JP2006144063A - Titanium alloy-made engine valve manufacturing method - Google Patents

Titanium alloy-made engine valve manufacturing method Download PDF

Info

Publication number
JP2006144063A
JP2006144063A JP2004334880A JP2004334880A JP2006144063A JP 2006144063 A JP2006144063 A JP 2006144063A JP 2004334880 A JP2004334880 A JP 2004334880A JP 2004334880 A JP2004334880 A JP 2004334880A JP 2006144063 A JP2006144063 A JP 2006144063A
Authority
JP
Japan
Prior art keywords
titanium alloy
temperature
slag
forging
engine valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004334880A
Other languages
Japanese (ja)
Inventor
Takashi Sako
崇 佐古
Yukihiro Isogawa
幸宏 五十川
Masahito Hirose
正仁 廣瀬
Hiroaki Asanuma
宏昭 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Fuji Oozx Inc
Original Assignee
Daido Steel Co Ltd
Fuji Oozx Inc
Fuji Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Fuji Oozx Inc, Fuji Valve Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004334880A priority Critical patent/JP2006144063A/en
Publication of JP2006144063A publication Critical patent/JP2006144063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium alloy-made engine valve manufacturing method by which a valve having a preferable structure in each part, in other words, an acicular structure in a valve head part and an equi-axed structure in a shaft part is realized simultaneously with the forging without any special heating after the forging, using a extrusion-die forging method. <P>SOLUTION: A pair of upper and lower forging dies having a valve shape are used in a heated condition. A slag having the diameter larger than that of a shaft part is chamfered at an end face thereof, heated at the temperature (α+β) range, and inserted from a valve head side. A lower portion of the slag is extruded forward to extrusion-forge the shaft part, and an upper portion of the slag is die forged to develop the material in the transverse direction and mold a valve head part. By utilizing the heat generated by the composition deformation of the valve head part, the temperature of a periphery of the valve head part is set to be the value exceeding the β transus temperature of the titanium alloy, and the structure of the portion is the acicular (α+β) structure. In a Ti-6Al-4V alloy (the β transus temperature: 980°C), the heating temperature of the slag is ≥ 800°C, and, preferably, ≥ 900°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタン合金、代表的にはTi−6Al−4V合金を材料として、エンジンバルブ、とくに自動車エンジンのバルブを製造する方法に関する。 The present invention relates to a method of manufacturing an engine valve, particularly a valve of an automobile engine, using a titanium alloy, typically a Ti-6Al-4V alloy as a material.

自動車エンジンのバルブをはじめとするエンジンバルブは、良好なレスポンスを実現する上で軽量であることが望まれるから、チタン合金のような比重の小さい材料で製造することが好ましい。エンジンバルブはまた、軽量であるだけでなく強度が高く、かつ耐熱性にすぐれていることが必要であるから、それに適した材料を選ばなければならない。上記したTi−6Al−4V合金は、これらの諸要求を満たす材料として好適なものである。ところが、一般に機械的特性のすぐれたチタン合金は、成形性が低いという弱点があり、この点ではTi−6Al−4V合金も例外でない。 Engine valves such as those for automobile engines are preferably made of a material having a low specific gravity such as a titanium alloy because it is desired to be lightweight in order to achieve a good response. In addition to being light weight, the engine valve needs to have high strength and excellent heat resistance, so a material suitable for it must be selected. The Ti-6Al-4V alloy described above is suitable as a material that satisfies these requirements. However, a titanium alloy having excellent mechanical properties generally has a weakness of low formability. In this respect, a Ti-6Al-4V alloy is no exception.

これまで、チタン合金でエンジンバルブを製造する方法として知られ、実用されてきたのは、電気アップセット−型入れ鍛造法であった。この製造方法は、まずバルブ軸部の直径と同じ直径を有するチタン合金線材を用意し、その一端を通電加熱して据え込むことにより傘部となる大径部分を形成し、それを鍛造型に入れて傘部を鍛造する、という2工程からなる。この方法は、まず、比較的細いチタン合金線材を用意するという工程からして、チタン合金のもつ低い成形性ゆえに不利であり、その上に電気アップセットの工程が時間がかかる(1〜2分間)ので、全体として、生産性が低いという難点があった。いうまでもなく、生産性の低さは、材料の価格とあいまって、本来は低コストで製造されるべきバルブのコストを押し上げていた。 Up to now, the electric upset-molding forging method has been known and used as a method for manufacturing engine valves with a titanium alloy. In this manufacturing method, first, a titanium alloy wire having the same diameter as that of the valve shaft portion is prepared, and one end thereof is energized and heated to form a large-diameter portion that becomes an umbrella portion. It consists of two steps of inserting and forging the umbrella part. This method is disadvantageous because of the process of preparing a relatively thin titanium alloy wire, because of the low formability of the titanium alloy, and the electric upset process takes time (1-2 minutes). ) As a whole, there was a problem that productivity was low. Needless to say, the low productivity, combined with the price of materials, has pushed up the cost of valves that should be manufactured at low cost.

バルブの組織についていえば、傘部は高温疲労強度が高い針状組織すなわち針状αまたは針状(α+β)であることが好ましく、一方、軸部は靭延性においてすぐれている等軸組織であることが好ましい。このような観点から、バルブ製造に適したチタン合金線材として、(α+β)型チタン合金線材のミクロ組織を6〜25μmの粒径の、等軸α晶組織、針状α晶組織または等軸α晶組織と針状α晶組織との混合組織のいずれかとしたものが提案された(特許文献1)。 As for the structure of the valve, the umbrella is preferably a needle-like structure having high-temperature fatigue strength, that is, needle-like α or needle-like (α + β), while the shaft is an equiaxed structure having excellent toughness. It is preferable. From this point of view, as a titanium alloy wire suitable for valve production, the microstructure of (α + β) type titanium alloy wire is an equiaxed α crystal structure, acicular α crystal structure, or equiaxed α having a particle size of 6 to 25 μm. There has been proposed a mixed structure of a crystal structure and an acicular α crystal structure (Patent Document 1).

前記した電気アップセット−型入れ鍛造法によるエンジンバルブ製造法の一例を挙げれば、等軸状α組織をなす(α+β)相またはニアα相チタン合金からなる軸状素材の一端部に、βトランザス温度を超える温度で加工した「拡径部」を形成した後、直ちに熱間鍛造することにより、軸部の一端に針状α組織の傘部を形成することからなる製造方法が開発されている(特許文献2)。
特開平6−81059 特開2001−234313
An example of an engine valve manufacturing method by the above-described electric upset-die-insertion forging method is that β transus A manufacturing method has been developed which comprises forming an umbrella portion of needle-like α tissue at one end of a shaft portion by immediately forging hot after forming a “diameter enlarged portion” processed at a temperature exceeding the temperature. (Patent Document 2).
JP-A-6-81059 JP 2001-234313 A

チタン合金でエンジンバルブを製造する方法の生産性を向上させる方策として、発明者らは、軸部より径が太い円柱状で、端面の面取りを行なったスラグを用意し、それをバルブ形状をそなえた鍛造型に置き、型打ち鍛造により一挙にバルブ形状の鍛造品を得ることを着想し、試行して成功を収めた。この方法によるときは、スラグの下部が鍛造型の軸部に押し込まれ、前方押し出しによって細径にされる搾出が行なわれ、一方、スラグの上部は型打ち鍛造により傘部に成形される。 As a measure to improve the productivity of a method of manufacturing an engine valve using a titanium alloy, the inventors prepared a cylindrical slag whose diameter is thicker than the shaft and chamfered the end face, and prepared the valve shape. It was put into a forging die, and was conceived to obtain a valve-shaped forging at once by stamping forging. When this method is used, the lower portion of the slag is pushed into the shaft portion of the forging die, and the slag is squeezed out by forward extrusion, while the upper portion of the slag is formed into an umbrella portion by stamping forging.

本発明の目的は、上記した搾出−型打ち鍛造法によるチタン合金製のエンジンバルブの製造において、バルブの各部分が好ましい組織、すなわち傘部は針状組織、軸部は等軸組織を有するものを、鍛造後に特段の加熱処理を行なうことなく、鍛造と同時に実現することができる製造方法を提供することにある。 The object of the present invention is to produce a titanium alloy engine valve by the above-described squeeze-die-forging method, in which each part of the valve has a preferred structure, that is, the umbrella part has a needle-like structure and the shaft part has an equiaxed structure. An object of the present invention is to provide a manufacturing method that can be realized simultaneously with forging without performing special heat treatment after forging.

上記の目的を達成する本発明のチタン合金製エンジンバルブの製造方法は、チタン合金製で、端面面取りを行なったスラグから、搾出および傘打ち加工を同時に行なう鍛造によりエンジンバルブを製造する方法であって、バルブ形状を備えた上下一対の鍛造用の金型を用い、軸部の径より太い径をもつスラグを(α+β)域の温度に加熱したものを、加熱した金型の傘部の側から挿入し、スラグの下部を前方押出しすることにより軸部を搾出成形し、続いてスラグの上部を型打ちして材料を横方向に展開させることにより傘部を成形する工程からなり、原理的にいって、傘部の塑性変形によって生じる熱を利用して、傘部の周辺部の温度をそのチタン合金のβトランザス温度を超える温度とすることにより、その部分の組織を針状(α+β)組織とすることを特徴とする製造方法である。 The titanium alloy engine valve manufacturing method of the present invention that achieves the above-mentioned object is a method of manufacturing an engine valve by forging that simultaneously squeezes and bevels from slag that is made of a titanium alloy and chamfered at the end face. Then, using a pair of upper and lower forging dies having a valve shape, a slag having a diameter larger than the diameter of the shaft portion is heated to a temperature in the (α + β) region. Inserting from the side, forming the shaft part by extruding the lower part of the slag forward, and then forming the umbrella part by stamping the upper part of the slag and expanding the material laterally, In principle, using the heat generated by the plastic deformation of the umbrella part, the temperature of the peripheral part of the umbrella part is set to a temperature exceeding the β transus temperature of the titanium alloy, so that the structure of the part is needle-like ( α + β) Tissue It is a manufacturing method characterized by these.

本発明の製造方法に従ってチタン合金を材料とするエンジンバルブを製造すれば、鍛造素材として、軸部の径に合わせたチタン合金線材を使用せず、より大径の円柱状スラグを使用することができ、素材の製造が容易であることと、従来の方法で行なっていた電気アップセットの工程を必要とせず、一回の型打ち搾出鍛造でバルブが得られるから、工程が少なくなり所要時間が短縮されて、生産性が著しく向上する。そのため、エンジンバルブがより低廉な価格で提供できるという利益がある。その上、得られたバルブは、傘部が針状組織であって高温疲労強度が高く、軸部は等軸組織であって靭延性が高く、それぞれ望ましい特性を有している。 If an engine valve made of a titanium alloy is manufactured according to the manufacturing method of the present invention, it is possible to use a larger diameter cylindrical slag as a forging material without using a titanium alloy wire matched to the diameter of the shaft portion. It is easy to manufacture the material and does not require the electric upset process that was performed by the conventional method, and the valve can be obtained by one stamping and forging. Is shortened and productivity is remarkably improved. Therefore, there is an advantage that the engine valve can be provided at a lower price. In addition, the obtained valve has a needle-shaped structure with a high temperature fatigue strength and a shaft part with an equiaxed structure with high toughness and ductility, each having desirable characteristics.

自動車エンジンバルブについてみれば、従来はチタン合金製のバルブはレーシングカーや高級車にしか使用できなかったものが、コストの低下と高い性能の実現により中級車以下にも使用することができるようになり、レスポンスの向上などエンジン性能を高めるばかりでなく、燃費の改善などを通じて環境への負荷を減らすことにも寄与する。 Looking at automotive engine valves, titanium alloy valves can only be used for racing cars and high-end cars, but they can also be used for intermediate and lower cars by reducing costs and achieving high performance. In addition to improving engine performance, such as improving response, it also contributes to reducing environmental impact through improvements in fuel consumption.

上記の原理に基づく本発明のチタン合金製エンジンバルブの製造方法を、より詳細に説明すれば、まず、スラグの端面の面取りを行なうことは、シャープエッジによるスラグの温度低下を防止し、温度を均一に保つという効果を与える。面取りはまた、鍛造時のカジリや軸ワレを防ぐはたらきもある。 The titanium alloy engine valve manufacturing method of the present invention based on the above principle will be described in more detail. First, the chamfering of the end surface of the slag prevents the temperature drop of the slag due to the sharp edge, and the temperature is reduced. The effect of keeping it uniform is given. Chamfering also serves to prevent galling and cracking during forging.

本発明の効果を確実に得るためには、使用するチタン合金に応じて、鍛造するスラグの加熱温度と型打ち鍛造により傘部の周辺部に生じる相当塑性ひずみの量との関係によって定まる到達温度が、そのチタン合金のβトランザス温度を超えるような加熱温度を選択することが重要である。発明者らは、型打ち鍛造により傘部を成形するときに、傘部の各位置における相当塑性ひずみの分布がどのようになるかを、コンピュータ・シミュレーションにより算出した。その結果は、図1に示すとおりである。これによれば、傘部の周辺部に生じる相当塑性ひずみの量は、1.8〜2.0である。 In order to reliably obtain the effects of the present invention, the ultimate temperature determined by the relationship between the heating temperature of the slag to be forged and the amount of equivalent plastic strain generated in the peripheral portion of the umbrella portion by die forging according to the titanium alloy to be used. However, it is important to select a heating temperature that exceeds the β transus temperature of the titanium alloy. The inventors calculated by computer simulation what the distribution of equivalent plastic strain at each position of the umbrella part would be when the umbrella part was formed by stamping forging. The result is as shown in FIG. According to this, the amount of equivalent plastic strain generated in the peripheral part of the umbrella part is 1.8 to 2.0.

一方、あらかじめ一定の温度に加熱されたチタン合金を鍛造してひずみを与えたとき、それに起因する発熱が材料の温度を上昇させ、結果としてどの程度の温度に到達するかを、Ti−6Al−4V合金(βトランザス温度:980℃)を対象として調べ、図2に示す結果を得た。 On the other hand, when a titanium alloy heated to a certain temperature in advance is strained by forging, the heat generated thereby raises the temperature of the material, and as a result, how much temperature is reached is determined as Ti-6Al- A 4V alloy (β transus temperature: 980 ° C.) was examined, and the results shown in FIG. 2 were obtained.

図1および図2を総合していえることは、鍛造の対象とするスラグを、少なくとも800℃以上に加熱しておけば、傘部の周縁部において相当塑性ひずみが1.8〜2.0となる結果、その部分の温度が容易にβトランザス温度を超える、ということである。確実にβトランザス温度を超えるためには、加熱温度を900℃以上、950℃程度にすることが好ましい。要するに、βトランザス温度には達しないが、それに近い温度であることが好ましい。 1 and 2 can be said collectively if the slag to be forged is heated to at least 800 ° C. or more, the equivalent plastic strain is 1.8 to 2.0 at the peripheral edge of the umbrella. As a result, the temperature of the part easily exceeds the β transus temperature. In order to reliably exceed the β transus temperature, it is preferable to set the heating temperature to 900 ° C. or higher and about 950 ° C. In short, although it does not reach the β transus temperature, it is preferably a temperature close to it.

傘部の本体部分は、図2にみるように、さらに高い相当塑性ひずみ(2〜3)を生じるから、いっそう容易にβトランザス温度を超える。傘部の軸に連なる基部は、相当塑性ひずみが低い(0.7〜1.0)から、多くの場合、βトランザス温度を超えない。このようにして、傘部の周辺部および本体は針状(α+β)組織、傘部の基部から軸部にかけては等軸(α+β)組織を有するエンジンバルブが得られる。 As shown in FIG. 2, the main body portion of the umbrella portion generates a higher equivalent plastic strain (2 to 3), so that the β transus temperature is more easily exceeded. In many cases, the base portion connected to the shaft of the umbrella portion does not exceed the β transus temperature because the equivalent plastic strain is low (0.7 to 1.0). In this way, an engine valve having a needle-like (α + β) structure in the peripheral part and the main body of the umbrella part and an equiaxed (α + β) structure from the base part to the shaft part of the umbrella part is obtained.

鍛造金型は、常用の熱間加工用のダイス鋼で製造したものを使用することができる。鍛造に先立って、金型は、許容される限度で加熱しておくことが、材料の温度を確実にβトランザス温度以上に到達させる上で望ましい。少なくとも100℃、またはそれ以上に加熱しておく。好ましくは、300℃以上にする。ただし、常用の熱間加工用ダイス鋼で製造した金型を加熱できる温度は500℃が限界であって、それ以上は、金型が変形しやすくなって適当でない。実用上は、450℃程度に止めるのがよい。 As the forging die, a die made of conventional hot working die steel can be used. Prior to forging, it is desirable to heat the mold to an acceptable limit in order to ensure that the temperature of the material reaches the β transus temperature or higher. Heat to at least 100 ° C. or higher. Preferably, it is set to 300 ° C. or higher. However, the limit of the temperature at which a metal mold manufactured with conventional hot working die steel can be heated is 500 ° C., and beyond that, the mold is easily deformed and is not suitable. Practically, it is better to stop at about 450 ° C.

本発明の実施に当たっては、型打ち鍛造の分野において知られている技術を利用することが推奨される。たとえば、鍛造するスラグに黒鉛被膜を施すことや、金型に潤滑剤を塗布しておくことなどがそれである。潤滑剤としては、鉱物油が好適である。 In practicing the present invention, it is recommended to use techniques known in the field of die forging. For example, a graphite film is applied to the slag to be forged, or a lubricant is applied to the mold. As the lubricant, mineral oil is suitable.

Ti−6Al−4V合金を材料として、図3に示す形状のエンジンバルブを製造した。この合金から径16mmの棒を製造し、長さ40mmに切断して、鍛造用スラグとした。スラグを950℃、金型を200℃に加熱して、鍛造を行なった。得られたバルブ製品を縦に切断して、組織を調べた。傘部の周辺部および本体は約90%が針状組織、残りが等軸組織であって、傘部の基部から軸部は、ほぼ100%が等軸組織であった。 Using the Ti-6Al-4V alloy as a material, an engine valve having the shape shown in FIG. 3 was manufactured. A bar with a diameter of 16 mm was manufactured from this alloy and cut into a length of 40 mm to obtain a forging slag. Forging was performed by heating the slag to 950 ° C. and the mold to 200 ° C. The obtained valve product was cut vertically to examine the tissue. About 90% of the peripheral part and the main body of the umbrella part had a needle-like structure and the rest had an equiaxed structure, and almost 100% of the part from the base part to the shaft part of the umbrella part had an equiaxed structure.

本発明の製造方法にしたがって型打ち鍛造によりエンジンバルブを製造したときに、バルブ傘部の各位置において生じる相当塑性ひずみの量を示す断面図。Sectional drawing which shows the quantity of the equivalent plastic strain which arises in each position of a valve umbrella part, when an engine valve is manufactured by stamping forging according to the manufacturing method of this invention. 鍛造がもたらす相当塑性ひずみの量と、それに起因する温度上昇により鍛造材料が到達する温度との関係を、種々の加熱温度において示したグラフ。The graph which showed the relationship between the amount of the equivalent plastic strain which a forging brings, and the temperature which a forging material reaches | attains with the temperature rise resulting from it at various heating temperature. 本発明の実施例で製造したエンジンバルブの形状・寸法を示す側面図。The side view which shows the shape and dimension of the engine valve manufactured in the Example of this invention.

Claims (5)

チタン合金製で、端面面取りを行なったスラグから、搾出および傘打ち加工を同時に行なう鍛造によりエンジンバルブを製造する方法であって、バルブ形状を備えた上下一対の鍛造用の金型を用い、軸部の径より太い径をもつスラグを(α+β)域の温度に加熱したものを、加熱した金型に傘部の側から挿入し、スラグの下部を前方押出しすることにより軸部を搾出成形し、続いてスラグの上部を型打ちして材料を横方向に展開させることにより傘部を成形する工程からなり、傘部の塑性変形によって生じる熱を利用して、傘部の周辺部の温度を、そのチタン合金のβトランザス温度を超える温度とすることにより、その部分の組織を針状(α+β)組織とすることを特徴とするチタン合金製エンジンバルブの製造方法。 It is a method of manufacturing an engine valve by forging which is made of a titanium alloy and which is subjected to crushing and umbrella machining simultaneously from a slag whose end face is chamfered, using a pair of upper and lower forging molds having a valve shape, A slag with a diameter larger than the diameter of the shaft is heated to a temperature in the (α + β) region, inserted into the heated mold from the umbrella side, and the lower part of the slag is extruded forward to squeeze the shaft. And then forming the umbrella part by stamping the upper part of the slag and deploying the material in the lateral direction. Using the heat generated by the plastic deformation of the umbrella part, A method for producing an engine valve made of titanium alloy, characterized in that the temperature of the titanium alloy exceeds the β transus temperature of the titanium alloy so that the structure of the portion has a needle-like (α + β) structure. 使用するチタン合金に応じて、鍛造するスラグの加熱温度と型打ち鍛造により傘部の周辺部に生じる相当塑性ひずみの量との関係によって定まる到達温度が、そのチタン合金のβトランザス温度を超えるような加熱温度を選択して実施する請求項1のチタン合金製エンジンバルブの製造方法。 Depending on the titanium alloy used, the ultimate temperature determined by the relationship between the heating temperature of the slag to be forged and the amount of equivalent plastic strain generated at the periphery of the umbrella by die-casting forging exceeds the β transus temperature of the titanium alloy. The method for manufacturing a titanium alloy engine valve according to claim 1, wherein the heating is performed by selecting a proper heating temperature. チタン合金として、Ti−6Al−4V合金(βトランザス温度:980℃)を使用し、スラグの加熱温度を930〜1030℃として実施する請求項1または2のチタン合金製エンジンバルブの製造方法。 The titanium alloy engine valve manufacturing method according to claim 1 or 2, wherein a Ti-6Al-4V alloy (β transus temperature: 980 ° C) is used as the titanium alloy, and the heating temperature of the slag is 930 to 1030 ° C. スラグに黒鉛被膜を施し、金型の潤滑剤として鉱物油を用いて実施する請求項1ないし3のいずれかのチタン合金製エンジンバルブの製造方法。 The titanium alloy engine valve manufacturing method according to any one of claims 1 to 3, wherein the slag is coated with a graphite film and mineral oil is used as a mold lubricant. 鍛造用の金型の温度を100〜500℃に加熱して実施する請求項1ないし3のいずれかのチタン合金製エンジンバルブの製造方法。 The method for producing an engine valve made of titanium alloy according to any one of claims 1 to 3, wherein the forging die is heated to a temperature of 100 to 500 ° C.
JP2004334880A 2004-11-18 2004-11-18 Titanium alloy-made engine valve manufacturing method Pending JP2006144063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334880A JP2006144063A (en) 2004-11-18 2004-11-18 Titanium alloy-made engine valve manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334880A JP2006144063A (en) 2004-11-18 2004-11-18 Titanium alloy-made engine valve manufacturing method

Publications (1)

Publication Number Publication Date
JP2006144063A true JP2006144063A (en) 2006-06-08

Family

ID=36624107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334880A Pending JP2006144063A (en) 2004-11-18 2004-11-18 Titanium alloy-made engine valve manufacturing method

Country Status (1)

Country Link
JP (1) JP2006144063A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040592A (en) * 2010-08-19 2012-03-01 Sumitomo Metal Ind Ltd Method for manufacturing titanium alloy forged material
CN106862452A (en) * 2015-12-14 2017-06-20 陕西宏远航空锻造有限责任公司 A kind of isothermal β forging methods of TC17 titanium alloys blisk
CN113493886A (en) * 2021-06-11 2021-10-12 天津职业技术师范大学(中国职业培训指导教师进修中心) Forming method for improving structure uniformity of titanium alloy bar by combining free forging and pulse current auxiliary extrusion
CN114260400A (en) * 2021-12-07 2022-04-01 中国第二重型机械集团德阳万航模锻有限责任公司 Manufacturing method of titanium alloy aviation joint forging
CN115194502A (en) * 2022-07-15 2022-10-18 安徽天航机电有限公司 Method and device for machining pipe joint of asymmetric titanium alloy die forging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040592A (en) * 2010-08-19 2012-03-01 Sumitomo Metal Ind Ltd Method for manufacturing titanium alloy forged material
CN106862452A (en) * 2015-12-14 2017-06-20 陕西宏远航空锻造有限责任公司 A kind of isothermal β forging methods of TC17 titanium alloys blisk
CN113493886A (en) * 2021-06-11 2021-10-12 天津职业技术师范大学(中国职业培训指导教师进修中心) Forming method for improving structure uniformity of titanium alloy bar by combining free forging and pulse current auxiliary extrusion
CN114260400A (en) * 2021-12-07 2022-04-01 中国第二重型机械集团德阳万航模锻有限责任公司 Manufacturing method of titanium alloy aviation joint forging
CN114260400B (en) * 2021-12-07 2023-11-10 中国第二重型机械集团德阳万航模锻有限责任公司 Manufacturing method of titanium alloy aviation connector forging
CN115194502A (en) * 2022-07-15 2022-10-18 安徽天航机电有限公司 Method and device for machining pipe joint of asymmetric titanium alloy die forging
CN115194502B (en) * 2022-07-15 2023-08-11 安徽天航机电有限公司 Processing method and device for pipe joint of asymmetric titanium alloy die forging

Similar Documents

Publication Publication Date Title
JP6626441B2 (en) Method of manufacturing forged products and other processed products
JP6084565B2 (en) Alpha / beta titanium alloy processing
CN109482796B (en) Beta forging and heat treatment method of TC4 titanium alloy disc forging
JP4798674B1 (en) Rack bar and manufacturing method thereof
TWI361117B (en)
JP6091046B2 (en) Aluminum alloy bolt manufacturing method and aluminum alloy bolt
JP6079294B2 (en) Free forging method of Ni-base heat-resistant alloy member
JP2018069255A (en) Pure titanium metal wire and processing method thereof
JP2014161861A5 (en)
CN112281025A (en) TC4 titanium alloy wire and preparation method thereof
JP2013173166A (en) Method for superplastic forging of nickel-based alloy
JP2006144063A (en) Titanium alloy-made engine valve manufacturing method
JPH10226839A (en) High strength aluminum alloy wire-coil spring and its production
KR20040091280A (en) Method for manufacturing of magnesium alloy billets for thixoforming process
DE102014220338A1 (en) Method for producing a fastening element and fastening element
JP2014223644A (en) Hot extrusion forging method
JP2006110621A (en) Method for producing aluminum alloy-made die-forged product, and aluminum alloy-made preformed article for warm die-forging
JP6371468B2 (en) Forging method
JP3653258B2 (en) Fastening part manufacturing method and fastening part
JP6795812B2 (en) Aluminum alloy bolt
JP2016209895A (en) Constant temperature forged component and manufacturing method for constant temperature forged component
JP3097476B2 (en) Hot plastic working method
JP2006142332A (en) Method for producing engine valve made of titanium alloy
JP2002035884A (en) Gear die for warm or hot forging and manufacturing method thereof
JP5348624B2 (en) Magnesium alloy screw