JP2010137284A - Isothermal forging method and isothermal forging device - Google Patents

Isothermal forging method and isothermal forging device Download PDF

Info

Publication number
JP2010137284A
JP2010137284A JP2009260512A JP2009260512A JP2010137284A JP 2010137284 A JP2010137284 A JP 2010137284A JP 2009260512 A JP2009260512 A JP 2009260512A JP 2009260512 A JP2009260512 A JP 2009260512A JP 2010137284 A JP2010137284 A JP 2010137284A
Authority
JP
Japan
Prior art keywords
temperature
mold
heating
metal material
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009260512A
Other languages
Japanese (ja)
Other versions
JP5688704B2 (en
Inventor
Toshiya Kawaguchi
俊哉 川口
Hidenori Era
秀則 恵良
Tooru Kawabe
徹 河部
Masao Takechi
雅夫 武市
Akihiro Takeya
昭宏 竹屋
Nobuhiko Matsumoto
信彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOBATA TURRET KOSAKUSHO KK
Kyushu Institute of Technology NUC
Dai Ichi High Frequency Co Ltd
Original Assignee
TOBATA TURRET KOSAKUSHO KK
Kyushu Institute of Technology NUC
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOBATA TURRET KOSAKUSHO KK, Kyushu Institute of Technology NUC, Dai Ichi High Frequency Co Ltd filed Critical TOBATA TURRET KOSAKUSHO KK
Priority to JP2009260512A priority Critical patent/JP5688704B2/en
Publication of JP2010137284A publication Critical patent/JP2010137284A/en
Application granted granted Critical
Publication of JP5688704B2 publication Critical patent/JP5688704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing

Abstract

<P>PROBLEM TO BE SOLVED: To provide an isothermal forging method which can simply, easily and surely maintain a material temperature in a die to a prescribed level, can surely prevent a material from being overheated above the prescribed temperature by fairly holding a processing speed during forging, can process a high-strength, high-toughness and high-quality component at high speed by micronizing a crystal grain, can eliminate heat-treatment after processing to minimize post-processing work, and thus is excellent in mass productivity. <P>SOLUTION: The isothermal forging method includes the steps of: heating the die; measuring and monitoring a die temperature; controlling the heating temperature in the die heating step so as to converge and maintain the surface temperature of a die inside to the processing level of the metal material on the basis of the temperature measured in the die temperature-monitoring step; heating a solution-heat-treated metal material to a temperature of ≥100°C to its recrystallization temperature or below; and forging the heated metal material by charging in the die whose temperature is controlled to a processing level in the above heating temperature-controlling step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルミニウム合金などの金属を高速で恒温鍛造することにより、高強度、高靭性で高品質な部品を成形することができる量産性に優れた恒温鍛造成型方法及び恒温鍛造成型装置に関する。   The present invention relates to a constant temperature forging molding method and a constant temperature forging molding apparatus that are capable of forming a high-quality, high-toughness, high-quality part by constant-temperature forging a metal such as an aluminum alloy.

金属の強度、品質を向上させる手段として、従来から鍛造が知られている。
金型を加熱しない熱間鍛造法では、加工中に急速に素材温度が下がり、成型性が低下するため、欠陥が発生し易く、形状自在性に欠け、切削工程などの後加工が必要となり、量産性に欠け、用途が限定されるという問題点があった。
また、恒温鍛造法では、強度や品質を向上させることができるが、大型プレス機を用いて加工速度を極端に遅くして加工する方法であるため、大量生産品や小型部品の製造には不向きであり、航空機の機体や脚などのような大型の少量部品の生産にしか採用されておらず、量産品に適用できないという問題点があった。
特に、自動車、鉄道車両、航空機等の部品製造において、近年の燃費規制、排ガス規制などの環境問題への対応から、車体や機体の重量の軽量化が求められ、一部の部品がアルミニウム合金化されているが、強度、品質確保の面から、軽量合金への転換は進んでおらず、高速加工が可能で量産性に優れた恒温鍛造技術の確立が強く望まれていた。
また、電力機器、住宅関連設備などの各種金属製部品についても、搬送性、取扱い性、耐久性などを向上させるため、軽量化、高強度化が可能な製造技術の開発が望まれていた。
一方、アルミニウム合金等の金属を再結晶温度以下で加熱、加圧することにより、結晶粒を微細化し、強度を向上させる金属材料の製造方法が提案されている。
例えば、(特許文献1)には、「アルミニウム若しくはアルミニウム合金製の塊状アルミニウム材を再結晶温度以下に加熱し、この再結晶温度以下に加熱した塊状アルミニウム材をx軸方向,y軸方向及びz軸方向から繰り返し温間鍛造することで塊状アルミニウム材中の結晶粒を超微細結晶粒とすることを特徴とする超微細結晶粒を有するアルミニウム及びアルミニウム合金材の製造方法。」が開示されている。
また、(特許文献2)には、「可塑性金属材料を再結晶温度未満の温度で金型の間に挟み、金属材料を間歇的に少しずつ搬送しながら金型で瞬時に大きな繰り返し荷重を加えて圧下加工する工程を備えることを特徴とする微細結晶粒金属材料の製造方法。」が開示されている。
特開2004−176134号 特開2005−200725号
Forging has been conventionally known as a means for improving the strength and quality of metals.
In the hot forging method that does not heat the mold, the material temperature drops rapidly during processing and the moldability deteriorates, so defects are likely to occur, shape flexibility is lacking, and post-processing such as cutting process is required, There was a problem that the mass productivity was lacking and the use was limited.
In addition, the constant temperature forging method can improve strength and quality, but it is not suitable for manufacturing mass-produced products and small parts because it is a method that uses a large press to slow down the processing speed. However, it is used only for the production of large-scale small parts such as aircraft bodies and legs, and has a problem that it cannot be applied to mass-produced products.
In particular, in parts manufacturing for automobiles, railway vehicles, aircraft, etc., in response to environmental problems such as fuel efficiency regulations and exhaust gas regulations in recent years, there is a need to reduce the weight of car bodies and aircraft, and some parts are made of aluminum alloys. However, in terms of strength and quality assurance, the transition to lightweight alloys has not progressed, and the establishment of a constant temperature forging technique capable of high speed processing and excellent mass productivity has been strongly desired.
In addition, for various metal parts such as electric power equipment and housing-related facilities, development of manufacturing technology capable of reducing weight and increasing strength has been desired in order to improve transportability, handling, and durability.
On the other hand, a method for producing a metal material has been proposed in which a metal such as an aluminum alloy is heated and pressed at a recrystallization temperature or lower to refine crystal grains and improve strength.
For example, (Patent Document 1) states that “a bulk aluminum material made of aluminum or an aluminum alloy is heated to a recrystallization temperature or lower, and the bulk aluminum material heated to a temperature lower than the recrystallization temperature is converted to an x-axis direction, a y-axis direction, and a z-axis direction. "A method for producing aluminum and aluminum alloy materials having ultrafine crystal grains, characterized in that crystal grains in the massive aluminum material are made ultrafine crystal grains by repeatedly forging in the axial direction." .
In addition, (Patent Document 2) states that “a plastic metal material is sandwiched between molds at a temperature lower than the recrystallization temperature, and a large repetitive load is instantaneously applied to the mold while intermittently transporting the metal material. A method for producing a fine-grain metal material, comprising a step of pressing and rolling. "
JP 2004-176134 A JP 2005-200725 A

しかしながら、上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)では、x軸,y軸,z軸の各軸方向から繰り返し鍛造を行うが、各鍛造毎に試料を90°回転させ、毎回523Kに1.2ksの再加熱を行う必要があるので、工程が複雑で加工に時間を要し、量産性に欠けるという課題を有していた。
また、所望の形状を得るためには、切削や研磨などの様々な後加工を施す必要があり、省資源性に欠けるという課題を有していた。
また、各鍛造毎に再加熱を行うことにより、試料の温度が上昇と低下を繰り返し、加熱温度がばらつき易く、結晶粒の均一性に欠け、剛性や靭性のばらつきが生じて歩留まりが低下し易く、品質の安定性、量産性に欠けるという課題を有していた。
(2)(特許文献2)は、金属材料を間歇的に少しずつ搬送しながら金型で瞬時に大きな繰り返し荷重を加えて圧下加工するものであり、圧下加工後、必要により熱処理を施すと共に、その後の圧延において、材料の厚さを調整したり、表面状態を仕上げたり、用途に合わせた断面形状に加工したりする必要があり、加工工程が複雑で加工に時間を要し、量産性に欠けるという課題を有していた。
(3)(特許文献1)、(特許文献2)は、いずれも素材の加熱温度を再結晶温度未満とすることにより、結晶粒の微細化を図るための金属材料の製造方法であるが、具体的な加熱方法や加熱温度の測定及び管理方法或いはそれらを実現するための装置の構成や構造については記載も示唆もされていなかった。
However, the above conventional techniques have the following problems.
(1) In (Patent Document 1), forging is repeatedly performed from each of the x-axis, y-axis, and z-axis directions. The sample is rotated by 90 ° for each forging and reheated to 1.2 ks at 523K each time. Since it was necessary to carry out, it had the subject that a process was complicated, processing took time, and mass production was lacking.
In addition, in order to obtain a desired shape, it is necessary to perform various post-processing such as cutting and polishing, which has a problem of lack of resource saving.
Also, by performing reheating for each forging, the temperature of the sample repeatedly rises and falls, the heating temperature is likely to vary, the crystal grain is not uniform, the rigidity and toughness vary, and the yield is likely to decrease. However, it had the problem of lack of quality stability and mass productivity.
(2) (Patent Document 2) is a process in which a metal material is intermittently transported little by little while a large repetitive load is instantaneously applied by a mold and subjected to a reduction process. In subsequent rolling, it is necessary to adjust the thickness of the material, finish the surface condition, or process it into a cross-sectional shape suitable for the application, and the processing process is complicated, requiring time for processing, and mass productivity. It had the problem of lacking.
(3) (Patent Document 1) and (Patent Document 2) are both methods for producing a metal material for miniaturizing crystal grains by setting the heating temperature of the material to less than the recrystallization temperature. There has been no description or suggestion of a specific heating method, measurement and management method of the heating temperature, or a configuration or structure of an apparatus for realizing them.

本発明は上記従来の課題を解決するもので、金型内の素材温度を簡便かつ確実に所定の温度に維持することができ、鍛造成型時の加工速度を適正に保持して、素材が所定の温度以上に加熱されることを確実に防止することができ、結晶粒を微細化して、高強度、高靭性で高品質な部品を高速加工することができ、加工後の熱処理が不要で、後加工を最小限に抑えることができる量産性に優れた恒温鍛造成型方法の提供、簡素な構造で断熱性に優れ、金型からの放熱を低減することができ、金型加熱の効率性に優れ、金型内の素材を確実に所定の温度に維持することができ、成型性、加工の均一性に優れると共に、加圧力を低減して小型化を図ることができ、高速加工が可能で、ばらつきの少ない信頼性、耐久性に優れた高品質な鍛造成型部品を製造することができる量産性に優れた恒温鍛造成型装置の提供を目的とする。   The present invention solves the above-described conventional problems, and can easily and reliably maintain the temperature of the material in the mold at a predetermined temperature, appropriately maintain the processing speed during forging, and the material is determined in a predetermined manner. It is possible to reliably prevent heating above the temperature, refine the crystal grains, and high-speed processing of high-quality parts with high strength, high toughness, and no heat treatment after processing is required. Providing a constant temperature forging molding method with excellent mass productivity that can minimize post-processing, excellent heat insulation with a simple structure, reducing heat dissipation from the mold, and improving the efficiency of mold heating Excellent, the material in the mold can be reliably maintained at a predetermined temperature, the moldability and processing uniformity are excellent, the pressing force can be reduced, the size can be reduced, and high speed processing is possible. High quality forged parts with excellent reliability and durability with little variation And to provide excellent isothermal forging molding apparatus for mass production which can be produced.

上記課題を解決するために本発明の恒温鍛造成型方法及び恒温鍛造成型装置は、以下の構成を有している。
本発明の請求項1に記載の恒温鍛造成型方法は、上金型と下金型を加熱する金型加熱工程と、前記上金型及び/又は前記下金型の温度を測定監視する金型温度監視工程と、前記金型温度監視工程で測定される前記温度に基づいて金型内部の表面温度を金属素材の加工温度に収束させ維持するように前記金型加熱工程における加熱温度を調整する加熱温度調整工程と、溶体化された前記金属素材を100℃以上で前記金属素材の再結晶温度以下に加熱する素材加熱工程と、前記素材加熱工程で加熱された前記金属素材を前記加熱温度調整工程で前記加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程と、を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)上金型と下金型を加熱する金型加熱工程と、上金型及び/又は下金型の温度を測定監視する金型温度監視工程と、金型温度監視工程で測定される温度に基づいて金型内部の表面温度を金属素材の加工温度に収束させ維持するように金型加熱工程における加熱温度を調整する加熱温度調整工程を有することにより、金型内部及び金型内の金属素材の温度を所定の加工温度に保持することができるので、後工程の鍛造成型工程における製造条件を略一定に保つことができ、ばらつきの少ない高品質で均一性に優れた鍛造成型部品を製造することができ、品質の信頼性、量産性に優れる。
(2)予め素材加熱工程で加熱された金属素材を加熱温度調整工程で加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程を有するので、金属素材が冷えることがなく、加工圧力を低減して高速加工することができ、量産性に優れる。また、冬季や夏季を問わず、効率よく略一定の条件で成型を行うことができ、生産の効率性、安定性に優れる。
(3)溶体化された金属素材を100℃以上で金属素材の再結晶温度以下に加熱する素材加熱工程と、素材加熱工程で加熱された金属素材を加熱温度調整工程で加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程を有することにより、従来の冷間鍛造において別々に行われていた結晶粒微細化と析出硬化を同時に行わせることができ、鍛造成型工程後に、別途、熱処理などを行うことなく、高強度、高靭性で高品質な鍛造成型部品を製造することができ、しかも製品の最終形状に近い形状に成型することができるので、切削などの後加工が不要で、加工工数を大幅に低減することができると共に、材料歩留まりを向上させることができ、量産性、省資源性に優れる。
In order to solve the above problems, a constant temperature forging molding method and a constant temperature forging molding apparatus of the present invention have the following configuration.
The constant temperature forging molding method according to claim 1 of the present invention includes a mold heating step for heating the upper mold and the lower mold, and a mold for measuring and monitoring the temperature of the upper mold and / or the lower mold. Based on the temperature measured in the temperature monitoring step and the mold temperature monitoring step, the heating temperature in the mold heating step is adjusted so as to converge and maintain the surface temperature inside the mold to the processing temperature of the metal material. A heating temperature adjusting step, a material heating step of heating the solution-treated metal material at a temperature of 100 ° C. or more and below a recrystallization temperature of the metal material, and the heating temperature adjustment of the metal material heated in the material heating step. And a forging process in which the forging process is performed by placing the mold in a mold whose temperature is adjusted to the processing temperature in the process.
This configuration has the following effects.
(1) Measured in a mold heating process for heating the upper mold and the lower mold, a mold temperature monitoring process for measuring and monitoring the temperature of the upper mold and / or the lower mold, and a mold temperature monitoring process. By having a heating temperature adjustment process that adjusts the heating temperature in the mold heating process so that the surface temperature inside the mold converges and maintains the processing temperature of the metal material based on the temperature, the inside of the mold and the inside of the mold Since the temperature of the metal material can be maintained at a predetermined processing temperature, the manufacturing conditions in the subsequent forging process can be kept substantially constant, and forged parts with high quality and excellent uniformity with little variation. It can be manufactured and has excellent quality reliability and mass productivity.
(2) Since there is a forging process in which the metal material heated in advance in the material heating process is put into a mold whose temperature has been adjusted to the processing temperature in the heating temperature adjustment process and forged, the metal material will not cool down. The processing pressure can be reduced and high-speed processing can be performed, and the mass productivity is excellent. In addition, it can be efficiently molded under substantially constant conditions regardless of winter or summer, and is excellent in production efficiency and stability.
(3) The material heating process for heating the solution-treated metal material to 100 ° C or more and below the recrystallization temperature of the metal material, and the metal material heated in the material heating process is adjusted to the processing temperature in the heating temperature adjustment process. By having a forging molding process in which it is put into a mold and forging molded, crystal grain refinement and precipitation hardening, which were performed separately in conventional cold forging, can be performed simultaneously, and after the forging molding process In addition, high-strength, high-toughness and high-quality forged molded parts can be manufactured without performing heat treatment separately, and it can be molded into a shape close to the final shape of the product, so post-processing such as cutting Is not required, the number of processing steps can be significantly reduced, the material yield can be improved, and mass productivity and resource saving are excellent.

ここで、この恒温鍛造成型方法で加工される金属素材としては、アルミニウム、アルミニウム合金、銅、銅合金、マグネシウム合金、鉄系の合金等がある。
金型温度監視工程では、上金型及び/又は下金型で設定した任意の位置で金型の温度を測定監視することができるが、設定した測定位置での温度と、金型の内部の表面温度(金型内表面温度)との関係を予め求めておくことにより、金型の内部(内表面)温度が所定の加工温度となるように、金型加熱工程における加熱温度を設定することができる。よって、金型の形状や加熱温度などに応じて、適宜、温度の測定位置やその数を選択することができ、金型温度監視工程では必ずしも金型の内部(内表面)温度を直接、測定する必要がなく、金型の外部(外表面)や金型の外表面から穿設した挿通孔の内部で熱電対などを用いて簡便かつ確実に金型の温度を測定することができる。
Here, examples of the metal material processed by this constant temperature forging method include aluminum, aluminum alloy, copper, copper alloy, magnesium alloy, and iron-based alloy.
In the mold temperature monitoring step, the temperature of the mold can be measured and monitored at an arbitrary position set by the upper mold and / or the lower mold, and the temperature at the set measurement position and the inside of the mold can be measured. Setting the heating temperature in the mold heating process so that the internal (inner surface) temperature of the mold becomes the predetermined processing temperature by obtaining the relationship with the surface temperature (internal mold surface temperature) in advance. Can do. Therefore, the measurement position and number of temperatures can be selected as appropriate according to the mold shape and heating temperature. The mold temperature monitoring process does not necessarily directly measure the internal (inner surface) temperature of the mold. Therefore, the temperature of the mold can be measured easily and reliably by using a thermocouple or the like inside the mold (outer surface) or inside the insertion hole formed from the outer surface of the mold.

鍛造成型工程における加圧力は、製造する部品の形状、寸法等に応じて、適宜、選択することができるが、金型が加熱されていることにより、通常よりも加圧力を低く抑えることができ、加工速度を高速化することができる。また、その結果、金型への負担も軽減することができ、金型の長寿命化を図ることができる。   The pressing force in the forging process can be selected as appropriate according to the shape, dimensions, etc. of the parts to be manufactured, but the pressing force can be kept lower than usual by heating the mold. The processing speed can be increased. As a result, the burden on the mold can be reduced, and the life of the mold can be extended.

鍛造成型工程における金属素材の温度は、100℃以上好ましくは120℃以上、更に好ましくは150℃以上で、その金属素材の再結晶温度以下であることが好ましい。鍛造成型工程における金属素材の温度が、150℃よりも低くなるにつれ、成型性が低下し易くなる傾向があり、その金属素材の再結晶温度よりも高くなるにつれ、結晶粒の粒径が大きくなり、強度や靭性が低下し易くなる傾向がある。また、鍛造成型工程における金属素材の温度が、120℃若しくは100℃よりも低くなると、金属素材の種類や製品の大きさにもよるが、物性の低下が著しくなり、複雑な形状を成型することが困難になる傾向がある。
再結晶温度は金属素材の種類やその組成によって異なるが、例えばアルミニウム合金では、250℃〜300℃程度である。
The temperature of the metal material in the forging process is 100 ° C. or more, preferably 120 ° C. or more, more preferably 150 ° C. or more, and preferably less than the recrystallization temperature of the metal material. As the temperature of the metal material in the forging process becomes lower than 150 ° C., the moldability tends to decrease, and as the recrystallization temperature of the metal material becomes higher, the grain size of the crystal grains increases. , Strength and toughness tend to decrease. Also, if the temperature of the metal material in the forging process becomes lower than 120 ° C or 100 ° C, depending on the type of metal material and the size of the product, the physical properties will deteriorate significantly, and complex shapes will be molded. Tend to be difficult.
Although the recrystallization temperature varies depending on the type of metal material and its composition, for example, in the case of an aluminum alloy, it is about 250 ° C. to 300 ° C.

請求項2に記載の発明は、請求項1に記載の恒温鍛造成型方法であって、前記金型温度監視工程で測定される前記温度に基づいて、前記鍛造成型工程における加工速度を調整する加工速度調整工程を備えた構成を有している。
この構成により、請求項1の作用に加え、以下のような作用を有する。
(1)金型温度監視工程で測定される金型の温度に基づいて、鍛造成型工程における加工速度を調整する加工速度調整工程を有するので、鍛造成型工程での加工速度が速くなり過ぎることによって金属素材の温度が所定の加工温度よりも高くなることを防止でき、製造条件の均一性に優れる。
Invention of Claim 2 is the constant temperature forging molding method of Claim 1, Comprising: The process which adjusts the process speed in the said forge molding process based on the said temperature measured by the said metal mold temperature monitoring process It has the structure provided with the speed adjustment process.
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) Since there is a processing speed adjustment process for adjusting the processing speed in the forging process based on the temperature of the mold measured in the mold temperature monitoring process, the processing speed in the forging process becomes too fast. The temperature of the metal material can be prevented from becoming higher than a predetermined processing temperature, and the uniformity of manufacturing conditions is excellent.

ここで、鍛造成型工程における加工速度は、金属素材の種類やその組成、製造する部品の形状、寸法等によって異なるが、100mm/s〜500mm/sが好ましい。
鍛造成型工程における加工速度が100mm/sより遅くなるにつれ、量産性が低下する傾向があり、500mm/sより速くなるにつれ、金属素材の温度が上昇し易くなり、所定の加工温度を維持することが困難になって、品質にばらつきが発生し易くなる傾向があり、いずれも好ましくない。
尚、加工速度調整工程では、金型温度監視工程で測定される温度に基づいて、鍛造成型工程における加工速度を調整するが、金型温度監視工程で測定される温度と、金型内部の表面温度との関係が予め分かっているので、金型内部における金属素材の実際の温度に適した加工速度で鍛造成型工程を行うことができる。
Here, the processing speed in the forging process varies depending on the type and composition of the metal material, the shape and dimensions of the parts to be manufactured, etc., but is preferably 100 mm / s to 500 mm / s.
As the processing speed in the forging molding process becomes slower than 100 mm / s, the mass productivity tends to decrease, and as the speed becomes faster than 500 mm / s, the temperature of the metal material is likely to rise and maintain a predetermined processing temperature. Tends to be difficult, and the quality tends to vary.
In the processing speed adjustment process, the processing speed in the forging process is adjusted based on the temperature measured in the mold temperature monitoring process. The temperature measured in the mold temperature monitoring process and the surface inside the mold Since the relationship with the temperature is known in advance, the forging process can be performed at a processing speed suitable for the actual temperature of the metal material inside the mold.

請求項3に記載の発明は、請求項1又は2に記載の恒温鍛造成型方法であって、前記金型温度監視工程で測定される前記温度が、前記上金型及び/又は前記下金型の内部の表面近側部の温度である構成を有している。
この構成により、請求項1又は2の作用に加え、以下のような作用を有する。
(1)金型温度監視工程で測定される温度が、上金型及び/又は下金型の内部の表面近側部の温度であることにより、上金型や下金型の内部表面温度とほぼ等しい温度を測定することができると共に、熱電対などの温度センサ(金型温度測定部)を金型で保護して金属素材との接触を防止することができ、温度測定の確実性、温度管理の信頼性に優れる。
The invention described in claim 3 is the constant temperature forging method according to claim 1 or 2, wherein the temperature measured in the mold temperature monitoring step is the upper mold and / or the lower mold. It has the structure which is the temperature of the surface near side part inside.
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1) When the temperature measured in the mold temperature monitoring step is the temperature of the upper mold and / or the lower mold, the inner surface temperature of the upper mold and the lower mold. It can measure almost the same temperature and protect the temperature sensor (mold temperature measuring part) such as thermocouple with the mold to prevent contact with metal material. Excellent management reliability.

ここで、上金型や下金型の内部の表面近側部の温度は、上金型や下金型の外表面から内表面側に挿通孔を穿設し、挿通孔の内部に熱電対などの温度センサ(金型温度測定部)を挿通して測定することができる。このとき、上金型や下金型の内部表面(内周面)側に熱電対などの温度センサ(金型温度測定部)を保護できる肉厚の内壁を残して挿通孔を形設すればよい。特に、内壁の挿通孔側の表面温度が、上金型や下金型の内部表面(内周面)とほぼ同等の温度となるように内壁の肉厚を設定した場合、簡便かつ確実に金型の内部表面温度を検出することができ、温度制御の確実性、容易性に優れる。   Here, the temperature near the surface inside the upper mold and the lower mold is such that an insertion hole is drilled from the outer surface of the upper mold and the lower mold to the inner surface side, and a thermocouple is formed inside the insertion hole. It can be measured by inserting a temperature sensor (mold temperature measuring unit). At this time, if an insertion hole is formed on the inner surface (inner peripheral surface) side of the upper mold and the lower mold, leaving a thick inner wall that can protect a temperature sensor (mold temperature measuring part) such as a thermocouple. Good. In particular, when the inner wall thickness is set so that the surface temperature of the inner wall on the insertion hole side is substantially the same as the inner surface (inner peripheral surface) of the upper mold or lower mold, the mold can be easily and reliably used. The internal surface temperature of the mold can be detected, and the temperature control is reliable and easy.

本発明の請求項4に記載の恒温鍛造成型装置は、下金型と、前記下金型の外周に配設される下金型用誘導加熱コイルと、前記下金型に対向配置される上金型と、前記上金型の外周に配設される上金型用誘導加熱コイルと、前記上金型及び/又は前記下金型の温度を測定する金型温度測定部と、前記金型温度測定部で測定される前記温度に基づいて前記上金型及び前記下金型の内部表面温度を金属素材の加工温度に収束させ維持するように調整する温度調整部と、予め加熱された金属素材を前記加工温度に温度調整された前記上金型と前記下金型で挟持して加圧する加圧部と、を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)下金型用誘導加熱コイルや上金型用誘導加熱コイルが下金型や上金型の外周に配設されるので、下金型や上金型との着脱が容易で、簡便に下金型や上金型の交換作業を行うことができ、メンテナンス性、取扱い性に優れる。
(2)上金型及び/又は下金型の温度を測定する金型温度測定部を有するので、簡便かつ確実に上金型や下金型の必要な温度を測定することができ、温度測定の確実性に優れる。
(3)金型温度測定部で測定される温度に基づいて上金型及び下金型の内部表面温度を金属素材の加工温度に収束させ維持するように調整する温度調整部を有することにより、金型内部及び金型内の金属素材の温度を金属素材の加工温度に保持することができるので、鍛造成型時の製造条件を略一定に保つことができ、ばらつきの少ない高品質で均一性に優れた鍛造成型部品を製造することができ、品質の信頼性、量産性に優れる。
(4)予め加熱された金属素材を温度調整された上金型と下金型で挟持して加圧する加圧部を有することにより、金属素材を所望の加熱温度に加熱しながら加圧することができるので、加工圧力を低減して高速加工することができ、量産性に優れる。また、加工圧力を低減でき、省力性に優れると共に、加圧部をコンパクト化することができ、省スペース性に優れる。
According to a fourth aspect of the present invention, there is provided a constant temperature forging molding apparatus comprising: a lower mold; an induction heating coil for a lower mold disposed on an outer periphery of the lower mold; and an upper disposed opposite to the lower mold. A mold, an induction heating coil for an upper mold disposed on the outer periphery of the upper mold, a mold temperature measuring unit for measuring the temperature of the upper mold and / or the lower mold, and the mold Based on the temperature measured by the temperature measuring unit, a temperature adjusting unit that adjusts the internal surface temperature of the upper mold and the lower mold to converge and maintain the processing temperature of the metal material, and a preheated metal It has a configuration including a pressurizing unit that sandwiches and pressurizes a material between the upper mold and the lower mold, the temperature of which is adjusted to the processing temperature.
This configuration has the following effects.
(1) Since the induction heating coil for the lower mold and the induction heating coil for the upper mold are arranged on the outer periphery of the lower mold and the upper mold, it is easy to attach and detach to and from the lower mold and the upper mold. In addition, the lower mold and upper mold can be exchanged, and it is excellent in maintenance and handling.
(2) Since it has a mold temperature measuring section that measures the temperature of the upper mold and / or the lower mold, the required temperature of the upper mold and the lower mold can be measured easily and reliably, and the temperature is measured. Excellent certainty.
(3) By having a temperature adjustment unit that adjusts the internal surface temperature of the upper mold and the lower mold to converge and maintain the processing temperature of the metal material based on the temperature measured by the mold temperature measurement unit, Since the temperature of the metal material inside the mold and the metal material in the mold can be kept at the processing temperature of the metal material, the manufacturing conditions during forging can be kept almost constant, and high quality and uniformity with little variation. Excellent forged parts can be manufactured, and quality reliability and mass productivity are excellent.
(4) It is possible to pressurize a metal material while heating it to a desired heating temperature by having a pressurizing unit that pressurizes a metal material that has been preheated by sandwiching the temperature between an upper mold and a lower mold. Therefore, it is possible to reduce the processing pressure and perform high-speed processing, and it is excellent in mass productivity. In addition, the processing pressure can be reduced and the labor saving is excellent, and the pressurizing part can be made compact, and the space saving is excellent.

ここで、下金型用誘導加熱コイル及び上金型用誘導加熱コイルは、それぞれ下金型及び上金型の外周に非接触の状態で固定される。下金型用誘導加熱コイル及び上金型用誘導加熱コイルの内周と下金型及び上金型の外周との間の要所に絶縁性及び耐熱性を有する緩衝材を配設することにより、下金型用誘導加熱コイル及び上金型用誘導加熱コイルと下金型及び上金型との間に確実に隙間を形成することができ、両者が接触してショートが発生することを防止できる。緩衝材の材質としては、下金型用誘導加熱コイル及び上金型用誘導加熱コイルによる加熱に耐えるだけの耐熱性を有していればよく、耐熱樹脂が好適に用いられる。   Here, the induction heating coil for the lower mold and the induction heating coil for the upper mold are fixed to the outer periphery of the lower mold and the upper mold in a non-contact state, respectively. By disposing an insulating and heat-resistant cushioning material at a location between the inner periphery of the lower die induction heating coil and the upper die induction heating coil and the outer periphery of the lower die and upper die. It is possible to reliably form a gap between the induction heating coil for the lower mold and the induction heating coil for the upper mold and the lower mold and the upper mold, thereby preventing a short circuit from occurring due to the contact between both. it can. As a material of the buffer material, it is only necessary to have heat resistance enough to withstand the heating by the lower mold induction heating coil and the upper mold induction heating coil, and a heat resistant resin is preferably used.

金型温度測定部は、上金型及び/又は下金型の外表面の温度や外表面から穿設した挿通孔の内部の温度(上金型や下金型の内部の表面近側部の温度)を測定できるものであればよい。金型温度測定部(温度センサ)は接触式でも非接触式でもよく、熱電対や赤外線放射温度計などが好適に用いられる。金型温度測定部の数や配置は金型の大きさや形状などに応じて、適宜、選択することができる。
温度調整部では、金型温度測定部で測定される金型の所定の位置における温度に基づいて、下金型用誘導加熱コイル及び上金型用誘導加熱コイルに電力を供給する電源の出力を調整することにより、上金型及び下金型の内部表面温度が設定温度に収束するように、温度調整を行う。複数の金型温度測定部を備えた場合、各々の金型温度測定部で検出した温度から金型全体の温度分布を知ることができ、斑無く確実かつ効率的に金型の加熱を行うことができ、加熱の均一性、温度制御の信頼性に優れる。
The mold temperature measuring unit is used to measure the temperature of the outer surface of the upper mold and / or the lower mold and the temperature inside the insertion hole drilled from the outer surface (the surface near the inner surface of the upper mold and the lower mold). Any device that can measure (temperature) can be used. The mold temperature measuring unit (temperature sensor) may be a contact type or non-contact type, and a thermocouple, an infrared radiation thermometer, or the like is preferably used. The number and arrangement of the mold temperature measuring units can be appropriately selected according to the size and shape of the mold.
In the temperature adjustment unit, based on the temperature at a predetermined position of the mold measured by the mold temperature measurement unit, an output of a power source that supplies power to the lower mold induction heating coil and the upper mold induction heating coil is output. By adjusting, temperature adjustment is performed so that the internal surface temperatures of the upper mold and the lower mold converge to the set temperature. When equipped with multiple mold temperature measurement units, the temperature distribution of the entire mold can be known from the temperature detected by each mold temperature measurement unit, and the mold can be heated reliably and efficiently without unevenness. Excellent heating uniformity and temperature control reliability.

請求項5に記載の発明は、請求項4に記載の恒温鍛造成型装置であって、前記下金型が固設される下受けベースと前記下金型との接触面及び/又は前記上金型が固設される上受けベースと前記上金型との接触面に形成された表面凹部を備えた構成を有している。
この構成により、請求項4の作用に加え、以下のような作用を有する。
(1)下受けベースと下金型との接触面及び/又は上受けベースと上金型との接触面に形成された表面凹部を有することにより、下受けベースや上受けベースと下金型や上金型との接触面積を低減できると共に、表面凹部に空気層を形成することができ、下金型や上金型から下受けベースや上受けベースへの熱伝達を抑え、下金型や上金型の温度低下を防ぐことができ、金型加熱の効率性、省エネルギー性に優れる。
The invention according to claim 5 is the constant-temperature forging molding device according to claim 4, wherein the contact surface between the lower receiving base on which the lower mold is fixed and the lower mold and / or the upper mold. It has the structure provided with the surface recessed part formed in the contact surface of the upper receiving base to which a type | mold is fixed, and the said upper metal mold | die.
With this configuration, in addition to the operation of the fourth aspect, the following operation is provided.
(1) By having a surface recess formed on the contact surface between the lower receiving base and the lower mold and / or the contact surface between the upper receiving base and the upper mold, the lower receiving base and the upper receiving base and the lower mold are provided. The contact area with the upper mold and the upper mold can be reduced, and an air layer can be formed in the concave portion of the surface, suppressing heat transfer from the lower mold and the upper mold to the lower base and the upper base. In addition, the temperature of the upper mold can be prevented from lowering, and the mold heating efficiency and energy saving are excellent.

ここで、下受けベース及び上受けベースの材質としては、高強度で衝撃に強く、熱伝導率の低いステンレス等の金属を用いることが好ましい。耐久性に優れると共に、下金型や上金型の熱が下受けベースや上受けベースに吸収されて温度が低下することを防止でき、金型加熱の効率性を高めることができる。   Here, as a material of the lower support base and the upper support base, it is preferable to use a metal such as stainless steel having a high strength, a high impact resistance, and a low thermal conductivity. In addition to being excellent in durability, it is possible to prevent the heat of the lower mold and the upper mold from being absorbed by the lower base and the upper base and to lower the temperature, thereby improving the efficiency of the mold heating.

表面凹部は、下受けベースや上受けベースに形成してもよいし、下金型や上金型に形成してもよい。特に、下受けベースや上受けベースに表面凹部を形成する場合、表面凹部の形状自在性、加工性に優れると共に、下金型や上金型の強度低下が発生することがなく、信頼性に優れる。
表面凹部は、円形状や多角形状等の任意の横断面形状を有する複数の凹部を配置して形成してもよいし、環状に形成された複数の凹条溝を同心円上に配置して形成してもよい。
表面凹部の深さは、10mm以内の深さに形成することが好ましい。表面凹部の深さが、10mmより深くなるにつれ、加工性が低下すると共に、強度が不足して耐久性が低下し易くなる傾向があるためである。
The surface recess may be formed in the lower receiving base or the upper receiving base, or may be formed in the lower mold or the upper mold. In particular, when forming a surface recess in the lower support base or the upper support base, the surface recess has excellent shape flexibility and workability, and the strength of the lower mold and the upper mold is not reduced, resulting in reliability. Excellent.
The surface concave portion may be formed by arranging a plurality of concave portions having an arbitrary cross-sectional shape such as a circular shape or a polygonal shape, or a plurality of annular groove grooves formed on a concentric circle. May be.
The depth of the surface recess is preferably formed to a depth of 10 mm or less. This is because as the depth of the surface concave portion becomes deeper than 10 mm, the workability is lowered and the strength tends to be insufficient and the durability tends to be lowered.

請求項6に記載の発明は、請求項4又は5に記載の恒温鍛造成型装置であって、前記上金型及び/又は前記下金型の外周に環装された保温リングを備えた構成を有している。
この構成により、請求項4又は5の作用に加え、以下のような作用を有する。
(1)上金型及び/又は下金型の外周に環装された保温リングを有することにより、上金型や下金型の外周面からの放熱を防止することができ、金型加熱の効率性、省エネルギー性に優れる。
Invention of Claim 6 is the constant temperature forging molding apparatus of Claim 4 or 5, Comprising: The structure provided with the heat retention ring cyclically | annulated by the outer periphery of the said upper metal mold and / or the said lower metal mold | die. Have.
With this configuration, in addition to the operation of the fourth or fifth aspect, the following operation is provided.
(1) By having a heat retaining ring mounted around the outer periphery of the upper mold and / or the lower mold, heat radiation from the outer peripheral surface of the upper mold and the lower mold can be prevented, and the mold heating Excellent efficiency and energy saving.

ここで、保温リングの材質としては、前述の下受けベースや上受けベースと同様のものが好適に用いられる。保温リングを金型の外周に焼きばめで固定した場合、両者を密着させて強固に固定することができ、固定安定性に優れる。   Here, as the material of the heat retaining ring, the same material as the above-described lower receiving base and upper receiving base is preferably used. When the heat retaining ring is fixed to the outer periphery of the mold by shrink fitting, both can be brought into close contact and firmly fixed, and the fixing stability is excellent.

請求項7に記載の発明は、請求項4乃至6の内いずれか1項に記載の恒温鍛造成型装置であって、前記保温リングと前記上金型及び/又は前記下金型との接触面に形成された側面凹部を備えた構成を有している。
この構成により、請求項4乃至6の内いずれか1項の作用に加え、以下のような作用を有する。
(1)保温リングと上金型及び/又は下金型との接触面に形成された側面凹部を有することにより、保温リングと上金型や下金型との接触面積を低減できると共に、側面凹部に空気層を形成することができ、上金型や下金型から保温リングへの熱伝達を抑え、上金型や下金型の温度低下を効果的に防ぐことができ、金型加熱の効率性、省エネルギー性を向上させることができる。
The invention described in claim 7 is the constant temperature forging device according to any one of claims 4 to 6, wherein the contact surface between the heat retaining ring and the upper mold and / or the lower mold. It has the structure provided with the side recessed part formed in this.
With this configuration, in addition to the operation of any one of claims 4 to 6, the following operation is provided.
(1) By having a side recess formed in the contact surface between the heat retaining ring and the upper mold and / or the lower mold, the contact area between the heat retaining ring and the upper mold and the lower mold can be reduced, and the side surface An air layer can be formed in the recess, suppressing heat transfer from the upper mold and lower mold to the heat retaining ring, and effectively preventing temperature drop of the upper mold and lower mold. Efficiency and energy saving can be improved.

ここで、側面凹部は、保温リングの内周面に形成してもよいし、上金型や下金型の外周面に形成してもよい。特に、保温リングに側面凹部を形成する場合、側面凹部の形状自在性、加工性に優れると共に、上金型や下金型の強度低下が発生することがなく、信頼性に優れる。
側面凹部は、円形状や多角形状などの複数の凹部を配置して形成してもよいし、周面に沿って環状に形成された凹条溝を高さ方向に複数列、配置して形成してもよい。
保温リングに形成する側面凹部の深さは、10mm以内に形成することが好ましい。側面凹部の深さが、10mmより深くなるにつれ、加工性が低下すると共に、強度が不足して耐久性が低下し易くなる傾向があるためである。
Here, the side recesses may be formed on the inner peripheral surface of the heat retaining ring, or may be formed on the outer peripheral surface of the upper mold or the lower mold. In particular, when the side recess is formed in the heat retaining ring, the shape flexibility and workability of the side recess are excellent, and the strength of the upper mold and the lower mold is not reduced, and the reliability is excellent.
The side recess may be formed by arranging a plurality of recesses such as a circular shape or a polygonal shape, or by forming a plurality of rows of concave grooves formed in an annular shape along the circumferential surface in the height direction. May be.
The depth of the side recess formed on the heat retaining ring is preferably formed within 10 mm. This is because as the depth of the side recess becomes deeper than 10 mm, the workability decreases, and the strength tends to be insufficient and the durability tends to decrease.

以上のように、本発明の恒温鍛造成型方法及び恒温鍛造成型装置によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、以下のような効果を有する。
(1)金型温度監視工程と加熱温度調整工程により、金型内部及び金型内の金属素材の温度を金属素材の加工温度に保持することができ、後工程の鍛造成型工程において金属素材が冷えることがなく、加工圧力を低減して高速加工することができ、冬季や夏季を問わず、製造条件を略一定に保ち、効率よく成型を行うことができ、ばらつきの少ない高品質で均一性に優れた鍛造成型部品を製造することができる品質の信頼性、量産性、生産の効率性、安定性に優れた恒温鍛造成型方法を提供することができる。
(2)一度溶体化された金属素材を素材加熱工程において、100℃以上好ましくは120℃以上、更に好ましくは150℃以上で金属素材の再結晶温度以下に加熱した上で、加熱温度調整工程で加工温度に温度調整された金型内に投入し、鍛造成型工程を行うことにより、結晶粒微細化と析出硬化を同時に発現させ、高強度、高靭性で高品質な鍛造成型部品を製造することができ、従来のように、鍛造成型工程後に、別途、熱処理などを行う必要がなく、さらに製品の最終形状に近い形状に成型することができ、切削などの後加工も不要で、加工工数を大幅に低減することができると共に、材料歩留まりを向上させることができる量産性、省資源性に優れた恒温鍛造成型方法を提供することができる。
As described above, according to the constant temperature forging molding method and constant temperature forging molding apparatus of the present invention, the following advantageous effects can be obtained.
According to invention of Claim 1, it has the following effects.
(1) By the mold temperature monitoring process and the heating temperature adjustment process, the temperature of the metal material inside the mold and the metal material in the mold can be maintained at the processing temperature of the metal material. It can be processed at high speed with reduced processing pressure without cooling, can maintain high manufacturing conditions in both winter and summer, can be molded efficiently, and has high quality and uniformity with little variation. It is possible to provide a constant temperature forging molding method excellent in quality reliability, mass productivity, production efficiency, and stability capable of producing a forged molded part excellent in quality.
(2) In the material heating step, the metal material once solutionized is heated to 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 ° C. or higher and below the recrystallization temperature of the metal material, and then the heating temperature adjustment step. Producing high-strength, high-toughness, high-quality forged parts by putting them into a mold that has been adjusted to the processing temperature and performing the forging process, thereby simultaneously realizing grain refinement and precipitation hardening. As in the past, there is no need for additional heat treatment after the forging process, and it can be molded into a shape that is close to the final shape of the product, and no post-processing such as cutting is required. It is possible to provide a constant temperature forging molding method that can be significantly reduced and that can improve the material yield and is excellent in mass productivity and resource saving.

請求項2に記載の発明によれば、請求項1の効果に加え、以下のような効果を有する。
(1)鍛造成型工程の加工速度調整工程において、金型温度監視工程で測定される金型の温度に基づいて加工速度を適正に調整することができ、鍛造成型工程での加工速度が速くなり過ぎることによって金属素材の温度が所定の加工温度よりも高くなることを確実に防止できる製造条件の均一性に優れた恒温鍛造成型方法を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1, it has the following effects.
(1) In the process speed adjustment process of the forging process, the process speed can be appropriately adjusted based on the mold temperature measured in the mold temperature monitoring process, and the process speed in the forge process is increased. Thus, it is possible to provide a constant temperature forging method excellent in uniformity of manufacturing conditions that can surely prevent the temperature of the metal material from becoming higher than a predetermined processing temperature.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、以下のような効果を有する。
(1)熱電対などの温度センサ(金型温度測定部)が金属素材と接触することを確実に防止しつつ、上金型や下金型の内部表面温度とほぼ等しい金型内部の表面近側部の温度を測定することができる温度測定の確実性、温度管理の信頼性に優れた恒温鍛造成型方法を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2, it has the following effects.
(1) While the temperature sensor (mold temperature measuring part) such as a thermocouple is surely prevented from coming into contact with the metal material, the surface inside the mold is almost equal to the inner surface temperature of the upper mold and the lower mold. It is possible to provide a constant-temperature forging molding method excellent in temperature measurement reliability and temperature management reliability capable of measuring the temperature of the side portion.

請求項4に記載の発明によれば、以下のような効果を有する。
(1)金型温度測定部でされる温度に基づいて、温度調整部で金型内部及び金型内の金属素材の温度を設定した加工温度に保持することができ、鍛造成型時の製造条件を略一定に保ち、ばらつきの少ない高品質で均一性に優れた鍛造成型部品を製造することができる品質の信頼性、量産性に優れた恒温鍛造成型装置を提供することができる。
(2)設定した加工温度に維持された上金型と下金型で金属素材を挟持して略一定の加工温度に加熱しながら、加圧部で加圧することにより、加工圧力を低減して高速加工することができ、量産性、省力性に優れ、加圧部をコンパクト化することができ、省スペース性に優れた恒温鍛造成型装置を提供することができる。
According to invention of Claim 4, it has the following effects.
(1) Based on the temperature measured by the mold temperature measuring unit, the temperature adjusting unit can maintain the temperature inside the mold and the temperature of the metal material in the mold at the set processing temperature, and manufacturing conditions at the time of forging It is possible to provide a constant temperature forging molding apparatus excellent in quality reliability and mass productivity capable of producing a forged molded part having a high quality and excellent uniformity with little variation.
(2) The processing pressure is reduced by pressurizing at the pressurizing part while holding the metal material between the upper and lower molds maintained at the set processing temperature and heating to a substantially constant processing temperature. It is possible to provide a constant temperature forging molding apparatus that can perform high-speed processing, is excellent in mass productivity and labor saving, can be made compact in the pressing portion, and is excellent in space saving.

請求項5に記載の発明によれば、請求項4の効果に加え、以下のような効果を有する。
(1)下受けベースと下金型との接触面及び/又は上受けベースと上金型との接触面に表面凹部を形成することにより、下受けベースや上受けベースと下金型や上金型との接触面積を低減できると共に、表面凹部に空気層を形成することができ、下金型や上金型から下受けベースや上受けベースへの熱伝達を抑え、下金型や上金型の温度低下を防ぐことができる金型加熱の効率性、省エネルギー性に優れた恒温鍛造成型装置を提供することができる。
According to invention of Claim 5, in addition to the effect of Claim 4, it has the following effects.
(1) By forming a concave surface on the contact surface between the lower receiving base and the lower mold and / or the contact surface between the upper receiving base and the upper mold, the lower receiving base, the upper receiving base and the lower mold or the upper mold are formed. The contact area with the mold can be reduced, and an air layer can be formed in the concave portion on the surface, suppressing heat transfer from the lower mold or upper mold to the lower receiving base or upper receiving base. It is possible to provide a constant-temperature forging molding apparatus that is excellent in the efficiency and energy saving of mold heating that can prevent the temperature of the mold from decreasing.

請求項6に記載の発明によれば、請求項4又は5の効果に加え、以下のような効果を有する。
(1)上金型及び/又は下金型の外周に保温リングを環装することにより、上金型や下金型の外周面からの放熱を防止することができる金型加熱の効率性、省エネルギー性に優れた恒温鍛造成型装置を提供することができる。
According to invention of Claim 6, in addition to the effect of Claim 4 or 5, it has the following effects.
(1) The efficiency of mold heating, which can prevent heat dissipation from the outer peripheral surface of the upper mold and the lower mold by mounting a heat retaining ring on the outer periphery of the upper mold and / or the lower mold, It is possible to provide a constant temperature forging molding device that is excellent in energy saving.

請求項7に記載の発明によれば、請求項4乃至6の内いずれか1項の効果に加え、以下のような効果を有する。
(1)保温リングと上金型及び/又は下金型との接触面に側面凹部を形成することにより、保温リングと上金型や下金型との接触面積を低減できると共に、側面凹部に空気層を形成することができ、上金型や下金型から保温リングへの熱伝達を抑え、上金型や下金型の温度低下を効果的に防ぐことができ、金型加熱の効率性、省エネルギー性を向上させることができる量産性に優れた恒温鍛造成型装置を提供することができる。
According to invention of Claim 7, in addition to the effect of any one of Claims 4 thru | or 6, it has the following effects.
(1) By forming a side recess in the contact surface between the heat retaining ring and the upper mold and / or the lower mold, the contact area between the heat retaining ring and the upper mold and the lower mold can be reduced, and the side recess An air layer can be formed, heat transfer from the upper mold and lower mold to the heat retaining ring can be suppressed, and temperature drop of the upper mold and lower mold can be effectively prevented, and the mold heating efficiency It is possible to provide a constant-temperature forging molding apparatus excellent in mass productivity that can improve the performance and energy saving.

本発明の恒温鍛造成型方法及び恒温鍛造成型装置について、以下図面を参照しながら説明する。
(実施の形態1)
図1は実施の形態1の恒温鍛造成型方法に用いる恒温鍛造成型装置の構成を示す要部断面模式図である。
図1中、1は実施の形態1の恒温鍛造成型装置、2は恒温鍛造成型装置1の下型ベース、3は下型ベース2の上面側に配設された恒温鍛造成型装置1の下受けベース、4は下受けベース3の上面に固定リング4aにより固設された下金型、4bは下金型4の外周に固設された保温リング、4cは下金型4の外周面から内周面側に向かって穿設された熱電対挿通孔、5は下金型4の外周に配設された恒温鍛造成型装置1の下金型用誘導加熱コイル、5aは下金型4の外周と下金型用誘導加熱コイル5との間の要所に配設された緩衝材、6は下型ベース2に対向配置された恒温鍛造成型装置1の上部ベース、7は上部ベース6の下面側に配設された恒温鍛造成型装置1の上受けベース、8は上受けベース7の下面に固定リング8aにより固設された上金型、8bは上金型8の外周に固設された保温リング、8cは上金型8の外周面から内周面側に向かって穿設された熱電対挿通孔、9は上金型8の外周に配設された恒温鍛造成型装置1の上金型用誘導加熱コイル、9aは上金型8の外周と上金型用誘導加熱コイル9との間の要所に配設された緩衝材、10は高周波ケーブル10aによって下金型用誘導加熱コイル5及び上金型用誘導加熱コイル9に接続され電力を供給する電源、11a,11bは熱電対挿通孔4c,8cに挿通される熱電対により下金型4及び上金型8の内部の表面近側部の温度を測定する恒温鍛造成型装置1の金型温度測定部としての金型内部温度測定部、12は金型内部温度測定部11a,11bで測定される温度に基づいて下金型4及び上金型8の内部表面温度を設定された金属素材20の加工温度に収束させ維持するように電源10の出力を調整する温度調整部、13は予め加熱された金属素材20を加工温度に温度調整された下金型4と上金型8で挟持して加圧する恒温鍛造成型装置1の加圧部、13aは加圧部13のポンチ、13bは加圧部13のノックアウトピンである。
The constant temperature forging molding method and constant temperature forging molding apparatus of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of an essential part showing a configuration of a constant temperature forging molding apparatus used in the constant temperature forging molding method according to the first embodiment.
In FIG. 1, 1 is a constant temperature forging molding apparatus according to the first embodiment, 2 is a lower mold base of the constant temperature forging molding apparatus 1, and 3 is a lower receiver of the constant temperature forging molding apparatus 1 disposed on the upper surface side of the lower mold base 2. A base 4 is a lower mold fixed to the upper surface of the lower receiving base 3 by a fixing ring 4 a, 4 b is a heat retaining ring fixed to the outer periphery of the lower mold 4, and 4 c is an inner surface from the outer peripheral surface of the lower mold 4. Thermocouple insertion hole 5 drilled toward the peripheral surface side, 5 is an induction heating coil for a lower mold of the constant temperature forging molding apparatus 1 disposed on the outer periphery of the lower mold 4, and 5 a is an outer periphery of the lower mold 4. Cushioning material disposed at a point between the induction heating coil 5 and the lower mold induction coil 5, 6 is an upper base of the constant temperature forging molding apparatus 1 disposed opposite to the lower mold base 2, and 7 is a lower surface of the upper base 6. An upper receiving base 8 of the constant temperature forging molding device 1 disposed on the side is fixed to the lower surface of the upper receiving base 7 by a fixing ring 8a. Upper mold, 8b is a heat retaining ring fixed to the outer periphery of the upper mold 8, 8c is a thermocouple insertion hole drilled from the outer peripheral surface of the upper mold 8 toward the inner peripheral surface side, and 9 is the upper mold An induction heating coil 9a for the upper mold of the constant temperature forging molding apparatus 1 disposed on the outer periphery of the mold 8 is disposed at a point between the outer periphery of the upper mold 8 and the induction heating coil 9 for the upper mold. The buffer material 10 is connected to the lower mold induction heating coil 5 and the upper mold induction heating coil 9 by the high frequency cable 10a and supplies power, and 11a and 11b are inserted into the thermocouple insertion holes 4c and 8c. A mold internal temperature measuring section as a mold temperature measuring section of the constant temperature forging molding apparatus 1 for measuring the temperature of the inner side of the lower mold 4 and the upper mold 8 by means of a thermocouple, and 12 is the inside of the mold. The internal surface temperatures of the lower mold 4 and the upper mold 8 based on the temperatures measured by the temperature measuring units 11a and 11b A temperature adjusting unit 13 that adjusts the output of the power supply 10 so as to converge and maintain the set processing temperature of the metal material 20, and a lower mold 4 that is adjusted in advance to the processing temperature of the preheated metal material 20 and the upper mold The pressurizing part of the constant temperature forging molding apparatus 1 that is sandwiched and pressed by the mold 8, 13 a is a punch of the pressurizing part 13, and 13 b is a knockout pin of the pressurizing part 13.

次に、実施の形態1の恒温鍛造成型装置の下受けベースの構造について説明する。
図2は実施の形態1の恒温鍛造成型装置の下受けベースの模式斜視図である。
図2中、3Aは下受けベース3における下金型4との接触面に横断面形状が円形状や多角形状等の複数の凹部3aを配置して形成された表面凹部、3bは加圧部13のポンチ13aを挿通させるための貫通孔である。
本実施の形態では、下受けベース3を高強度で衝撃に強く、熱伝導率の低いステンレス等の金属で形成した。耐久性に優れると共に、下金型4の熱が下受けベース3に吸収されて温度が低下することを防止でき、金型加熱の効率性を高めることができるためである。
また、下金型4との接触面に形成する表面凹部3A(凹部3a)の深さは、10mm以内の深さに形成した。表面凹部3Aの深さが、10mmより深くなるにつれ、加工性が低下すると共に、強度が不足して耐久性が低下し易くなる傾向があることがわかったためである。この表面凹部3A(凹部3a)により、下受けベース3と下金型4との接触面積を低減すると共に、表面凹部3Aに空気層を形成し、下金型4から下受けベース3への熱伝達を抑え、下金型4の温度低下を防ぐことができた。
Next, the structure of the base of the constant temperature forging molding apparatus according to Embodiment 1 will be described.
FIG. 2 is a schematic perspective view of a receiving base of the constant temperature forging molding apparatus according to the first embodiment.
In FIG. 2, 3A is a surface recess formed by disposing a plurality of recesses 3a having a circular cross section or a polygonal cross section on the contact surface of the lower base 3 with the lower mold 4; 13 is a through hole for inserting 13 punches 13a.
In the present embodiment, the lower base 3 is made of a metal such as stainless steel having high strength and strong impact resistance and low thermal conductivity. This is because it is excellent in durability, and it is possible to prevent the temperature of the lower mold 4 from being absorbed by the lower receiving base 3 to lower the temperature, and to improve the efficiency of mold heating.
The depth of the surface recess 3A (recess 3a) formed on the contact surface with the lower mold 4 was set to a depth of 10 mm or less. This is because, as the depth of the surface recess 3A becomes deeper than 10 mm, the workability deteriorates and the strength tends to be insufficient and the durability tends to decrease. The surface recess 3A (recess 3a) reduces the contact area between the lower base 3 and the lower mold 4, and forms an air layer in the surface concave 3A, and heat from the lower mold 4 to the lower base 3 Transmission was suppressed and the temperature drop of the lower mold 4 could be prevented.

次に、実施の形態1の恒温鍛造成型装置の下受けベースの変形例について説明する。
図3(a)は実施の形態1の恒温鍛造成型装置の下受けベースの変形例を示す模式斜視図であり、図3(b)は実施の形態1の恒温鍛造成型装置の下受けベースの変形例を示す模式断面図である。
変形例における下受けベース3’が実施の形態1における下受けベース3と異なる点は、環状に形成された複数の凹条溝3cを同心円上に配置して表面凹部3Bが形成されている点である。これにより、下受けベース3と同様の作用を得ることができる。
尚、上受けベース7は、下受けベース3と上下対称に配置されるだけで、下受けベース3と同様に形成されるので、説明を省略する。
Next, a modified example of the base of the constant temperature forging device of Embodiment 1 will be described.
FIG. 3A is a schematic perspective view showing a modified example of the lower base of the constant temperature forging molding apparatus according to the first embodiment, and FIG. 3B shows the lower base of the constant temperature forging molding apparatus according to the first embodiment. It is a schematic cross section which shows a modification.
The difference between the lower receiving base 3 ′ in the first embodiment and the lower receiving base 3 in the first embodiment is that a plurality of concave grooves 3c formed in an annular shape are arranged on a concentric circle to form a surface concave portion 3B. It is. Thereby, the same operation as the receiving base 3 can be obtained.
Note that the upper receiving base 7 is formed in the same manner as the lower receiving base 3 only by being arranged symmetrically with the lower receiving base 3, and the description thereof will be omitted.

本実施の形態では、下受けベース3及び上受けベース7に表面凹部3A(凹部3a)を形成したが、保温リング4b,8bと下金型4及び上金型8との接触面にも側面凹部を形成することができる。これにより、保温リング4b,8bと下金型4及び上金型8との接触面積を低減できると共に、側面凹部に空気層を形成することができ、下金型4及び上金型8から保温リング4b,8bへの熱伝達を抑え、下金型4及び上金型8の温度低下を効果的に防ぐことができ、金型加熱の効率性、省エネルギー性を向上させることができる。   In the present embodiment, the surface recess 3A (recess 3a) is formed in the lower receiving base 3 and the upper receiving base 7. However, the contact surfaces between the heat retaining rings 4b and 8b and the lower mold 4 and the upper mold 8 are also side surfaces. A recess can be formed. As a result, the contact area between the heat retaining rings 4b, 8b and the lower mold 4 and the upper mold 8 can be reduced, and an air layer can be formed in the side recess, and the heat retaining from the lower mold 4 and the upper mold 8 can be achieved. It is possible to suppress heat transfer to the rings 4b and 8b, to effectively prevent a temperature drop of the lower mold 4 and the upper mold 8, and to improve the efficiency and energy saving of the mold heating.

次に、実施の形態1の恒温鍛造成型装置の下金型用誘導加熱コイルの取付け構造について説明する。
図4は実施の形態1の恒温鍛造成型装置の下金型用誘導加熱コイルの取付け構造を示す要部模式平面図である。
図4中、5bは下金型4に下金型用誘導加熱コイル5を螺子止めによって固定するコイル取付け部である。
コイル取付け部5bで下金型用誘導加熱コイル5を固定する際に、下金型4の外周と下金型用誘導加熱コイル5との間に絶縁性及び耐熱性を有する緩衝材5aを配設することにより、下金型用誘導加熱コイル5と下金型4との間に確実に隙間を形成することができ、両者が接触してショートが発生することを防止できる。本実施の形態では、緩衝材5aとして、耐熱樹脂を用いたが、緩衝材5aは、下金型用誘導加熱コイル5による加熱に耐えるだけの耐熱性を有していればよい。
尚、上金型用誘導加熱コイル9は、下金型用誘導加熱コイル5と同様に固定されるので、説明を省略する。
Next, the attachment structure of the induction heating coil for the lower mold of the constant temperature forging molding apparatus of Embodiment 1 will be described.
FIG. 4 is a schematic plan view of a main part showing a mounting structure of an induction heating coil for a lower mold of the constant temperature forging molding apparatus according to the first embodiment.
In FIG. 4, reference numeral 5 b denotes a coil mounting portion for fixing the lower mold induction heating coil 5 to the lower mold 4 by screwing.
When the induction heating coil 5 for the lower mold is fixed by the coil mounting portion 5b, a buffer material 5a having insulation and heat resistance is arranged between the outer periphery of the lower mold 4 and the induction heating coil 5 for the lower mold. By providing, a gap can be surely formed between the induction heating coil 5 for the lower mold and the lower mold 4, and it is possible to prevent both from coming into contact and causing a short circuit. In the present embodiment, the heat-resistant resin is used as the buffer material 5a. However, the buffer material 5a only needs to have heat resistance enough to withstand the heating by the lower mold induction heating coil 5.
The upper mold induction heating coil 9 is fixed in the same manner as the lower mold induction heating coil 5, and thus the description thereof is omitted.

以上のように構成された恒温鍛造成型装置の動作に基づいて、実施の形態1の恒温鍛造成型方法を説明する。
まず、図1において、金型加熱工程により、下金型用誘導加熱コイル5と上金型用誘導加熱コイル9で、下金型4と上金型8を加熱する。
下金型4と上金型8の加熱が開始されると、金型温度監視工程により、金型内部温度測定部11a,11bで下金型4及び上金型8の内部の表面近側部の温度を測定監視する。
次いで、加熱温度調整工程により、金型温度監視工程で測定される温度に基づいて金型の内部表面温度を加工温度に収束させ維持するように温度調整部12で電源10の出力を調整し、金型加熱工程における加熱温度を調整する。
尚、製品部分(金属素材20)と接する金型内部表面温度を最適なものとするため、金型内部温度測定部11a,11bの位置を設定し、加熱温度調整工程による加熱温度の調整を行っている。従って、金型内部温度測定部11a,11bの位置や数は本実施の形態に限定されるものではなく、下金型4や上金型8の形状、大きさ、設定温度などに応じて、適宜、選択することができる。
Based on the operation of the constant temperature forging molding apparatus configured as described above, the constant temperature forging molding method of the first embodiment will be described.
First, in FIG. 1, the lower mold 4 and the upper mold 8 are heated by the lower mold induction heating coil 5 and the upper mold induction heating coil 9 in the mold heating step.
When heating of the lower mold 4 and the upper mold 8 is started, the mold inner temperature measuring units 11a and 11b perform near-surface portions inside the lower mold 4 and the upper mold 8 in the mold temperature monitoring step. Measure and monitor the temperature.
Next, the heating temperature adjustment step adjusts the output of the power supply 10 at the temperature adjustment unit 12 so that the inner surface temperature of the die converges to the processing temperature based on the temperature measured in the die temperature monitoring step, The heating temperature in the mold heating process is adjusted.
In order to optimize the mold internal surface temperature in contact with the product part (metal material 20), the positions of the mold internal temperature measuring units 11a and 11b are set, and the heating temperature is adjusted by the heating temperature adjusting process. ing. Therefore, the position and number of the mold internal temperature measuring units 11a and 11b are not limited to the present embodiment, and depending on the shape, size, set temperature, etc. of the lower mold 4 and the upper mold 8, It can select suitably.

加熱温度調整工程によって下金型4及び上金型8の金型内部表面温度が加工温度に収束したら、鍛造成型工程において、金属素材20を金型内に投入し、下金型4と上金型8で挟持した金属素材20を加圧部13のポンチ13aで鍛造成型する。尚、金属素材20は鍛造成型工程で金型内に投入する前の素材加熱工程において、予め溶体化された金属素材20を150℃以上で金属素材20の再結晶温度以下に加熱したものである。一度溶体化させた金属素材20を再結晶温度以下に加熱し恒温鍛造することにより、結晶粒の微細化を析出硬化が同時に発生するためである。
鍛造成型が終了したら、ノックアウトピン13bによって金型から製品を取り出す。
以下、金型温度監視工程により下金型4及び上金型8の各部の温度を測定監視し、加熱温度調整工程で下金型4及び上金型8の金型内部表面温度を加工温度に保持しながら、鍛造成型工程を繰り返す。
When the mold inner surface temperatures of the lower mold 4 and the upper mold 8 converge to the processing temperature by the heating temperature adjusting process, the metal material 20 is put into the mold in the forging process, and the lower mold 4 and the upper mold are placed. The metal material 20 sandwiched by the mold 8 is forged by the punch 13a of the pressurizing unit 13. The metal material 20 is obtained by heating the previously melted metal material 20 at 150 ° C. or more and below the recrystallization temperature of the metal material 20 in the material heating process before being put into the mold in the forging process. . This is because the metal material 20 once solutionized is heated to a temperature below the recrystallization temperature and subjected to isothermal forging, so that precipitation hardening occurs simultaneously with refinement of crystal grains.
When the forging is finished, the product is taken out from the mold by the knockout pin 13b.
Hereinafter, the temperature of each part of the lower mold 4 and the upper mold 8 is measured and monitored by the mold temperature monitoring process, and the mold internal surface temperature of the lower mold 4 and the upper mold 8 is set to the processing temperature by the heating temperature adjusting process. While holding, the forging process is repeated.

鍛造成型工程における金属素材20の温度(加工温度)は、素材の種類や組成によっても異なるが、100℃以上好ましくは120℃以上、更に好ましくは150℃以上で、その金属素材20の再結晶温度以下にした。鍛造成型工程における金属素材20の温度が、150℃よりも低くなるにつれ、成型性が低下し易くなる傾向があり、その再結晶温度よりも高くなるにつれ、結晶粒の粒径が大きくなり、強度や靭性が低下し易くなる傾向があることがわかったためである。また、鍛造成型工程における金属素材の温度が、120℃若しくは100℃よりも低くなると、金属素材の種類や製品の大きさにもよるが、物性の低下が著しくなり、複雑な形状を成型することが困難になる傾向があることがわかった。
例えば、金属素材20としてアルミニウム合金(A6061)を加工する場合、金属素材20と下金型4及び上金型8の内部(内表面)の温度(加工温度)が100℃〜300℃程度となるように、加熱温度調整工程で温度調整を行った。
尚、金型温度監視工程で測定される温度に基づいて、鍛造成型工程における加工速度を調整する加工速度調整工程を有する場合、鍛造成型工程での加工速度が速くなり過ぎることによって金属素材20の温度が所定の加工温度よりも高くなることを防止でき、製造条件の均一性に優れる。
また、加圧部13は、温度調整部12からの電気信号により、加圧回数を制御することもできる。
The temperature (processing temperature) of the metal material 20 in the forging process varies depending on the type and composition of the material, but is 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 ° C. or higher. It was as follows. As the temperature of the metal material 20 in the forging process becomes lower than 150 ° C., the moldability tends to decrease, and as the recrystallization temperature becomes higher, the grain size of the crystal grains becomes larger and the strength becomes higher. This is because it has been found that the toughness tends to decrease. Also, if the temperature of the metal material in the forging process becomes lower than 120 ° C or 100 ° C, depending on the type of metal material and the size of the product, the physical properties will deteriorate significantly, and complex shapes will be molded. Found out that it tends to be difficult.
For example, when an aluminum alloy (A6061) is processed as the metal material 20, the temperature (processing temperature) of the metal material 20 and the inside (inner surface) of the lower mold 4 and the upper mold 8 is about 100 ° C. to 300 ° C. Thus, temperature adjustment was performed in the heating temperature adjustment process.
In addition, when it has the process speed adjustment process which adjusts the process speed in a forge molding process based on the temperature measured at a metal mold | die temperature monitoring process, the process speed in a forge molding process becomes too fast, and the metal raw material 20 The temperature can be prevented from becoming higher than a predetermined processing temperature, and the uniformity of manufacturing conditions is excellent.
The pressurizing unit 13 can also control the number of pressurizations by an electrical signal from the temperature adjusting unit 12.

以上のように実施の形態1における恒温鍛造成型方法によれば、以下の作用を有する。
(1)上金型と下金型を加熱する金型加熱工程と、上金型及び/又は下金型の温度を測定監視する金型温度監視工程と、金型温度監視工程で測定される温度に基づいて金型内部の表面温度を金属素材の加工温度に収束させ維持するように金型加熱工程における加熱温度を調整する加熱温度調整工程を有することにより、金型内部及び金型内の金属素材の温度を所定の加工温度に保持することができるので、後工程の鍛造成型工程における製造条件を略一定に保つことができ、ばらつきの少ない高品質で均一性に優れた鍛造成型部品を製造することができ、品質の信頼性、量産性に優れる。
(2)予め素材加熱工程で加熱された金属素材を加熱温度調整工程で加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程を有するので、金属素材が冷えることがなく、加工圧力を低減して高速加工することができ、量産性に優れる。また、冬季や夏季を問わず、効率よく略一定の条件で成型を行うことができ、生産の効率性、安定性に優れる。
(3)溶体化された金属素材を100℃以上好ましくは120℃以上、更に好ましくは150℃以上で、金属素材の再結晶温度以下に加熱する素材加熱工程と、素材加熱工程で加熱された金属素材を加熱温度調整工程で加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程を有することにより、従来の冷間鍛造において別々に行われていた結晶粒微細化と析出硬化を同時に行わせることができ、鍛造成型工程後に、別途、熱処理などを行うことなく、高強度、高靭性で高品質な鍛造成型部品を製造することができ、しかも製品の最終形状に近い形状に成型することができるので、切削などの後加工が不要で、加工工数を大幅に低減することができると共に、材料歩留まりを向上させることができ、量産性、省資源性に優れる。
(4)金型温度監視工程で測定される温度が、上金型及び下金型の内部の表面近側部の温度であることにより、上金型や下金型の内部表面温度とほぼ等しい温度を測定することができると共に、熱電対を用いた金型温内部度測定部を金型で保護して金属素材との接触を防止することができ、温度測定の確実性、温度管理の信頼性に優れる。
As described above, the constant temperature forging molding method according to Embodiment 1 has the following effects.
(1) Measured in a mold heating process for heating the upper mold and the lower mold, a mold temperature monitoring process for measuring and monitoring the temperature of the upper mold and / or the lower mold, and a mold temperature monitoring process. By having a heating temperature adjustment process that adjusts the heating temperature in the mold heating process so that the surface temperature inside the mold converges and maintains the processing temperature of the metal material based on the temperature, the inside of the mold and the inside of the mold Since the temperature of the metal material can be maintained at a predetermined processing temperature, the manufacturing conditions in the subsequent forging process can be kept substantially constant, and forged parts with high quality and excellent uniformity with little variation. It can be manufactured and has excellent quality reliability and mass productivity.
(2) Since there is a forging process in which the metal material heated in advance in the material heating process is put into a mold whose temperature has been adjusted to the processing temperature in the heating temperature adjustment process and forged, the metal material will not cool down. The processing pressure can be reduced and high-speed processing can be performed, and the mass productivity is excellent. In addition, it can be efficiently molded under substantially constant conditions regardless of winter or summer, and is excellent in production efficiency and stability.
(3) A material heating step for heating the solution-treated metal material to 100 ° C or higher, preferably 120 ° C or higher, more preferably 150 ° C or higher and below the recrystallization temperature of the metal material, and metal heated in the material heating step Grain refinement and precipitation performed separately in conventional cold forging by having a forging molding process in which the raw material is put into a mold whose temperature is adjusted to the processing temperature in the heating temperature adjusting process and forged. It can be cured at the same time, and can produce high-strength, high-toughness, high-quality forged parts without additional heat treatment after the forging process, and the shape is close to the final shape of the product Therefore, post-processing such as cutting is not required, the number of processing steps can be greatly reduced, the material yield can be improved, and mass productivity and resource saving are excellent.
(4) The temperature measured in the mold temperature monitoring step is the temperature of the upper surface of the upper mold and the lower mold, and is almost equal to the internal surface temperature of the upper mold and the lower mold. In addition to measuring the temperature, the mold temperature internality measurement part using a thermocouple can be protected by a mold to prevent contact with metal materials. Reliability of temperature measurement and reliability of temperature management Excellent in properties.

以上のように実施の形態1における恒温鍛造成型装置によれば、以下の作用を有する。
(1)下金型用誘導加熱コイルや上金型用誘導加熱コイルが下金型や上金型の外周に配設されるので、下金型や上金型との着脱が容易で、簡便に下金型や上金型の交換作業を行うことができ、メンテナンス性、取扱い性に優れる。
(2)上金型及び下金型の内部の表面近側部の温度を測定する金型内部温度測定部や下金型及び上金型の外表面温度を測定する金型外表面温度測定部を有するので、簡便かつ確実に上金型や下金型の必要な温度を測定することができ、温度測定の確実性に優れる。
(3)金型温度測定部で測定される温度に基づいて上金型及び下金型の内部表面温度を金属素材の加工温度に収束させ維持するように調整する温度調整部を有することにより、金型内部及び金型内の金属素材の温度を金属素材の加工温度に保持することができるので、鍛造成型時の製造条件を略一定に保つことができ、ばらつきの少ない高品質で均一性に優れた鍛造成型部品を製造することができ、品質の信頼性、量産性に優れる。
(4)予め加熱された金属素材を温度調整された上金型と下金型で挟持して加圧する加圧部を有することにより、金属素材を所望の加熱温度に加熱しながら加圧することができるので、加工圧力を低減して高速加工することができ、量産性に優れる。また、加工圧力を低減でき、省力性に優れると共に、加圧部をコンパクト化することができ、省スペース性に優れる。
(5)下受けベースと下金型との接触面及び/又は上受けベースと上金型との接触面に形成された表面凹部を有することにより、下受けベースや上受けベースと下金型や上金型との接触面積を低減できると共に、表面凹部に空気層を形成することができ、下金型や上金型から下受けベースや上受けベースへの熱伝達を抑え、下金型や上金型の温度低下を防ぐことができ、金型加熱の効率性、省エネルギー性に優れる。
(6)上金型及び/又は下金型の外周に環装された保温リングを有することにより、上金型や下金型の外周面からの放熱を防止することができ、金型加熱の効率性、省エネルギー性に優れる。
As described above, the constant temperature forging molding apparatus according to Embodiment 1 has the following effects.
(1) Since the induction heating coil for the lower mold and the induction heating coil for the upper mold are arranged on the outer periphery of the lower mold and the upper mold, it is easy to attach and detach to and from the lower mold and the upper mold. In addition, the lower mold and upper mold can be exchanged, and it is excellent in maintenance and handling.
(2) Mold internal temperature measurement unit that measures the temperature of the inner surface of the upper mold and the lower mold and the mold outer surface temperature measurement unit that measures the outer surface temperature of the lower mold and the upper mold Therefore, the required temperature of the upper mold and the lower mold can be measured easily and surely, and the reliability of temperature measurement is excellent.
(3) By having a temperature adjustment unit that adjusts the internal surface temperature of the upper mold and the lower mold to converge and maintain the processing temperature of the metal material based on the temperature measured by the mold temperature measurement unit, Since the temperature of the metal material inside the mold and the metal material in the mold can be kept at the processing temperature of the metal material, the manufacturing conditions during forging can be kept almost constant, and high quality and uniformity with little variation. Excellent forged parts can be manufactured, and quality reliability and mass productivity are excellent.
(4) It is possible to pressurize a metal material while heating it to a desired heating temperature by having a pressurizing unit that pressurizes a metal material that has been preheated by sandwiching the temperature between an upper mold and a lower mold. Therefore, it is possible to reduce the processing pressure and perform high-speed processing, and it is excellent in mass productivity. In addition, the processing pressure can be reduced and the labor saving is excellent, and the pressurizing part can be made compact, and the space saving is excellent.
(5) By having a surface recess formed on the contact surface between the lower receiving base and the lower mold and / or the contact surface between the upper receiving base and the upper mold, the lower receiving base and the upper receiving base and the lower mold are provided. The contact area with the upper mold and the upper mold can be reduced, and an air layer can be formed in the concave portion of the surface, suppressing heat transfer from the lower mold and the upper mold to the lower base and the upper base. In addition, the temperature of the upper mold can be prevented from lowering, and the mold heating efficiency and energy saving are excellent.
(6) By having a heat retaining ring mounted around the outer periphery of the upper mold and / or the lower mold, heat radiation from the outer peripheral surface of the upper mold and the lower mold can be prevented, Excellent efficiency and energy saving.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施の形態1で説明した恒温鍛造成型方法及び恒温鍛造成型装置により、恒温鍛造成型を行った。
金属素材としては、アルミニウム合金(A6061−T6材)を溶体化処理(530℃で1時間加熱後水冷)したものを170℃(再結晶温度以下)に加熱して使用し、圧縮率50%〜70%で成形した。
また、金属素材と下金型及び上金型の内部表面温度は、100℃〜300℃程度となるように、加熱温度調整工程で温度調整を行った。
このようにして得られた成型品から試験片を採取し、JIS Z 2241「金属材料引張試験方法」に準拠して、0.2%耐力、引張強さ、伸びを測定した。
その結果、0.2%耐力は310〜320N/mm2、引張強さは330〜340N/mm2、伸びは13〜16%であった。
従来の鍛造加工品における0.2%耐力、引張強さ、伸びのJIS規格値は、それぞれ>245N/mm2、>265N/mm2、>10%であり、本実施例では、いずれもJIS規格値を大きく上回る結果となった。
以上の結果から、本実施例によれば、従来のような鍛造加工後の熱処理を行うことなく、それを超える機械的強度が得られることがわかった。また、従来の鍛造成形品では、強さとしなやかさを兼ね備えることは困難であったが、本実施例によれば、優れた強さとしなやかさを有する鍛造成形品を実現できることがわかった。これらの結果は、結晶の微細化と析出硬化が同時に行われるためと考えられる。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
The constant temperature forging molding was performed by the constant temperature forging molding method and the constant temperature forging molding apparatus described in the first embodiment.
As a metal material, a solution obtained by solution treatment of aluminum alloy (A6061-T6 material) (heated at 530 ° C. for 1 hour and then water-cooled) is heated to 170 ° C. (recrystallization temperature or lower) and used at a compression rate of 50% to Molded at 70%.
Moreover, temperature adjustment was performed in the heating temperature adjustment process so that the internal surface temperatures of the metal material, the lower mold, and the upper mold were about 100 ° C to 300 ° C.
A test piece was collected from the molded product thus obtained, and 0.2% proof stress, tensile strength, and elongation were measured in accordance with JIS Z 2241 “Tensile test method for metal material”.
As a result, 0.2% proof stress 310~320N / mm 2, tensile strength 330~340N / mm 2, elongation was 13 to 16%.
0.2% proof stress of the conventional forged product, tensile strength, the JIS standard value of elongation, respectively> 245N / mm 2,> 265N / mm 2,> was 10% in the present embodiment, both JIS The result was much higher than the standard value.
From the above results, it was found that according to this example, a mechanical strength exceeding that was obtained without performing the heat treatment after forging as in the prior art. In addition, it has been difficult to combine strength and flexibility with a conventional forged product, but according to the present example, it has been found that a forged product having excellent strength and flexibility can be realized. These results are thought to be because crystal refinement and precipitation hardening are performed simultaneously.

本発明は、金型内の素材温度を簡便かつ確実に所定の温度に維持することができ、鍛造成型時の加工速度を適正に保持して、素材が所定の温度以上に加熱されることを確実に防止することができ、結晶粒を微細化して、高強度、高靭性で高品質な部品を高速加工することができ、加工後の熱処理が不要で、後加工を最小限に抑えることができる量産性に優れた恒温鍛造成型方法の提供、簡素な構造で断熱性に優れ、金型からの放熱を低減することができ、金型加熱の効率性に優れ、金型内の素材を確実に所定の温度に維持することができ、成型性、加工の均一性に優れると共に、加圧力を低減して小型化を図ることができ、高速加工が可能で、ばらつきの少ない信頼性、耐久性に優れた高品質な鍛造成型部品を製造することができる量産性に優れた恒温鍛造成型装置の提供を行うことにより、アルミニウム合金等の軽金属製の部材を高品質で安定供給することができ、自動車、電力機器、住宅関連設備などの各種金属製部品の高品質化、軽量化に貢献することができる。   The present invention is capable of easily and reliably maintaining the temperature of the material in the mold at a predetermined temperature, maintaining the processing speed at the time of forging appropriately, and heating the material to a predetermined temperature or higher. Can be reliably prevented, crystal grains can be refined, high strength, toughness and high quality parts can be processed at high speed, no post-processing heat treatment is required, and post-processing can be minimized Providing a constant temperature forging method with excellent mass productivity, simple structure, excellent heat insulation, reduced heat dissipation from the mold, excellent mold heating efficiency, reliable material in the mold In addition to being excellent in moldability and processing uniformity, it is possible to reduce the size by reducing the applied pressure, enabling high-speed processing, and reliability and durability with little variation. For high-quality, high-quality forged parts By providing a constant temperature forging molding equipment, it is possible to stably supply high-quality light metal parts such as aluminum alloys, and to improve the quality of various metal parts such as automobiles, power equipment, and housing-related equipment. , Can contribute to weight reduction.

実施の形態1の恒温鍛造成型方法に用いる恒温鍛造成型装置の構成を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing the configuration of a constant-temperature forging molding apparatus used in the constant-temperature forging molding method of Embodiment 1 実施の形態1の恒温鍛造成型装置の下受けベースの模式斜視図Schematic perspective view of the base of the constant temperature forging molding device of Embodiment 1 (a)実施の形態1の恒温鍛造成型装置の下受けベースの変形例を示す模式斜視図(b)実施の形態1の恒温鍛造成型装置の下受けベースの変形例を示す模式断面図(A) Schematic perspective view showing a modification of the base of the constant temperature forging molding apparatus of Embodiment 1 (b) Schematic cross-sectional view showing a modification of the base of the constant temperature forging molding apparatus of Embodiment 1 実施の形態1の恒温鍛造成型装置の下金型用誘導加熱コイルの取付け構造を示す要部模式平面図Schematic plan view of relevant parts showing a structure for mounting an induction heating coil for a lower mold of the constant temperature forging molding apparatus according to Embodiment 1

1 恒温鍛造成型装置
2 下型ベース
3,3’ 下受けベース
3a 凹部
3A,3B 表面凹部
3b 貫通孔
3c 凹条溝
4 下金型
4a,8a 固定リング
4b,8b 保温リング
4c,8c 熱電対挿通孔
5 下金型用誘導加熱コイル
5a,9a 緩衝材
5b コイル取付け部
6 上部ベース
7 上受けベース
8 上金型
9 上金型用誘導加熱コイル
10 電源
10a 高周波ケーブル
11a,11b 金型内部温度測定部
12 温度調整部
13 加圧部
13a ポンチ
13b ノックアウトピン
DESCRIPTION OF SYMBOLS 1 Constant temperature forging molding apparatus 2 Lower die base 3, 3 'Lower receiving base 3a Recess 3A, 3B Surface recess 3b Through-hole 3c Recess groove 4 Lower mold 4a, 8a Fixing ring 4b, 8b Heat retaining ring 4c, 8c Thermocouple insertion Hole 5 Induction heating coils 5a and 9a for lower molds Buffer material 5b Coil mounting part 6 Upper base 7 Upper receiving base 8 Upper mold 9 Induction heating coil 10 for upper molds Power supply 10a High-frequency cables 11a and 11b Measurement of mold internal temperature Part 12 Temperature adjustment part 13 Pressurization part 13a Punch 13b Knockout pin

Claims (7)

上金型と下金型を加熱する金型加熱工程と、前記上金型及び/又は前記下金型の温度を測定監視する金型温度監視工程と、前記金型温度監視工程で測定される前記温度に基づいて金型内部の表面温度を金属素材の加工温度に収束させ維持するように前記金型加熱工程における加熱温度を調整する加熱温度調整工程と、溶体化された前記金属素材を100℃以上で前記金属素材の再結晶温度以下に加熱する素材加熱工程と、前記素材加熱工程で加熱された前記金属素材を前記加熱温度調整工程で前記加工温度に温度調整された金型内に投入して鍛造成型する鍛造成型工程と、を備えたことを特徴とする恒温鍛造成型方法。 It is measured by a mold heating process for heating the upper mold and the lower mold, a mold temperature monitoring process for measuring and monitoring the temperature of the upper mold and / or the lower mold, and the mold temperature monitoring process. Based on the temperature, a heating temperature adjusting step of adjusting the heating temperature in the mold heating step so as to converge and maintain the surface temperature inside the mold to the processing temperature of the metal material, and the solution-formed metal material 100 A material heating process that heats the metal material to a recrystallization temperature not lower than ℃ and the metal material heated in the material heating process is put into a mold whose temperature is adjusted to the processing temperature in the heating temperature adjustment process. And a forging and molding process for forging and molding, and a constant temperature forging and molding method. 前記金型温度監視工程で測定される前記温度に基づいて、前記鍛造成型工程における加工速度を調整する加工速度調整工程を備えたことを特徴とする請求項1に記載の恒温鍛造成型方法。 The constant temperature forging molding method according to claim 1, further comprising a processing speed adjustment step of adjusting a processing speed in the forging molding step based on the temperature measured in the mold temperature monitoring step. 前記金型温度監視工程で測定される前記温度が、前記上金型及び/又は前記下金型の内部の表面近側部の温度であることを特徴とする請求項1又は2に記載の恒温鍛造成型方法。 3. The constant temperature according to claim 1, wherein the temperature measured in the mold temperature monitoring step is a temperature of a portion near a surface inside the upper mold and / or the lower mold. Forging molding method. 下金型と、前記下金型の外周に配設される下金型用誘導加熱コイルと、前記下金型に対向配置される上金型と、前記上金型の外周に配設される上金型用誘導加熱コイルと、前記上金型及び/又は前記下金型の温度を測定する金型温度測定部と、前記金型温度測定部で測定される前記温度に基づいて前記上金型及び前記下金型の内部表面温度を金属素材の加工温度に収束させ維持するように調整する温度調整部と、予め加熱された金属素材を前記加工温度に温度調整された前記上金型と前記下金型で挟持して加圧する加圧部と、を備えていることを特徴とする恒温鍛造成型装置。 A lower mold, a lower mold induction heating coil disposed on the outer periphery of the lower mold, an upper mold disposed to face the lower mold, and an outer periphery of the upper mold An upper mold induction heating coil, a mold temperature measuring unit for measuring the temperature of the upper mold and / or the lower mold, and the upper mold based on the temperature measured by the mold temperature measuring unit A temperature adjusting unit that adjusts the inner surface temperature of the mold and the lower mold so as to converge and maintain the processing temperature of the metal material, and the upper mold whose temperature of the preheated metal material is adjusted to the processing temperature, A constant temperature forging molding apparatus comprising: a pressurizing unit that sandwiches and pressurizes the lower mold. 前記下金型が固設される下受けベースと前記下金型との接触面及び/又は前記上金型が固設される上受けベースと前記上金型との接触面に形成された表面凹部を備えていることを特徴とする請求項4に記載の恒温鍛造成型装置。 A surface formed on a contact surface between the lower receiving base and the lower mold on which the lower mold is fixed and / or on a contact surface between the upper receiving base and the upper mold on which the upper mold is fixed. The constant temperature forging molding apparatus according to claim 4, further comprising a recess. 前記上金型及び/又は前記下金型の外周に環装された保温リングを備えていることを特徴とする請求項4又は5に記載の恒温鍛造成型装置。 The constant temperature forging molding apparatus according to claim 4 or 5, further comprising a heat retaining ring provided around an outer periphery of the upper mold and / or the lower mold. 前記保温リングと、前記上金型及び/又は前記下金型と、の接触面に形成された側面凹部を備えていることを特徴とする請求項4乃至6の内いずれか1項に記載の恒温鍛造成型装置。 The side surface recessed part formed in the contact surface of the said heat retaining ring, the said upper metal mold | die, and / or the said lower metal mold | die is provided, The any one of the Claims 4 thru | or 6 characterized by the above-mentioned. Constant temperature forging molding equipment.
JP2009260512A 2008-11-13 2009-11-13 Constant temperature forging molding method for aluminum alloy parts and constant temperature forging molding apparatus for aluminum alloy parts Active JP5688704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260512A JP5688704B2 (en) 2008-11-13 2009-11-13 Constant temperature forging molding method for aluminum alloy parts and constant temperature forging molding apparatus for aluminum alloy parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008291048 2008-11-13
JP2008291048 2008-11-13
JP2009260512A JP5688704B2 (en) 2008-11-13 2009-11-13 Constant temperature forging molding method for aluminum alloy parts and constant temperature forging molding apparatus for aluminum alloy parts

Publications (2)

Publication Number Publication Date
JP2010137284A true JP2010137284A (en) 2010-06-24
JP5688704B2 JP5688704B2 (en) 2015-03-25

Family

ID=42347865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260512A Active JP5688704B2 (en) 2008-11-13 2009-11-13 Constant temperature forging molding method for aluminum alloy parts and constant temperature forging molding apparatus for aluminum alloy parts

Country Status (1)

Country Link
JP (1) JP5688704B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169214B1 (en) 2010-12-20 2012-07-27 두산중공업 주식회사 Hot forging method for superalloy material
CN102909302A (en) * 2012-11-15 2013-02-06 天津市天锻压力机有限公司 Forging machine capable of realizing constant-temperature thermal forming of hot metal sheet parts
WO2013158341A1 (en) * 2012-04-19 2013-10-24 Firth Rixson Limited Die locking system and method
JP2015085381A (en) * 2013-11-01 2015-05-07 株式会社戸畑タ−レット工作所 Constant temperature forged component and manufacturing method for constant temperature forged component
WO2016158462A1 (en) * 2015-04-02 2016-10-06 本田技研工業株式会社 Forging method
CN107607459A (en) * 2017-10-18 2018-01-19 工业和信息化部电子第五研究所华东分所 A kind of ion exchange membrane performance tester and method of testing
KR20210070018A (en) * 2019-12-04 2021-06-14 국방과학연구소 The forging die external heating method and manufacturing method ti-al alloy ingot billet using forging die external heating method
CN113894236A (en) * 2021-09-14 2022-01-07 北京机电研究所有限公司 Vacuum isothermal die forging rapid prototyping device
CN117000925A (en) * 2023-07-03 2023-11-07 江苏苏美达德隆汽车部件股份有限公司 Automobile door lightweight aluminum alloy hinge forging and pressing forming device
JP7421783B1 (en) 2023-06-14 2024-01-25 株式会社寺方工作所 Irregular internal casing, its manufacturing method, and manufacturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110695279B (en) * 2019-09-20 2021-01-29 张家港中环海陆高端装备股份有限公司 Method for avoiding folding and skin-clamping and harmful tissue during ring forging

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989636U (en) * 1982-12-09 1984-06-18 オリエント時計株式会社 Forging equipment for superplastic processing
JPS6030544A (en) * 1983-07-29 1985-02-16 Mitsubishi Heavy Ind Ltd Plastic working method and its device
JPS62207528A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Method and apparatus for heating controlling forging die
JPH05212485A (en) * 1992-02-07 1993-08-24 Citizen Watch Co Ltd Machining method with hot forging die
JPH08108243A (en) * 1994-10-07 1996-04-30 Yamaha Motor Co Ltd Forging method of piston
JPH11244953A (en) * 1998-02-25 1999-09-14 Nippon Yakin Kogyo Co Ltd Device for forming superplastic material
JP2000167639A (en) * 1998-12-03 2000-06-20 Aida Eng Ltd Die equipped with heating device
JP2002254132A (en) * 2001-02-28 2002-09-10 Kikusui Forging Co-Op Hot forging and forming method for magnesium alloy member
JP2003311360A (en) * 2002-04-24 2003-11-05 Matsushita Electric Ind Co Ltd Magnesium alloy parts and production method thereof
JP2005133153A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd Steel for case hardening superior in cold forgeability and grain coarsening resistance during case hardening treatment, and manufacturing method therefor
WO2008099651A1 (en) * 2007-02-13 2008-08-21 Toyota Jidosha Kabushiki Kaisha Process for producing aluminum alloy material and heat treated aluminum alloy material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989636U (en) * 1982-12-09 1984-06-18 オリエント時計株式会社 Forging equipment for superplastic processing
JPS6030544A (en) * 1983-07-29 1985-02-16 Mitsubishi Heavy Ind Ltd Plastic working method and its device
JPS62207528A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Method and apparatus for heating controlling forging die
JPH05212485A (en) * 1992-02-07 1993-08-24 Citizen Watch Co Ltd Machining method with hot forging die
JPH08108243A (en) * 1994-10-07 1996-04-30 Yamaha Motor Co Ltd Forging method of piston
JPH11244953A (en) * 1998-02-25 1999-09-14 Nippon Yakin Kogyo Co Ltd Device for forming superplastic material
JP2000167639A (en) * 1998-12-03 2000-06-20 Aida Eng Ltd Die equipped with heating device
JP2002254132A (en) * 2001-02-28 2002-09-10 Kikusui Forging Co-Op Hot forging and forming method for magnesium alloy member
JP2003311360A (en) * 2002-04-24 2003-11-05 Matsushita Electric Ind Co Ltd Magnesium alloy parts and production method thereof
JP2005133153A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd Steel for case hardening superior in cold forgeability and grain coarsening resistance during case hardening treatment, and manufacturing method therefor
WO2008099651A1 (en) * 2007-02-13 2008-08-21 Toyota Jidosha Kabushiki Kaisha Process for producing aluminum alloy material and heat treated aluminum alloy material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169214B1 (en) 2010-12-20 2012-07-27 두산중공업 주식회사 Hot forging method for superalloy material
WO2013158341A1 (en) * 2012-04-19 2013-10-24 Firth Rixson Limited Die locking system and method
US9061346B2 (en) 2012-04-19 2015-06-23 Firth Rixson Limited Die locking system and method
CN102909302A (en) * 2012-11-15 2013-02-06 天津市天锻压力机有限公司 Forging machine capable of realizing constant-temperature thermal forming of hot metal sheet parts
JP2015085381A (en) * 2013-11-01 2015-05-07 株式会社戸畑タ−レット工作所 Constant temperature forged component and manufacturing method for constant temperature forged component
JPWO2016158462A1 (en) * 2015-04-02 2017-11-09 本田技研工業株式会社 Forging method
WO2016158462A1 (en) * 2015-04-02 2016-10-06 本田技研工業株式会社 Forging method
DE112016001543B4 (en) * 2015-04-02 2021-03-11 Honda Motor Co., Ltd. Forging process
CN107607459A (en) * 2017-10-18 2018-01-19 工业和信息化部电子第五研究所华东分所 A kind of ion exchange membrane performance tester and method of testing
KR20210070018A (en) * 2019-12-04 2021-06-14 국방과학연구소 The forging die external heating method and manufacturing method ti-al alloy ingot billet using forging die external heating method
KR102299910B1 (en) * 2019-12-04 2021-09-08 국방과학연구소 The forging die external heating method and manufacturing method ti-al alloy ingot billet using forging die external heating method
CN113894236A (en) * 2021-09-14 2022-01-07 北京机电研究所有限公司 Vacuum isothermal die forging rapid prototyping device
JP7421783B1 (en) 2023-06-14 2024-01-25 株式会社寺方工作所 Irregular internal casing, its manufacturing method, and manufacturing device
CN117000925A (en) * 2023-07-03 2023-11-07 江苏苏美达德隆汽车部件股份有限公司 Automobile door lightweight aluminum alloy hinge forging and pressing forming device
CN117000925B (en) * 2023-07-03 2024-03-26 江苏苏美达德隆汽车部件股份有限公司 Automobile door lightweight aluminum alloy hinge forging and pressing forming device

Also Published As

Publication number Publication date
JP5688704B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5688704B2 (en) Constant temperature forging molding method for aluminum alloy parts and constant temperature forging molding apparatus for aluminum alloy parts
EP2659993B1 (en) Closed-die forging method and method of manufacturing forged article
CN102205482B (en) Method for producing round-link chain
CN106170577B (en) Method of forming a part from sheet metal alloy
CN105483586B (en) A kind of forging method of raising TC18 titanium alloy structure properties
JP2011528995A5 (en)
CN106513508A (en) Titanium alloy sheet metal part cold-die hot-stamping forming tool and machining method
CN106591754A (en) Forging method using flat-die hammer to improve structure property of TC21 titanium alloy
Zhang et al. The microstructure and properties change of dies manufactured by bimetal-gradient-layer surfacing technology
RU2015115675A (en) METHOD AND DEVICE FOR THERMAL PROCESSING OF ALUMINUM PREPARATION AND ALUMINUM PREPARATION
CN107649628B (en) A kind of processing method of ZK61 high-strength magnesium alloys forging
Zhang et al. FE simulation and experimental investigation of ZK60 magnesium alloy with different radial diameters processed by equal channel angular pressing
JP2009012041A (en) Warm-forming method and warm-formed article manufactured by the method
JP5446410B2 (en) Heat treatment method for annular workpiece
CN108237197B (en) A kind of forging method improving the flaw detection of structural steel large-sized ring part
CN110653328A (en) Processing technology of inner lug special-shaped cover
JP2016144814A (en) Hot forging mold device and hot forging method using the same
CN106086734B (en) The forging method of 2618A aluminum alloy impeller forging
JP2006291248A (en) Method and equipment for high frequency induction heat treatment, thin member and thrust bearing
CN112496217A (en) Integral forming method for high-temperature titanium alloy frame die forging
LI et al. Integrated simulation of the forging process for GH4738 alloy turbine disk and its application
JP2016209895A (en) Constant temperature forged component and manufacturing method for constant temperature forged component
JP5037310B2 (en) Heating method of billet for hot forging
CN107598065A (en) A kind of forging technology of motor body
JP2007239087A5 (en) Induction hardening method, machine member, rolling member and method of manufacturing machine member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5688704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250