JP4058398B2 - Aluminum alloy forging with excellent high-temperature fatigue strength - Google Patents

Aluminum alloy forging with excellent high-temperature fatigue strength Download PDF

Info

Publication number
JP4058398B2
JP4058398B2 JP2003312897A JP2003312897A JP4058398B2 JP 4058398 B2 JP4058398 B2 JP 4058398B2 JP 2003312897 A JP2003312897 A JP 2003312897A JP 2003312897 A JP2003312897 A JP 2003312897A JP 4058398 B2 JP4058398 B2 JP 4058398B2
Authority
JP
Japan
Prior art keywords
alloy
forging
temperature
high temperature
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003312897A
Other languages
Japanese (ja)
Other versions
JP2005082816A (en
Inventor
廉樹 上高原
俊弘 桂
学 中井
泰彰 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003312897A priority Critical patent/JP4058398B2/en
Publication of JP2005082816A publication Critical patent/JP2005082816A/en
Application granted granted Critical
Publication of JP4058398B2 publication Critical patent/JP4058398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、2000系アルミニウム合金鍛造材 (以下、アルミニウムを単にAlとも言う) に関し、特に高温疲労強度に優れ、他の高温特性 (耐熱性および高温耐力) にも優れたAl合金鍛造材に関するものである。   The present invention relates to a 2000 series aluminum alloy forging (hereinafter, aluminum is also simply referred to as Al), and particularly to an Al alloy forging excellent in high temperature fatigue strength and excellent in other high temperature characteristics (heat resistance and high temperature proof stress). It is.

ロケットや航空機などの航空・宇宙機材用、鉄道車両、自動車、船舶などの輸送機材用、あるいはエンジン部品、コンプレッサーなどの機械部品用、具体的には、回転ローターや回転インペラー或いはピストンなどの、特に100 ℃を超える高温の使用環境となるAl合金製部品には、高温特性に優れたAl合金鍛造材が用いられる。この高温特性とは、前記高温下での耐クリープ特性および高温耐力である。   For aviation and space equipment such as rockets and aircraft, for transportation equipment such as railway vehicles, automobiles and ships, or for machine parts such as engine parts and compressors, specifically for rotating rotors, rotating impellers or pistons, etc. Al alloy forgings with excellent high temperature characteristics are used for Al alloy parts that are used in high temperature environments exceeding 100 ° C. The high temperature characteristics are creep resistance characteristics and high temperature proof stress at the high temperatures.

従来、これらの所謂耐熱性Al合金鍛造材には、AA規格乃至JIS 規格の 2000 系( 以下、単に2000系と言う)Al 合金が用いられている。この種Al合金としては、2219、2618などがある。しかし、これらの2000系 Al 合金は、120 ℃を越える高温では、長時間使用すると強度の低下が著しい。   Conventionally, for these so-called heat-resistant Al alloy forgings, AA standard to JIS standard 2000 series (hereinafter simply referred to as 2000 series) Al alloys are used. Examples of this kind of Al alloy include 2219 and 2618. However, these 2000 series Al alloys have a significant decrease in strength when used for a long time at temperatures exceeding 120 ° C.

このため、120 ℃を越える高温使用環境でのクリープ特性や高温耐力を改善するために、近年では、2219Al合金にMgを0.3%添加した2519Al合金(Al-6.1Cu-0.3Mn-0.15Zr-0.1V)が開発されている。また、この2519Al合金にAgを添加した2519(Ag)Al合金も開発されている。そして、これら2519Al合金や2519(Ag)Al合金に関連したAl合金も多数提案されている (例えば、特許文献1、2参照)。   For this reason, in order to improve the creep characteristics and high temperature proof stress in a high temperature usage environment exceeding 120 ° C, in recent years 2519Al alloy (Al-6.1Cu-0.3Mn-0.15Zr-0.1 V) has been developed. In addition, a 2519 (Ag) Al alloy obtained by adding Ag to the 2519Al alloy has been developed. Many Al alloys related to these 2519Al alloys and 2519 (Ag) Al alloys have also been proposed (see, for example, Patent Documents 1 and 2).

また、本発明者らも、高い高温特性を再現性良く保証することが可能な耐熱Al合金材を提案した。この内容は、Cu:1.5〜7.0%、Mg:0.01 〜2.0%を含み、更に、選択的にAg:0.05 〜0.7%を含む耐熱Al合金の、θ' 相および/ またはΩ相について、θ' 相の平均サイズを120 nm以下およびθ' 相の析出物間の平均間隔を100 nm以下とすること、Ω相の平均サイズを100 nm以下およびΩ相の析出物間の平均間隔を150 nm以下とすることである (特許文献3、非特許文献1参照) 。
特開昭62-112748 号公報 米国特許第4610733 号明細書 特開平11-302764 号公報 軽金属学会第93回秋期大会講演概要(1997 年 10 月20日発行、233 〜 234 頁)
The present inventors have also proposed a heat-resistant Al alloy material that can guarantee high temperature characteristics with good reproducibility. This content includes Cu: 1.5 to 7.0%, Mg: 0.01 to 2.0%, and optionally, heat resistant Al alloy containing Ag: 0.05 to 0.7%, for θ ′ phase and / or Ω phase, θ ′ The average size of the phase is 120 nm or less and the average interval between the precipitates of the θ ′ phase is 100 nm or less, the average size of the Ω phase is 100 nm or less, and the average interval between the precipitates of the Ω phase is 150 nm or less (See Patent Document 3 and Non-Patent Document 1).
JP 62-112748 A US Patent No. 4610733 Japanese Patent Laid-Open No. 11-302764 Outline of the 93rd Autumn Meeting of the Japan Institute of Light Metals (October 20, 1997, pp. 233-234)

また、前記高温特性が要求される用途部品は、基本的に肉厚の円筒形状や多数の羽根を周囲に設けた複雑形状を有している。このため、Al合金材によりこれらの部品を製造する場合には、Al合金のバルク状 (塊状) の鋳塊を熱間鍛造加工(熱間鍛造後冷間鍛造することも含む)した鍛造材から切削加工により部品とされている。そして、これら用途部品は、狭い空間乃至クリアランスを高速で摺動乃至回転するため、高い寸法精度や平滑性が厳しく要求される。このため、これら用途に使用されるAl合金材には、前記高温特性に加えて高い精密切削加工性、即ち被削性が要求される。   In addition, the application parts that require the high temperature characteristics basically have a thick cylindrical shape or a complicated shape in which a large number of blades are provided around. For this reason, when these parts are manufactured using an Al alloy material, a forged material obtained by hot forging (including cold forging after hot forging) of an aluminum alloy bulk (bulk) ingot is used. Parts are made by cutting. These application parts are required to have high dimensional accuracy and smoothness because they slide or rotate in a narrow space or clearance at high speed. For this reason, in addition to the said high temperature characteristic, the high precision cutting workability, ie, a machinability, is requested | required of Al alloy material used for these uses.

このため、本発明者らは、高速動部品用の耐熱Al合金鍛造材の高い高温特性とともに高速動部品への切削加工における被削性を保証するために、Al合金鍛造材の溶体化処理後のミクロ組織がθ' 相および/ またはΩ相を有するとともに、結晶粒径を500 μm 以下の等軸再結晶粒とすることも提案した (特許文献4参照) 。
特開2000-119786 号公報
For this reason, in order to guarantee the machinability in the cutting work to the high-speed moving parts together with the high temperature characteristics of the heat-resistant Al alloy forgings for high-speed moving parts, the present inventors It has also been proposed that the microstructure of the above has an θ ′ phase and / or an Ω phase and that the crystal grain size be equiaxed recrystallized grains of 500 μm or less (see Patent Document 4).
JP 2000-119786 A

しかし、これらの技術により、高温特性に優れたAl合金鍛造材を冶金的に設計したとしても、実際に製造されるAl合金鍛造材において、溶体化処理および焼入れ処理後の高温の人工時効硬化処理を施しても、耐力が向上せず、この種Al合金鍛造材 (耐熱Al合金鍛造材) に要求される人工時効硬化処理後の耐力が低くなり、高温使用時の耐力も低くなる場合が生じる。このため、本発明者らは、溶体化処理後の焼入れ速度の影響に注目し、400 ℃から290 ℃の間の平均冷却速度が30000 ℃/ 分以下と焼入れ速度 (冷却速度) が遅く (小さく) なる場合には、特に、Al合金鍛造材中のZr、Cr、Mnを、Zr:0.09%以下、Cr:0.05%以下、Mn:0.6% 以下に各々規制することを提案した (特許文献5参照) 。
特開2001-181771 号公報
However, even if Al-alloy forgings with excellent high-temperature properties are metallurgically designed with these technologies, high-temperature artificial age hardening after solution treatment and quenching is performed on the Al-alloy forgings actually produced. Even if it is applied, the yield strength is not improved, the yield strength after artificial age hardening required for this kind of Al alloy forging (heat resistant Al alloy forging) is lowered, and the yield strength at high temperature use may also be lowered. . For this reason, the present inventors pay attention to the influence of the quenching rate after the solution treatment, and the quenching rate (cooling rate) is low (small) with an average cooling rate between 400 ° C and 290 ° C of 30000 ° C / min or less. In particular, it has been proposed that Zr, Cr, and Mn in the forged Al alloy material are restricted to Zr: 0.09% or less, Cr: 0.05% or less, and Mn: 0.6% or less, respectively (Patent Document 5). See).
Japanese Patent Laid-Open No. 2001-181771

しかし、これら耐熱性および高温耐力などの高温特性に優れるAl合金鍛造材であっても、高温疲労強度特性向上の課題に対しては、なお改良の余地がある。即ち、これら特許文献4 や5 などの改良されたAl合金鍛造材であっても、高温での応力負荷使用条件下における疲労強度 (高温疲労強度) は、回転曲げ疲労試験 (最大応力130MPa、応力比−1 、150 ℃の条件下) で、破断繰り返し数が(3〜6)×106 回程度である。したがって、より高い高温疲労強度が要求される製品用途に対しては、更なる改良が必要であった。 However, even for these Al alloy forgings that are excellent in high temperature characteristics such as heat resistance and high temperature proof stress, there is still room for improvement with respect to the problem of improving high temperature fatigue strength characteristics. That is, even with these improved Al alloy forgings such as Patent Documents 4 and 5, the fatigue strength under high-temperature stress load conditions (high-temperature fatigue strength) is the rotational bending fatigue test (maximum stress 130 MPa, stress Ratio-1 and 150 ° C.), the number of repetitions of fracture is about (3-6) × 10 6 times. Therefore, further improvements have been required for product applications that require higher high-temperature fatigue strength.

本発明はこの様な事情に着目してなされたものであって、その目的は、耐熱性および高温耐力などの高温特性だけではなく、高温疲労強度に優れたAl合金鍛造材を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to provide an Al alloy forging material excellent in not only high temperature characteristics such as heat resistance and high temperature proof stress but also high temperature fatigue strength. Is.

この目的を達成するために、本発明アルミニウム合金鍛造材の要旨は、Cu:4.0〜7.0%、Mg:0.2〜0.4%、Ag:0.05 〜0.7%、V:0.05% 〜0.15% を含み、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金鍛造材であって、鍛造材組織中のAl-V系析出物の分布密度が1.5 個/(μm)3 以上であることとする。 In order to achieve this object, the summary of the aluminum alloy forging of the present invention includes Cu: 4.0 to 7.0%, Mg: 0.2 to 0.4%, Ag: 0.05 to 0.7%, V: 0.05% to 0.15%, and the balance It is an aluminum alloy forged material composed of aluminum and inevitable impurities, and the distribution density of Al-V precipitates in the forged material structure is 1.5 pieces / (μm) 3 or more.

また、この鍛造材組織中のAl-V系析出物の分布密度を1.5 個/(μm)3 以上とするために、好ましくは、前記アルミニウム合金鍛造材が、Cu:4.0〜7.0%、Mg:0.2〜0.4%、Ag:0.05 〜0.7%、V:0.05% 〜0.15% を含み、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金鋳造材を、500 〜535 ℃の温度で15時間以上均質化熱処理後、280 〜430 ℃の温度で熱間鍛造し、その後510 〜545 ℃の温度で溶体化および焼入れ処理したものであることとする。 Further, in order to make the distribution density of Al-V precipitates in this forging structure 1.5 pieces / (μm) 3 or more, preferably the aluminum alloy forging material is Cu: 4.0-7.0%, Mg: Aluminum alloy casting material containing 0.2-0.4%, Ag: 0.05-0.7%, V: 0.05% -0.15%, and the balance aluminum and unavoidable impurities, after homogenization heat treatment at a temperature of 500-535 ° C for 15 hours or more , And hot forging at a temperature of 280 to 430 ° C., followed by solution treatment and quenching at a temperature of 510 to 545 ° C.

なお、合金元素含有量の% 表示は全て質量% を意味する。また、上記鍛造材組織中におけるAl-V系化合物の分布密度の規定は、調質されたアルミニウム合金鍛造材についての規定である。   In addition,% display of alloy element content means mass%. The regulation of the distribution density of the Al-V compound in the forging structure is a regulation for the tempered aluminum alloy forging.

本発明者らは、先に特願2003-90660号として、アルミニウム合金鍛造材の耐熱性および高温耐力などの高温特性を向上させるために、合金元素としてV を含む鍛造材発明を出願した。しかし、本発明者らは、合金元素としてV を実質量含んだとしても、製造条件によっては、実際に製造した鍛造材組織中に析出するAl-V系化合物の量が少なくなり、高温特性のうちでも、特に、高温疲労強度の向上に限界があることを知見した。事実、上記特願2003-90660号の高温疲労強度は、回転曲げ疲労試験 (最大応力130MPa、応力比−1 、150 ℃の条件下) で、破断繰り返し数が(3〜6)×106 回[(3 〜6)e6とも記す] 程度である。 The inventors previously filed a forging material invention containing V 2 as an alloy element as Japanese Patent Application No. 2003-90660 in order to improve high temperature characteristics such as heat resistance and high temperature proof stress of an aluminum alloy forging material. However, even if the present inventors include a substantial amount of V as an alloying element, depending on the manufacturing conditions, the amount of Al-V compound that precipitates in the actually produced forging structure decreases, and the high temperature characteristics are reduced. Among them, it was found that there is a limit in improving high-temperature fatigue strength. In fact, the high-temperature fatigue strength of the above Japanese Patent Application No. 2003-90660 is the rotational bending fatigue test (maximum stress 130MPa, stress ratio -1, 150 ℃), and the number of repetitions of fracture is (3-6) x 10 6 times [(3 to 6) e6].

これに対して、本発明では、含んだV を高温疲労強度を高めるに足る量( 個数) 、Al-V系化合物として鍛造材組織中に析出させる。この結果、含有量としては同程度のV を含むが、鍛造材組織中に析出するAl-V系化合物の量が比較的少ないような鍛造材に比して、高温疲労強度を著しく向上させることができる。   On the other hand, in the present invention, the contained V is precipitated in the forging structure as an Al-V compound in an amount (number) sufficient to increase the high temperature fatigue strength. As a result, the high-temperature fatigue strength is remarkably improved as compared with forgings that contain the same amount of V but the amount of Al-V compounds precipitated in the forging structure is relatively small. Can do.

(Al-V系析出物の分布密度)
本発明では、鍛造材を、耐熱性および高温耐力などの高温特性だけではなく、高温疲労強度に優れたものとするために、鍛造材組織中のAl-V系析出物の分布密度を1.5 個/(μm)3 以上とする。Al-V系析出物の分布密度が1.5 個/(μm)3 未満では高温疲労強度を著しく向上させることができない。
(Distribution density of Al-V precipitates)
In the present invention, the distribution density of Al-V precipitates in the forging structure is 1.5 pieces in order to make the forging material not only have high temperature characteristics such as heat resistance and high temperature proof stress but also high temperature fatigue strength. / (μm) 3 or more. If the distribution density of Al-V precipitates is less than 1.5 / (μm) 3 , the high-temperature fatigue strength cannot be significantly improved.

アルミニウム合金鍛造材の高温疲労強度を保障するためには、鍛造材組織全般に亙って、または、少なくとも高温疲労強度を必要とする鍛造材部位で、このようなAl-V系析出物の分布密度規定を満足することが好ましい。   In order to ensure the high temperature fatigue strength of aluminum alloy forgings, the distribution of such Al-V precipitates throughout the forging structure or at least forging sites that require high temperature fatigue strength. It is preferable to satisfy the density regulation.

Al-V系析出物の分布密度は、後述する調質処理 (熱処理) 後の鍛造材組織の、1 万倍の透過型電子顕微鏡観察(TEM) による観察で測ることができる。即ち、鍛造材の各部位の組織全般に亙って複数箇所、または、少なくとも高温疲労強度を必要とする鍛造材部位の上記観察により、顕微鏡視野内のAl-V系析出物 (分散粒子) 個数を計測して、μm3当たりの個数に換算することができる。Al-V系析出物の分布密度測定は特に高温疲労強度を必要とする鍛造材部位の1 箇所でも良いが、再現性を持たせるためには、複数箇所の測定が好ましい。複数箇所の測定の場合は、Al-V系析出物の分布密度は、勿論、この複数測定箇所の測定値の平均値となる。 The distribution density of Al-V precipitates can be measured by observation of the forged material structure after the tempering treatment (heat treatment) described later by observation with a transmission electron microscope (TEM) 10,000 times. That is, the number of Al-V-based precipitates (dispersed particles) in the microscopic field can be determined by the above observation of the forging material portion that requires at least high temperature fatigue strength at multiple locations throughout the entire structure of the forging material. Can be measured and converted to the number per μm 3 . The distribution density of the Al-V-based precipitates may be measured at one of the forging sites requiring high temperature fatigue strength, but measurement at a plurality of locations is preferable in order to provide reproducibility. In the case of measurement at a plurality of locations, the distribution density of Al-V precipitates is, of course, the average value of the measurement values at the plurality of measurement locations.

なお、上記 1万倍の透過型電子顕微鏡観察において、Al-V系析出物の他の析出物との区別は、組織中の分散粒子 (析出物) の形態的特徴などで、目視により識別可能である。しかし、更に正確さを期す場合には、EPMA(X線マイクロアナリシス) を用いて、鍛造材組織中の析出物を構成する元素と元素量(Al-V 系析出物の場合はV)を同定し、他の析出物と識別しても良い。   In addition, in the above transmission electron microscope observation at a magnification of 10,000, the distinction from other precipitates of Al-V-based precipitates can be made visually by the morphological characteristics of dispersed particles (precipitates) in the structure. It is. However, for further accuracy, EPMA (X-ray microanalysis) is used to identify the elements and element amounts (V in the case of Al-V based precipitates) that constitute the precipitates in the forging structure. However, it may be distinguished from other precipitates.

(Al-V系析出物の分布密度向上方法)
本発明のように、合金元素として含んだV を、Al-V系析出物の分布密度が1.5 個/(μm)3 以上となるように、鍛造材組織中に析出させるためには、V を含んだ本発明成分組成からなる鋳造材を、長時間の均質化熱処理を施す必要がある。即ち、500 〜535 ℃の温度で15時間以上の長時間の均質化熱処理を施す必要がある。
(Method for improving distribution density of Al-V precipitates)
In order to precipitate V in the forging structure so that the distribution density of Al-V based precipitates is 1.5 pieces / (μm) 3 or more as in the present invention, V contained as an alloy element is used. It is necessary to subject the cast material having the composition of the present invention contained therein to a homogenization heat treatment for a long time. That is, it is necessary to perform a homogenization heat treatment for a long time of 15 hours or more at a temperature of 500 to 535 ° C.

通常、この種鋳造材は、500 〜535 ℃の温度で、最大でも15時間未満、多くは8 時間程度の処理時間で、均質化熱処理される。このような短時間の均質化熱処理条件であっても、鋳造材の均質化自体は図れる。しかし、V は、その拡散速度が他の元素に比して著しく遅い。このため、このような短時間の均質化熱処理条件では、均質化熱処理中に、合金元素として含んだV が固溶したままとなって、Al-V系化合物として、高温疲労強度を著しく向上できるだけの実質量、即ち、鍛造材組織中のAl-V系析出物の分布密度で1.5 個/(μm)3 以上析出させることができない。 Usually, this kind of cast material is subjected to a homogenization heat treatment at a temperature of 500 to 535 ° C. for a processing time of at most 15 hours, most of which is about 8 hours. Even under such short-time homogenization heat treatment conditions, the cast material can be homogenized itself. However, the diffusion rate of V is significantly slower than other elements. For this reason, under such short-time homogenization heat treatment conditions, V contained as an alloy element remains in solid solution during the homogenization heat treatment, and as a Al-V compound, high-temperature fatigue strength can be significantly improved. In other words, it is not possible to precipitate 1.5 or more (μm) 3 or more in terms of the substantial amount of, that is, the distribution density of Al—V-based precipitates in the forging structure.

(Al合金鍛造材の製造工程)
以下に、本発明鍛造材の製造方法について説明する。本発明におけるAl合金鍛造材の製造条件や製造手段は、上記均質化熱処理の時間以外は、従来と基本的に同じである。言い換えると、Al合金鍛造材の製造条件や製造手段を大きく変えない点が、本発明の利点でもある。
(Production process of Al alloy forgings)
Below, the manufacturing method of this invention forging material is demonstrated. The production conditions and production means of the Al alloy forged material in the present invention are basically the same as those in the prior art except for the time for the homogenization heat treatment. In other words, it is an advantage of the present invention that the production conditions and production means of the Al alloy forging are not changed greatly.

鋳造では、本発明の成分範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造して鋳塊を製作する。   In casting, the molten Al alloy melt adjusted within the component range of the present invention is cast by appropriately selecting a normal melting casting method such as a continuous casting rolling method or a semi-continuous casting method (DC casting method). Is produced.

この鋳塊を500 〜535 ℃の温度で、上記長時間均質化熱処理後、熱間鍛造してAl合金鍛造材を製造する。なお、鍛造用の素材としては、鋳塊を押出、圧延加工した、押出材や圧延材を使用しても良い。ここにおいて、前記均質化熱処理の温度が500 ℃未満では鋳塊の晶出物が固溶せず、均質化が不十分となる。一方、前記均質化熱処理の温度が535 ℃を越えると、バーニングが生じる可能性が高くなる。したがって、前記均質化熱処理の温度は500 〜535 ℃の範囲とする。   This ingot is subjected to the above-mentioned long-time homogenizing heat treatment at a temperature of 500 to 535 ° C. and then hot forged to produce an Al alloy forged material. In addition, as a raw material for forging, you may use the extruded material and rolled material which extruded and rolled the ingot. Here, when the temperature of the homogenization heat treatment is less than 500 ° C., the ingot crystallization product does not dissolve, and the homogenization becomes insufficient. On the other hand, if the temperature of the homogenization heat treatment exceeds 535 ° C., the possibility of burning is increased. Therefore, the temperature of the homogenization heat treatment is in the range of 500 to 535 ° C.

熱間鍛造の温度条件は、その設計高温特性通りに、Al合金鍛造材を再現性良く製造するために重要である。従来では、自由鍛造や型鍛造 (鍛伸鍛造) などの公知の鍛造手段を単独あるいは組み合わせて、適宜採るにせよ、Al合金鍛造材の溶体化処理後のミクロ組織を等軸結晶粒とするために、熱間鍛造温度を380 〜430 ℃程度としていた。この熱間鍛造温度が低いと、Al合金鍛造材の組織が局部的に混粒となりやすく、高温特性が低下すると認識していたためである。   The temperature conditions for hot forging are important for producing Al alloy forgings with good reproducibility according to the design high temperature characteristics. Conventionally, in order to make the microstructure after solution treatment of Al alloy forging material equiaxed crystal grains, even if well-known forging means such as free forging and die forging (forging forging) are used alone or in combination In addition, the hot forging temperature was set to about 380 to 430 ° C. This is because when the hot forging temperature is low, the structure of the Al alloy forged material is likely to be locally mixed grains and the high temperature characteristics are deteriorated.

この点、本発明では、熱間鍛造温度を再結晶温度以下の280 〜430 ℃の温度範囲とすることが好ましい。熱間鍛造温度が430 ℃を越えると、本発明の成分範囲内のAl合金鍛造材には粗大粒が生じやすくなる。このため、Al合金鍛造材の高温特性が低下し、高温特性に優れたAl合金鍛造材を再現性良く製造することができない。一方、熱間鍛造温度が280 ℃未満では、熱間鍛造時に割れが生じ易く、鍛造加工自体が困難となる。   In this regard, in the present invention, it is preferable that the hot forging temperature is in a temperature range of 280 to 430 ° C. which is lower than the recrystallization temperature. When the hot forging temperature exceeds 430 ° C., coarse grains are likely to be formed in the Al alloy forged material within the component range of the present invention. For this reason, the high temperature characteristic of Al alloy forging material falls, and the Al alloy forging material excellent in the high temperature characteristic cannot be manufactured with good reproducibility. On the other hand, if the hot forging temperature is less than 280 ° C., cracking is likely to occur during hot forging, and forging itself becomes difficult.

本発明では、熱間鍛造の温度を280 〜430 ℃としても、本発明の成分範囲内のAl合金鍛造材では、溶体化および焼入れ処理の適切化により、Al合金鍛造材の調質後のミクロ組織は等軸結晶粒となり、混粒とはならない。   In the present invention, even when the hot forging temperature is set to 280 to 430 ° C., the Al alloy forging material within the component range of the present invention is subjected to microfiltration after the tempering of the Al alloy forging material by appropriate solution treatment and quenching treatment. The structure becomes equiaxed grains, not mixed grains.

なお、Al合金鍛造材の前記ミクロ組織は、熱間鍛造の鍛練比にも影響される。したがって、Al合金鍛造材の場合に、前記ミクロ組織を等軸結晶粒とするためには、前記適宜の熱間鍛造の鍛練比を1.5 以上とすることが好ましい。鍛練比が1.5 未満であれば、Al合金鍛造材の組織が混粒となりやすい。さらに、鍛練の方向は一方向だけではなく、少なくとも、異なる2 方向で行い、各方向での鍛練比を1.5 以上とすることが更に好ましい。   The microstructure of the Al alloy forging material is also affected by the forging ratio in hot forging. Therefore, in the case of an Al alloy forged material, in order to make the microstructure into equiaxed grains, it is preferable that the appropriate hot forging forging ratio is 1.5 or more. If the forging ratio is less than 1.5, the structure of the Al alloy forged material tends to be mixed grains. Further, it is more preferable that the training direction is not limited to one direction but at least two different directions, and the training ratio in each direction is 1.5 or more.

次に、溶体化および焼入れ処理について説明する。この溶体化および焼入れ処理において、可溶性金属間化合物を再固溶し、かつ冷却中の再析出を可能な限り抑制するためには、JIS-H-4140、AMS-H-6088などに規定された条件内にて行うことが好ましい。ただし、たとえAMS-H-6088等の規格によって熱処理を行っても、溶体化処理温度が高すぎるとバーニングを生じ、機械的性質を著しく低下させる。そして、溶体化処理温度が下限以下の温度であると人工時効硬化処理後の室温での耐力が400MPa以上とならず、また溶体化自体も困難となる。従って、溶体化処理温度の上限は545 ℃とし、下限は510 ℃とする。   Next, solution treatment and quenching treatment will be described. In this solution treatment and quenching treatment, JIS-H-4140, AMS-H-6088, etc. specified in order to re-dissolve soluble intermetallic compounds and suppress reprecipitation during cooling as much as possible. It is preferable to carry out within the conditions. However, even if heat treatment is performed according to standards such as AMS-H-6088, if the solution treatment temperature is too high, burning occurs and the mechanical properties are significantly reduced. When the solution treatment temperature is below the lower limit, the yield strength at room temperature after the artificial age hardening treatment does not exceed 400 MPa, and the solution treatment itself becomes difficult. Therefore, the upper limit of the solution treatment temperature is 545 ° C., and the lower limit is 510 ° C.

ここで、φ100 mm程度までの小物部品やピストンなどの用途において、残留応力が比較的大きくても、例えば切削などの加工上問題とならない製品については、溶体化および焼入れ処理後に人工時効硬化処理を施し、調質T6材とすることが望ましい。この場合、残留応力が比較的大きくなっても、高い強度特性及び高温特性を得る為に、焼入れ温度は40℃以下であることが望ましい。また、この焼入れ温度が高いと、人工時効硬化処理後の室温での耐力を400MPa以上とするのが困難となる。   Here, in applications such as small parts up to about φ100 mm and pistons, even if the residual stress is relatively large, products that do not cause any processing problems such as cutting are subjected to artificial age hardening after solution treatment and quenching. It is desirable to apply tempered T6. In this case, it is desirable that the quenching temperature is 40 ° C. or lower in order to obtain high strength characteristics and high temperature characteristics even if the residual stress becomes relatively large. Moreover, when this quenching temperature is high, it becomes difficult to make the yield strength at room temperature after the artificial age hardening treatment be 400 MPa or more.

一方、ロータなど大型の製品では、焼入れ処理時に、製品表面と中央部との冷却速度が大きく異なるため、製品表面には10kgf/mm2 を越える高い残留応力が発生する。このような高い残留応力が発生すると、製品の切削加工時に大きな歪みが生じ、精密な切削加工が極めて困難となる。また、最悪の場合、切削加工中に残留応力による割れなどの破壊が生じることもある。例え、切削加工中に割れなどの破壊が生じなくても、材料中に残存する晶出物等の金属間化合物を起点として、あるいは製品搬送中に生じた僅かな表面傷等を起点として、製品の長期間使用中に、き裂が伝播成長しやすく、最終破断に至る可能性もある。したがって、ロータなど残留応力が問題となる製品については、残留応力を好ましくは3.0kgf/mm2以下に除去乃至低減するため、溶体化処理後の水焼入れ温度を90℃以上の比較的高温とし、その後人工時効硬化処理を施し、調質T61 材とすることが好ましい。 On the other hand, in a large product such as a rotor, a high residual stress exceeding 10 kgf / mm 2 is generated on the product surface because the cooling rate of the product surface and the central part is greatly different during quenching. When such a high residual stress is generated, a large distortion occurs during the cutting of the product, and precise cutting becomes extremely difficult. In the worst case, breakage such as cracking due to residual stress may occur during cutting. For example, even if no breakage such as cracking occurs during cutting, the product starts from an intermetallic compound such as a crystallized substance remaining in the material or from a slight surface flaw generated during product transportation. During long-term use, cracks tend to propagate and grow, which may lead to final fracture. Therefore, for products where residual stress is a problem, such as rotors, the water quenching temperature after solution treatment should be a relatively high temperature of 90 ° C. or higher in order to remove or reduce the residual stress to preferably 3.0 kgf / mm 2 or less. Thereafter, an artificial age hardening treatment is preferably performed to obtain a tempered T61 material.

また、用途によっては、製品の大小に関わらず、残留応力が厳しく管理される製品もある。このような製品については、残留応力を極力小さくすべく、冷間圧縮乃至冷間加工を加えて、残留応力を好ましくは3kgf/mm2以下に除去乃至低減し、人工時効硬化処理を施して調質T652材とすることが好ましい。これらの製品では、残留応力を好ましくは3kgf/mm2以下に除去乃至低減し、高い強度特性及び高温特性を得る為、焼入れ温度は40℃以下であることが好ましい。この焼入れ温度が高いと、人工時効硬化処理後の室温での耐力を400MPa以上とするのが困難となる。前記冷間圧縮乃至冷間加工の冷間圧縮 (加工) 量が小さいと十分な残留応力の低減効果が得られない。一方、冷間圧縮量が大きいと、人工時効硬化処理中や高温での使用中に、θ' 相の析出量が増加する為、耐力が低下しやすい。従って、冷間圧縮 (加工) は、圧縮 (加工) 率1 〜5 % とすることが好ましい。 In addition, depending on the application, there is a product whose residual stress is strictly controlled regardless of the size of the product. For such products, in order to minimize the residual stress, cold compression or cold working is applied to remove or reduce the residual stress to preferably 3 kgf / mm 2 or less, and an artificial age hardening treatment is applied. Preferably, the material is T652. In these products, the residual stress is preferably removed or reduced to 3 kgf / mm 2 or less, and in order to obtain high strength characteristics and high temperature characteristics, the quenching temperature is preferably 40 ° C. or less. When the quenching temperature is high, it becomes difficult to make the yield strength at room temperature after the artificial age hardening treatment be 400 MPa or more. If the amount of cold compression (cold working) of cold working or cold working is small, a sufficient residual stress reducing effect cannot be obtained. On the other hand, when the amount of cold compression is large, the amount of precipitation of the θ ′ phase increases during the artificial age hardening treatment or during use at a high temperature, so that the proof stress tends to decrease. Therefore, it is preferable that the cold compression (processing) has a compression (processing) rate of 1 to 5%.

その後、これらAl合金鍛造材は前記用途部品に加工される。勿論、Al合金鍛造材を、前記用途製品に加工後に、溶体化、焼入れ処理および冷間圧縮や人工時効硬化処理などを適宜行っても良い。   Thereafter, these Al alloy forgings are processed into the above-mentioned application parts. Of course, after the Al alloy forged material is processed into the above-mentioned application product, solution treatment, quenching treatment, cold compression, artificial age hardening treatment, and the like may be appropriately performed.

溶体化処理および焼入れ処理などの調質 (熱処理) に用いる炉はバッチ炉、連続焼鈍炉、溶融塩浴炉、オイル炉などが適宜使用可能である。また、焼入れに際しての冷却手段も、ユーコンクウェルチャント、水浸漬、温水浸漬、沸騰水浸漬、水噴射、空気噴射などの手段が適宜選択可能となる。   As a furnace used for tempering (heat treatment) such as solution treatment and quenching, a batch furnace, a continuous annealing furnace, a molten salt bath furnace, an oil furnace, or the like can be used as appropriate. Further, as a cooling means at the time of quenching, means such as Yukon quell chant, water immersion, hot water immersion, boiling water immersion, water injection, and air injection can be appropriately selected.

このようにして得られた本発明Al合金鍛造材の平均結晶粒径は、1mm 以下の、好ましくは10〜500 μm の範囲の、更に好ましくは50〜300 μm の範囲の、ほぼ一定サイズの微細な再結晶粒 (等軸再結晶粒) である。そして前記混粒組織に見られるような、粒径が1 μm 以下の微細な再結晶粒( 或いは亜結晶粒) が集合体化した集団や、数mm〜数cm程度の粗大な再結晶粒、あるいは残存する鋳塊組織もなく、良好なクリープ特性などの高温特性と被削性とを兼ね備える。   The average grain size of the Al alloy forging material of the present invention obtained in this way is 1 mm or less, preferably in the range of 10 to 500 μm, more preferably in the range of 50 to 300 μm, and a fine particle of almost constant size. Recrystallized grains (equal axis recrystallized grains). And as seen in the mixed grain structure, a group of fine recrystallized grains (or sub-crystal grains) having a grain size of 1 μm or less, a coarse recrystallized grain of several mm to several cm, Alternatively, there is no remaining ingot structure, and it has both high temperature characteristics such as good creep characteristics and machinability.

ただ、本発明における好ましい等軸再結晶粒の組織とは、前記一定サイズの等軸再結晶粒が100%のみの組織を必ずしも意味するものではなく、前記被削性やクリープ破断強度などの高温特性を低下させない範囲での、鋳造組織や混粒組織の混入は許容する。例えば、粒径が1 μm 以下の微細な再結晶粒( 或いは亜結晶粒) は、単一の結晶粒が個々に分散して存在しても、前記被削性やクリープ破断強度などの高温特性を低下させない。しかし、これがお互いにくっついた形で集団化乃至集合体化した場合に被削性や高温特性を低下させるようになる。したがって、この点からは、溶体化処理後のミクロ組織において、集合体化している1 μm 以下の微細再結晶粒の面積率は10% 以下とすることが好ましい。   However, the preferred structure of the equiaxed recrystallized grains in the present invention does not necessarily mean a structure having only 100% of the equiaxed recrystallized grains of a certain size, and the high temperature such as the machinability and creep rupture strength. Mixing of a cast structure or a mixed grain structure within a range that does not deteriorate the characteristics is allowed. For example, fine recrystallized grains (or sub-crystal grains) with a grain size of 1 μm or less have high temperature characteristics such as machinability and creep rupture strength, even if single crystal grains are dispersed individually. Does not decrease. However, when these are assembled or assembled in a form of sticking to each other, the machinability and the high temperature characteristics are lowered. Therefore, from this point, the area ratio of aggregated fine recrystallized grains of 1 μm or less in the microstructure after solution treatment is preferably 10% or less.

なお、本発明で言う等軸再結晶粒の特定および混粒組織の有無は、試料を電解エッチング等によりミクロエッチングを行い、これを50〜400 倍の光学顕微鏡により観察乃至測定可能である。   Incidentally, the specification of equiaxed recrystallized grains and the presence or absence of mixed grain structure as used in the present invention can be observed or measured with an optical microscope of 50 to 400 times by micro-etching a sample by electrolytic etching or the like.

次に、本発明のAl合金鍛造材組織において、高温耐力やクリープ破断強さなどの高温特性をより高めるためには、溶体化処理および焼入れ処理後に、160 〜190 ℃×7 〜60時間の範囲から選択することによって、Al合金の(100) 面に析出するθ' 相、(111) 面に析出するΩ相を析出させることが、好ましい。人工時効硬化処理によるこれらの析出がないと、前記人工時効硬化処理された場合でも180 ℃などの温度での高温耐力が低くなる。   Next, in the Al alloy forging structure of the present invention, in order to further enhance the high temperature characteristics such as high temperature proof stress and creep rupture strength, the range of 160 to 190 ° C. × 7 to 60 hours after solution treatment and quenching treatment It is preferable to precipitate the θ ′ phase precipitated on the (100) plane of the Al alloy and the Ω phase precipitated on the (111) plane. Without these precipitations due to the artificial age hardening treatment, even when the artificial age hardening treatment is performed, the high-temperature proof stress at a temperature such as 180 ° C. becomes low.

なお、Al合金鍛造材組織中のθ' 相とΩ相の析出状態の同定は、50000 倍の透過型電子顕微鏡(TEM) による組織観察および必要により前記EPMAを用いることにより行える。   The precipitation state of the θ ′ phase and the Ω phase in the forged Al alloy structure can be identified by observing the structure with a transmission electron microscope (TEM) at a magnification of 50000 times and using the EPMA if necessary.

(鍛造材の化学成分組成)
次に、本発明Al合金鍛造材における、化学成分組成について説明する。本発明のAl合金の化学成分組成は、基本的に2519 或いは2618などのAl合金および2519にAgを加えた2519(Ag)系Al合金の成分規格として良いが、より具体的な用途および要求特性に応じて、以下に説明する成分組成範囲から適宜選択しうる。先ず、積極的含有元素について述べる。
(Chemical component composition of forging)
Next, the chemical component composition in the Al alloy forged material of the present invention will be described. The chemical composition of the Al alloy of the present invention is basically good as a component standard for Al alloys such as 2519 or 2618 and 2519 (Ag) -based Al alloys obtained by adding Ag to 2519, but more specific applications and required characteristics Depending on the above, it can be appropriately selected from the component composition ranges described below. First, active elements will be described.

(Cu:4.0 〜7.0%)
Cuは本発明Al合金鍛造材の基本成分であり、固溶強化及び析出強化の双方の作用により、主としてAl合金鍛造材の本発明用途において要求される、常温と高温のクリープ特性および高温耐力、更には高温疲労強度を確保するために必須である。より具体的には、Cuは、前記した通り、高温の人工時効硬化処理時に、θ' 相やΩ相を、Al合金の(100) 面や(111) 面に微細でかつ高密度に析出させ、人工時効硬化処理後のAl合金鍛造材の強度を向上させる。この効果は4.0%以上で発揮され、Cuの含有量が4.0%未満では上述の効果が小さく、Al合金鍛造材の常温と高温での十分なクリープ特性および高温耐力が得られない。一方、Cuの含有量が7.0%を越えると、強度が高くなりすぎ、Al合金鍛造材の鍛造性が低下する。したがって、Cuの含有量は4.0 〜7.0%の範囲とする。
(Cu: 4.0-7.0%)
Cu is a basic component of the Al alloy forging material of the present invention, and by the actions of both solid solution strengthening and precipitation strengthening, the normal temperature and high temperature creep properties and high temperature proof stress, which are mainly required in the present invention application of the Al alloy forging material, Furthermore, it is essential to ensure high temperature fatigue strength. More specifically, Cu, as described above, causes the θ ′ phase and the Ω phase to be finely and densely deposited on the (100) surface and (111) surface of the Al alloy during the high-temperature artificial age hardening treatment. , Improve the strength of Al alloy forgings after artificial age hardening. This effect is exhibited at 4.0% or more. When the Cu content is less than 4.0%, the above-described effect is small, and sufficient creep characteristics and high-temperature proof stress of the Al alloy forging material at normal temperature and high temperature cannot be obtained. On the other hand, if the Cu content exceeds 7.0%, the strength becomes too high, and the forgeability of the Al alloy forged material decreases. Therefore, the Cu content is in the range of 4.0 to 7.0%.

(Mg:0.2 〜0.4%)
MgもCuと同様に、固溶強化及び析出強化の双方の作用により、主としてAl合金鍛造材の常温と高温での十分なクリープ特性および高温耐力更には高温疲労強度を確保するために必須である。より具体的には、MgもCuと同様に、高温の人工時効硬化処理時に、θ' 相やΩ相を、Al合金鍛造材の(100) 面や(111) 面に微細でかつ高密度に析出させ、人工時効硬化処理後のAl合金鍛造材の強度を向上させる。この効果は0.2%以上で発揮され、Mgの含有量が0.21% 未満ではこの効果が発揮されず、Al合金鍛造材の常温と高温での十分なクリープ特性および高温耐力が得られない。一方、Mgの含有量が0.4%を越えると、強度が高くなりすぎ、溶体化処理時にバーニングと称される割れが発生したり、鍛造性を低下させる可能性が高くなる。したがって、Mgの含有量は0.2 〜0.4%の範囲とする。
(Mg: 0.2-0.4%)
Mg, as well as Cu, is essential to ensure sufficient creep properties and high-temperature proof stress and high-temperature fatigue strength of Al alloy forgings at normal and high temperatures by the action of both solid solution strengthening and precipitation strengthening. . More specifically, Mg, like Cu, has a fine and high density of the θ 'phase and Ω phase on the (100) and (111) surfaces of the Al alloy forging during high temperature artificial age hardening. Precipitate and improve the strength of the Al alloy forging material after artificial age hardening treatment. This effect is exhibited at 0.2% or more. If the Mg content is less than 0.21%, this effect is not exhibited, and sufficient creep characteristics and high temperature proof stress at room temperature and high temperature of the Al alloy forging cannot be obtained. On the other hand, if the Mg content exceeds 0.4%, the strength becomes too high, and there is a high possibility that cracks referred to as burning will occur during solution treatment or that forgeability will be reduced. Therefore, the Mg content is in the range of 0.2 to 0.4%.

(Ag:0.05〜0.7%)
AgはAl合金鍛造材中において、微細で均一なΩ相を形成するとともに、析出物相が存在しない領域(PFZ;solute-depleted precipitate free zone) の幅を極めて狭くすることによりAl合金鍛造材の常温および高温強度を向上させるために必須である。Agの含有量が0.05% 未満ではこの効果がなく、また一方でAgの含有量が0.7%を越えて含有しても効果は飽和する。したがって、Agの含有量は0.05〜0.7%の範囲とする。
(Ag: 0.05-0.7%)
Ag forms a fine and uniform Ω phase in the Al alloy forging, and the width of the area where no precipitate phase exists (PFZ: solute-depleted precipitate free zone) is extremely narrow. Indispensable for improving normal temperature and high temperature strength. If the Ag content is less than 0.05%, this effect is not obtained. On the other hand, if the Ag content exceeds 0.7%, the effect is saturated. Therefore, the Ag content is in the range of 0.05 to 0.7%.

(V:0.05%〜0.15% )
V は、Al-V系化合物として鍛造材組織中に析出し、高温疲労強度を向上させるために必須の元素である。均質化熱処理時に、V はAl合金鍛造材組織中で熱的に安定な化合物であるAl-V系分散粒子を析出させ、この析出物が再結晶後の粒界移動を妨げる作用があるため、平均結晶粒径を500 μm 以下に微細化させる、結晶粒粗大化防止の効果がある。この結果、Al合金鍛造材のミクロ組織を繊維組織化して、常温強度および高温強度、そして特に高温疲労強度を向上させる。そして、安定相を粗大に析出させる作用がZr、Cr、Mnに比して比較的小さい。
(V: 0.05% ~ 0.15%)
V is an essential element for precipitating in the forging structure as an Al-V compound and improving high temperature fatigue strength. During homogenization heat treatment, V precipitates Al-V-based dispersed particles, which are thermally stable compounds in the Al alloy forging structure, and this precipitate acts to hinder grain boundary migration after recrystallization. It has the effect of preventing crystal grain coarsening by reducing the average crystal grain size to 500 μm or less. As a result, the microstructure of the Al alloy forging is made into a fiber structure, thereby improving the normal temperature strength and high temperature strength, and particularly the high temperature fatigue strength. The action of coarsely depositing the stable phase is relatively small compared to Zr, Cr, and Mn.

この効果を発揮するためには0.05% 以上の含有が必要であり、0.05% 未満ではV の含有量が不足し、上記した15時間以上の長時間の均質化熱処理によっても、鍛造材組織中のAl-V系析出物を分布密度で1.5 個/(μm)3 以上析出させることができない。一方、V の含有量が0.15% を越えると、溶解鋳造時に粗大な不溶性金属間化合物を生成しやすく、成形不良および破壊の原因となる。したがって、V は0.05% 〜0.15% の範囲で含有させる。 In order to exert this effect, the content of 0.05% or more is necessary. If the content is less than 0.05%, the content of V is insufficient, and even in the above-mentioned long-time homogenization heat treatment for 15 hours or more, Al-V-based precipitates cannot be deposited with a distribution density of 1.5 / (μm) 3 or more. On the other hand, if the content of V exceeds 0.15%, a coarse insoluble intermetallic compound is likely to be formed during melt casting, which causes molding defects and breakage. Therefore, V is contained in the range of 0.05% to 0.15%.

以下に、規制することが好ましい元素について説明する。
Zr 、Cr、Mnは、前記V と同様に、均質化加熱処理時にそれぞれAl合金鍛造材組織中で熱的に安定な化合物であるAl-Zr 系、Al-Cr 系、Al-Mn 系の分散粒子を析出させる。そして、この分散粒子が、Al合金鍛造材のミクロ組織を繊維組織化して、常温強度および高温強度を向上させる効果を有する。
The elements that are preferably regulated will be described below.
Zr, Cr, and Mn are dispersed in the Al-Zr, Al-Cr, and Al-Mn systems, which are thermally stable compounds in the Al alloy forging material structure, respectively, during the homogenization heat treatment. Precipitate particles. The dispersed particles have an effect of improving the normal temperature strength and the high temperature strength by forming the microstructure of the Al alloy forged material into a fiber structure.

しかし、溶体化処理後の焼入れ処理において、400 ℃から290 ℃の間の平均冷却速度が30000 ℃/ 分以下に遅くなった場合、これらZr、Cr、Mnを含有していると、溶体化処理後の焼入れ処理において、焼入れの過程で、AlCu2 などの安定相が、前記Al-Cr 系、Al-Zr 系、Al-Mn 系の分散粒子の周囲に粗大に析出してしまう。この結果、次に高温の前記人工時効硬化処理を行っても、120 ℃の温度で100 時間使用された後に310MPa以上などの高温での耐力が得られない。したがって、Al合金鍛造材の焼入れ感受性を下げるために、好ましくは、Zr:0.09%以下、Cr:0.05%以下、Mn:0.8% 以下、各々に規制することが好ましい。 However, when the average cooling rate between 400 ° C and 290 ° C is slowed to 30000 ° C / min or less in the quenching process after solution treatment, if these Zr, Cr and Mn are contained, the solution treatment In the subsequent quenching process, a stable phase such as AlCu 2 is coarsely deposited around the Al—Cr, Al—Zr, and Al—Mn dispersed particles in the quenching process. As a result, even if the artificial age-hardening treatment at a high temperature is performed next, the yield strength at a high temperature such as 310 MPa or more cannot be obtained after being used at a temperature of 120 ° C. for 100 hours. Therefore, in order to reduce the quenching sensitivity of the Al alloy forged material, it is preferable that Zr: 0.09% or less, Cr: 0.05% or less, and Mn: 0.8% or less are preferably controlled.

Feは0.15% 以下に規制することが好ましい。ただ、スクラップ等からの混入もあり、Al合金鍛造材の高温特性を向上させる効果もあるので、0.15% の含有までは許容する。0.15% を越えて含有すると、不溶性金属間化合物を生成し、成形不良および破壊の原因となりやすい。   Fe is preferably regulated to 0.15% or less. However, there is also contamination from scraps and the like, and it has the effect of improving the high temperature characteristics of the Al alloy forging, so it is allowed to contain up to 0.15%. If the content exceeds 0.15%, an insoluble intermetallic compound is formed, which tends to cause molding defects and breakage.

SiはMgと結合してAl合金鍛造材組織中にMg2Si およびAl-Fe-Si系の晶出物を形成する。このため、高温の人工時効硬化処理時にθ' 相やΩ相を析出させ、人工時効硬化処理後のAl合金鍛造材の強度を向上させるために必要なMgが消費されてしまうので、人工時効硬化処理後のAl合金材の強度が低下する。Mgの含有量はCuに比して、元々少ないので、このSiによる影響は大きい。また、溶体化処理により、前記大部分の晶出物は固溶するが、過剰なMg2Si が形成されると溶体化処理においても残存して破断の起点になるため、成形性が低下する。したがって、Siは0.1%以下に規制することが好ましい。 Si combines with Mg to form Mg 2 Si and Al-Fe-Si based crystals in the Al alloy forging structure. For this reason, Mg is necessary to precipitate the θ 'phase and Ω phase during the high-temperature artificial age hardening treatment and improve the strength of the Al alloy forging after the artificial age hardening treatment. The strength of the Al alloy material after the treatment is lowered. Since the Mg content is originally lower than that of Cu, the influence of Si is large. In addition, most of the crystallized product is dissolved by the solution treatment, but if excessive Mg 2 Si is formed, it remains in the solution treatment and becomes the starting point of fracture, so that the formability is lowered. . Therefore, Si is preferably regulated to 0.1% or less.

この他、Tiは、鋳造時の結晶粒を微細化するが、過剰に添加すると粗大な金属間化合物を形成し成形加工時の破断の起点になるため、成形性が低下する。したがって、Tiは0.1%以下までの含有は許容される。   In addition, Ti refines crystal grains at the time of casting, but if added excessively, a coarse intermetallic compound is formed and becomes a starting point of fracture at the time of molding processing, so that formability is lowered. Therefore, Ti is allowed to be contained up to 0.1% or less.

したがって、本発明の好ましい態様では、Al合金鍛造材の人工時効硬化処理後の耐力が低くなり、高温使用時の耐力も低くなることを防止するために、Al合金鍛造材合金中の以下の元素を、Si:0.1% 以下、Fe:0.15%以下、Zr:0.09%以下、Cr:0.05%以下、Mn:0.8% 以下、Ti: 0.1%以下に各々規制することが好ましい。   Therefore, in a preferred embodiment of the present invention, the following elements in the Al alloy forging alloy are used in order to prevent the yield strength after artificial age hardening of the Al alloy forging material from being lowered and the yield strength at the time of high temperature use from being lowered. Are preferably regulated to Si: 0.1% or less, Fe: 0.15% or less, Zr: 0.09% or less, Cr: 0.05% or less, Mn: 0.8% or less, and Ti: 0.1% or less.

また、上記以外のZn、Ni、B などの元素については、本発明に係るAl合金鍛造材の高温特性やその他の特性を阻害しない範囲での含有あるいは2000系Al合金の上限規格程度は許容される。   For elements other than the above, such as Zn, Ni, B, etc., inclusion in a range that does not impair the high temperature characteristics and other characteristics of the Al alloy forging according to the present invention or the upper limit of about 2000 series Al alloy is allowed. The

次に本発明の実施例を説明する。V を含むアルミニウム合金鍛造材組織中のAl-V系析出物の分布密度と高温疲労強度との関係、Al-V系析出物の分布密度への均質化熱処理時間の影響を調べた。   Next, examples of the present invention will be described. The relationship between the distribution density of Al-V precipitates in high-temperature fatigue strength of aluminum alloy forgings containing V and the high temperature fatigue strength, and the effect of homogenization heat treatment time on the distribution density of Al-V precipitates were investigated.

即ち、表1 に示す、主としてV 含有量が異なる、A 〜C の本発明範囲内の化学成分組成、およびD 、E の本発明範囲外の化学成分組成のAl合金鋳塊 (500mm φ×2000mml)を各々溶製した後、全て510 ℃の温度で、処理時間のみを表2 に示すように種々変えて、均質化熱処理 (空気炉) を施した。   That is, as shown in Table 1, Al alloy ingots (500 mm φ × 2000 mml) having a chemical composition within the scope of the present invention of A to C and a chemical composition outside the scope of the present invention of D and E, mainly having different V contents. ) Were each melted at 510 ° C. and subjected to a homogenization heat treatment (air furnace) while changing only the treatment time as shown in Table 2.

この均質化熱処理後の鋳塊を、各例とも熱間鍛造にて、各方向での鍛練比が1.5 以上となるように、150 mm角( 厚み) の角棒および80mm角 (厚み) の角棒としたものを、300mmlの長さに切断してAl合金鍛造材を製造した。各例とも、このAl合金鍛造材を空気炉で加熱速度200 ℃/hr で昇温し、528 ℃×6 hrの溶体化処理後、表2 に各々示す種々の焼入れ温度で水焼入れを行い(400℃から290 ℃の間の平均冷却速度は30000 ℃/ 分以上) 水中で10分保持後に取り出した。   The ingot after this homogenization heat treatment was subjected to hot forging in each example, so that the forging ratio in each direction was 1.5 or more, a 150 mm square (thickness) square bar and an 80 mm square (thickness) square. The rod was cut to a length of 300 mm to produce an Al alloy forged material. In each example, this aluminum alloy forging was heated in an air furnace at a heating rate of 200 ° C / hr, and after a solution treatment of 528 ° C x 6 hr, water quenching was performed at various quenching temperatures shown in Table 2 ( (The average cooling rate between 400 ° C. and 290 ° C. was 30000 ° C./min or more) The sample was taken out after being kept in water for 10 minutes.

この内、厚みが80mmのAl合金鍛造材 (発明例5)については、小物部品やピストンなどの残留応力が比較的大きくても良い用途を模擬して、溶体化処理後に30℃の低温の水焼入れ処理し、その後に175 ℃×18hrの人工時効硬化処理を施した調質T6材とした。   Of these, forged Al alloy material (Invention Example 5) with a thickness of 80 mm, simulated low temperature water at 30 ° C after solution treatment, simulating applications where residual stresses such as small parts and pistons may be relatively large. A tempered T6 material was subjected to quenching treatment and then subjected to artificial age hardening treatment at 175 ° C. × 18 hours.

また、前記厚みが150mm のAl合金鍛造材については、残留応力が問題となる用途を模擬して、前記溶体化処理後に91℃の温水焼入れして残留応力を低減し、冷間圧縮加工を加えずに、175 ℃×18hrの人工時効硬化処理を施した、調質T61 材とした。   Also, for the 150 mm thick Al alloy forged material, the residual stress is simulated by hot water quenching at 91 ° C after the solution treatment, and the cold stress is applied. The tempered T61 material was subjected to artificial age hardening at 175 ° C. for 18 hours.

なお、この厚みが150mm の内、発明例6 については、残留応力が問題となる用途を模擬して、溶体化処理後に30℃の水焼入れ処理し、0.8%の冷間圧縮率で冷間圧縮加工を加えて残留応力を低減し、175 ℃×18hrの人工時効硬化処理を施し、調質T652材とした。   Of the thickness of 150 mm, Invention Example 6 simulates an application in which residual stress is a problem and is subjected to 30 ° C. water quenching after solution treatment and cold compression at a cold compressibility of 0.8%. Residual stress was reduced by applying processing, and an artificial age hardening treatment at 175 ° C x 18 hr was applied to obtain a tempered T652 material.

これらの調質Al合金鍛造材から供試材を採取し、供試材の室温 (最大応力190MPa、応力比−1 ) と、150 ℃の高温 (最大応力130MPa、応力比−1 ) での、各疲労強度を求めた。この疲労強度は、回転曲げ疲労試験により、平行部の径を8mm Φ、平行部の長さを20mmとし、♯1000のエミリーペーパー仕上げとした、丸棒状試験片に、前記応力を繰り返し与え、破壊に到る繰り返し回数を調査した。測定結果を表2 に示す。なお、表2 では、破断繰り返し回数が、例えば1.2 ×107 回の場合には1.2e7 、9.0 ×106 回の場合には9.0e6 、と表示している。 Specimens were collected from these tempered Al alloy forgings, and the specimens were tested at room temperature (maximum stress 190 MPa, stress ratio −1) and at a high temperature of 150 ℃ (maximum stress 130 MPa, stress ratio −1). Each fatigue strength was determined. This fatigue strength was determined by repeated bending fatigue tests, with the diameter of the parallel part 8mm Φ, the length of the parallel part 20mm, and # 1000 emily paper finish. The number of repetitions to reach was investigated. Table 2 shows the measurement results. In Table 2, for example, 1.2e7 is displayed when the number of repetitions of breakage is 1.2 × 10 7 times, and 9.0e6 is displayed when the number of repetitions is 9.0 × 10 6 times.

引張特性として、室温での機械的特性 (引張強さσB :MPa、0.2%耐力σ0.2:MPa 、伸びδ:%) と、高温特性として、180 ℃×100hr の高温に供試材を暴露した際の、その温度での機械的特性 (σB 、σ0.2 、伸び) 、更に、204 ℃での1000hrクリープ破断強度、シャルピー衝撃値(J/cm2) を測定した。これら丸棒状試験片は平行部10mmΦ×28mml とした。これらの測定結果も表2 に示す。 Extensive mechanical properties at room temperature (tensile strength σ B : MPa, 0.2% proof stress σ 0.2 : MPa, elongation δ:%) as tensile properties, and high temperature properties expose the specimen to a high temperature of 180 ° C x 100 hr. The mechanical properties at that temperature (σ B , σ 0.2 , elongation), 1000 hr creep rupture strength at 204 ° C., and Charpy impact value (J / cm 2 ) were measured. These round bar-shaped test pieces had a parallel portion of 10 mmΦ × 28 mml. These measurement results are also shown in Table 2.

また、供試材の長手方向に100mm ずつ間隔を開けた3 箇所の組織中のAl-V系析出物の分布密度[ 個/(μm)3 ] を、前記した方法で測定し、平均化した。これらのAl-V系析出物の平均分布密度測定結果も表2 に示す。 In addition, the distribution density [piece / (μm) 3 ] of Al-V-based precipitates in the three structures at intervals of 100 mm in the longitudinal direction of the specimen was measured and averaged by the method described above. . Table 2 also shows the average distribution density measurement results of these Al-V precipitates.

更に、表2 における各発明例および12を除く比較例においては、上記3 箇所の組織中の、前記した各条件でのミクロ組織観察を行い、Al合金組織が等軸で、平均結晶粒径が50〜500 μmmの範囲の一定サイズの粒径であり、更に(100) 面上にθ' 相、(111) 面上にΩ相が各々析出していることを確認した。   Further, in each of the invention examples in Table 2 and the comparative examples other than 12, the microstructure is observed in the above three conditions in each of the above-mentioned conditions, the Al alloy structure is equiaxed, and the average crystal grain size is It was confirmed that the particle size was a fixed size in the range of 50 to 500 μm, and the θ ′ phase was precipitated on the (100) plane and the Ω phase was precipitated on the (111) plane.

以下に、表1 と表2 とから明らかな事項を述べる。
V を含むA 〜C の本発明範囲内の化学成分組成を有する発明例1 〜6 は、15時間以上の均質化熱処理を施されており、鍛造材組織中のAl-V系析出物の分布密度が1.5 個/(μm)3 以上である。この結果、室温の疲労強度とともに、高温での疲労強度が8.0e6 (8.0×106)以上と優れている。
The matters that are clear from Table 1 and Table 2 are described below.
Inventive Examples 1 to 6 having a chemical composition within the scope of the present invention of A to C containing V are subjected to a homogenization heat treatment for 15 hours or more, and the distribution of Al-V precipitates in the forging structure The density is 1.5 pieces / (μm) 3 or more. As a result, the fatigue strength at room temperature and the fatigue strength at high temperature are excellent at 8.0e6 (8.0 × 10 6 ) or more.

ただ、同一合金における均質化熱処理時間が20時間と長い発明例と15時間と比較的短い発明例同士の比較において、発明例1 の方が発明例2 よりも、鍛造材組織中のAl-V系析出物の分布密度が比較的高く、高温での疲労強度が比較的優れている。   However, in the comparison between the invention example having a long homogenization heat treatment time of 20 hours and the invention example having a relatively short time of 15 hours in the same alloy, the invention example 1 is more Al-V in the forging structure than the invention example 2. The distribution density of the system precipitates is relatively high, and the fatigue strength at high temperatures is relatively excellent.

これに対し、表1 に示すA 〜C の本発明範囲内の合金を用いても、均質化熱処理時間が8 時間あるいは12時間と短い、比較例7 〜10は、上記発明例よりも、鍛造材組織中のAl-V系析出物の分布密度が1.5 個/(μm)3 未満と顕著に低く、特に高温での疲労強度が著しく劣っている。 On the other hand, even if the alloys in the scope of the present invention A to C shown in Table 1 were used, Comparative Examples 7 to 10 in which the homogenization heat treatment time was as short as 8 hours or 12 hours were forged compared to the above invention examples. The distribution density of Al-V precipitates in the material structure is remarkably low at less than 1.5 pieces / (μm) 3 , and the fatigue strength at high temperatures is particularly inferior.

更に、V 含有量が低めに外れる合金例D を用いた比較例11は、均質化熱処理時間が20時間と長いにもかかわらず、上記発明例よりも、鍛造材組織中のAl-V系析出物の分布密度が1.5 個/(μm)3 未満と顕著に低く、特に高温での疲労強度が著しく劣っている。 Further, Comparative Example 11 using Alloy Example D in which the V content falls off lower is higher than that of the above invention example in spite of the longer homogenization heat treatment time of 20 hours. The distribution density of objects is remarkably low at less than 1.5 pieces / (μm) 3, and the fatigue strength at high temperatures is particularly inferior.

また、V 含有量が高めに外れる合金例E を用いた比較例12は、前記鍛造材の組織観察で、他の例には無い、粗大な金属間化合物が観察された。よって、機械的性質が劣ることは明らかなので、具体的な測定、確認を行なわなかった。   Further, in Comparative Example 12 using Alloy Example E in which the V content deviates significantly, a coarse intermetallic compound not observed in other examples was observed in the structure of the forged material. Therefore, since it is clear that the mechanical properties are inferior, specific measurement and confirmation were not performed.

したがって、これらの結果から、高温疲労強度に対する鍛造材組織中のAl-V系析出物の分布密度規定の臨界的な意義、Al-V系析出物の分布密度向上への均質化熱処理時間の意義が裏付けられる。   Therefore, from these results, the critical significance of the distribution density regulation of Al-V precipitates in the forging structure for high temperature fatigue strength, and the significance of the homogenization heat treatment time to improve the distribution density of Al-V precipitates Is supported.

Figure 0004058398
Figure 0004058398

Figure 0004058398
Figure 0004058398

本発明によれば、耐熱性および高温耐力などの高温特性だけではなく、高温疲労強度に優れたAl合金鍛造材を提供することができる。したがって、ロケットや航空機などの航空・宇宙機材用、鉄道車両、自動車、船舶などの輸送機材用、あるいはエンジン部品、コンプレッサーなどの機械部品用等、回転ローターや回転インペラー或いはピストンなどの、特に100 ℃を超える高温の使用環境での高温疲労強度が特に要求されるAl合金製部品に適用できる。
ADVANTAGE OF THE INVENTION According to this invention, not only high temperature characteristics, such as heat resistance and high temperature proof stress, but the Al alloy forging material excellent in high temperature fatigue strength can be provided. Therefore, for rotors, rotary impellers, pistons, etc., especially for aerospace equipment such as rockets and aircraft, transportation equipment such as railway vehicles, automobiles and ships, or mechanical parts such as engine parts and compressors. It can be applied to Al alloy parts that require particularly high temperature fatigue strength in high temperature usage environments exceeding.

Claims (2)

Cu:4.0〜7.0%、Mg:0.2〜0.4%、Ag:0.05 〜0.7%、V:0.05% 〜0.15% を含み、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金鍛造材であって、鍛造材組織中のAl-V系析出物の分布密度が1.5 個/(μm)3 以上であることを特徴とする高温疲労強度に優れたアルミニウム合金鍛造材。 An aluminum alloy forging comprising Cu: 4.0-7.0%, Mg: 0.2-0.4%, Ag: 0.05-0.7%, V: 0.05% -0.15%, the balance being aluminum and unavoidable impurities, and forging structure An aluminum alloy forging material excellent in high-temperature fatigue strength, characterized in that the distribution density of Al-V precipitates therein is 1.5 pieces / (μm) 3 or more. 前記アルミニウム合金鍛造材が、Cu:4.0〜7.0%、Mg:0.2〜0.4%、Ag:0.05 〜0.7%、V:0.05% 〜0.15% を含み、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金鋳造材を、500 〜535 ℃の温度で15時間以上均質化熱処理後、280 〜430 ℃の温度で熱間鍛造し、その後510 〜545 ℃の温度で溶体化および焼入れ処理したものである高温疲労強度に優れたアルミニウム合金鍛造材。
The aluminum alloy forging material contains Cu: 4.0 to 7.0%, Mg: 0.2 to 0.4%, Ag: 0.05 to 0.7%, V: 0.05% to 0.15%, and the balance aluminum and inevitable impurities. To a high temperature fatigue strength that has been subjected to homogenization heat treatment at a temperature of 500 to 535 ° C. for 15 hours or longer, hot forging at a temperature of 280 to 430 ° C., and solution treatment and quenching at a temperature of 510 to 545 ° C. Excellent aluminum alloy forging.
JP2003312897A 2003-09-04 2003-09-04 Aluminum alloy forging with excellent high-temperature fatigue strength Expired - Lifetime JP4058398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312897A JP4058398B2 (en) 2003-09-04 2003-09-04 Aluminum alloy forging with excellent high-temperature fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312897A JP4058398B2 (en) 2003-09-04 2003-09-04 Aluminum alloy forging with excellent high-temperature fatigue strength

Publications (2)

Publication Number Publication Date
JP2005082816A JP2005082816A (en) 2005-03-31
JP4058398B2 true JP4058398B2 (en) 2008-03-05

Family

ID=34414018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312897A Expired - Lifetime JP4058398B2 (en) 2003-09-04 2003-09-04 Aluminum alloy forging with excellent high-temperature fatigue strength

Country Status (1)

Country Link
JP (1) JP4058398B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009525A1 (en) 2014-10-16 2016-04-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminium alloy forging and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410845B2 (en) 2008-08-21 2014-02-05 アイシン軽金属株式会社 Al-Mg-Si aluminum alloy extruded material with excellent fatigue strength and impact fracture resistance
JP5879181B2 (en) * 2011-06-10 2016-03-08 株式会社神戸製鋼所 Aluminum alloy with excellent high temperature characteristics
CN106893910A (en) * 2017-03-01 2017-06-27 辽宁忠大铝业有限公司 A kind of low rare earth high-strength aluminium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009525A1 (en) 2014-10-16 2016-04-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminium alloy forging and method for producing the same

Also Published As

Publication number Publication date
JP2005082816A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP3997009B2 (en) Aluminum alloy forgings for high-speed moving parts
KR101148421B1 (en) Aluminum alloy forgings and process for production thereof
JP5431233B2 (en) Aluminum alloy forging and method for producing the same
JP5879181B2 (en) Aluminum alloy with excellent high temperature characteristics
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
KR20160045021A (en) Aluminum alloy forging and method for producing the same
WO2008120237A1 (en) Alloy composition and preparation thereof
JP2014074213A (en) High strength aluminum alloy extruded material and method of producing the same
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
GB2065516A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP4058398B2 (en) Aluminum alloy forging with excellent high-temperature fatigue strength
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
EP1522600B1 (en) Forged aluminium alloy material having excellent high temperature fatigue strength
JP2020152965A (en) Aluminum alloy material, method for producing the same, and impeller
JP5607960B2 (en) Heat-resistant magnesium alloy with excellent fatigue strength characteristics and heat-resistant parts for engines
KR100560252B1 (en) Alluminum alloy forged material excellent in high temperature fatigue strength
WO2022196381A1 (en) High-strength aluminum alloy extruded material and manufaturing method therefor
WO2020097169A1 (en) 2xxx aluminum lithium alloys

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Ref document number: 4058398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term