷間鍛造性が劣化する。
Si: 0.05% or less Si dissolves in the ferrite matrix during spheroidizing annealing to increase the deformation resistance after cold forging, so it is preferable to reduce it as much as possible, but up to 0.05% is acceptable. Mn: 0.10-0.4% Mn is an element that is effective in ensuring hardenability, but at the same time is an element that increases the deformation resistance during cold forging,
In the present invention, it is 0.10 to 0.4%. When Mn is less than 0.10%,
The induction hardenability is insufficient, while if it exceeds 0.4%, the deformation resistance increases and the cold forgeability deteriorates.

【0015】Cr:0.10%以下 Crは、焼鈍時に炭化物に固溶し、炭化物を難溶解性とす
るため高周波焼入れ性を劣化させ、冷間鍛造時の変形抵
抗を上昇させる元素であり、本発明ではできるだけ低減
するのが好ましいが、0.10%までは許容できる。 Ti:0.005 〜0.05% Tiは、CおよびNと親和力が強く、炭化物、窒化物ある
いは炭窒化物等の析出物を形成してフェライト中の固溶
CおよびNを低減する作用を有している。これにより、
歪時効が抑制され、冷間鍛造時の変形抵抗が低下する。
また、Tiは、Bの焼入れ性向上効果を有効に発揮させる
ためにも有用な元素であるが、0.005 %未満では、これ
らの効果は十分に認められない。一方、0.05%を超える
含有は、粗大な窒化物を形成し、冷間鍛造時の変形能を
低下させるとともに転動疲労寿命を著しく低下させる。
このため、Tiは0.005 〜0.05%との範囲に限定した。
Cr: 0.10% or less Cr is an element that forms a solid solution in carbides during annealing and makes the carbides insoluble, thereby deteriorating the induction hardenability and increasing the deformation resistance during cold forging. Then, it is preferable to reduce as much as possible, but 0.10% is acceptable. Ti: 0.005 to 0.05% Ti has a strong affinity with C and N, and has the action of forming precipitates such as carbides, nitrides or carbonitrides to reduce the solid solution C and N in ferrite. . This allows
Strain aging is suppressed, and the deformation resistance during cold forging is reduced.
Further, Ti is an element useful for effectively exerting the hardenability improving effect of B, but if it is less than 0.005%, these effects are not sufficiently recognized. On the other hand, if the content exceeds 0.05%, coarse nitrides are formed, the deformability during cold forging is reduced, and the rolling fatigue life is significantly reduced.
Therefore, Ti is limited to the range of 0.005 to 0.05%.

【0016】B:0.0003〜0.0030% Bは、焼入れ性を向上させる有効な元素であるが、0.00
03%未満ではその効果が小さく、一方、0.0030%を超え
て含有してもその効果は飽和し含有量に見合う効果が期
待できないため経済的に不利となる。このため、Bは0.
0003〜0.0030%の範囲に限定した。
B: 0.0003 to 0.0030% B is an effective element for improving hardenability, but 0.00
If it is less than 03%, its effect is small. On the other hand, if it exceeds 0.0030%, its effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, B is 0.
It was limited to the range of 0003 to 0.0030%.

【0017】Al:0.005 〜0.05% Alは、脱酸剤として作用し、また、Nと結合してAlN を
形成することによりBの焼入れ性向上効果を有効に発揮
させる作用を有する元素であるが、0.005 %未満ではそ
の効果が不十分である。一方、0.05%を超えて含有して
もその効果が飽和し含有量に見合う効果が期待できない
ため経済的に不利となる。このため、Alは 0.005〜0.05
%の範囲に限定した。
Al: 0.005 to 0.05% Al is an element which acts as a deoxidizing agent and also has an effect of effectively exerting the hardenability improving effect of B by forming AlN by combining with N. , Less than 0.005%, the effect is insufficient. On the other hand, even if the content exceeds 0.05%, the effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, Al is 0.005-0.05.
It was limited to the range of%.

【0018】本発明においては、焼入れ性の向上を目的
として、必要に応じ上記した成分に加えて、Moを含有す
ることができる。 Mo:0.05〜0.2 % Moは、焼入れ性を向上させる元素であるが、0.05%未満
では効果が少なく、一方、0.20%を超えて含有すると、
加工硬化が大きくなり、冷間鍛造時の変形抵抗を増大さ
せる。このため、Moは0.05〜0.2 %に限定するのが好ま
しい。
In the present invention, Mo may be added, if necessary, in addition to the above-mentioned components for the purpose of improving the hardenability. Mo: 0.05-0.2% Mo is an element that improves hardenability, but less than 0.05% is less effective, while more than 0.20% contains:
Work hardening becomes large, and deformation resistance during cold forging increases. Therefore, Mo is preferably limited to 0.05 to 0.2%.

【0019】また、本発明では、不純物としてのS、
O、N、Pを所定値以下に低減する。 S: 0.004%以下 Sは、鋼中でMnS を形成し、被削性を向上させる元素で
あるが、MnS は冷間鍛造時の割れ発生の起点となり、冷
間鍛造性を劣化させる。本発明における等速ジョイント
アウターのような、成形素材に極めて高い変形能を有す
ることが要求される場合には、Sを極力低減することが
必要となる。Sを 0.004%以下に低減することにより、
鋼中のMnS 量が著しく低減し、また、存在するMnS のサ
イズも小さくなる。このため、 0.004%以下までのS含
有量低減により、冷間鍛造時の変形能が異方性を含め著
しく向上し、従来、中間焼鈍なしでは冷間鍛造が困難と
された複雑な形状の等速ジョイントアウターを中間焼鈍
なしの冷間鍛造で成形することが可能となる。
Further, in the present invention, S as an impurity,
O, N, P are reduced below a predetermined value. S: 0.004% or less S is an element that forms MnS in steel and improves machinability, but MnS becomes a starting point of cracking during cold forging and deteriorates cold forgeability. When the molding material is required to have extremely high deformability, such as the constant velocity joint outer of the present invention, it is necessary to reduce S as much as possible. By reducing S to 0.004% or less,
The amount of MnS in steel is significantly reduced, and the size of MnS present is also reduced. Therefore, by reducing the S content to 0.004% or less, the deformability during cold forging is significantly improved, including anisotropy, and it is difficult to perform cold forging without intermediate annealing. The quick joint outer can be formed by cold forging without intermediate annealing.

【0020】O:0.0020%以下 Oは、鋼中のAl、Mn、Si等と酸化物系非金属介在物を形
成し、冷間鍛造性および転動疲労特性をともに劣化させ
る。このため、Oは極力低減する必要があり、本発明で
は、0.0020%以下に限定した。 N: 0.007%以下 Nは、フェライト中に固溶して歪時効を生じ、変形抵抗
を増大させるとともに、Bと結合しBNを形成して、有効
B量を低減しBの焼入れ性向上効果を低減する。このこ
とから、Nは極力低減することが必要となるが、0.007
%までは許容できる。
O: 0.0020% or less O forms an oxide type non-metallic inclusion with Al, Mn, Si, etc. in steel, and deteriorates both cold forgeability and rolling contact fatigue property. Therefore, it is necessary to reduce O as much as possible, and in the present invention, it is limited to 0.0020% or less. N: 0.007% or less N forms a solid solution in ferrite to cause strain aging and increases deformation resistance, and at the same time, forms a BN by combining with B to reduce the effective B content and improve the hardenability of B. Reduce. From this, it is necessary to reduce N as much as possible, but 0.007
Up to% is acceptable.

【0021】P: 0.010%以下 Pは、被削性の向上に対しては有効に作用するが、一方
でフェライト相を脆化させ冷間鍛造性を劣化させる。ま
た、Pは、焼入焼戻し時に粒界に偏析し粒界強度を低下
させ、疲労亀裂の伝播に対する抵抗を低下させて疲労強
度を低下させる。このことから、Pは極力低減する必要
があるが、 0.010%までは許容される。
P: 0.010% or less P acts effectively for improving the machinability, but on the other hand, it embrittles the ferrite phase and deteriorates the cold forgeability. Further, P segregates at the grain boundaries during quenching and tempering to lower the grain boundary strength, lowering the resistance to the propagation of fatigue cracks and lowering the fatigue strength. From this, it is necessary to reduce P as much as possible, but up to 0.010% is allowed.

【0022】上記した成分以外の残部はFeおよび不可避
的不純物である。本発明鋼材は、上記した組成に加え、
必要に応じ、次(1)式 セメンタイト球状化率A=(アスペクト比が2未満のセメンタイト粒子数/ (全セメンタイト粒子数) ………(1) で定義されるセメンタイト球状化率Aが30%以上の組織
とすることが好ましい。。セメンタイトの球状化率を30
%以上とすることにより、30%未満のものより、冷間鍛
造時の変形能が向上し、さらに変形抵抗が大幅に低下す
る。
The balance other than the above components is Fe and inevitable impurities. The steel material of the present invention, in addition to the above composition,
If necessary, the cementite spheroidization rate A defined by the following formula (1) A = (the number of cementite particles having an aspect ratio of less than 2 / (the total number of cementite particles) ..... (1) is 30%. It is preferable to have the above structure .. The spheroidization rate of cementite is 30.
%, The deformability at the time of cold forging is improved and the deformation resistance is significantly reduced as compared with those of less than 30%.

【0023】つぎに、本発明鋼材の好適な製造方法につ
いて、説明する。まず、上記した組成の溶鋼を、転炉等
通常公知の溶製方法により溶製し、ついで、連続鋳造法
等の通常公知の鋳造方法で所定の寸法形状の鋼素材とす
るのが好ましい。ついで、これら鋼素材に、熱間圧延工
程と、軟化焼鈍処理工程とを順次施し、所定の寸法形状
の鋼材とする。熱間圧延工程では、所定の寸法形状の鋼
材とすることができればよく、熱延条件はとくに限定さ
れない。なお、熱延後の組織微細化の観点から、鋼素材
の加熱温度は1100℃以下とするのが好ましい。
Next, a preferred method for producing the steel material of the present invention will be described. First, it is preferable to melt the molten steel having the above-mentioned composition by a commonly known melting method such as a converter, and then make it into a steel material having a predetermined size and shape by a commonly known casting method such as a continuous casting method. Then, these steel materials are sequentially subjected to a hot rolling step and a softening annealing treatment step to obtain a steel material having a predetermined size and shape. In the hot rolling step, the steel material having a predetermined size and shape may be used, and the hot rolling conditions are not particularly limited. From the viewpoint of microstructure refinement after hot rolling, the heating temperature of the steel material is preferably 1100 ° C or lower.

【0024】また、軟化焼鈍処理工程は、熱間圧延工程
で、所定の寸法形状に圧延された鋼材に、好ましくは 7
00〜 760℃×3〜20hに加熱保持し、硬さの低下、およ
び炭化物の球状化を行うのが好ましい。この軟化焼鈍処
理工程により、次(1)式 セメンタイト球状化率A=(アスペクト比が2未満のセメンタイト粒子数/ (全セメンタイト粒子数) ………(1) で定義されるセメンタイト球状化率Aが30%以上の組織
とするのが好ましい。セメンタイトの球状化率を30%以
上とすることにより、30%未満のものより、冷間鍛造時
の変形能が向上し、さらに変形抵抗が大幅に低下する。
The softening / annealing step is preferably a hot rolling step, and is preferably performed on a steel material rolled into a predetermined size and shape.
It is preferable to heat and hold at 00 to 760 ° C. for 3 to 20 hours to reduce the hardness and to make the carbide spherical. By this softening / annealing step, the cementite spheroidization rate A defined by the following formula (1): (the number of cementite particles having an aspect ratio of less than 2 / (the total number of cementite particles)) (1) Of 30% or more is preferable.By setting the spheroidization rate of cementite to 30% or more, the deformability at the time of cold forging is improved and the deformation resistance is significantly increased as compared with those of less than 30%. descend.

【0025】つぎに、本発明の鋼材を成形素材として、
自動車用等速ジョイントアウターを製造する好ましい工
程について説明する。本発明の鋼材を成形素材とし、通
常、該成形素材を、冷間鍛造工程、切削加工工程によ
り、所定寸法の部品とする。本発明に鋼材を使用すれ
ば、中間焼鈍工程を経ずに部品を製造することができ
る。
Next, using the steel material of the present invention as a forming material,
A preferred process for manufacturing a constant velocity joint outer for an automobile will be described. The steel material of the present invention is used as a forming material, and the forming material is usually made into a component having a predetermined size by a cold forging step and a cutting step. If the steel material is used in the present invention, the component can be manufactured without the intermediate annealing step.

【0026】冷間鍛造は、通常の冷間鍛造機で行ってよ
く、所定形状の金型を用いて、変形抵抗に応じ複数回の
鍛造加工を施すのが好ましい。なお、本発明の鋼材を使
用する場合には、冷間鍛造工程では中間焼鈍は行わな
い。また、冷間鍛造工程では、各鍛造加工間の時間を12
0s以下とするのが好ましい。冷間鍛造工程ののち、所定
寸法の部品となるように、切削加工工程を施される。
The cold forging may be carried out by an ordinary cold forging machine, and it is preferable to perform forging a plurality of times by using a die having a predetermined shape according to the deformation resistance. When using the steel material of the present invention, intermediate annealing is not performed in the cold forging step. In the cold forging process, the time between each forging process is 12
It is preferably 0 s or less. After the cold forging step, a cutting step is performed so as to obtain a component having a predetermined size.

【0027】ついで、これら所定寸法の部品に、その全
体あるいは一部をAc3 変態点以上に加熱したのち焼入れ
し、ついで焼戻しする熱処理工程を施して製品とする。
熱処理工程における焼入れ、焼戻し条件は、焼入れ温度
をAc3 変態点以上とする以外は、目的とする性能に応
じ、温度、時間を適宜選択することができることはいう
までもない。
Then, these parts having predetermined dimensions are heated in whole or in part to the Ac 3 transformation point or higher, quenched, and then subjected to a heat treatment step of tempering to obtain products.
Needless to say, as the quenching and tempering conditions in the heat treatment step, the temperature and time can be appropriately selected according to the desired performance, except that the quenching temperature is set to the Ac 3 transformation point or higher.

【0028】[0028]

【実施例】表1に示す組成の鋼素材を用い、該鋼素材を
850〜1100℃に加熱し圧延する熱間圧延工程により、断
面:52mmφのサイズの直棒とした。ついで、これら直棒
に700〜 760℃×3〜7hの軟化焼鈍処理工程を施し、
鋼材とした。なお、鋼素材のうち、No. A、No. Bおよ
びNo. Cは、組成が本発明の範囲内にあるもの、No.
D、No. Eは、S量が本発明外となる比較例、No. Fは
JIS規格のS48Cに相当するものである。
Example A steel material having the composition shown in Table 1 was used, and the steel material was
By a hot rolling process of heating at 850 to 1100 ° C and rolling, a straight bar having a cross section of 52 mmφ was formed. Then, these straight rods are subjected to a softening annealing process of 700 to 760 ° C. for 3 to 7 hours,
Steel material. Among the steel materials, No. A, No. B and No. C are those whose compositions are within the scope of the present invention, No.
D and No. E are comparative examples in which the amount of S is outside the scope of the present invention, and No. F is
It is equivalent to JIS standard S48C.

【0029】まず、これら鋼材について、(1)MnS分布状
態調査、(2) セメンタイト球状化率調査、(3) 冷間鍛造
性試験、(4) 実体等速ジョイントアウター形状への冷間
鍛造試験、(5) 高周波焼入れ性試験を実施した。それぞ
れの試験方法を以下に示す。 (1)MnS 分布状態調査 鋼材中のMnS の分布を、ASTM E45法に基づいて調査し
た。測定面積は0.5mm2×320 視野(総視野面積160mm2
とし、その中の最悪視野の評価(ASTM−A法評価)およ
びThin 0.5点の視野の数(ASTM−D0.5T視野数)を測定
した。
First, for these steel materials, (1) MnS distribution state investigation, (2) cementite spheroidization rate investigation, (3) cold forgeability test, (4) cold forging test into solid constant velocity joint outer shape (5) An induction hardenability test was conducted. Each test method is shown below. (1) MnS distribution state investigation The distribution of MnS in steel was investigated based on the ASTM E45 method. Measurement area is 0.5mm 2 × 320 field of view (total field of view area 160mm 2 )
The worst field of view (ASTM-A method evaluation) and the number of fields at Thin 0.5 points (ASTM-D 0.5T field number) were measured.

【0030】(2)セメンタイト球状化率調査 鋼材(直棒)の1/4d部から試験片を採取し、研磨した後
ピクラール液にて腐食して、走査型電子顕微鏡を用い
て、断面5箇所、各箇所につき5000倍の倍率で10視野に
ついて撮像した。この像を基に、画像解析装置を用いて
各セメンタイト粒子のアスペクト比を測定し、各成形素
材におけるセメンタイト球状化率Aを次(1) セメンタイト球状化率A=(アスペクト比が2未満のセメンタイト粒子数/ (全セメンタイト粒子数) ………(1) を用いて算出した。
(2) Investigation of cementite spheroidization rate A test piece was taken from a 1 / 4d part of a steel material (straight rod), and after polishing, it was corroded by a Picral solution, and 5 sections were observed using a scanning electron microscope. , 10 fields were imaged at a magnification of 5000 times at each location. Based on this image, the aspect ratio of each cementite particle was measured using an image analyzer, and the cementite spheroidization rate A in each molding material was calculated as follows (1) Cementite spheroidization rate A = (cementite with an aspect ratio of less than 2 Number of particles / (total number of cementite particles) ... (1) was used for calculation.

【0031】(3)冷間鍛造性試験 軟化焼鈍処理済の各鋼材に総減面率60%の引抜き加工を
加え20mmφとした材料から、15mmφ×22.5mmHの円柱型
試験片を機械加工により採取した。この際に、試験片の
採取方向を、引抜き加工方向に対して平行方向および垂
直方向の2通りとした。
(3) Cold forgeability test A cylindrical test piece of 15 mmφ × 22.5 mmH was sampled by machining from a material of 20 mmφ obtained by drawing each softened and annealed steel material with a total area reduction ratio of 60%. did. At this time, the test pieces were sampled in two directions, a parallel direction and a vertical direction with respect to the drawing process direction.

【0032】これらの試験片を用いて、種々の圧縮率に
て、各々10個の試験片を用いて、冷間圧縮試験を実施し
た。なお、試験時の荷重から材料の変形抵抗を算出し
た。試験後、各試験片側面の割れ発生の有無を確認し、
各圧縮率における割れ発生率(割れ発生試験片個数/10
個)を算出した。試験結果から、割れ発生率が50%とな
る圧縮率を限界圧縮率として求めた。さらに2種類の試
験片採取方向における限界圧縮率の比を限界比として求
めた。
A cold compression test was carried out using these test pieces, and 10 test pieces each at various compression rates. The deformation resistance of the material was calculated from the load during the test. After the test, check for the occurrence of cracks on the side of each test piece,
Crack generation rate at each compression rate (number of cracked test pieces / 10
Number) was calculated. From the test results, the compression rate at which the crack generation rate was 50% was determined as the limit compression rate. Furthermore, the ratio of the critical compression ratios in the two types of test piece sampling directions was determined as the critical ratio.

【0033】(4)実体等速ジョイントアウター形状へ
の冷間鍛造試験 軟化焼鈍済の各鋼材に、3段の冷間鍛造からなる冷間鍛
造工程を施し、図1に模式的に示す形状のサイズ: 100
mmφ×150mmlの実体等速ジョイントアウター形状に成形
した。各段の冷間鍛造では、前段の冷間鍛造ままの材料
を次段の材料として用い、中間焼鈍を実施しなかった。
なお、各鍛造段階における割れの発生をn=50個の試験
片を用いて測定した。割れ発生率(%)は(割れの発生
した試験片個数)/50×100 で算出した。
(4) Cold forging test for outer shape of constant velocity joint outer joint Each of the softened and annealed steel materials is subjected to a cold forging step consisting of three stages of cold forging to obtain the shape schematically shown in FIG. Size: 100
It was molded into a solid constant velocity joint outer shape with a size of mmφ × 150 mml. In the cold forging of each stage, the material as cold forged in the previous stage was used as the material of the next stage, and the intermediate annealing was not performed.
The occurrence of cracks at each forging stage was measured using n = 50 test pieces. The crack occurrence rate (%) was calculated by (number of test pieces with cracks) / 50 × 100.

【0034】(5)高周波焼入れ性試験 高周波焼入れ性試験は、鋼材から30mmφ×100mmlの試験
片を採取し、これら試験片に、周波数15kHz 、出力114k
W 、試験片移動速度10mm/sの移動焼入れ条件で高周波焼
入れした後、 150℃×1hの焼戻しを行った。熱処理後
の試験片について表面硬さ(HRC )およびHv:400 以上
となる硬化深さ(有効硬化深さ)を測定した。
(5) Induction hardenability test In the induction hardenability test, 30 mmφ × 100 mml test pieces were taken from a steel material, and these test pieces had a frequency of 15 kHz and an output of 114 k.
After induction hardening under the moving quenching conditions of W and a test piece moving speed of 10 mm / s, tempering was performed at 150 ° C for 1 hour. The surface hardness (HRC) and the hardening depth (effective hardening depth) at which Hv: 400 or more were measured for the test pieces after the heat treatment.

【0035】これらの結果を表2に示す。The results are shown in Table 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】本発明例では、いずれもMnS が微細化し、
またMnS の量も顕著に低減している。これにくらべ、S
含有量が本発明範囲から外れる鋼材No.6〜No.8 では、
MnSの微細化、量の低減は実現されていない。また、本
発明例は、いずれも引抜き方向と平行方向で69%以上の
高い限界圧縮率を示している。また、引抜き方向と平行
方向の限界圧縮率と引抜き方向と垂直方向の限界圧縮率
の比である限界比は、0.86以上の高い値を示している。
これらの効果は、S量の低減に伴うMnS 量の減少および
微細化によるものと考えられる。これに対し、本発明の
範囲を外れる比較例(鋼材No.6〜No.8)では、引抜き方
向と平行方向の限界圧縮率が52〜65%、また限界比は0.
58以下と低く、冷間鍛造性が低いうえ異方性もある。
In each of the examples of the present invention, MnS was miniaturized,
The amount of MnS is also significantly reduced. Compared to this, S
In steel materials No. 6 to No. 8 whose content is out of the range of the present invention,
Miniaturization and reduction of the amount of MnS have not been realized. Moreover, all of the examples of the present invention show a high limit compression rate of 69% or more in the direction parallel to the drawing direction. The limit ratio, which is the ratio of the limit compression rate in the direction parallel to the drawing direction and the limit compression rate in the direction perpendicular to the drawing direction, shows a high value of 0.86 or more.
It is considered that these effects are due to the decrease in the amount of MnS and the miniaturization accompanying the decrease in the amount of S. On the other hand, in the comparative examples (steel materials No. 6 to No. 8) out of the range of the present invention, the limit compression ratio in the direction parallel to the drawing direction is 52 to 65%, and the limit ratio is 0.
It is as low as 58 or less, has low cold forgeability and is anisotropic.

【0039】本発明例では、中間焼鈍を行わない冷間鍛
造によっても、複雑形状の実体等速ジョイントアウター
へ成形することができる。本発明例では、最終の3段目
の冷間鍛造まで割れを発生するものはなかった。これに
対し、本発明の範囲を外れる比較例では、多くが最終の
3段目の冷間鍛造までに割れを発生していた。セメンタ
イト球状化率が好適範囲となる本発明例(鋼材No.2、N
o.5)では、最終の3段目の冷間鍛造で割れ発生は認め
られなかった。
In the example of the present invention, the solid constant velocity joint outer having a complicated shape can be formed by cold forging without intermediate annealing. In the example of the present invention, no cracks were generated until the final cold forging in the third step. On the other hand, in Comparative Examples outside the scope of the present invention, most of the cracks were generated by the final cold forging in the third stage. Example of the present invention in which the spheroidizing rate of cementite is within a suitable range (steel materials No. 2 and N
In o.5), cracking was not observed in the final cold forging in the third step.

【0040】また、本発明例は、いずれも十分高い高周
波焼入れ性を有していることがわかる。高周波焼入れ焼
もどし後の有効硬化深さは、ほぼ同一C量の比較例と同
等以上の値を示した。Mo含有鋼素材を用いた鋼材No.1で
はMoを含有しない鋼材No.3よりも高い高周波焼入れ性を
示している。
Further, it can be seen that each of the examples of the present invention has sufficiently high induction hardenability. The effective hardening depth after induction hardening and tempering showed a value equal to or higher than that of the comparative example having substantially the same C content. Steel No. 1 using the Mo-containing steel material shows higher induction hardenability than Steel No. 3 containing no Mo.

【0041】[0041]

【発明の効果】以上の結果から、本発明によれば、加工
度が高く複雑な形状の等速ジョイントアウターを、中間
焼鈍を施すことなく冷間鍛造により成形することが可能
となり、熱間鍛造等の他の成形方法と比較して優れた寸
法精度の等速ジョイントアウターを低コストで得ること
ができ、産業上格段の効果を奏する。
As described above, according to the present invention, it is possible to form a constant velocity joint outer having a high workability and a complicated shape by cold forging without performing intermediate annealing. It is possible to obtain a constant velocity joint outer with excellent dimensional accuracy as compared with other molding methods such as, for example, at a low cost, and it is possible to achieve a marked effect in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】等速ジョイントアウターの形状の一例を模式的
に示す説明図である。
FIG. 1 is an explanatory view schematically showing an example of the shape of a constant velocity joint outer.

【符号の説明】[Explanation of symbols]

1 ジョイントアウター 2 インナー 3 玉鋼 1 joint outer 2 inner 3 ball steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 俊幸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 嵯峨 正芳 栃木県真岡市松山町19番地 本田技研工業 株式会社栃木製作所内 (72)発明者 寺内 裕 栃木県真岡市松山町19番地 本田技研工業 株式会社栃木製作所内 (72)発明者 小倉 尚宏 栃木県真岡市松山町19番地 本田技研工業 株式会社栃木製作所内 (72)発明者 佐藤 裕 栃木県真岡市松山町19番地 本田技研工業 株式会社栃木製作所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Hoshino             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works (72) Inventor Shinichi Amano             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works (72) Inventor Masayoshi Saga             19 Matsuyama-cho, Moka City, Tochigi Prefecture Honda Motor Co., Ltd.             Tochigi Co., Ltd. (72) Inventor Yu Terauchi             19 Matsuyama-cho, Moka City, Tochigi Prefecture Honda Motor Co., Ltd.             Tochigi Co., Ltd. (72) Inventor Naohiro Ogura             19 Matsuyama-cho, Moka City, Tochigi Prefecture Honda Motor Co., Ltd.             Tochigi Co., Ltd. (72) Inventor Yutaka Sato             19 Matsuyama-cho, Moka City, Tochigi Prefecture Honda Motor Co., Ltd.             Tochigi Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.4 〜0.6 %、 Si:0.05%以下、 Mn:0.10〜0.4 %、 Cr:0.10%以下、 Ti:0.005 〜0.05%、 B:0.0003〜0.0030%、 Al:0.005 〜0.05% を含有し、不純物としてのS、O、N、Pを S:0.004 %以下、 O:0.0020%以下、 N:0.007 %以下、 P:0.010 %以下 に制限し、残部Feおよび不可避的不純物からなる組成を
有することを特徴とする冷間鍛造性に優れた自動車の等
速ジョイントアウター用鋼材。
1. In mass%, C: 0.4 to 0.6%, Si: 0.05% or less, Mn: 0.10 to 0.4%, Cr: 0.10% or less, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%, Al : 0.005-0.05%, S, O, N, P as impurities S: 0.004% or less, O: 0.0020% or less, N: 0.007% or less, P: 0.010% or less, the balance Fe and A steel material for a constant velocity joint outer of an automobile, which is excellent in cold forgeability and has a composition of inevitable impurities.
【請求項2】 前記組成に加えて、さらに質量%で、M
o:0.05〜0.2 %を含有することを特徴とする請求項1
に記載の等速ジョイントアウター用鋼材。
2. In addition to the above composition, M% by mass is further included.
O: 0.05-0.2% is contained, Claim 1 characterized by the above-mentioned.
Steel material for constant velocity joint outer described in.
【請求項3】 下記(1)式で定義するセメンタイト球
状化率Aが30%以上である組織を有することを特徴とす
る請求項1または2に記載の等速ジョイントアウター用
鋼材。 記 (セメンタイト球状化率)=(アスペクト比が2未満のセメンタイト粒子数) /(全セメンタイト粒子数)………(1)
3. The steel material for a constant velocity joint outer according to claim 1, having a structure having a cementite spheroidization rate A defined by the following formula (1) of 30% or more. Note (cementite spheroidization rate) = (number of cementite particles having an aspect ratio of less than 2) / (total number of cementite particles) ......... (1)
JP2001234049A 2001-08-01 2001-08-01 Steel for constant velocity joint outer Expired - Fee Related JP5008804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234049A JP5008804B2 (en) 2001-08-01 2001-08-01 Steel for constant velocity joint outer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234049A JP5008804B2 (en) 2001-08-01 2001-08-01 Steel for constant velocity joint outer

Publications (2)

Publication Number Publication Date
JP2003041339A true JP2003041339A (en) 2003-02-13
JP5008804B2 JP5008804B2 (en) 2012-08-22

Family

ID=19065737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234049A Expired - Fee Related JP5008804B2 (en) 2001-08-01 2001-08-01 Steel for constant velocity joint outer

Country Status (1)

Country Link
JP (1) JP5008804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138692A1 (en) * 2006-05-31 2007-12-06 Fujitsu Limited Semiconductor device and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741904A (en) * 1993-08-02 1995-02-10 Sumitomo Metal Ind Ltd Medium carbon steel bar and wire rod excellent in cold forgeability and hardenability
JPH1025521A (en) * 1996-07-09 1998-01-27 Sumitomo Metal Ind Ltd Method to spheroidizing wire rod
JP2001011575A (en) * 1999-06-30 2001-01-16 Nippon Steel Corp Bar steel and steel wire for machine structure excellent in cold workability and its production
JP2001026836A (en) * 1999-07-13 2001-01-30 Daido Steel Co Ltd Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741904A (en) * 1993-08-02 1995-02-10 Sumitomo Metal Ind Ltd Medium carbon steel bar and wire rod excellent in cold forgeability and hardenability
JPH1025521A (en) * 1996-07-09 1998-01-27 Sumitomo Metal Ind Ltd Method to spheroidizing wire rod
JP2001011575A (en) * 1999-06-30 2001-01-16 Nippon Steel Corp Bar steel and steel wire for machine structure excellent in cold workability and its production
JP2001026836A (en) * 1999-07-13 2001-01-30 Daido Steel Co Ltd Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138692A1 (en) * 2006-05-31 2007-12-06 Fujitsu Limited Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JP5008804B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5338188B2 (en) Alloy tool steel and manufacturing method thereof
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5655366B2 (en) Bainite steel
WO2018016505A1 (en) Steel for induction hardening
CN113272451B (en) Steel material
WO2018016504A1 (en) Steel for induction hardening
WO2018016503A1 (en) Steel for induction hardening
KR20190028781A (en) High frequency quenching steel
JP2010065280A (en) Mold for hot working
JP2017106079A (en) Steel for machine structural use excellent in crystal grain coarsening resistance, bending fatigue-resistant strength and impact-resistant strength
JP6661896B2 (en) Age hardening steel
JP6520465B2 (en) Method of manufacturing martensitic stainless steel pipe
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP2841468B2 (en) Bearing steel for cold working
JP4920144B2 (en) Steel for constant velocity joint outer
JP6583484B2 (en) Nitriding steel
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP5008804B2 (en) Steel for constant velocity joint outer
JP4302480B2 (en) High hardness steel with excellent cold workability
JP5304394B2 (en) Manufacturing method of high strength steel rough products
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JPH10265841A (en) Production of high strength cold forging parts
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees