WO2016158462A1 - Forging method - Google Patents

Forging method Download PDF

Info

Publication number
WO2016158462A1
WO2016158462A1 PCT/JP2016/058547 JP2016058547W WO2016158462A1 WO 2016158462 A1 WO2016158462 A1 WO 2016158462A1 JP 2016058547 W JP2016058547 W JP 2016058547W WO 2016158462 A1 WO2016158462 A1 WO 2016158462A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
forging
warm
temperature
warm forging
Prior art date
Application number
PCT/JP2016/058547
Other languages
French (fr)
Japanese (ja)
Inventor
幸夫 米田
努 棚橋
登 林
伸幸 竹原
大毅 松本
Original Assignee
本田技研工業株式会社
Thkリズム株式会社
株式会社戸畑タ-レット工作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, Thkリズム株式会社, 株式会社戸畑タ-レット工作所 filed Critical 本田技研工業株式会社
Priority to DE112016001543.7T priority Critical patent/DE112016001543B4/en
Priority to JP2017509555A priority patent/JP6371468B2/en
Priority to US15/562,579 priority patent/US20180105909A1/en
Priority to CN201680018694.9A priority patent/CN107427898B/en
Publication of WO2016158462A1 publication Critical patent/WO2016158462A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups

Definitions

  • the present invention relates to a forging method.
  • Patent Document 1 discloses a technique for manufacturing a forged product made of an aluminum alloy by warm forging in order to increase the strength of the forged product (see Patent Document 1).
  • the forged product may change over time and the hardness may not be stabilized under the usage environment of the vehicle.
  • an object of the present invention is to provide a forging method that increases the strength of a forged product and suppresses a decrease in hardness under a use environment.
  • the present invention provides a warm forging process in which a solution-treated metal workpiece is warm-forged at a recrystallization temperature or lower, and a use after manufacturing after the warm-forging process. And an artificial aging step for artificially pre-aging the workpiece at a temperature equal to or higher than the environmental temperature.
  • the warm forging means that the workpiece is forged using a mold in a heated state and at a temperature equal to or lower than a temperature at which the structure of the metal workpiece is recrystallized (recrystallization temperature).
  • the equivalent plastic strain before and after the warm forging is preferably 0.1 to 2.5.
  • the equivalent plastic strain before and after forging is calculated by, for example, CAE (Ccomputer Aided Engineering) analysis.
  • the equivalent plastic strain before and after the warm forging is preferably set to 0.4 to 2.1.
  • the present invention it is possible to provide a forging method that increases the strength of a forged product and suppresses the change over time in the use environment.
  • the forging method includes a warm forging step (S105) in which a workpiece 10 is formed by warm forging, a forged product having high strength, and a product that is used in a vehicle use environment.
  • An artificial aging step (S106) for artificially pre-aging the workpiece 10 after warm forging so as not to change with time.
  • a case where the workpiece 10 is made of an aluminum alloy is illustrated.
  • the workpiece 10 is a generally rod-shaped tie rod that steers a knuckle that rotatably supports a wheel is illustrated.
  • the manufactured workpiece 10 includes a hemispherical boss portion 11 that fits outside the knuckle ball joint, a round rod-like shaft portion 12 that is connected to the actuator side rod, the boss portion 11 and the shaft portion. 12 and a neck 13 formed between the two.
  • the outer diameter of the workpiece 10 is generally reduced in the order of the shaft portion 12, the boss portion 11, and the neck portion 13.
  • These equivalent plastic strains are equivalent to the equivalent plastic strain of the shaft portion 12 (0.2 etc.), the equivalent plastic strain of the boss portion 13 (0.9 etc.), based on the workpiece 10 before strain (before forging), The equivalent plastic strain (2.2 etc.) of the neck 11 increases in the order (see FIG. 9).
  • step S101 an appropriately sized workpiece 10 is cut out from an aluminum alloy material (see FIG. 2A).
  • step S102 the cut workpiece 10 is cold-forged and preformed (see FIG. 2B).
  • Cold forging refers to forging the workpiece 10 at a temperature lower than the recrystallization temperature of the aluminum alloy and at a lower temperature (for example, lower than room temperature (about 25 ° C.)).
  • step S103 the workpiece 10 after cold forging is subjected to a solution treatment. Specifically, the workpiece 10 is heated to a solution treatment temperature (for example, 540 ° C.) using an appropriate furnace so that the alloy components are dissolved in the workpiece 10 to facilitate aging precipitation and distortion due to cold forging. Eliminate.
  • a solution treatment temperature for example, 540 ° C.
  • step S104 the workpiece 10 after the solution treatment is heated to a warm temperature for warm forging.
  • the warm heating temperature is set to normal temperature or higher and lower than the recrystallization temperature.
  • the warm heating temperature is set to, for example, 100 ° C. to the recrystallization temperature or less.
  • step S105 the workpiece 10 heated to a warm temperature (below the recrystallization temperature) is warm forged (see FIG. 2C).
  • the equivalent plastic strain of the workpiece 10 in the forging direction is set in the normal range of 0.1 to 2.5.
  • the equivalent plastic strain is preferably in a suitable range of 0.1 to 2.1 (see FIGS. 3, 4, and 5). Further, the equivalent plastic strain is preferably in the optimum range of 0.4 to 2.1. This is because the tensile strength is improved satisfactorily.
  • step S106 the workpiece 10 after warm forging is artificially aged. Specifically, the workpiece 10 is artificially aged in advance at a predetermined artificial aging temperature and a predetermined artificial aging time so that the product (workpiece 10) does not change over time during use after manufacturing.
  • the predetermined artificial aging temperature is set to a temperature equal to or higher than the operating environment temperature to which the product (work 10) after manufacture is exposed. This is because the change over time of the product (workpiece 10) during use after manufacture can be reduced. For example, when the manufactured product (workpiece 10) is a tie rod, the predetermined artificial aging temperature is set to 150 to 200 ° C. (see FIG. 10).
  • the predetermined artificial aging time is determined by a preliminary test or the like, and is set as short as possible within a range that does not change with time after manufacture.
  • step S107 the workpiece 10 after artificial aging is deburred (trimmed) (see FIG. 2D). Specifically, the burr 14 of the workpiece 10 formed by warm forging is cut off.
  • step S108 the workpiece 10 after deburring is finished. Specifically, for example, the surface of the workpiece 10 is polished and cleaned.
  • Such a forging method can increase the hardness of the workpiece 10 by artificially aging the workpiece 10 after warm forging (see FIG. 9). That is, since the work 10 is artificially aged, the hardness of the product (work 10) does not change and does not decrease during use after manufacture (see FIG. 10).
  • the configuration in which the workpiece 10 is made of an aluminum alloy is exemplified, but a configuration in which other types of metals are used may be used.

Abstract

The problem addressed by the present invention is to provide a forging method that can increase the strength of the forged product and suppress reductions in hardness in the usage environment. The forging method includes a warm forging step (S105) for warm forging a metal workpiece that has been solution treated, and an artificial aging step (S106), following the warm forging step (S105), for artificial preliminary aging of the workpiece at a temperature the same or greater than the temperature of the usage environment after the workpiece is manufactured. The equivalent plastic strain before and after warm forging is set at 0.1 - 2.5.

Description

鍛造方法Forging method
 本発明は、鍛造方法に関する。 The present invention relates to a forging method.
 近年の自動車開発において、燃費向上のために、軽量かつ高強度の部材の開発が進められている。例えば、特許文献1では、鍛造品の高強度化を図るため温間鍛造によってアルミニウム合金製の鍛造品を製造する技術が開示されている(特許文献1参照)。 In recent automobile development, development of lightweight and high-strength members is being promoted in order to improve fuel efficiency. For example, Patent Document 1 discloses a technique for manufacturing a forged product made of an aluminum alloy by warm forging in order to increase the strength of the forged product (see Patent Document 1).
特開2010-137284号公報JP 2010-137284 A
 しかしながら、温間での鍛造後、鍛造品をそのまま放置すると、車両の使用環境下では鍛造品が経時変化し硬さが安定せず変化する虞がある。 However, if the forged product is left as it is after forging in the warm state, the forged product may change over time and the hardness may not be stabilized under the usage environment of the vehicle.
 そこで、本発明は、鍛造品を高強度化し、且つ、使用環境下での硬さの低下を抑制する鍛造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a forging method that increases the strength of a forged product and suppresses a decrease in hardness under a use environment.
 前記課題を解決するための手段として、本発明は、溶体化処理した金属製のワークを再結晶温度以下で温間鍛造する温間鍛造工程と、前記温間鍛造工程の後、製造後における使用環境温度と同等以上の温度でワークを人工的に予め時効させる人工時効工程と、を含むことを特徴とする鍛造方法である。 As means for solving the above-mentioned problems, the present invention provides a warm forging process in which a solution-treated metal workpiece is warm-forged at a recrystallization temperature or lower, and a use after manufacturing after the warm-forging process. And an artificial aging step for artificially pre-aging the workpiece at a temperature equal to or higher than the environmental temperature.
 ここで、温間鍛造とは、加熱された状態かつ金属製のワークの組織が再結晶する温度(再結晶温度)以下の状態で、金型を利用してワークを鍛造成型することを意味する。 Here, the warm forging means that the workpiece is forged using a mold in a heated state and at a temperature equal to or lower than a temperature at which the structure of the metal workpiece is recrystallized (recrystallization temperature). .
 このような構成によれば、人工時効での析出強化により、鍛造品(ワーク)を高強度化しつつ、製造後の使用中の硬さ変化を抑制できるため、鍛造品の経時変化が生じ難くなる。 According to such a configuration, it is possible to suppress the change in hardness during use after manufacture while increasing the strength of the forged product (workpiece) by precipitation strengthening by artificial aging, and therefore it is difficult for the forged product to change over time. .
 また、前記温間鍛造工程において、温間鍛造前後における相当塑性歪みを0.1~2.5とすることが好ましい。 In the warm forging step, the equivalent plastic strain before and after the warm forging is preferably 0.1 to 2.5.
 ここで、鍛造前後における相当塑性歪みは、例えばCAE(Ccomputer Aided Engineering)解析によって計算される。 Here, the equivalent plastic strain before and after forging is calculated by, for example, CAE (Ccomputer Aided Engineering) analysis.
 さらに、前記温間鍛造工程において、温間鍛造前後における相当塑性歪みを0.4~2.1とすることが好ましい。 Further, in the warm forging step, the equivalent plastic strain before and after the warm forging is preferably set to 0.4 to 2.1.
 本発明によれば、鍛造品を高強度化し、且つ、使用環境下での経時変化を抑制する鍛造方法を提供することができる。 According to the present invention, it is possible to provide a forging method that increases the strength of a forged product and suppresses the change over time in the use environment.
本実施形態に係る鍛造方法の工程図である。It is process drawing of the forging method which concerns on this embodiment. 本実施形態に係る鍛造方法におけるワークの一例であるタイロッドを示す図であり、(a)は切断後、(b)は冷間鍛造(予備成形)後、(c)は温間鍛造後、(d)はバリ抜き後、を示している。It is a figure which shows the tie rod which is an example of the workpiece | work in the forging method which concerns on this embodiment, (a) is after a cutting | disconnection, (b) is after cold forging (preformation), (c) is after warm forging, d) shows after deburring. 相当塑性歪み0.42のワークの顕微鏡写真である。It is a microscope picture of the workpiece | work of equivalent plastic strain 0.42. 相当塑性歪み1.39のワークの顕微鏡写真である。It is a microscope picture of the workpiece | work of the equivalent plastic distortion 1.39. 相当塑性歪み2.07のワークの顕微鏡写真である。It is a microscope picture of the workpiece | work of equivalent plastic strain 2.07. 相当塑性歪み2.66のワークの顕微鏡写真である。It is a microscope picture of the workpiece | work of equivalent plastic strain 2.66. 本実施形態に係る鍛造方法の一効果を示すグラフであり、圧下率と伸びとの関係を示している。It is a graph which shows one effect of the forging method which concerns on this embodiment, and has shown the relationship between a rolling reduction and elongation. 本実施形態に係る鍛造方法の一効果を示すグラフであり、歪みと引張強さとの関係を示している。It is a graph which shows one effect of the forging method concerning this embodiment, and has shown relation between distortion and tensile strength. 本実施形態に係る鍛造方法の一効果を示すグラフである。It is a graph which shows one effect of the forging method concerning this embodiment. 本実施形態に係る鍛造方法の一効果を示すグラフであり、使用時間と硬さとの関係を示している。It is a graph which shows one effect of the forging method concerning this embodiment, and has shown relation between use time and hardness. 比較例に係る鍛造方法の一効果を示すグラフであり、使用時間と硬さとの関係を示している。It is a graph which shows one effect of the forging method concerning a comparative example, and has shown relation between use time and hardness.
 本発明の一実施形態について、図1~図11を参照して説明する。 An embodiment of the present invention will be described with reference to FIGS.
 図1に示すように、本実施形態に係る鍛造方法は、ワーク10を温間鍛造により成型する温間鍛造工程(S105)と、鍛造品を高強度化し、かつ車両使用環境下等で製品が経時変化しないように、温間鍛造後のワーク10を人工的に予め時効させる人工時効工程(S106)と、を含んでいる。ここでは、ワーク10がアルミニウム合金製である場合を例示する。 As shown in FIG. 1, the forging method according to this embodiment includes a warm forging step (S105) in which a workpiece 10 is formed by warm forging, a forged product having high strength, and a product that is used in a vehicle use environment. An artificial aging step (S106) for artificially pre-aging the workpiece 10 after warm forging so as not to change with time. Here, a case where the workpiece 10 is made of an aluminum alloy is illustrated.
 また、ここでは、図2に示すように、ワーク10が、車輪を回転自在に支持するナックルを転舵する概ね棒状のタイロッドである場合を例示する。よって、製造されたワーク10(タイロッド)は、ナックルのボールジョイントに外嵌する半球殻状のボス部11と、アクチュエータ側のロッドに連結する丸棒状の軸部12と、ボス部11及び軸部12の間に形成された首部13と、を備えている。 Further, here, as shown in FIG. 2, a case where the workpiece 10 is a generally rod-shaped tie rod that steers a knuckle that rotatably supports a wheel is illustrated. Accordingly, the manufactured workpiece 10 (tie rod) includes a hemispherical boss portion 11 that fits outside the knuckle ball joint, a round rod-like shaft portion 12 that is connected to the actuator side rod, the boss portion 11 and the shaft portion. 12 and a neck 13 formed between the two.
 ワーク10において、概ね、軸部12、ボス部11、首部13の順で、その外径が小さくなっている。そして、これらの相当塑性歪は、歪前(鍛造前)のワーク10を基準として、軸部12の相当塑性歪(0.2等)、ボス部13の相当塑性歪(0.9等)、首部11の相当塑性歪(2.2等)、の順で大きくなっている(図9参照)。 The outer diameter of the workpiece 10 is generally reduced in the order of the shaft portion 12, the boss portion 11, and the neck portion 13. These equivalent plastic strains are equivalent to the equivalent plastic strain of the shaft portion 12 (0.2 etc.), the equivalent plastic strain of the boss portion 13 (0.9 etc.), based on the workpiece 10 before strain (before forging), The equivalent plastic strain (2.2 etc.) of the neck 11 increases in the order (see FIG. 9).
<切断工程、S101>
 工程S101において、アルミニウム合金製の素材から適切な大きさのワーク10を切り出す(図2(a)参照)。
<Cutting step, S101>
In step S101, an appropriately sized workpiece 10 is cut out from an aluminum alloy material (see FIG. 2A).
<冷間鍛造工程、S102>
 工程S102において、切り出したワーク10を冷間鍛造し予備成形する(図2(b)参照)。冷間鍛造とはワーク10をアルミニウム合金の再結晶温度以下であって、低温(例えば常温(約25℃)以下)で鍛造することである。
<Cold forging process, S102>
In step S102, the cut workpiece 10 is cold-forged and preformed (see FIG. 2B). Cold forging refers to forging the workpiece 10 at a temperature lower than the recrystallization temperature of the aluminum alloy and at a lower temperature (for example, lower than room temperature (about 25 ° C.)).
<溶体化工程、S103>
 工程S103において、冷間鍛造後のワーク10を溶体化処理する。具体的には、適宜な炉を使用してワーク10を溶体化処理温度(例えば、540℃)に加熱し、合金成分をワーク10に固溶させ時効析出しやすくするとともに、冷間鍛造による歪みを排除する。
<Solution process, S103>
In step S103, the workpiece 10 after cold forging is subjected to a solution treatment. Specifically, the workpiece 10 is heated to a solution treatment temperature (for example, 540 ° C.) using an appropriate furnace so that the alloy components are dissolved in the workpiece 10 to facilitate aging precipitation and distortion due to cold forging. Eliminate.
<温間加熱工程、S104>
 工程S104において、溶体化処理後のワーク10を温間鍛造するための温間温度に加熱する。温間加熱温度は、常温以上であって再結晶温度以下に設定される。具体的には、本実施形態では、ワーク10がアルミニウム合金製であるので、温間加熱温度は、例えば100℃~再結晶温度以下に設定される。
<Warm heating process, S104>
In step S104, the workpiece 10 after the solution treatment is heated to a warm temperature for warm forging. The warm heating temperature is set to normal temperature or higher and lower than the recrystallization temperature. Specifically, in this embodiment, since the workpiece 10 is made of an aluminum alloy, the warm heating temperature is set to, for example, 100 ° C. to the recrystallization temperature or less.
<温間鍛造工程、S105>
 工程S105において、温間温度(再結晶温度以下)に加熱されているワーク10を温間鍛造する(図2(c)参照)。
<Warm forging process, S105>
In step S105, the workpiece 10 heated to a warm temperature (below the recrystallization temperature) is warm forged (see FIG. 2C).
 温間鍛造において、鍛造方向(圧縮方向)におけるワーク10の相当塑性歪みは0.1~2.5通常範囲に設定する。 In warm forging, the equivalent plastic strain of the workpiece 10 in the forging direction (compression direction) is set in the normal range of 0.1 to 2.5.
 相当塑性歪2.5よりも高くなると、製造後におけるワーク10の引張強さが低下するからである。これは、相当塑性歪が2.5よりも高くなると、鍛造により生成した転位組織の一部がセル化(再結晶化の過程)してしまうからである(図6参照)。 This is because the tensile strength of the workpiece 10 after production decreases when the equivalent plastic strain becomes higher than 2.5. This is because, when the equivalent plastic strain is higher than 2.5, a part of the dislocation structure generated by forging becomes a cell (recrystallization process) (see FIG. 6).
 ここで、図8に示すように、相当塑性歪は、0.1~2.1の好適範囲とすることが好ましい(図3、図4、図5参照)。さらに、相当塑性歪は、0.4~2.1の最適範囲とすることが好ましい。引張強さが良好に高くなるからである。 Here, as shown in FIG. 8, the equivalent plastic strain is preferably in a suitable range of 0.1 to 2.1 (see FIGS. 3, 4, and 5). Further, the equivalent plastic strain is preferably in the optimum range of 0.4 to 2.1. This is because the tensile strength is improved satisfactorily.
 図8に示すように、相当塑性歪が大きくなると、ワーク10における転位の密度が徐々に高くなり、引張強さも徐々に高くなる関係となっている。 As shown in FIG. 8, when the equivalent plastic strain is increased, the dislocation density in the workpiece 10 is gradually increased, and the tensile strength is also gradually increased.
 図7に示すように、相当塑性歪が大きくなると、製造後におけるワーク10の伸び(%)が小さくなる傾向となっている。なお、伸びが小さくなると、ワーク10の靭性が低くなり、ワーク10が脆くなる。なお、一般的なアルミニウム合金の熱間鍛造品の引っ張り強さの範囲は約「285~385MPaであり、本発明では相当塑性歪みが0.1付近においても、一般的なアルミニウム合金の熱間鍛造の上限値付近の引っ張り強さを有することがわかる(図8参照)。 As shown in FIG. 7, when the equivalent plastic strain increases, the elongation (%) of the workpiece 10 after manufacture tends to decrease. In addition, when elongation becomes small, the toughness of the workpiece | work 10 will become low and the workpiece | work 10 will become weak. The range of tensile strength of a general aluminum alloy hot forged product is about “285 to 385 MPa. In the present invention, even when the equivalent plastic strain is around 0.1, the hot forging of a general aluminum alloy is performed. It can be seen that it has a tensile strength near the upper limit value (see FIG. 8).
<人工時効工程、S106>
 工程S106において、温間鍛造後のワーク10を人工時効する。具体的には、高強度化、かつ製造後の使用中に製品(ワーク10)が経時変化しないように、所定人工時効温度、所定人工時効時間にて、ワーク10を人工的に予め時効させる。
<Artificial aging process, S106>
In step S106, the workpiece 10 after warm forging is artificially aged. Specifically, the workpiece 10 is artificially aged in advance at a predetermined artificial aging temperature and a predetermined artificial aging time so that the product (workpiece 10) does not change over time during use after manufacturing.
 所定人工時効温度は、製造後の製品(ワーク10)の曝される使用環境温度と同等以上の温度に設定される。これにより、製造後の使用中における製品(ワーク10)の経時変化を低減できるからである。例えば、製造後の製品(ワーク10)がタイロッドである場合、所定人工時効温度は150~200℃に設定される(図10参照)。 The predetermined artificial aging temperature is set to a temperature equal to or higher than the operating environment temperature to which the product (work 10) after manufacture is exposed. This is because the change over time of the product (workpiece 10) during use after manufacture can be reduced. For example, when the manufactured product (workpiece 10) is a tie rod, the predetermined artificial aging temperature is set to 150 to 200 ° C. (see FIG. 10).
 所定人工時効時間は、事前試験等によって求められ、製造後に経時変化しない範囲でなるべく短い時間に設定される。 The predetermined artificial aging time is determined by a preliminary test or the like, and is set as short as possible within a range that does not change with time after manufacture.
<バリ抜き(トリミング)工程>
 工程S107において、人工時効後のワーク10をバリ抜き(トリミング)する(図2(d)参照)。具体的には、温間鍛造で形成されたワーク10のバリ14を切除する。
<Deburring (trimming) process>
In step S107, the workpiece 10 after artificial aging is deburred (trimmed) (see FIG. 2D). Specifically, the burr 14 of the workpiece 10 formed by warm forging is cut off.
<仕上げ工程>
 工程S108において、バリ抜き後のワーク10を仕上げ処理する。具体的に例えば、ワーク10の表面を研磨、洗浄する。
<Finishing process>
In step S108, the workpiece 10 after deburring is finished. Specifically, for example, the surface of the workpiece 10 is polished and cleaned.
 このような鍛造方法によれば、温間鍛造後にワーク10を人工時効することで、ワーク10の硬さを高めることができる(図9参照)。すなわち、ワーク10を人工時効しているので、製造後の使用中に、製品(ワーク10)の硬さが変化せず、低下することはない(図10参照)。 Such a forging method can increase the hardness of the workpiece 10 by artificially aging the workpiece 10 after warm forging (see FIG. 9). That is, since the work 10 is artificially aged, the hardness of the product (work 10) does not change and does not decrease during use after manufacture (see FIG. 10).
 これに対して、温間鍛造後に人工時効せず、そのまま使用する場合、製品(ワーク10)の使用中に経時変化が進み、製品の硬さが安定せず変化する場合がある(図9の比較例、図11参照)。 On the other hand, when artificial aging is not performed after warm forging and the product is used as it is, a change with time progresses during use of the product (workpiece 10), and the hardness of the product may change without stability (FIG. 9 Comparative example, see FIG. 11).
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されず、適宜変更自由である。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, It can change suitably.
 前記した実施形態では、ワーク10がアルミニウム合金製である構成を例示したが、その他の種類の金属である構成でもよい。 In the above-described embodiment, the configuration in which the workpiece 10 is made of an aluminum alloy is exemplified, but a configuration in which other types of metals are used may be used.
 10  ワーク
 11  ボス部
 12  軸部
 13  首部
 14  ボス部
10 Workpiece 11 Boss part 12 Shaft part 13 Neck part 14 Boss part

Claims (3)

  1.  溶体化処理した金属製のワークを再結晶温度以下で温間鍛造する温間鍛造工程と、
     前記温間鍛造工程の後、製造後における使用環境温度と同等以上の温度でワークを人工的に予め時効させる人工時効工程と、
     を含む
     ことを特徴とする鍛造方法。
    A warm forging process in which a solution-treated metal workpiece is warm-forged at a temperature below the recrystallization temperature;
    After the warm forging step, an artificial aging step for artificially pre-aging the workpiece at a temperature equal to or higher than the use environment temperature after production,
    The forging method characterized by including.
  2.  前記温間鍛造工程において、温間鍛造前後における相当塑性歪みを0.1~2.5とする
     ことを特徴とする請求項1に記載の鍛造方法。
    The forging method according to claim 1, wherein, in the warm forging step, the equivalent plastic strain before and after the warm forging is set to 0.1 to 2.5.
  3.  前記温間鍛造工程において、温間鍛造前後における相当塑性歪みを0.4~2.1とする
     ことを特徴とする請求項1に記載の鍛造方法。
    The forging method according to claim 1, wherein, in the warm forging step, an equivalent plastic strain before and after the warm forging is set to 0.4 to 2.1.
PCT/JP2016/058547 2015-04-02 2016-03-17 Forging method WO2016158462A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016001543.7T DE112016001543B4 (en) 2015-04-02 2016-03-17 Forging process
JP2017509555A JP6371468B2 (en) 2015-04-02 2016-03-17 Forging method
US15/562,579 US20180105909A1 (en) 2015-04-02 2016-03-17 Forging method
CN201680018694.9A CN107427898B (en) 2015-04-02 2016-03-17 Forging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075685 2015-04-02
JP2015075685 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016158462A1 true WO2016158462A1 (en) 2016-10-06

Family

ID=57004235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058547 WO2016158462A1 (en) 2015-04-02 2016-03-17 Forging method

Country Status (5)

Country Link
US (1) US20180105909A1 (en)
JP (1) JP6371468B2 (en)
CN (1) CN107427898B (en)
DE (1) DE112016001543B4 (en)
WO (1) WO2016158462A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110076523A (en) * 2019-04-04 2019-08-02 苏州胜利精密制造科技股份有限公司 A kind of manufacturing method of laptop case
CN114769482A (en) * 2022-03-01 2022-07-22 东莞领益精密制造科技有限公司 Moderate-strength aluminum alloy isothermal die forging process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196009A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
JP2010137284A (en) * 2008-11-13 2010-06-24 Tobata Turret Kosakusho:Kk Isothermal forging method and isothermal forging device
JP2014218685A (en) * 2013-05-01 2014-11-20 本田技研工業株式会社 Al-Mg-Si BASED ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219176A (en) * 1989-11-02 1993-06-15 James Mitchell One-piece steering knuckle assembly
US20050111908A1 (en) * 2003-11-24 2005-05-26 Green Steve J. Tie rod end
EP1911612A1 (en) * 2006-10-13 2008-04-16 Industria Auxiliar Alavesa, S.A. (Inauxa) Suspension arm for a motor vehicle wheel suspension
KR101423447B1 (en) * 2010-12-22 2014-07-24 쇼와 덴코 가부시키가이샤 Method for producing formed material for brake piston
WO2013172912A2 (en) * 2012-03-07 2013-11-21 Alcoa Inc. Improved aluminum-lithium alloys, and methods for producing the same
JP5837026B2 (en) * 2013-03-29 2015-12-24 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196009A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
JP2010137284A (en) * 2008-11-13 2010-06-24 Tobata Turret Kosakusho:Kk Isothermal forging method and isothermal forging device
JP2014218685A (en) * 2013-05-01 2014-11-20 本田技研工業株式会社 Al-Mg-Si BASED ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JPWO2016158462A1 (en) 2017-11-09
DE112016001543T5 (en) 2017-12-21
CN107427898B (en) 2019-05-10
JP6371468B2 (en) 2018-08-08
CN107427898A (en) 2017-12-01
DE112016001543B4 (en) 2021-03-11
US20180105909A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP5050199B2 (en) Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
JP2006274392A (en) BOLT MADE OF TITANIUM ALLOY AND METHOD FOR PRODUCING BOLT MADE OF TITANIUM ALLOY HAVING TENSILE STRENGTH OF AT LEAST 800 MPa
JP4798674B1 (en) Rack bar and manufacturing method thereof
CN104607580A (en) Forging forming technology of aluminum alloy straight-flanked ring with extra-large specification
JP2008196009A (en) Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
CN103009011A (en) Processing method for stainless steel high-strength bolt
JP6371468B2 (en) Forging method
US20090007993A1 (en) Aluminum Alloy pipe and method of manufacturing same
US10633020B2 (en) Tie rod end
JP2006193765A (en) Method for producing member made of aluminum alloy
Luis et al. Manufacturing of nanostructured rings from previously ECAE-processed AA5083 alloy by isothermal forging
JP2004074978A (en) Suspension part for automobile and manufacturing method for the same
US2356686A (en) Manufacture of stud bolts
KR20140014505A (en) Manufacturing method for eye-forming of pipe stabilizer bar using multistage upsetting
JPH06248402A (en) Production of member made of magnesium alloy
JP2005194620A (en) Aluminum-alloy pipe and its manufacturing method
JP2016209895A (en) Constant temperature forged component and manufacturing method for constant temperature forged component
JP2006144063A (en) Titanium alloy-made engine valve manufacturing method
JP5363861B2 (en) Forged materials for automobile suspension arms
KR101182592B1 (en) Product method of ball stud fastener
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF &gt;=3 mm
KR100297093B1 (en) Ball studs and their manufacturing method
JP5634382B2 (en) Manufacturing method of wheel nut wrench
JP2023049487A (en) Production method for suspension part
JP2009202168A (en) Method for cold-forging fitting part having ultra-high strength used as material of austenite-300 series

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509555

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562579

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001543

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772345

Country of ref document: EP

Kind code of ref document: A1