JP5008804B2 - Steel for constant velocity joint outer - Google Patents

Steel for constant velocity joint outer Download PDF

Info

Publication number
JP5008804B2
JP5008804B2 JP2001234049A JP2001234049A JP5008804B2 JP 5008804 B2 JP5008804 B2 JP 5008804B2 JP 2001234049 A JP2001234049 A JP 2001234049A JP 2001234049 A JP2001234049 A JP 2001234049A JP 5008804 B2 JP5008804 B2 JP 5008804B2
Authority
JP
Japan
Prior art keywords
less
steel
cold forging
constant velocity
velocity joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001234049A
Other languages
Japanese (ja)
Other versions
JP2003041339A (en
Inventor
岩本  隆
俊幸 星野
虔一 天野
正芳 嵯峨
裕 寺内
尚宏 小倉
佐藤  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
JFE Steel Corp
Original Assignee
Honda Motor Co Ltd
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, JFE Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2001234049A priority Critical patent/JP5008804B2/en
Publication of JP2003041339A publication Critical patent/JP2003041339A/en
Application granted granted Critical
Publication of JP5008804B2 publication Critical patent/JP5008804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の構造部材用鋼材に係り、とくに構造部材で重要な等速ジョイントアウター用として好適な、冷間鍛造性に優れた鋼材に関する。
【0002】
【従来の技術】
冷間鍛造は、材料を加熱することなく加工を行うため、設備が簡易である、仕上げ寸法精度が優れている、材料歩留りが高い、金型(工具)寿命が長い、さらには成形後の切削加工量が少ない等の利点があり、等速ジョイントアウターをはじめとする自動車部品の製造に適用されている。
【0003】
しかしながら、冷間鍛造の温度域では、使用する鋼材の変形抵抗は高く、変形能は低い。冷間鍛造を工業的に実施するためには、使用する材料(鋼材)の硬さを抑え低変形抵抗を実現することが肝要となるが、低変形抵抗実現のために、焼入れ性向上元素の含有量を低減すると高周波焼入れ性が低下するという問題があった。自動車部品等の製造では、冷間鍛造で所定の寸法形状に加工したのち高周波焼入れのような処理で表面硬化させることが多く、焼入れ性の低下は問題となる。そのため、冷間鍛造性と高周波焼入れ性がともに優れた鋼材が要望されていた。
【0004】
このような要望に対し、例えば、特開平2-129341号公報には、C:0.40〜0.60%、Si:0.05%以下、Mn:0.20〜0.65%、Al:0.01〜0.05%、Cr:0.30%以下として、さらにTi、Bを含有し、不純物としてのS、O、Nを所定量以下に低減した冷間鍛造性、高周波焼入れ性に優れた機械構造用炭素鋼が提案されている。
また、特開平2-145745号公報には、C:0.25〜0.65%、Si:0.15%以下、Mn:0.60%以下、B:0.0005〜0.0050%、Ti:0.005 〜0.05%とし、さらにMo、V、を含有し、かつSを0.015 %以下に低減した冷間鍛造用鋼が提案されている。
【0005】
また、特開平9-268344号公報には、C:0.45〜0.60%、Si:0.01〜0.15%、Mn:0.10〜1.00%、Cr:0.3 %以下、Al:0.015 〜0.050 %、として、さらにTi、Bを含有し、平均粒径5μm 以下の炭化物を平均粒子間隔で20μm 以下に分散させた冷間鍛造性に優れた高周波焼入用鋼が提案されている。
また、特開平10-96047号公報には、C:0.25〜0.65%、Si:0.15%以下、Mn:0.60%以下、B:0.0005〜0.0050%、Ti:0.005 〜0.05%とし、さらにMo、V、、Crを含有し、あるいはさらにNb、Ta、Zrを含み、かつSを0.015 %以下に低減した冷間鍛造用鋼が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平2-129341号公報、特開平2-145745号公報、特開平9-268344号公報、特開平10-96047号公報等に記載された鋼材を使用しても、図1に代表的な例を示す、自動車の等速ジョイントアウターのような加工度が高く、複雑な形状の部品においては、鋼材の割れ発生や、成形荷重の上昇を防ぐ目的で、冷間鍛造を複数工程にし、しかも各鍛造工程間で中間焼鈍を施し鋼材の変形能を回復したのち、冷間鍛造成形を行っていた。
【0007】
とくに、自動車の等速ジョイントアウターの製造において、各段の冷間鍛造工程間で中間焼鈍を実施することは、熱処理そのものに要する費用とともに、プロセスの複雑化に伴い中間在庫を発生させることによる費用増加をもたらし、等速ジョイントアウターの製造コストを上昇させるという問題があった。このようなことから、加工度が高く、複雑な形状の製品を中間焼鈍なしで製造できる等速ジョイントアウター用鋼材が熱望されていた。
【0008】
本発明は、上記した従来技術の問題を有利に解決し、安価で、冷間鍛造性に優れた自動車の等速ジョイントアウター用鋼材を提案することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、まず自動車用等速ジョイントアウターの冷間鍛造工程における中間焼鈍の省略を可能にする要因について、種々研究した。まず、本発明者らは、中間焼鈍を実施することなく、複雑な形状の部品を冷間鍛造により成形可能とするためには、鋼材の変形能向上が必須であるという考えのもとに、冷間鍛造時の割れ発生について種々の実験・検討を行った。
【0010】
その結果、冷間鍛造時の割れは、主として、鋼材のフェライト母相とMnS との界面の剥離により生じた微細クラックを起点に生じていることを見いだした。また、本発明者らは、S含有量を 0.004mass%以下と格段に低減することにより、鋼中のMnS 量が著しく減少し、またそのサイズが微細化し、フェライト母相とMnS との界面の剥離により生じる微細クラックの発生を抑制することができることを見いだした。さらに、MnS サイズの微細化に伴って、鋼材変形能の異方性が大幅に軽減されることも見いだした。
【0011】
また、本発明者らは、冷間鍛造時の割れの起点となる微細クラックは、棒状炭化物(セメンタイト)の断裂により生じる場合もあることを見いだした。このことから、本発明者らは、炭化物(セメンタイト)の球状化率を所定値(30%)以上とすることも、冷間鍛造時の割れ発生防止に有効であることを知見した。
本発明者らは、これらの手法を用いることにより、従来不可能とされていた、高加工度でかつ複雑な形状の自動車用等速ジョイントアウターを冷間鍛造により、中間焼鈍を必要とすることなく成形できることを見いだした。
【0012】
本発明は、上記した知見に基づき、さらに検討を加え完成されたものである。
すなわち、本発明は、質量%で、C:0.4 〜0.6 %、Si:0.05%以下、Mn:0.10〜0.4 %、Cr:0.10%以下、Ti:0.005 〜0.05%、B:0.0003〜0.0030%、Al:0.01〜0.05%、を含有し、不純物としてのS、O、N、Pを、S:0.004 %以下、O:0.0020%以下、N:0.007 %以下、P:0.010 %以下に制限し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする冷間鍛造性に優れた、自動車の等速ジョイントアウター用鋼材であり、また、本発明では、前記組成に加えて、さらに質量%で、Mo:0.05〜0.2 %を含有することが好ましく、また、本発明では、次(1)式
(セメンタイト球状化率)=(アスペクト比が2未満のセメンタイト粒子数)/(全セメンタイト粒子数)×100 ………(1)
で定義するセメンタイト球状化率Aが30%以上の組織を有することが好ましい。
【0013】
【発明の実施の形態】
まず、本発明鋼材の組成限定理由を詳細に説明する。以下、質量%は単に%と記す。
C:0.4 〜0.6 %
Cは、高周波焼入れ時の表面硬さおよび有効硬化深さを確保するうえで有効な元素であり、積極的に活用する。しかし、Cが0.4 %未満では機械部品として必要な強度を確保することが困難となり、一方、 0.6%を超えて含有すると変形能の低下および変形抵抗の上昇を招き、冷間鍛造性が劣化する。このため、Cは 0.4〜0.6 %の範囲に限定した。
【0014】
Si:0.05%以下
Siは、球状化焼鈍時にフェライト基地中に固溶し冷間鍛造後の変形抵抗を上昇させるため、極力低減することが好ましいが、0.05%までは許容できる。
Mn:0.10〜0.4 %
Mnは、焼入れ性を確保する上で有効な元素であるが、同時に冷間鍛造時の変形抵抗を上昇させる元素でもあり、本発明では0.10〜0.4 %とする。Mnが0.10%未満では、高周波焼入れ性が不足し、一方、0.4 %を超えて含有すると、変形抵抗が上昇し、冷間鍛造性が劣化する。
【0015】
Cr:0.10%以下
Crは、焼鈍時に炭化物に固溶し、炭化物を難溶解性とするため高周波焼入れ性を劣化させ、冷間鍛造時の変形抵抗を上昇させる元素であり、本発明ではできるだけ低減するのが好ましいが、0.10%までは許容できる。
Ti:0.005 〜0.05%
Tiは、CおよびNと親和力が強く、炭化物、窒化物あるいは炭窒化物等の析出物を形成してフェライト中の固溶CおよびNを低減する作用を有している。これにより、歪時効が抑制され、冷間鍛造時の変形抵抗が低下する。また、Tiは、Bの焼入れ性向上効果を有効に発揮させるためにも有用な元素であるが、0.005 %未満では、これらの効果は十分に認められない。一方、0.05%を超える含有は、粗大な窒化物を形成し、冷間鍛造時の変形能を低下させるとともに転動疲労寿命を著しく低下させる。このため、Tiは0.005 〜0.05%との範囲に限定した。
【0016】
B:0.0003〜0.0030%
Bは、焼入れ性を向上させる有効な元素であるが、0.0003%未満ではその効果が小さく、一方、0.0030%を超えて含有してもその効果は飽和し含有量に見合う効果が期待できないため経済的に不利となる。このため、Bは0.0003〜0.0030%の範囲に限定した。
【0017】
Al:0.005 〜0.05%
Alは、脱酸剤として作用し、また、Nと結合してAlN を形成することによりBの焼入れ性向上効果を有効に発揮させる作用を有する元素であるが、0.005 %未満ではその効果が不十分である。一方、0.05%を超えて含有してもその効果が飽和し含有量に見合う効果が期待できないため経済的に不利となる。このため、Alは 0.005〜0.05%の範囲に限定した。
【0018】
本発明においては、焼入れ性の向上を目的として、必要に応じ上記した成分に加えて、Moを含有することができる。
Mo:0.05〜0.2 %
Moは、焼入れ性を向上させる元素であるが、0.05%未満では効果が少なく、一方、0.20%を超えて含有すると、加工硬化が大きくなり、冷間鍛造時の変形抵抗を増大させる。このため、Moは0.05〜0.2 %に限定するのが好ましい。
【0019】
また、本発明では、不純物としてのS、O、N、Pを所定値以下に低減する。
S: 0.004%以下
Sは、鋼中でMnS を形成し、被削性を向上させる元素であるが、MnS は冷間鍛造時の割れ発生の起点となり、冷間鍛造性を劣化させる。本発明における等速ジョイントアウターのような、成形素材に極めて高い変形能を有することが要求される場合には、Sを極力低減することが必要となる。Sを 0.004%以下に低減することにより、鋼中のMnS 量が著しく低減し、また、存在するMnS のサイズも小さくなる。このため、 0.004%以下までのS含有量低減により、冷間鍛造時の変形能が異方性を含め著しく向上し、従来、中間焼鈍なしでは冷間鍛造が困難とされた複雑な形状の等速ジョイントアウターを中間焼鈍なしの冷間鍛造で成形することが可能となる。
【0020】
O:0.0020%以下
Oは、鋼中のAl、Mn、Si等と酸化物系非金属介在物を形成し、冷間鍛造性および転動疲労特性をともに劣化させる。このため、Oは極力低減する必要があり、本発明では、0.0020%以下に限定した。
N: 0.007%以下
Nは、フェライト中に固溶して歪時効を生じ、変形抵抗を増大させるとともに、Bと結合しBNを形成して、有効B量を低減しBの焼入れ性向上効果を低減する。このことから、Nは極力低減することが必要となるが、0.007 %までは許容できる。
【0021】
P: 0.010%以下
Pは、被削性の向上に対しては有効に作用するが、一方でフェライト相を脆化させ冷間鍛造性を劣化させる。また、Pは、焼入焼戻し時に粒界に偏析し粒界強度を低下させ、疲労亀裂の伝播に対する抵抗を低下させて疲労強度を低下させる。このことから、Pは極力低減する必要があるが、 0.010%までは許容される。
【0022】
上記した成分以外の残部はFeおよび不可避的不純物である。
本発明鋼材は、上記した組成に加え、必要に応じ、次(1)式
セメンタイト球状化率A=(アスペクト比が2未満のセメンタイト粒子数/(全セメンタイト粒子数)×100 ………(1)
で定義されるセメンタイト球状化率Aが30%以上の組織とすることが好ましい。セメンタイトの球状化率を30%以上とすることにより、30%未満のものより、冷間鍛造時の変形能が向上し、さらに変形抵抗が大幅に低下する。
【0023】
つぎに、本発明鋼材の好適な製造方法について、説明する。
まず、上記した組成の溶鋼を、転炉等通常公知の溶製方法により溶製し、ついで、連続鋳造法等の通常公知の鋳造方法で所定の寸法形状の鋼素材とするのが好ましい。
ついで、これら鋼素材に、熱間圧延工程と、軟化焼鈍処理工程とを順次施し、所定の寸法形状の鋼材とする。熱間圧延工程では、所定の寸法形状の鋼材とすることができればよく、熱延条件はとくに限定されない。なお、熱延後の組織微細化の観点から、鋼素材の加熱温度は1100℃以下とするのが好ましい。
【0024】
また、軟化焼鈍処理工程は、熱間圧延工程で、所定の寸法形状に圧延された鋼材に、好ましくは 700〜 760℃×3〜20hに加熱保持し、硬さの低下、および炭化物の球状化を行うのが好ましい。この軟化焼鈍処理工程により、次(1)式
セメンタイト球状化率A=(アスペクト比が2未満のセメンタイト粒子数/(全セメンタイト粒子数)×100 ………(1)
で定義されるセメンタイト球状化率Aが30%以上の組織とするのが好ましい。セメンタイトの球状化率を30%以上とすることにより、30%未満のものより、冷間鍛造時の変形能が向上し、さらに変形抵抗が大幅に低下する。
【0025】
つぎに、本発明の鋼材を成形素材として、自動車用等速ジョイントアウターを製造する好ましい工程について説明する。
本発明の鋼材を成形素材とし、通常、該成形素材を、冷間鍛造工程、切削加工工程により、所定寸法の部品とする。本発明に鋼材を使用すれば、中間焼鈍工程を経ずに部品を製造することができる。
【0026】
冷間鍛造は、通常の冷間鍛造機で行ってよく、所定形状の金型を用いて、変形抵抗に応じ複数回の鍛造加工を施すのが好ましい。なお、本発明の鋼材を使用する場合には、冷間鍛造工程では中間焼鈍は行わない。また、冷間鍛造工程では、各鍛造加工間の時間を120s以下とするのが好ましい。
冷間鍛造工程ののち、所定寸法の部品となるように、切削加工工程を施される。
【0027】
ついで、これら所定寸法の部品に、その全体あるいは一部をAc3 変態点以上に加熱したのち焼入れし、ついで焼戻しする熱処理工程を施して製品とする。
熱処理工程における焼入れ、焼戻し条件は、焼入れ温度をAc3 変態点以上とする以外は、目的とする性能に応じ、温度、時間を適宜選択することができることはいうまでもない。
【0028】
【実施例】
表1に示す組成の鋼素材を用い、該鋼素材を 850〜1100℃に加熱し圧延する熱間圧延工程により、断面:52mmφのサイズの直棒とした。ついで、これら直棒に 700〜 760℃×3〜7hの軟化焼鈍処理工程を施し、鋼材とした。なお、鋼素材のうち、No. A、No. BおよびNo. Cは、組成が本発明の範囲内にあるもの、No. D、No. Eは、S量が本発明外となる比較例、No. Fは JIS規格のS48Cに相当するものである。
【0029】
まず、これら鋼材について、(1)MnS分布状態調査、(2) セメンタイト球状化率調査、(3) 冷間鍛造性試験、(4) 実体等速ジョイントアウター形状への冷間鍛造試験、(5) 高周波焼入れ性試験を実施した。
それぞれの試験方法を以下に示す。
(1)MnS 分布状態調査
鋼材中のMnS の分布を、ASTM E45法に基づいて調査した。測定面積は0.5mm2×320 視野(総視野面積160mm2)とし、その中の最悪視野の評価(ASTM−A法評価)およびThin 0.5点の視野の数(ASTM−D0.5T視野数)を測定した。
【0030】
(2)セメンタイト球状化率調査
鋼材(直棒)の1/4d部から試験片を採取し、研磨した後ピクラール液にて腐食して、走査型電子顕微鏡を用いて、断面5箇所、各箇所につき5000倍の倍率で10視野について撮像した。この像を基に、画像解析装置を用いて各セメンタイト粒子のアスペクト比を測定し、各成形素材におけるセメンタイト球状化率Aを次(1)
セメンタイト球状化率A=(アスペクト比が2未満のセメンタイト粒子数/(全セメンタイト粒子数)×100 ………(1)
を用いて算出した。
【0031】
(3)冷間鍛造性試験
軟化焼鈍処理済の各鋼材に総減面率60%の引抜き加工を加え20mmφとした材料から、15mmφ×22.5mmHの円柱型試験片を機械加工により採取した。この際に、試験片の採取方向を、引抜き加工方向に対して平行方向および垂直方向の2通りとした。
【0032】
これらの試験片を用いて、種々の圧縮率にて、各々10個の試験片を用いて、冷間圧縮試験を実施した。なお、試験時の荷重から材料の変形抵抗を算出した。試験後、各試験片側面の割れ発生の有無を確認し、各圧縮率における割れ発生率(割れ発生試験片個数/10個)を算出した。試験結果から、割れ発生率が50%となる圧縮率を限界圧縮率として求めた。さらに2種類の試験片採取方向における限界圧縮率の比を限界比として求めた。
【0033】
(4)実体等速ジョイントアウター形状への冷間鍛造試験
軟化焼鈍済の各鋼材に、3段の冷間鍛造からなる冷間鍛造工程を施し、図1に模式的に示す形状のサイズ: 100mmφ×150mmlの実体等速ジョイントアウター形状に成形した。各段の冷間鍛造では、前段の冷間鍛造ままの材料を次段の材料として用い、中間焼鈍を実施しなかった。なお、各鍛造段階における割れの発生をn=50個の試験片を用いて測定した。割れ発生率(%)は(割れの発生した試験片個数)/50×100 で算出した。
【0034】
(5)高周波焼入れ性試験
高周波焼入れ性試験は、鋼材から30mmφ×100mmlの試験片を採取し、これら試験片に、周波数15kHz 、出力114kW 、試験片移動速度10mm/sの移動焼入れ条件で高周波焼入れした後、 150℃×1hの焼戻しを行った。熱処理後の試験片について表面硬さ(HRC )およびHv:400 以上となる硬化深さ(有効硬化深さ)を測定した。
【0035】
これらの結果を表2に示す。
【0036】
【表1】

Figure 0005008804
【0037】
【表2】
Figure 0005008804
【0038】
本発明例では、いずれもMnS が微細化し、またMnS の量も顕著に低減している。これにくらべ、S含有量が本発明範囲から外れる鋼材No.6〜No.8 では、MnS の微細化、量の低減は実現されていない。
また、本発明例は、いずれも引抜き方向と平行方向で69%以上の高い限界圧縮率を示している。また、引抜き方向と平行方向の限界圧縮率と引抜き方向と垂直方向の限界圧縮率の比である限界比は、0.86以上の高い値を示している。これらの効果は、S量の低減に伴うMnS 量の減少および微細化によるものと考えられる。これに対し、本発明の範囲を外れる比較例(鋼材No.6〜No.8)では、引抜き方向と平行方向の限界圧縮率が52〜65%、また限界比は0.58以下と低く、冷間鍛造性が低いうえ異方性もある。
【0039】
本発明例では、中間焼鈍を行わない冷間鍛造によっても、複雑形状の実体等速ジョイントアウターへ成形することができる。本発明例では、最終の3段目の冷間鍛造まで割れを発生するものはなかった。これに対し、本発明の範囲を外れる比較例では、多くが最終の3段目の冷間鍛造までに割れを発生していた。セメンタイト球状化率が好適範囲となる本発明例(鋼材No.2、No.5)では、最終の3段目の冷間鍛造で割れ発生は認められなかった。
【0040】
また、本発明例は、いずれも十分高い高周波焼入れ性を有していることがわかる。高周波焼入れ焼もどし後の有効硬化深さは、ほぼ同一C量の比較例と同等以上の値を示した。Mo含有鋼素材を用いた鋼材No.1ではMoを含有しない鋼材No.3よりも高い高周波焼入れ性を示している。
【0041】
【発明の効果】
以上の結果から、本発明によれば、加工度が高く複雑な形状の等速ジョイントアウターを、中間焼鈍を施すことなく冷間鍛造により成形することが可能となり、熱間鍛造等の他の成形方法と比較して優れた寸法精度の等速ジョイントアウターを低コストで得ることができ、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】等速ジョイントアウターの形状の一例を模式的に示す説明図である。
【符号の説明】
1 ジョイントアウター
2 インナー
3 玉鋼[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material for a structural member of an automobile, and more particularly to a steel material excellent in cold forgeability suitable for use in an outer constant velocity joint that is important for a structural member.
[0002]
[Prior art]
Cold forging processes without heating the material, so the equipment is simple, the finish dimensional accuracy is excellent, the material yield is high, the die (tool) life is long, and cutting after molding It has advantages such as a small amount of processing, and is applied to the manufacture of automobile parts such as constant velocity joint outers.
[0003]
However, in the temperature range of cold forging, the deformation resistance of the steel material used is high, and the deformability is low. In order to implement cold forging industrially, it is essential to reduce the hardness of the material used (steel) and realize low deformation resistance. When the content is reduced, there is a problem that the induction hardenability is lowered. In the manufacture of automobile parts and the like, the surface is often hardened by a process such as induction hardening after being processed into a predetermined size and shape by cold forging, and a decrease in hardenability becomes a problem. Therefore, a steel material having excellent cold forgeability and induction hardenability has been demanded.
[0004]
In response to such a request, for example, Japanese Patent Application Laid-Open No. 2-129341 discloses that C: 0.40 to 0.60%, Si: 0.05% or less, Mn: 0.20 to 0.65%, Al: 0.01 to 0.05%, Cr: 0.30% In the following, carbon steel for machine structural use that further contains Ti and B and has excellent cold forgeability and induction hardenability in which S, O, and N as impurities are reduced to a predetermined amount or less has been proposed.
Japanese Patent Laid-Open No. 2-145745 discloses that C: 0.25 to 0.65%, Si: 0.15% or less, Mn: 0.60% or less, B: 0.0005 to 0.0050%, Ti: 0.005 to 0.05%, and Mo, V , And steel for cold forging in which S is reduced to 0.015% or less has been proposed.
[0005]
JP-A-9-268344 discloses that C: 0.45 to 0.60%, Si: 0.01 to 0.15%, Mn: 0.10 to 1.00%, Cr: 0.3% or less, Al: 0.015 to 0.050%, and Ti Steel for induction hardening excellent in cold forgeability in which carbide containing B and having an average particle diameter of 5 μm or less is dispersed to an average particle interval of 20 μm or less has been proposed.
In JP-A-10-96047, C: 0.25 to 0.65%, Si: 0.15% or less, Mn: 0.60% or less, B: 0.0005 to 0.0050%, Ti: 0.005 to 0.05%, Mo, V Cold forging steels have been proposed that contain Cr, or further contain Nb, Ta, Zr and have S reduced to 0.015% or less.
[0006]
[Problems to be solved by the invention]
However, even if the steel materials described in Japanese Patent Laid-Open Nos. 2-129341, 2-145745, 9-268344, 10-96047, etc. are used, they are representative in FIG. For example, in the case of parts with complex shapes, such as automotive constant velocity joint outers, cold forging is performed in multiple steps for the purpose of preventing the occurrence of cracks in steel materials and the increase in molding load, Moreover, cold forging was performed after intermediate annealing was performed between the forging steps to recover the deformability of the steel material.
[0007]
In particular, in the manufacture of constant velocity joint outers for automobiles, performing intermediate annealing between cold forging processes at each stage is not only cost for heat treatment itself, but also costs for generating intermediate inventory due to process complexity. There has been a problem of increasing the manufacturing cost of the constant velocity joint outer. For this reason, steel for a constant velocity joint outer that has a high degree of workability and can manufacture a product having a complicated shape without intermediate annealing has been eagerly desired.
[0008]
An object of the present invention is to solve the above-described problems of the prior art advantageously, and to propose a steel material for a constant velocity joint outer of an automobile that is inexpensive and excellent in cold forgeability.
[0009]
[Means for Solving the Problems]
The present inventors first made various studies on factors that enable the omission of the intermediate annealing in the cold forging process of the constant velocity joint outer for automobiles. First, the present inventors based on the idea that it is essential to improve the deformability of steel materials in order to be able to form a complex shaped part by cold forging without carrying out intermediate annealing. Various experiments and examinations were conducted on cracking during cold forging.
[0010]
As a result, it was found that cracks during cold forging mainly originated from fine cracks caused by delamination at the interface between the ferrite matrix of steel and MnS. In addition, the inventors of the present invention significantly reduced the amount of MnS in the steel by remarkably reducing the S content to 0.004 mass% or less, and the size of the steel became finer, and the interface between the ferrite matrix and MnS was reduced. It has been found that generation of fine cracks caused by peeling can be suppressed. Furthermore, we found that the anisotropy of steel deformability is greatly reduced with the miniaturization of MnS size.
[0011]
In addition, the present inventors have found that a fine crack that becomes a starting point of a crack during cold forging may be caused by a fracture of a rod-like carbide (cementite). From this, the present inventors have found that setting the spheroidization rate of carbide (cementite) to a predetermined value (30%) or more is also effective in preventing cracking during cold forging.
By using these methods, the present inventors require intermediate annealing by cold forging an automotive constant velocity joint outer body having a high workability and a complicated shape, which has been impossible in the past. I found out that it can be molded without any problems.
[0012]
The present invention has been completed with further studies based on the above findings.
That is, the present invention is, in mass%, C: 0.4 to 0.6%, Si: 0.05% or less, Mn: 0.10 to 0.4%, Cr: 0.10% or less, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%, Al: 0.01-0.05%, S, O, N, and P as impurities are limited to S: 0.004% or less, O: 0.0020% or less, N: 0.007% or less, P: 0.010% or less, It is a steel material for a constant velocity joint outer of an automobile excellent in cold forgeability, characterized by having a composition comprising the balance Fe and unavoidable impurities, and in the present invention, in addition to the above composition, further mass% In the present invention, the following formula (1) (cementite spheroidization ratio) = (number of cementite particles having an aspect ratio of less than 2) / (total number of cementite particles) ) × 100 ……… (1)
It is preferable that the cementite spheroidization ratio A defined by the above has a structure of 30% or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the composition of the steel of the present invention will be described in detail. Hereinafter, mass% is simply referred to as%.
C: 0.4 to 0.6%
C is an element effective in securing the surface hardness and effective hardening depth during induction hardening, and is actively used. However, if C is less than 0.4%, it will be difficult to ensure the required strength as a machine part. On the other hand, if it exceeds 0.6%, the deformability and the deformation resistance will be increased, and the cold forgeability will deteriorate. . For this reason, C was limited to the range of 0.4 to 0.6%.
[0014]
Si: 0.05% or less
Since Si dissolves in the ferrite matrix during spheroidizing annealing and increases the deformation resistance after cold forging, it is preferable to reduce it as much as possible, but 0.05% is acceptable.
Mn: 0.10 to 0.4%
Mn is an element that is effective in securing hardenability, but at the same time is an element that increases the deformation resistance during cold forging. In the present invention, it is 0.10 to 0.4%. If Mn is less than 0.10%, induction hardenability is insufficient, while if it exceeds 0.4%, deformation resistance increases and cold forgeability deteriorates.
[0015]
Cr: 0.10% or less
Cr is an element that dissolves in the carbide during annealing and makes the carbide difficult to dissolve, which deteriorates induction hardenability and increases deformation resistance during cold forging, and is preferably reduced as much as possible in the present invention. , Up to 0.10% is acceptable.
Ti: 0.005 to 0.05%
Ti has a strong affinity with C and N, and has the effect of reducing solid solution C and N in ferrite by forming precipitates such as carbides, nitrides or carbonitrides. Thereby, distortion aging is suppressed and the deformation resistance at the time of cold forging falls. Ti is an element useful for effectively exhibiting the effect of improving the hardenability of B. However, if it is less than 0.005%, these effects are not sufficiently observed. On the other hand, if the content exceeds 0.05%, coarse nitrides are formed, the deformability during cold forging is lowered, and the rolling fatigue life is remarkably lowered. For this reason, Ti was limited to the range of 0.005 to 0.05%.
[0016]
B: 0.0003-0.0030%
B is an effective element for improving the hardenability, but its effect is small if it is less than 0.0003%. On the other hand, if it exceeds 0.0030%, the effect is saturated and an effect commensurate with the content cannot be expected. Disadvantageous. For this reason, B was limited to the range of 0.0003 to 0.0030%.
[0017]
Al: 0.005 to 0.05%
Al is an element that acts as a deoxidizing agent and has the effect of effectively exhibiting the hardenability improving effect of B by binding to N to form AlN. However, if it is less than 0.005%, the effect is ineffective. It is enough. On the other hand, even if the content exceeds 0.05%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Al was limited to the range of 0.005 to 0.05%.
[0018]
In the present invention, for the purpose of improving hardenability, Mo can be contained in addition to the above-described components as necessary.
Mo: 0.05-0.2%
Mo is an element that improves the hardenability. However, when it is less than 0.05%, the effect is small. On the other hand, when it exceeds 0.20%, work hardening increases and deformation resistance during cold forging increases. For this reason, Mo is preferably limited to 0.05 to 0.2%.
[0019]
In the present invention, S, O, N, and P as impurities are reduced to a predetermined value or less.
S: 0.004% or less S is an element that forms MnS in steel and improves machinability, but MnS serves as a starting point for cracking during cold forging and deteriorates cold forgeability. When the molding material is required to have extremely high deformability like the constant velocity joint outer in the present invention, it is necessary to reduce S as much as possible. By reducing S to 0.004% or less, the amount of MnS in the steel is remarkably reduced, and the size of MnS present is also reduced. For this reason, by reducing the S content to 0.004% or less, the deformability during cold forging is significantly improved, including anisotropy. Conventionally, it has been difficult to perform cold forging without intermediate annealing. The fast joint outer can be formed by cold forging without intermediate annealing.
[0020]
O: 0.0020% or less O forms oxide-based nonmetallic inclusions with Al, Mn, Si, etc. in steel, and degrades both cold forgeability and rolling fatigue characteristics. For this reason, it is necessary to reduce O as much as possible, and in the present invention, it is limited to 0.0020% or less.
N: 0.007% or less N dissolves in ferrite to cause strain aging, increases deformation resistance, and combines with B to form BN, reducing the effective B amount and improving the hardenability of B To reduce. From this, it is necessary to reduce N as much as possible, but up to 0.007% is acceptable.
[0021]
P: 0.010% or less P works effectively for improving machinability, but on the other hand, embrittles the ferrite phase and deteriorates cold forgeability. Further, P segregates at the grain boundaries during quenching and tempering to lower the grain boundary strength, lowers the resistance to propagation of fatigue cracks, and lowers the fatigue strength. From this, P needs to be reduced as much as possible, but 0.010% is allowed.
[0022]
The balance other than the above components is Fe and inevitable impurities.
In addition to the above composition, the steel of the present invention has the following formula (1): cementite spheroidization ratio A = (number of cementite particles having an aspect ratio of less than 2 ) / (total number of cementite particles) × 100 1)
In cementite spheroidization ratio A which is defined is not preferable to be 30% or more tissue. By setting the spheroidization rate of cementite to 30% or more, the deformability during cold forging is improved and the deformation resistance is greatly reduced as compared with less than 30%.
[0023]
Next, a preferred method for producing the steel material of the present invention will be described.
First, molten steel having the above composition is preferably melted by a generally known melting method such as a converter, and then a steel material having a predetermined size and shape is obtained by a generally known casting method such as a continuous casting method.
Subsequently, a hot rolling process and a softening annealing process are sequentially performed on these steel materials to obtain a steel material having a predetermined size and shape. In the hot rolling process, it is sufficient that the steel material has a predetermined size and shape, and the hot rolling conditions are not particularly limited. From the viewpoint of refining the structure after hot rolling, the heating temperature of the steel material is preferably 1100 ° C. or lower.
[0024]
Further, the softening annealing process is a hot rolling process in which the steel material rolled into a predetermined size and shape is preferably heated and held at 700 to 760 ° C. for 3 to 20 hours to reduce hardness and spheroidize carbides Is preferably performed. By this softening annealing process, the following formula (1): cementite spheroidization ratio A = (number of cementite particles having an aspect ratio of less than 2 ) / (total number of cementite particles) × 100 (1)
It is preferable that the cementite spheroidization ratio A defined by the above is a structure of 30% or more. By setting the spheroidization rate of cementite to 30% or more, the deformability during cold forging is improved and the deformation resistance is greatly reduced as compared with less than 30%.
[0025]
Next, a preferred process for producing a constant velocity joint outer for automobiles using the steel material of the present invention as a molding material will be described.
The steel material of the present invention is used as a forming material, and the forming material is usually formed into a part having a predetermined size by a cold forging process and a cutting process. If a steel material is used for this invention, components can be manufactured without passing through an intermediate annealing process.
[0026]
The cold forging may be performed with a normal cold forging machine, and it is preferable to perform a forging process a plurality of times in accordance with the deformation resistance using a mold having a predetermined shape. In addition, when using the steel material of this invention, an intermediate annealing is not performed in a cold forging process. In the cold forging step, the time between each forging process is preferably 120 s or less.
After the cold forging process, a cutting process is performed so as to obtain a part having a predetermined size.
[0027]
Next, the whole or a part of these parts having predetermined dimensions is heated to the Ac 3 transformation point or higher, and then subjected to a heat treatment step of tempering to obtain a product.
It goes without saying that the quenching and tempering conditions in the heat treatment step can be appropriately selected according to the intended performance, except that the quenching temperature is set to the Ac 3 transformation point or higher.
[0028]
【Example】
The steel material having the composition shown in Table 1 was used, and the steel material was heated to 850-1100 ° C. and rolled to obtain a straight bar having a cross section of 52 mmφ. Subsequently, the straight bars were subjected to a softening annealing process of 700 to 760 ° C. × 3 to 7 hours to obtain steel materials. Among steel materials, No. A, No. B and No. C are compositions whose compositions are within the scope of the present invention, and No. D and No. E are comparative examples in which the amount of S is outside the scope of the present invention. No. F corresponds to JIS standard S48C.
[0029]
First, for these steel materials, (1) MnS distribution state investigation, (2) Cementite spheroidization rate investigation, (3) Cold forgeability test, (4) Cold forging test to solid constant velocity joint outer shape, (5 ) Induction hardenability test was conducted.
Each test method is shown below.
(1) MnS distribution state investigation MnS distribution in steel was investigated based on the ASTM E45 method. The measurement area is 0.5 mm 2 × 320 fields (total field area 160 mm 2 ), and the worst field of view (ASTM-A method evaluation) and the number of thin 0.5 point fields (ASTM-D 0.5T number of fields) It was measured.
[0030]
(2) Investigation of cementite spheroidization rate Specimens were collected from 1 / 4d part of steel material (straight bar), polished and then corroded with Picral solution, using a scanning electron microscope, 5 cross-sections, each location Images were taken for 10 fields of view at a magnification of 5000 times. Based on this image, the aspect ratio of each cementite particle is measured using an image analyzer, and the cementite spheroidization ratio A in each molding material is as follows (1).
Cementite spheroidization ratio A = (number of cementite particles having an aspect ratio of less than 2 ) / (total number of cementite particles) × 100 (1)
It calculated using.
[0031]
(3) Cold forgeability test A 15 mmφ × 22.5 mmH cylindrical specimen was sampled by machining from a 20 mmφ material by drawing each steel material that had been softened and annealed to a total area reduction of 60%. At this time, the specimens were collected in two directions, a parallel direction and a perpendicular direction to the drawing direction.
[0032]
Using these test pieces, cold compression tests were performed using 10 test pieces each at various compression ratios. The deformation resistance of the material was calculated from the load during the test. After the test, the presence or absence of cracks on the side surfaces of each test piece was confirmed, and the crack generation rate at each compression rate (number of cracked test pieces / 10 pieces) was calculated. From the test results, the compression rate at which the crack occurrence rate was 50% was determined as the critical compression rate. Further, the ratio of the critical compression ratios in the two sample specimen collecting directions was determined as the critical ratio.
[0033]
(4) Cold forging test for outer shape of constant velocity joint outer shape Each steel material softened and annealed is subjected to a cold forging process consisting of three stages of cold forging, and the size of the shape schematically shown in FIG. A 150 mml solid constant velocity joint outer shape was formed. In each stage of cold forging, the material in the previous stage of cold forging was used as the material of the next stage, and no intermediate annealing was performed. The occurrence of cracks at each forging stage was measured using n = 50 test pieces. The crack occurrence rate (%) was calculated by (number of test pieces with cracks) / 50 × 100.
[0034]
(5) Induction hardenability test Induction hardenability test, 30mmφ × 100mml test specimens are collected from steel materials, and these specimens are induction hardened under the moving quenching conditions of frequency 15kHz, output 114kW, specimen moving speed 10mm / s. Then, tempering at 150 ° C. × 1 h was performed. About the test piece after heat processing, the surface hardness (HRC) and the cure depth (effective cure depth) which become Hv: 400 or more were measured.
[0035]
These results are shown in Table 2.
[0036]
[Table 1]
Figure 0005008804
[0037]
[Table 2]
Figure 0005008804
[0038]
In all of the examples of the present invention, MnS is miniaturized and the amount of MnS is significantly reduced. In contrast, steel materials No. 6 to No. 8 in which the S content is out of the scope of the present invention have not realized miniaturization and reduction of the amount of MnS.
The examples of the present invention all show a high critical compression ratio of 69% or more in the direction parallel to the drawing direction. In addition, the limit ratio, which is the ratio of the limit compression rate in the direction parallel to the drawing direction and the limit compression rate in the direction perpendicular to the drawing direction, shows a high value of 0.86 or more. These effects are considered to be due to the reduction and refinement of the MnS amount accompanying the reduction of the S amount. On the other hand, in comparative examples (steel materials No. 6 to No. 8) that are out of the scope of the present invention, the critical compression ratio in the direction parallel to the drawing direction is 52 to 65%, and the critical ratio is as low as 0.58 or less. It has low forgeability and anisotropy.
[0039]
In the example of the present invention, it can be formed into a complex-shaped solid constant velocity joint outer by cold forging without intermediate annealing. In the examples of the present invention, no cracks occurred until the final third cold forging. On the other hand, in comparative examples outside the scope of the present invention, many cracks occurred before the final cold forging in the third stage. In the examples of the present invention (steel materials No. 2 and No. 5) in which the cementite spheroidization ratio is in a suitable range, no cracking was observed in the final cold forging in the third stage.
[0040]
Moreover, it turns out that all of the examples of the present invention have sufficiently high induction hardenability. The effective hardening depth after induction hardening and tempering showed a value equal to or greater than that of the comparative example having substantially the same C content. Steel No. 1 using Mo-containing steel material shows higher induction hardenability than steel No. 3 not containing Mo.
[0041]
【Effect of the invention】
From the above results, according to the present invention, it becomes possible to form a constant velocity joint outer having a high workability and a complicated shape by cold forging without performing intermediate annealing, and other forming such as hot forging. Compared with the method, a constant velocity joint outer having excellent dimensional accuracy can be obtained at low cost, and an industrially remarkable effect can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing an example of a shape of a constant velocity joint outer.
[Explanation of symbols]
1 Joint outer 2 Inner 3 Jade steel

Claims (3)

質量%で、
C:0.4 〜0.6 %、 Si:0.05%以下、
Mn:0.10〜0.4 %、 Cr:0.10%以下、
Ti:0.005 〜0.05%、 B:0.0003〜0.0030%、
Al:0.005 〜0.05%
を含有し、不純物としてのS、O、N、Pを
S:0.004 %以下、 O:0.0020%以下、
N:0.007 %以下、 P:0.010 %以下
に制限し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする冷間鍛造性に優れた自動車の等速ジョイントアウター用鋼材。
% By mass
C: 0.4 to 0.6%, Si: 0.05% or less,
Mn: 0.10 to 0.4%, Cr: 0.10% or less,
Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%,
Al: 0.005 to 0.05%
S, O, N, and P as impurities S: 0.004% or less, O: 0.0020% or less,
N: 0.007% or less, P: 0.010% or less, a steel material for a constant velocity joint outer of an automobile excellent in cold forgeability, characterized by having a composition consisting of remaining Fe and inevitable impurities.
前記組成に加えて、さらに質量%で、Mo:0.05〜0.2 %を含有することを特徴とする請求項1に記載の等速ジョイントアウター用鋼材。  The steel material for a constant velocity joint outer according to claim 1, further comprising Mo: 0.05 to 0.2% by mass% in addition to the composition. 下記(1)式で定義するセメンタイト球状化率Aが30%以上である組織を有することを特徴とする請求項1または2に記載の等速ジョイントアウター用鋼材。

(セメンタイト球状化率)=(アスペクト比が2未満のセメンタイト粒子数)/(全セメンタイト粒子数)×100 ………(1)
The steel material for constant velocity joint outer according to claim 1 or 2, wherein the steel material has a structure in which a cementite spheroidization ratio A defined by the following formula (1) is 30% or more.
(Cementite spheroidization ratio) = (number of cementite particles having an aspect ratio of less than 2) / (total number of cementite particles) × 100 (1)
JP2001234049A 2001-08-01 2001-08-01 Steel for constant velocity joint outer Expired - Fee Related JP5008804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234049A JP5008804B2 (en) 2001-08-01 2001-08-01 Steel for constant velocity joint outer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234049A JP5008804B2 (en) 2001-08-01 2001-08-01 Steel for constant velocity joint outer

Publications (2)

Publication Number Publication Date
JP2003041339A JP2003041339A (en) 2003-02-13
JP5008804B2 true JP5008804B2 (en) 2012-08-22

Family

ID=19065737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234049A Expired - Fee Related JP5008804B2 (en) 2001-08-01 2001-08-01 Steel for constant velocity joint outer

Country Status (1)

Country Link
JP (1) JP5008804B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138692A1 (en) * 2006-05-31 2007-12-06 Fujitsu Limited Semiconductor device and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412196B2 (en) * 1993-08-02 2003-06-03 住友金属工業株式会社 Medium carbon steel rod with excellent cold forgeability and hardenability
JPH1025521A (en) * 1996-07-09 1998-01-27 Sumitomo Metal Ind Ltd Method to spheroidizing wire rod
JP2001011575A (en) * 1999-06-30 2001-01-16 Nippon Steel Corp Bar steel and steel wire for machine structure excellent in cold workability and its production
JP2001026836A (en) * 1999-07-13 2001-01-30 Daido Steel Co Ltd Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength

Also Published As

Publication number Publication date
JP2003041339A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
EP3222743A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP5729213B2 (en) Manufacturing method of hot press member
JP2010280929A (en) Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP6520465B2 (en) Method of manufacturing martensitic stainless steel pipe
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP4920144B2 (en) Steel for constant velocity joint outer
JP2841468B2 (en) Bearing steel for cold working
JP5008804B2 (en) Steel for constant velocity joint outer
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP5703934B2 (en) Cold forging induction hardening steel, cold forging induction hardening steel bar, automobile undercarriage parts and automobile hub
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP3627393B2 (en) Wire rod steel with excellent cold-cutability
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
JP2000008139A (en) Linear or bar-shaped steel or machine parts
JP4103191B2 (en) High hardness steel for induction hardening with excellent corrosion resistance
JP4513206B2 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JP4576976B2 (en) Steel for high strength bolts
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees