JP5879181B2 - Aluminum alloy with excellent high temperature characteristics - Google Patents

Aluminum alloy with excellent high temperature characteristics Download PDF

Info

Publication number
JP5879181B2
JP5879181B2 JP2012085178A JP2012085178A JP5879181B2 JP 5879181 B2 JP5879181 B2 JP 5879181B2 JP 2012085178 A JP2012085178 A JP 2012085178A JP 2012085178 A JP2012085178 A JP 2012085178A JP 5879181 B2 JP5879181 B2 JP 5879181B2
Authority
JP
Japan
Prior art keywords
mass
alloy
less
strength
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012085178A
Other languages
Japanese (ja)
Other versions
JP2013014835A (en
Inventor
田中 敏行
敏行 田中
慶樹 武林
慶樹 武林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012085178A priority Critical patent/JP5879181B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to KR1020137030509A priority patent/KR20140002063A/en
Priority to KR1020187029507A priority patent/KR20180115350A/en
Priority to KR1020157032372A priority patent/KR20150132604A/en
Priority to CN201280015095.3A priority patent/CN103459630B/en
Priority to PCT/JP2012/062266 priority patent/WO2012169317A1/en
Priority to EP12796774.3A priority patent/EP2719784A4/en
Publication of JP2013014835A publication Critical patent/JP2013014835A/en
Application granted granted Critical
Publication of JP5879181B2 publication Critical patent/JP5879181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Description

本発明は高速で回転ないし摺動する高速動部品用の高温特性に優れたアルミニウム合金に関する。   The present invention relates to an aluminum alloy having excellent high-temperature characteristics for high-speed moving parts that rotate or slide at high speed.

アルミニウムは、低密度かつ高強度であり、加工が容易という特性を有する。この特性を生かして、軽量さ、強度や加工特性が要求される鉄道車両、自動車、船舶などの輸送機械や、各種機械部品、エンジン部品などに用いられていることが以前から知られている。具体的には、発電機やコンプレッサーなどの回転ローター(小型羽根)や回転インペラ(大型羽根)、或いはエンジンのピストンなど、高速で回転ないし摺動する高速動部品に用いられている。   Aluminum has the characteristics of low density and high strength and easy processing. It has been known for a long time that it is used for transportation machines such as railway vehicles, automobiles, and ships, various machine parts, engine parts, etc. that require light weight, strength, and processing characteristics. Specifically, it is used for high-speed moving parts that rotate or slide at high speed, such as rotating rotors (small blades) such as generators and compressors, rotating impellers (large blades), and engine pistons.

これらの用途に用いられる高速動部品には、100℃を超える高温使用環境や回転や摺動するという部品の性質上、高温特性(耐熱性、高温疲労強度、高温下での耐クリープ特性および高温耐力)が要求される。
そして、特許文献1や特許文献2に記載されているように、前記機械部品の一つであるローターであって、これら高温特性の改善が図られているものが知られている。このローターは、アルミニウムを基本とし、ジルコニウム、マンガン、鉄等を主要成分として添加したアルミニウム合金(以下、適宜、Al合金と称す)から構成される。
High-speed moving parts used in these applications include high-temperature properties (heat resistance, high-temperature fatigue strength, creep resistance at high temperatures, Strength) is required.
As described in Patent Document 1 and Patent Document 2, a rotor that is one of the mechanical parts, which has been improved in these high-temperature characteristics, is known. This rotor is composed of an aluminum alloy (hereinafter, referred to as an Al alloy as appropriate) to which aluminum is basic and zirconium, manganese, iron or the like is added as a main component.

この特許文献1や特許文献2に記載の発明であるAl合金は、合金添加成分としてZrが0.1〜0.25質量%含有されており、高い静的高温強度および動的高温強度とクリープ特性を有している。そして、このZr成分が、Mnの空格子点の補填、合金の熱安定性に寄与していると記載されている。   The Al alloy according to the invention described in Patent Document 1 and Patent Document 2 contains 0.1 to 0.25% by mass of Zr as an alloy additive component, and has high static high-temperature strength and dynamic high-temperature strength and creep. It has characteristics. It is described that this Zr component contributes to Mn vacancies filling and thermal stability of the alloy.

特表2009−535550号公報Special table 2009-535550 gazette 特表2009−535551号公報Special table 2009-5535551 gazette

しかしながら、これら従来技術においてはZr含有量が多くなるとAl合金の焼入れ感受性が鋭敏となり、特に大きな材料において人工時効硬化処理前の焼入れ工程で冷却速度が遅い場合、強度が低下する問題がある。また、内部の残留応力が大きくなるため、その加工性も問題となっていた。このように、特に大きな材料においてAl合金の高温特性を含めた材料特性は十分改善されていなかった。
また、最近では、回転ローターやピストンが従来以上の更なる高速回転、摺動や高温下といった状況で用いられており、Al合金の金属疲労強度の向上が要求されていた。
However, in these conventional techniques, when the Zr content increases, the quenching sensitivity of the Al alloy becomes sharp, and there is a problem that the strength is lowered particularly in a large material when the cooling rate is low in the quenching process before the artificial age hardening treatment. Moreover, since the internal residual stress becomes large, the workability has also been a problem. As described above, the material characteristics including the high temperature characteristics of the Al alloy have not been sufficiently improved particularly in a large material.
Recently, rotating rotors and pistons have been used in situations such as higher speed rotation, sliding, and high temperature than before, and there has been a demand for improvement in metal fatigue strength of Al alloys.

本発明は、前記問題点に鑑みてなされたものであり、高温特性に優れたAl合金を提供することを課題とする。更に好ましくは、金属疲労強度が向上したAl合金を提供することを課題とする。   This invention is made | formed in view of the said problem, and makes it a subject to provide Al alloy excellent in the high temperature characteristic. More preferably, it is an object to provide an Al alloy having improved metal fatigue strength.

本発明に係る高温特性に優れたAl合金は、Si:0.1質量%を超えて1.0質量%以下、Cu:3.0質量%以上7.0質量%以下、Mn:0.05質量%以上1.5質量%以下、Mg:0.01質量%以上2.0質量%以下、Ti:0.01質量%以上0.10質量%以下、Ag:0.05質量%以上1.0質量%以下、を含有し、かつ、Zr:0.1質量%未満に規制し、残部がAlおよび不可避的不純物からなり、金属間化合物の最大円相当径が60μm以下であることを特徴とする。なお、最大円相当径については後述する。 The Al alloy excellent in high temperature characteristics according to the present invention is Si: more than 0.1% by mass and 1.0% by mass or less, Cu: 3.0% by mass or more and 7.0% by mass or less, Mn: 0.05 1 mass% or more and 1.5 mass% or less, Mg: 0.01 mass% or more and 2.0 mass% or less, Ti: 0.01 mass% or more and 0.10 mass% or less, Ag: 0.05 mass% or more. 0 wt% or less, containing, and, Zr: restricted to less than 0.1 wt%, the remainder Ri is Do of Al and unavoidable impurities, the maximum equivalent circle diameter der Rukoto less 60μm intermetallic compound Features. The maximum equivalent circle diameter will be described later.

前記の構成にすることにより、Al合金は常温強度および高温強度、ならびに、高温での十分なクリープ特性、ならびに、常温耐力および高温耐力を獲得することができる。これにより、本発明の目的たる特に高温で使用される高速動部品用のAl合金に求められる性能を確保できる。
金属間化合物の最大円相当径を前記のように制御することにより、金属間化合物とマトリックス部分との強度、硬度や、ヤング率などの材料特性の差による、金属疲労によるAl合金材料の破壊の起点となる可能性を減少させることができる。これにより、金属疲労強度の向上が図られる。
By adopting the above-described structure, the Al alloy can obtain normal temperature strength and high temperature strength, sufficient creep properties at high temperature, and normal temperature strength and high temperature strength. As a result, the performance required for the Al alloy for high-speed moving parts used at high temperatures, which is the object of the present invention, can be ensured.
By controlling the maximum equivalent circle diameter of the intermetallic compound as described above, the strength of the intermetallic compound and the matrix portion, the hardness, the difference in material properties such as Young's modulus, and the failure of the Al alloy material due to metal fatigue The possibility of becoming a starting point can be reduced. Thereby, the improvement of metal fatigue strength is achieved.

また、本発明に係るAl合金は、前記Al合金であって、V:0.15質量%以下をさらに含有することが好ましい。   Moreover, the Al alloy according to the present invention is the Al alloy, and preferably further contains V: 0.15% by mass or less.

前記の構成に、更にVを含有することにより、Al合金中にAl−V系分散粒子を析出させることができる。この分散粒子は再結晶後の粒界移動を妨げる作用があるため、結晶粒の粗大化が防止される。そして、常温強度および高温強度、そして特に高温金属疲労強度を向上させることができる。   By further containing V in the above configuration, Al—V-based dispersed particles can be precipitated in the Al alloy. Since these dispersed particles have an effect of hindering grain boundary movement after recrystallization, coarsening of crystal grains is prevented. And normal temperature strength and high temperature strength, and especially high temperature metal fatigue strength can be improved.

本発明によれば、高温特性に優れたAl合金が得られる。また、本発明によれば金属疲労強度が向上したAl合金が得られる。   According to the present invention, an Al alloy having excellent high temperature characteristics can be obtained. Moreover, according to the present invention, an Al alloy having improved metal fatigue strength can be obtained.

以下、本発明に係るAl合金を本発明に実施の形態に基づいて詳細に説明する。以下に記載する元素組成及び金属間化合物の最大円相当径とすることにより、Al合金が高温特性を有することになる。このため、本発明に係るAl合金を用いてローターやピストンなどの高速動部品を製造すると共に、この部品を発電機、コンプレッサーやエンジンなどの製品に組み込み使用した場合に前記部品が高速で回転ないし摺動する際の部品同士の接触や(圧縮)空気等との接触により発生する摩擦熱、高温の(圧縮)空気下での使用や前記部品にかかる変形応力等にも耐えることが可能である。このため、本発明に係るAl合金は、発電機やコンプレッサーなどの回転ローター(小型羽根)や回転インペラ(大型羽根)、或いはエンジンのピストンなど、高速で回転ないし摺動する高速動部品に最適に用いることが可能である。
なお、本発明はこのような実施の形態のみに限定されるものではなく、本発明の技術的思想を逸脱しない範囲において、適宜変更することができる。
Hereinafter, the Al alloy according to the present invention will be described in detail based on the embodiments of the present invention. By setting the element composition described below and the maximum equivalent circle diameter of the intermetallic compound, the Al alloy has high temperature characteristics. For this reason, high-speed moving parts such as rotors and pistons are manufactured using the Al alloy according to the present invention, and when these parts are incorporated in products such as generators, compressors and engines, the parts rotate at high speed. It can withstand frictional heat generated by contact between parts when sliding and contact with (compressed) air, use under high-temperature (compressed) air, and deformation stress applied to the parts. . Therefore, the Al alloy according to the present invention is optimal for high-speed moving parts that rotate or slide at high speed, such as rotating rotors (small blades) and rotating impellers (large blades) such as generators and compressors, or engine pistons. It is possible to use.
Note that the present invention is not limited to such an embodiment, and can be appropriately changed without departing from the technical idea of the present invention.

<合金成分>
本発明にかかるAl合金は、Si、Cu、Mn、Mg、Ti、Agを所定量含有すると共に、Zrを所定量未満に規制し、残部がAlおよび不可避的不純物からなるものである。
また、選択的成分としてVを所定量以下含有するものである。
更に、選択的構成要素として金属間化合物の最大円相当径を所定値以下に規制したものである。
以下、各成分の限定理由及び金属間化合物の最大円相当径の規定理由について説明する。
<Alloy components>
The Al alloy according to the present invention contains a predetermined amount of Si, Cu, Mn, Mg, Ti, and Ag, regulates Zr to be less than a predetermined amount, and the balance is made of Al and inevitable impurities.
Further, it contains V as a selective component in a predetermined amount or less.
Furthermore, the maximum equivalent circle diameter of the intermetallic compound is regulated to a predetermined value or less as an optional component.
Hereinafter, the reasons for limiting each component and the reasons for defining the maximum equivalent circle diameter of the intermetallic compound will be described.

(Si:0.1質量%を超えて1.0質量%以下)
SiはAl合金の強度を高める作用があり、Siが添加されることにより、強度向上に効果のある析出物が増える傾向にある。また、Siが添加されることにより、合金内の転位ループの抑制に効果がある。このため、Siの添加は、析出相の微細化、均一析出に有効である。
(Si: more than 0.1% by mass and 1.0% by mass or less)
Si has the effect of increasing the strength of the Al alloy, and the addition of Si tends to increase the number of precipitates that are effective in improving the strength. Further, the addition of Si is effective in suppressing dislocation loops in the alloy. For this reason, the addition of Si is effective for the refinement of the precipitated phase and uniform precipitation.

Siの含有量が0.1質量%以下ではその効果が少ない。一方、Siの含有量が1.0質量%を超えると粗大な金属間化合物を生じ、回転ローター、回転インペラやピストンなど高速動部品の成形不良、金属疲労強度の低下や破壊の原因となる。
従って、Siの含有量は、0.1質量%を超えて1.0質量%以下とする。好ましくは、0.1質量%を超えて0.7質量%以下である。より好ましくは、0.1質量%を超えて0.6質量%以下である。
The effect is small when the Si content is 0.1 mass% or less. On the other hand, if the Si content exceeds 1.0% by mass, a coarse intermetallic compound is produced, which causes poor molding of a high-speed moving part such as a rotating rotor, rotating impeller, and piston, and decreases or breaks the metal fatigue strength.
Therefore, the Si content is more than 0.1% by mass and 1.0% by mass or less. Preferably, it exceeds 0.1 mass% and is 0.7 mass% or less. More preferably, it is more than 0.1 mass% and 0.6 mass% or less.

(Cu:3.0質量%以上7.0質量%以下)
Cuは本発明に係るAl合金の基本成分である。本発明のAl合金は、回転ローター、回転インペラやピストンなどの機械部品などに使用されるAl合金である。Cuは固溶強化および析出強化の双方の作用により、主として本発明用途においてAl合金に要求される、高温下でのクリープ特性、並びに、常温耐力および高温耐力を確保するために必須の成分である。このように、Cuは固溶強化および析出強化の双方の作用によりAl合金の強度を向上させる。より具体的には、Cuは高温の人工時効硬化処理時にθ’相やΩ相を、Al合金の(100)面や(111)面に微細でかつ高密度に析出させ、人工時効硬化処理後のAl合金の強度を向上させる。
(Cu: 3.0% by mass or more and 7.0% by mass or less)
Cu is a basic component of the Al alloy according to the present invention. The Al alloy of the present invention is an Al alloy used for machine parts such as a rotating rotor, a rotating impeller, and a piston. Cu is an indispensable component for ensuring the high temperature creep characteristics, room temperature proof stress, and high temperature proof strength, which are required for Al alloys mainly in the present invention due to the effects of both solid solution strengthening and precipitation strengthening. . Thus, Cu improves the strength of the Al alloy by the actions of both solid solution strengthening and precipitation strengthening. More specifically, Cu precipitates the θ ′ phase and Ω phase finely and densely on the (100) surface and (111) surface of the Al alloy during the high temperature artificial age hardening treatment, and after the artificial age hardening treatment. The strength of the Al alloy is improved.

この効果はCuの含有量が3.0質量%以上で発揮される。Cuの含有量が3.0質量%未満では、前記効果が小さく、Al合金の高温下での十分なクリープ特性ならびに高温耐力が得られない。一方、Cuの含有量が7.0質量%を超えると強度が高くなりすぎ、Al合金の鍛造性が低下する。また、Al合金組織中の金属間化合物が粗大になりやすく、Al合金の金属疲労強度が低下する。
従って、Cuの含有量は3.0質量%以上7.0質量%以下とする。好ましくは、4.0質量%以上7.0質量%以下とする。より好ましくは、4.5質量%を超えて7.0質量%以下とする。
This effect is exhibited when the Cu content is 3.0 mass% or more. If the Cu content is less than 3.0% by mass, the effect is small, and sufficient creep characteristics and high temperature proof stress of the Al alloy at high temperature cannot be obtained. On the other hand, if the Cu content exceeds 7.0% by mass, the strength becomes too high, and the forgeability of the Al alloy decreases. In addition, the intermetallic compound in the Al alloy structure tends to be coarse, and the metal fatigue strength of the Al alloy decreases.
Accordingly, the Cu content is set to 3.0% by mass or more and 7.0% by mass or less. Preferably, it is 4.0 mass% or more and 7.0 mass% or less. More preferably, it exceeds 4.5 mass% and is 7.0 mass% or less.

(Mn:0.05質量%以上1.5質量%以下)
Mnは、Al合金のミクロ組織を繊維組織化して、常温強度および高温強度を向上させる。そして、Mnは均質化加熱処理時にAl合金マトリックス中で熱的に安定な化合物であるAl−Mn系分散粒子を析出させる。これらの分散粒子としては、Al20CuMnが挙げられる。これらの分散粒子は、再結晶後の粒界移動を妨げる作用があるため、結晶粒の粗大化防止には効果的である。
(Mn: 0.05 mass% or more and 1.5 mass% or less)
Mn fiber-structures the microstructure of the Al alloy and improves the normal temperature strength and the high temperature strength. Mn precipitates Al—Mn-based dispersed particles which are thermally stable compounds in the Al alloy matrix during the homogenization heat treatment. These dispersed particles include Al 20 Cu 2 Mn 3 . Since these dispersed particles have an action of hindering grain boundary movement after recrystallization, they are effective in preventing the coarsening of crystal grains.

Mnの含有量が0.05質量%未満では、これらの効果は少ない。一方、Mnの含有量が1.5質量%を超えると、溶解鋳造時に粗大な不溶性金属間化合物を生成しやすくAl合金材料の成形不良および破壊の原因となる。
従って、Mnの含有量は0.05質量%以上1.5質量%以下とする。好ましくは、0.05質量%以上1.0質量%以下とする。より好ましくは、0.05質量%以上0.8質量%以下とする。
When the Mn content is less than 0.05% by mass, these effects are small. On the other hand, if the content of Mn exceeds 1.5% by mass, a coarse insoluble intermetallic compound is likely to be produced during melt casting, which causes defective molding and breakage of the Al alloy material.
Therefore, the Mn content is set to 0.05% by mass or more and 1.5% by mass or less. Preferably, it is 0.05 mass% or more and 1.0 mass% or less. More preferably, it is 0.05 mass% or more and 0.8 mass% or less.

(Mg:0.01質量%以上2.0質量%以下)
Mgは、Cuと同様に、固溶強化および析出強化の双方の作用により、主としてAl合金が本発明用途において要求される、高温下でのクリープ特性、並びに、常温耐力および高温での耐力を確保するために必須の成分である。より具体的には、MgもCuと同様に、高温の人工時効硬化処理時に、θ’相やΩ相を、Al合金の(100)面や(111)面に微細でかつ高密度に析出させ、人工時効硬化処理後のAl合金の強度を向上させる。
(Mg: 0.01% to 2.0% by mass)
Mg, like Cu, ensures the creep characteristics at high temperatures and the normal temperature proof strength and the proof strength at high temperatures, which are mainly required for Al alloys in the present invention, by the action of both solid solution strengthening and precipitation strengthening. It is an essential ingredient to do. More specifically, Mg, like Cu, causes the θ ′ phase and Ω phase to be finely and densely deposited on the (100) surface and (111) surface of the Al alloy during the high-temperature artificial age hardening treatment. The strength of the Al alloy after the artificial age hardening treatment is improved.

前記効果は、Mgの含有量が0.01質量%以上で発揮される。Mgの含有量が0.01質量%未満では、前記の効果が小さく、Al合金の高温下での十分な特性、並びに常温耐力および高温耐力が得られない。一方、Mgの含有量が2.0質量%を超えると、強度が高くなりすぎ、鍛造性等の加工性が低下する可能性が高くなる。
従って、Mgの含有量は0.01質量%以上2.0質量%以下とする。好ましくは、0.01質量%以上1.5質量%以下とする。より好ましくは、0.01質量%以上1.0質量%以下とする。
The effect is exhibited when the Mg content is 0.01% by mass or more. When the Mg content is less than 0.01% by mass, the above-described effects are small, and sufficient characteristics of the Al alloy at high temperatures, and normal temperature resistance and high temperature resistance cannot be obtained. On the other hand, if the Mg content exceeds 2.0 mass%, the strength becomes too high, and the possibility of deterioration of workability such as forgeability increases.
Therefore, the Mg content is set to 0.01% by mass or more and 2.0% by mass or less. Preferably, it is 0.01 mass% or more and 1.5 mass% or less. More preferably, it is 0.01 mass% or more and 1.0 mass% or less.

(Ti:0.01質量%以上0.10質量%以下)
Tiは、鋳造時の結晶粒を微細化する効果を有する。
Tiの含有量が0.01質量%未満ではこの効果が少ない。一方、Tiの含有量が0.10質量%を超えると粗大な金属間化合物を形成する。そして、この金属間化合物が成形加工時にAl合金材料の破壊の起点になるため、0.10質量%を超えて添加すると、Al合金の成形性が低下する。
従って、Tiの含有量は0.01質量%以上0.10質量%以下とする。
(Ti: 0.01% by mass or more and 0.10% by mass or less)
Ti has the effect of refining crystal grains during casting.
This effect is small when the Ti content is less than 0.01% by mass. On the other hand, when the Ti content exceeds 0.10% by mass, a coarse intermetallic compound is formed. And since this intermetallic compound becomes a starting point of destruction of Al alloy material at the time of a shaping | molding process, if it adds exceeding 0.10 mass%, the moldability of Al alloy will fall.
Therefore, the Ti content is set to 0.01% by mass or more and 0.10% by mass or less.

(Ag:0.05質量%以上1.0質量%以下)
AgはAl合金中において、微細で均一なΩ相を形成すると共に、析出相が存在しない領域(PFZ;solute−depleted precipitate free zone)の幅を極めて狭くすることによりAl合金の常温強度および高温強度並びに高温クリープ特性を向上させる。
Agの含有量が0.05質量%未満ではこの効果が少ない。また一方でAgの含有量が1.0質量%を超えて含有してもその効果は飽和する。
従って、Agの含有量は0.05質量%以上1.0質量%以下とする。好ましくは、0.05質量%以上0.7質量%以下とする。
(Ag: 0.05 mass% or more and 1.0 mass% or less)
Ag forms a fine and uniform Ω phase in an Al alloy, and at the same time, the room temperature strength and high temperature strength of the Al alloy are reduced by extremely narrowing the width of the region where no precipitated phase is present (PFZ; solution-depleted precipitate free zone). In addition, the high temperature creep property is improved.
If the content of Ag is less than 0.05% by mass, this effect is small. On the other hand, even if the content of Ag exceeds 1.0% by mass, the effect is saturated.
Therefore, the content of Ag is set to 0.05% by mass or more and 1.0% by mass or less. Preferably, it is 0.05 mass% or more and 0.7 mass% or less.

(Zr:0.1質量%未満(0質量%を含む))
Zrは、均質化熱処理時にAl合金組織中で熱的に安定な化合物であるAl−Zr系の分散粒子を析出させる。そして、この分散粒子が、Al合金のミクロ組織を繊維組織化して、常温強度および高温強度を向上させる効果を有する。
しかし、溶体化処理工程後の焼入れ工程において、400℃から290℃の間の平均冷却速度が500℃/秒以下に遅くなった場合に、Zrを0.1質量%以上含有していると、溶体化処理後の焼入れ処理において、AlCuなどの安定相が、前記Al−Zr系の分散粒子の周囲に粗大に析出してしまう。この結果、次に高温の前記人工時効硬化処理を行っても、高温での耐力が低下する恐れがある。
従って、Al合金の焼入れ感受性を下げるために、Zrの含有量は0.1質量%未満とする。
(Zr: less than 0.1% by mass (including 0% by mass))
Zr precipitates Al—Zr-based dispersed particles that are thermally stable compounds in the Al alloy structure during the homogenization heat treatment. The dispersed particles have an effect of forming the microstructure of the Al alloy into a fiber structure and improving the normal temperature strength and the high temperature strength.
However, in the quenching step after the solution treatment step, when the average cooling rate between 400 ° C. and 290 ° C. is slowed down to 500 ° C./second or less, when Zr is contained by 0.1 mass% or more, In the quenching treatment after the solution treatment, a stable phase such as AlCu 2 is coarsely precipitated around the Al—Zr-based dispersed particles. As a result, even if the artificial aging treatment at a high temperature is performed next, the yield strength at a high temperature may be reduced.
Therefore, in order to lower the quenching sensitivity of the Al alloy, the Zr content is set to less than 0.1% by mass.

(V:0.15質量%以下)
任意成分であるVは、Al−V系化合物としてAl合金組織中に析出し、高温金属疲労強度を向上させることができる。また、Vは、均質化熱処理時においても、Al合金組織中で熱的に安定な化合物であるAl−V系分散粒子を析出させる。この分散粒子が再結晶後の粒界移動を妨げる作用があるため、結晶粒の粗大化防止の効果がある。
この効果によりVは、Al合金のミクロ組織を繊維組織化して、常温強度および高温強度、そして特に高温金属疲労強度を向上させる。そして、安定相を粗大に析出させる作用がZr、Cr、Mnに比べて比較的小さいため、常温強度、高温強度、そして高温金属疲労強度を向上させるためにより好ましい。
(V: 0.15 mass% or less)
V, which is an optional component, precipitates in the Al alloy structure as an Al—V compound, and can improve high-temperature metal fatigue strength. Further, V precipitates Al—V-based dispersed particles that are thermally stable compounds in the Al alloy structure even during the homogenization heat treatment. Since these dispersed particles have an action of hindering the grain boundary movement after recrystallization, there is an effect of preventing the coarsening of crystal grains.
Due to this effect, V causes the microstructure of the Al alloy to become a fiber structure, thereby improving the normal temperature strength and the high temperature strength, and particularly the high temperature metal fatigue strength. And since the effect | action which precipitates a stable phase coarsely is comparatively small compared with Zr, Cr, and Mn, it is more preferable in order to improve normal temperature strength, high temperature strength, and high temperature metal fatigue strength.

これらのことから、Al合金の高温特性の確保をより確実に保証する目的で、結晶粒径を500μm以下に微細化させるために、Vの含有量は0.15質量%以下となるように選択的に含有させることが好ましい。また、Vの含有量が0.05質量%未満ではその効果が小さい。一方、Vの含有量が0.15質量%を超えると、溶解鋳造時に粗大な不溶性金属間化合物を生成しやすく、Al合金の成形不良および破壊の原因となる。
従って、Vの含有量は0.15質量%以下が好ましいが、0質量%でもよい。好ましい下限値は0.05質量%である。
Therefore, in order to ensure the high temperature characteristics of the Al alloy more reliably, the V content is selected to be 0.15% by mass or less in order to refine the crystal grain size to 500 μm or less. It is preferable to make it contain. Moreover, the effect is small if content of V is less than 0.05 mass%. On the other hand, if the content of V exceeds 0.15% by mass, a coarse insoluble intermetallic compound is likely to be produced during melting and casting, which causes a molding failure and breakage of the Al alloy.
Therefore, the content of V is preferably 0.15% by mass or less, but may be 0% by mass. A preferred lower limit is 0.05% by mass.

(残部:Al及び不可避的不純物)
Al合金の成分は、前記のほか、残部がAl及び不可避的不純物からなるものである。なお、不可避的不純物として、例えば、地金や中間合金に含まれている、通常知られている範囲内のNi、Zn、B等は、本発明に係るAl合金の高温特性その他の特性を阻害しない範囲での含有は許容される。
(Balance: Al and inevitable impurities)
In addition to the above components, the Al alloy is composed of Al and inevitable impurities. Inevitable impurities such as Ni, Zn, B, etc., which are contained in bullion and intermediate alloys and are within the generally known range, inhibit the high temperature characteristics and other characteristics of the Al alloy according to the present invention. Inclusion in the range not allowed is allowed.

(その他元素)
その他元素についても、本発明に係るAl合金の高温特性その他の特性を阻害しない範囲での含有は許容される。
Feは、Al合金の高温特性を向上させる効果もあり、スクラップ等からの混入もあるため、その含有量は0.15質量%以下とする。
(Other elements)
Containing other elements within a range that does not impair the high temperature characteristics and other characteristics of the Al alloy according to the present invention is allowed.
Fe also has an effect of improving the high temperature characteristics of the Al alloy and may be mixed from scrap or the like. Therefore, its content is set to 0.15% by mass or less.

<金属間化合物:最大円相当径60μm以下>
金属間化合物の最大円相当径は、金属疲労強度の向上の観点から60μm以下が好ましい。より好ましくは50μm以下である。更に好ましくは40μm以下である。最大円相当径とは、最大の金属間化合物の面積をそれと同じ面積の円に相当させた場合の直径を示す。具体的な最大円相当径の算出方法については後述する極値統計をもちいて推定した。
<Intermetallic compound: Maximum equivalent circle diameter of 60 μm or less>
The maximum equivalent circle diameter of the intermetallic compound is preferably 60 μm or less from the viewpoint of improving the metal fatigue strength. More preferably, it is 50 μm or less. More preferably, it is 40 μm or less. The maximum equivalent circle diameter indicates a diameter when the area of the maximum intermetallic compound is equivalent to a circle having the same area. A specific method for calculating the maximum equivalent circle diameter was estimated using extreme value statistics described later.

Al合金中に大きな金属間化合物が存在すると、マトリックスとの強度、硬度、ヤング率などの材料特性の差により、それらを起点としてAl合金材料の破壊が起こり、その結果Al合金材料の金属疲労強度が低下する恐れがある。つまり、金属間化合物のサイズが大きいと、それらが金属疲労によるAl合金材料の破壊の起点となる可能性が高くなることから、Al合金中に含まれる金属間化合物の最大円相当径(大きさ)を制御することが望ましい。   When a large intermetallic compound is present in the Al alloy, the Al alloy material is destroyed starting from those due to differences in material properties such as strength, hardness, and Young's modulus with the matrix. As a result, the metal fatigue strength of the Al alloy material May decrease. In other words, if the size of the intermetallic compound is large, there is a high possibility that they will be the starting point of the destruction of the Al alloy material due to metal fatigue. Therefore, the maximum equivalent circle diameter (size) of the intermetallic compound contained in the Al alloy ) Is desirable.

金属間化合物の最大円相当径(大きさ)をより小さく制御することにより、金属疲労強度がより向上する。   By controlling the maximum equivalent circle diameter (size) of the intermetallic compound to be smaller, the metal fatigue strength is further improved.

これら金属間化合物の大きさは、鋳造条件(冷却速度、鋳造径の調整など)、均質化熱処理条件(温度、時間、多段階の温度調整など)、鍛造条件(鍛錬比、鍛造温度など)、溶体化処理条件(温度、時間など)などを適切に組み合わせることにより制御できる。
ここでは、例えば、鋳造時の冷却速度を0.05℃/秒以上、均質化熱処理を500〜545℃の温度範囲で、熱間鍛造を280〜430℃の温度範囲で行うことで金属間化合物の最大円相当径を60μm以下に制御した。
The size of these intermetallic compounds includes casting conditions (cooling rate, adjustment of casting diameter, etc.), homogenization heat treatment conditions (temperature, time, multi-stage temperature adjustment, etc.), forging conditions (forging ratio, forging temperature, etc.), It can be controlled by appropriately combining solution treatment conditions (temperature, time, etc.).
Here, for example, the cooling rate during casting is 0.05 ° C./second or more, the homogenization heat treatment is performed in a temperature range of 500 to 545 ° C., and the hot forging is performed in a temperature range of 280 to 430 ° C. The maximum equivalent circle diameter was controlled to 60 μm or less.

(均質化熱処理)
更に、均質化熱処理は前記均質化熱処理の温度範囲内(500〜545℃)であって、共晶溶融を生じない温度範囲であり、かつ、可能な限り高温で行うことが好ましい。このような条件により、金属間化合物の母材中への溶解、及び、拡散が効果的に行われる。その結果、金属間化合物の大きさを小さくすることが可能となる。
そして、金属間化合物の種類によっては、均質化熱処理を少なくとも2段階に分けて行う多段階の均質化熱処理が金属間化合物を共晶溶融させずに小さくするための方法としてより効果的である。
(Homogenization heat treatment)
Further, the homogenization heat treatment is preferably performed at a temperature as high as possible within the temperature range (500 to 545 ° C.) of the homogenization heat treatment and within a temperature range in which eutectic melting does not occur. Under such conditions, the dissolution and diffusion of the intermetallic compound in the base material are effectively performed. As a result, the size of the intermetallic compound can be reduced.
Depending on the type of intermetallic compound, a multi-stage homogenizing heat treatment in which the homogenizing heat treatment is divided into at least two stages is more effective as a method for reducing the intermetallic compound without eutectic melting.

この多段階の均質化熱処理方法は金属間化合物の種類に合わせて適切な条件(昇温速度、均質化温度、処理時間)を設定することにより行われる。
例えば、各金属間化合物に適切な熱処理として、前記均質化熱処理の温度範囲内(500〜545℃)の比較的低温で熱処理を行うことにより金属間化合物を十分に溶解、拡散させる。次に、前記均質化熱処理の温度範囲内の比較的高温で熱処理を行うことで金属間化合物を小さくする。このような多段階に温度を調整する均質化熱処理が効果的である。
This multistage homogenization heat treatment method is carried out by setting appropriate conditions (temperature increase rate, homogenization temperature, treatment time) according to the type of intermetallic compound.
For example, as an appropriate heat treatment for each intermetallic compound, the intermetallic compound is sufficiently dissolved and diffused by performing the heat treatment at a relatively low temperature within the temperature range (500 to 545 ° C.) of the homogenization heat treatment. Next, the intermetallic compound is reduced by performing heat treatment at a relatively high temperature within the temperature range of the homogenization heat treatment. Such a homogenizing heat treatment that adjusts the temperature in multiple stages is effective.

又、この多段階の均質化熱処理方法と同様の効果を得ることが出来る方法として、均質化熱処理温度への到達速度を比較的低速として金属間化合物が共晶溶融しない温度範囲において昇温する方法がある。この方法は前記多段階の均質化熱処理と組み合わせて行うことも出来る。この昇温速度は金属間化合物の種類、大きさ、量などにより適切に設定する必要がある。   Further, as a method capable of obtaining the same effect as this multi-stage homogenization heat treatment method, a method of increasing the temperature in a temperature range in which the intermetallic compound does not eutectic melt by making the speed to reach the homogenization heat treatment temperature relatively low There is. This method can also be performed in combination with the multistage homogenization heat treatment. This rate of temperature rise needs to be set appropriately depending on the type, size, amount, etc. of the intermetallic compound.

これら均質化熱処理方法は、金属間化合物の共晶溶融を防止しつつ、金属間化合物の大きさを小さくすることを可能とする。金属間化合物が小さくなることにより、金属間化合物を起点とする疲労破壊が抑制され、疲労強度が向上する。また、均質化熱処理により金属間化合物中に含有される各元素が母材中へ均一に拡散することにより、固溶強化及び析出強化による母材の強度向上が可能となる。同時に、Al合金の伸び、衝撃値、及び、金属疲労強度の向上も更に可能となる。   These homogenization heat treatment methods make it possible to reduce the size of the intermetallic compound while preventing eutectic melting of the intermetallic compound. By reducing the intermetallic compound, fatigue fracture starting from the intermetallic compound is suppressed, and the fatigue strength is improved. In addition, since each element contained in the intermetallic compound is uniformly diffused into the base material by the homogenization heat treatment, the strength of the base material can be improved by solid solution strengthening and precipitation strengthening. At the same time, the elongation, impact value, and metal fatigue strength of the Al alloy can be further improved.

また、金属間化合物の最大円相当径(大きさ)をより小さく制御することによる金属疲労強度向上の効果は、本発明に係る元素組成の範囲のみだけでなく、その他の元素組成の範囲についても効果が認められる。
金属疲労強度の値は、金属間化合物の大きさだけでなく、金属間化合物の縦横比、形状、金属間化合物の硬度、ヤング率、量や金属間化合物が金属組織中において占める面積比率などが関係している可能性もある。
In addition, the effect of improving the metal fatigue strength by controlling the maximum equivalent circle diameter (size) of the intermetallic compound to be smaller not only in the range of the elemental composition according to the present invention but also in the range of other elemental compositions. The effect is recognized.
The value of the metal fatigue strength is not only the size of the intermetallic compound, but also the aspect ratio, shape, intermetallic compound hardness, Young's modulus, amount of the intermetallic compound, and the area ratio of the intermetallic compound in the metal structure. It may be related.

(金属間化合物測定)
前記金属間化合物の大きさ(最大円相当径)は、村上敬宣著「金属疲労 微小欠陥と介在物の影響」養賢堂発行(OD版第1版233〜250ページ)に記載の極値統計による推定を行って算出することができる。極値統計による推定とは、極値推定グラフを作成した後、極値を推定する方法である。
(Intermetallic compound measurement)
The size of the intermetallic compound (maximum equivalent circle diameter) is an extreme value described by Takanobu Murakami, “Effects of Metal Fatigue and Minor Defects and Inclusions” published by Yokendo (OD version 1st pages 233-250). It can be calculated by performing statistical estimation. The estimation by extreme value statistics is a method of estimating an extreme value after creating an extreme value estimation graph.

その概略は、試料表面を研磨した後、予め定めた検査基準面積を顕微鏡などで統計的に十分な箇所を検査部分が重複しないように撮影する。その後それぞれの検査基準面積中で最大の面積を占める金属間化合物を選び、それぞれの最大金属間化合物の面積の平方根を算出する。つぎに、累積分布関数、または、累積頻度分布並びに基準化変数を計算する。3番目として、横軸に最大金属間化合物の面積の平方根値、縦軸に累積分布関数または基準化変数をプロットする。そして、横軸の最大金属間化合物の面積の平方根を最大金属間化合物の最大円相当径に置換し、最大金属間化合物分布直線を算出する。   The outline is that after the sample surface is polished, a predetermined inspection reference area is photographed with a microscope or the like so that the inspection portion does not overlap with a statistically sufficient portion. Thereafter, an intermetallic compound occupying the maximum area in each inspection reference area is selected, and the square root of the area of each maximum intermetallic compound is calculated. Next, a cumulative distribution function, a cumulative frequency distribution, and a normalization variable are calculated. Third, plot the square root of the area of the largest intermetallic compound on the horizontal axis and the cumulative distribution function or normalization variable on the vertical axis. Then, the square root of the area of the maximum intermetallic compound on the horizontal axis is replaced with the maximum equivalent circle diameter of the maximum intermetallic compound, and the maximum intermetallic compound distribution line is calculated.

最後に、この最大金属間化合物分布直線を用いて、予測を行う面積における最大金属間化合物の最大円相当径を推定する。今回の測定では、検査基準面積を0.37mm、検査部分を40箇所、予測を行う面積を100mmとして、最大金属間化合物の最大円相当径を推定した。 Finally, using this maximum intermetallic compound distribution line, the maximum equivalent circle diameter of the maximum intermetallic compound in the area to be predicted is estimated. In this measurement, the maximum equivalent circle diameter of the maximum intermetallic compound was estimated with an inspection reference area of 0.37 mm 2 , 40 inspection portions, and an area for prediction of 100 mm 2 .

<Al合金の製造方法>
次に、本発明に係るAl合金の製造方法について説明する。
本発明におけるAl合金の製造工程自体は、従来のAl合金の製造工程と基本的に同じである。つまり、本発明に係るAl合金の製造工程は、鋳造工程と、均質化熱処理工程と、熱間鍛造工程と、溶体化処理工程と、焼入れ処理工程と、人工時効硬化処理工程からなる。必要に応じて冷間圧縮(加工)工程を含めてもよい。
また、後述するT61調質、T6調質は、溶体化処理工程、焼入れ処理工程と人工時効硬化処理工程にて行う。さらに、T652調質は、溶体化処理工程、焼入れ処理工程、冷間圧縮(加工)工程と人工時効硬化処理工程にて行う。なお、これら調質は、製造する部材の大きさや用途に応じて適宜選択される。
<Method for producing Al alloy>
Next, a method for producing an Al alloy according to the present invention will be described.
The Al alloy manufacturing process in the present invention is basically the same as the conventional Al alloy manufacturing process. That is, the Al alloy production process according to the present invention includes a casting process, a homogenization heat treatment process, a hot forging process, a solution treatment process, a quenching process, and an artificial age hardening process. A cold compression (processing) step may be included as necessary.
Further, T61 tempering and T6 tempering described later are performed in a solution treatment process, a quenching process, and an artificial age hardening process. Further, the T652 tempering is performed in a solution treatment process, a quenching process, a cold compression (processing) process, and an artificial age hardening process. In addition, these tempering is suitably selected according to the magnitude | size and use of the member to manufacture.

(鋳造工程)
鋳造工程は、前記組成を有するAl合金を溶解、鋳造して鋳塊を作製する工程である。鋳造方法は、特に限定されるものではなく、従来公知の方法を用いればよい。例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法から適宜選択した鋳造方法により、本発明の成分範囲内に溶解調整されたAl合金溶湯を用いて鋳塊を鋳造することが可能である。
(Casting process)
The casting process is a process for producing an ingot by melting and casting the Al alloy having the above composition. The casting method is not particularly limited, and a conventionally known method may be used. For example, an ingot using an Al alloy melt adjusted to be dissolved within the component range of the present invention by a casting method appropriately selected from ordinary melting casting methods such as a continuous casting rolling method and a semi-continuous casting method (DC casting method). Can be cast.

(均質化熱処理工程)
均質化熱処理を行うことにより、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出、準安定相の平衡相への変化が行われる。均質化熱処理の温度が500℃未満では鋳塊の晶出物などの金属間化合物が固溶せず、均質化が不十分となる。一方、均質化熱処理の温度が545℃を超えると、バーニングが生じる可能性が高くなる。
従って、前記均質化熱処理の温度は500〜545℃の範囲とする。
(Homogenization heat treatment process)
By performing the homogenization heat treatment, the microsegregation generated by solidification is homogenized, the supersaturated solid solution element is precipitated, and the metastable phase is changed to the equilibrium phase. When the temperature of the homogenization heat treatment is less than 500 ° C., intermetallic compounds such as ingot crystallization are not dissolved, and the homogenization becomes insufficient. On the other hand, when the temperature of the homogenization heat treatment exceeds 545 ° C., the possibility of burning is increased.
Therefore, the temperature of the homogenization heat treatment is set to a range of 500 to 545 ° C.

多段階の均質化熱処理を行う場合は、前記したように金属間化合物の種類に合わせて熱処理条件を設定する必要がある。又、比較的低速度で昇温する均質化熱処理を行う場合も同様に金属間化合物の種類に合わせて熱処理条件を設定する必要がある。   When performing multi-stage homogenization heat treatment, it is necessary to set heat treatment conditions according to the type of intermetallic compound as described above. Similarly, when performing a homogenization heat treatment that raises the temperature at a relatively low speed, it is necessary to set the heat treatment conditions according to the type of intermetallic compound.

(熱間鍛造工程)
熱間鍛造の温度条件は、後述する鍛練比と共に、Al合金の特性を再現性良く製造するために重要である。即ち、Al合金の溶体化処理工程後のミクロ組織を等軸結晶粒とするために重要である。熱間鍛造温度が280℃未満では、熱間鍛造時においてAl合金に割れが生じやすく、鍛造加工自体が困難である。一方、430℃を超えると、Al合金の組織に粗大結晶粒が生じやすくなる。このため、Al合金の高温特性が低下し、高温特性に優れたAl合金を再現性良く製造することができない。
よって、熱間鍛造温度は280℃以上430℃以下で行う。
(Hot forging process)
The temperature conditions for hot forging are important for producing the characteristics of the Al alloy with good reproducibility together with the forging ratio described later. That is, it is important to make the microstructure after the solution treatment step of the Al alloy into equiaxed crystal grains. When the hot forging temperature is less than 280 ° C., cracks are likely to occur in the Al alloy during hot forging, and forging itself is difficult. On the other hand, when it exceeds 430 ° C., coarse crystal grains are likely to be generated in the structure of the Al alloy. For this reason, the high temperature characteristic of Al alloy falls, and the Al alloy excellent in the high temperature characteristic cannot be manufactured with good reproducibility.
Therefore, the hot forging temperature is 280 ° C. or higher and 430 ° C. or lower.

(鍛錬比)
Al合金の溶体化処理後のミクロ組織は、熱間鍛造の鍛練比に大きく影響される。従ってAl合金の溶体化処理後のミクロ組織を等軸結晶粒とするためには、鍛練比を1.5以上とすることが好ましい。鍛練比が1.5未満であると、Al合金の組織が混粒となりやすい。また、鍛練の方向は一方向だけではなく、少なくとも、異なる2方向で行い、各方向での鍛練比を1.5以上とすることが好ましい。
(Discipline ratio)
The microstructure after the solution treatment of the Al alloy is greatly influenced by the forging ratio of hot forging. Therefore, in order to make the microstructure after solution treatment of the Al alloy into equiaxed grains, it is preferable that the forging ratio is 1.5 or more. When the forging ratio is less than 1.5, the Al alloy structure tends to be mixed grains. Moreover, it is preferable that the direction of training is not limited to one direction but at least two different directions, and the training ratio in each direction is 1.5 or more.

(溶体化処理工程・焼入れ処理工程)
次に、溶体化処理および焼入れ処理について説明する。この溶体化処理および焼入れ処理において、可溶性金属間化合物を再固溶し、かつ冷却中の再析出を可能な限り抑制するためには、JIS‐H‐4140、AMS‐H‐6088などに規定された条件内にて行うことが好ましい。ただし、たとえAMS‐H‐6088等の規格によって熱処理を行っても、溶体化処理温度が高すぎるとバーニングを生じ、機械的性質を著しく低下させる。逆に、溶体化処理温度が下限温度以下であると人工時効硬化処理後の耐力が本発明目的に対して十分なものにはならず、また溶体化処理自体も困難となる。従って、溶体化処理温度の上限は545℃とし、下限は510℃とする。
(Solution treatment process and quenching process)
Next, solution treatment and quenching treatment will be described. In this solution treatment and quenching treatment, JIS-H-4140, AMS-H-6088 and the like are specified in order to re-dissolve soluble intermetallic compounds and suppress reprecipitation during cooling as much as possible. It is preferable to carry out within the specified conditions. However, even if heat treatment is performed according to standards such as AMS-H-6088, if the solution treatment temperature is too high, burning occurs and the mechanical properties are significantly reduced. On the contrary, when the solution treatment temperature is lower than the lower limit temperature, the yield strength after the artificial age hardening treatment is not sufficient for the purpose of the present invention, and the solution treatment itself becomes difficult. Therefore, the upper limit of the solution treatment temperature is 545 ° C., and the lower limit is 510 ° C.

溶体化処理および焼入れ処理などの調質(熱処理)に用いる炉はバッチ炉、連続焼鈍炉、溶融塩浴炉、オイル炉などが適宜使用可能である。また、焼入れに際しての冷却手段も、水浸漬、温水浸漬、沸騰水浸漬、ポリマー液浸漬、水噴射、空気噴射などの手段が適宜選択可能である。前記ポリマー液浸漬に用いるポリマーは、ポリオキシエチレン・プロピレン・ポリエーテルなど、例えば、米国ユニオン・カーバイド社製のユーコンクエンチャント(商品名)を用いることができる。   As a furnace used for tempering (heat treatment) such as solution treatment and quenching, a batch furnace, a continuous annealing furnace, a molten salt bath furnace, an oil furnace, or the like can be used as appropriate. In addition, as a cooling means at the time of quenching, means such as water immersion, hot water immersion, boiling water immersion, polymer solution immersion, water injection, air injection can be appropriately selected. As a polymer used for the polymer solution immersion, for example, a U-Conchantant (trade name) manufactured by Union Carbide, Inc., such as polyoxyethylene / propylene / polyether, can be used.

(冷間圧縮(加工)工程)
前記Al合金の焼入れ後、焼入れ時の歪み矯正、最終製品の耐力やクリープ破断強度等の高温特性の向上を目的として、冷間圧延機、ストレッチャーおよび冷間鍛造等を用いて、冷間圧縮(加工)を行っても良い。
冷間圧縮(加工)の圧縮(加工)量が小さいと、十分な残留応力の低減効果が得られない。一方、冷間圧縮(加工)の圧縮(加工)量が大きいと、人工時効硬化処理中やAl合金製製品の高温での使用中に、θ’相の析出量が増加するため、耐力が低下しやすい。よって、冷間圧縮(加工)は圧縮(加工)率1〜5%とすることが好ましい。
(Cold compression (processing) process)
After quenching of the Al alloy, cold compression using a cold rolling mill, stretcher, cold forging, etc., for the purpose of straightening distortion during quenching and improving high-temperature properties such as yield strength and creep rupture strength of the final product. (Processing) may be performed.
If the amount of compression (processing) of cold compression (processing) is small, a sufficient residual stress reduction effect cannot be obtained. On the other hand, if the amount of cold compression (processing) is large, the amount of precipitation of the θ 'phase increases during artificial age hardening or during use of Al alloy products at high temperatures, so the yield strength decreases. It's easy to do. Therefore, it is preferable that the cold compression (processing) is performed at a compression (processing) rate of 1 to 5%.

(T6調質)
直径100mm程度までの小物部品やピストンなどの用途において、残留応力が比較的大きくても、例えば切削などの加工上問題とならない製品については、溶体化処理および焼入れ処理後に人工時効硬化処理を施し、調質T6材とすることが望ましい。この場合、残留応力が比較的大きくなっても、高い強度特性及び高温特性を得る為に、焼入れ処理の温度は50℃以下であることが望ましい。
(T6 tempering)
For products such as small parts up to about 100 mm in diameter and pistons, even if the residual stress is relatively large, for example, products that do not cause processing problems such as cutting are subjected to artificial age hardening treatment after solution treatment and quenching treatment, It is desirable to use a tempered T6 material. In this case, in order to obtain high strength characteristics and high temperature characteristics even if the residual stress becomes relatively large, it is desirable that the temperature of the quenching process is 50 ° C. or less.

(T61調質)
ローターなど大型の製品では、焼入れ処理時に、製品表面と中央部との冷却速度が大きく異なるため、製品表面には10kgf/mmを越える高い残留応力が発生する。このような高い残留応力が発生すると、製品の切削加工時に大きな歪みが生じ、精密な切削加工が極めて困難となる。また、最悪の場合、切削加工中に残留応力による割れなどのAl合金材料の破壊が生じることもある。例え、切削加工中に割れなどの破壊が生じなくても、材料中に残存する晶出物等の金属間化合物を起点として、あるいは製品搬送中に生じた僅かな表面傷等を起点として、製品の長期間使用中に、亀裂が伝播成長しやすく、最終破壊に至る可能性もある。
(T61 tempering)
In a large product such as a rotor, the cooling rate between the product surface and the central part is greatly different during the quenching process, so that a high residual stress exceeding 10 kgf / mm 2 is generated on the product surface. When such a high residual stress is generated, a large distortion occurs during the cutting of the product, and precise cutting becomes extremely difficult. In the worst case, the Al alloy material may be broken during the cutting process such as cracking due to residual stress. For example, even if no breakage such as cracking occurs during cutting, the product starts from an intermetallic compound such as a crystallized substance remaining in the material or from a slight surface flaw generated during product transportation. During long-term use, cracks tend to propagate and grow, which can lead to final failure.

したがって、ローターなど残留応力が問題となる製品については、残留応力を好ましくは3.0kgf/mm以下に除去ないし低減するため、溶体化処理後の水焼入れ温度を90℃以上の比較的高温とし、その後人工時効硬化処理を施し、調質T61材とすることが好ましい。 Therefore, for products such as rotors where residual stress is a problem, the water quenching temperature after solution treatment should be a relatively high temperature of 90 ° C. or higher in order to remove or reduce the residual stress to preferably 3.0 kgf / mm 2 or less. Then, it is preferable to perform an artificial age hardening treatment to obtain a tempered T61 material.

(T652調質)
用途によっては、製品の大小に関わらず、残留応力が厳しく管理される製品もある。このような製品については、残留応力を極力小さくすべく、冷間圧縮(加工)を加えて、残留応力を好ましくは3kgf/mm以下に除去ないし低減し、人工時効硬化処理を施して調質T652材とすることが好ましい。
これらの製品では、残留応力を好ましくは3kgf/mm以下に除去ないし低減し、高温特性を得る為、焼入れ温度は50℃以下であることが好ましい。
(T652 tempering)
Depending on the application, there is a product whose residual stress is strictly controlled regardless of the size of the product. For such products, in order to minimize the residual stress, cold compression (processing) is applied, the residual stress is preferably removed or reduced to 3 kgf / mm 2 or less, and subjected to artificial age hardening treatment for tempering. T652 material is preferable.
In these products, it is preferable that the quenching temperature is 50 ° C. or less in order to remove or reduce the residual stress to 3 kgf / mm 2 or less and obtain high temperature characteristics.

前記冷間圧縮(加工)の冷間圧縮(加工)量が小さいと十分な残留応力の低減効果が得られない。一方、冷間圧縮(加工)量が大きいと、人工時効硬化処理中や高温での使用中に、θ’相の析出量が増加する為、耐力が低下しやすい。従って、冷間圧縮(加工)は、圧縮(加工)率1〜5%とすることが好ましい。   If the amount of cold compression (processing) of the cold compression (processing) is small, a sufficient residual stress reduction effect cannot be obtained. On the other hand, if the amount of cold compression (processing) is large, the amount of precipitation of the θ ′ phase increases during the artificial age hardening treatment or during use at high temperatures, so the yield strength tends to decrease. Therefore, it is preferable that the cold compression (processing) is performed at a compression (processing) rate of 1 to 5%.

(人工時効硬化処理工程)
各調質における人工時効硬化処理は前記Al合金の常温耐力および高温耐力、ならびにクリープ破断強さなどの高温特性、ならびに金属疲労特性を付与させるために行われる。この人工時効硬化処理によりAl合金の(111)面に析出するΩ相および(100)面に析出するθ’相を析出させることができ、上述の特性を発現する。人工時効硬化処理の方法は特に限定されるものではなく、本願Al合金においてΩ相およびθ’相が本願を満足する析出状態や常温耐力および高温耐力、ならびにクリープ破断強さなどの高温特性、ならびに金属疲労特性を得られるものであればよい。
(Artificial age hardening process)
Artificial age hardening treatment in each tempering is performed in order to impart high temperature characteristics such as normal temperature resistance and high temperature resistance, and creep rupture strength of the Al alloy, and metal fatigue characteristics. By this artificial age hardening treatment, the Ω phase precipitated on the (111) face of the Al alloy and the θ ′ phase precipitated on the (100) face can be precipitated, and the above-described characteristics are exhibited. The method of artificial age hardening treatment is not particularly limited, and in the Al alloy of the present application, the precipitation state in which the Ω phase and the θ ′ phase satisfy the present application, high temperature characteristics such as normal temperature resistance and high temperature resistance, and creep rupture strength, and What is necessary is just to be able to obtain a metal fatigue characteristic.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。室温耐力が400MPa以上、高温耐力が300MPa以上、高温でのクリープ破断強度が150MPa以上であるものを合格とし、それ以外のものを不合格とした。
以下に、第1実施例として耐力及びクリープ破断強度の確認結果を、第2実施例として金属疲労強度について確認結果を実施例1〜18及び比較例1〜7により説明する。
なお、本発明はこの実施例に限定されるものではない。
As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. A room temperature proof stress of 400 MPa or higher, a high temperature proof stress of 300 MPa or higher, and a creep rupture strength at a high temperature of 150 MPa or higher were accepted, and the others were rejected.
The confirmation results of proof stress and creep rupture strength as a first example will be described below, and the confirmation results of metal fatigue strength as a second example will be described with reference to Examples 1 to 18 and Comparative Examples 1 to 7.
In addition, this invention is not limited to this Example.

<第1実施例>
(供試材)
Al合金の組成が室温耐力、高温耐力、および高温クリープ破断強度に与える影響を把握するため、後記の供試材を作製した。まず、表1に示す組成のAl合金鋳塊(直径500mm、長さ500mm)を溶製後、510℃で20時間の均質化熱処理を行い、熱間鍛造(280〜360℃、鍛錬比1.5以上)にて150mm角鍛造材、および、80mm角鍛造材を作製した。その後、いずれの鍛造材も空気炉を用いて528℃で6時間の溶体化処理を行った。なお、表1において本発明の範囲を満たさない値については、下線を引いた。
<First embodiment>
(Sample material)
In order to grasp the influence of the composition of the Al alloy on the room temperature yield strength, the high temperature yield strength, and the high temperature creep rupture strength, the following test materials were prepared. First, an Al alloy ingot (diameter: 500 mm, length: 500 mm) having the composition shown in Table 1 was melted and subjected to a homogenization heat treatment at 510 ° C. for 20 hours to perform hot forging (280 to 360 ° C., forging ratio 1.). 5 mm or more), 150 mm square forged material and 80 mm square forged material were produced. Thereafter, each of the forged materials was subjected to a solution treatment at 528 ° C. for 6 hours using an air furnace. In Table 1, values that do not satisfy the scope of the present invention are underlined.

Figure 0005879181
Figure 0005879181

次に、150mm角鍛造材については、残留応力が問題となる用途を模擬して、前記溶体化処理の後に70〜100℃の温水焼入れをして残留応力を3.0kgf/mm以下に低減した。その後、前記鍛造材に175℃で18時間の人工時効硬化処理を施してT61調質材とした。そして、この調質材から供試材を作製した(実施例1〜7、実施例10〜12、比較例1〜7)。 Next, for 150 mm square forgings, the residual stress is reduced to 3.0 kgf / mm 2 or less by simulating a use in which residual stress is a problem and quenching with hot water at 70 to 100 ° C. after the solution treatment. did. Thereafter, the forged material was subjected to an artificial age hardening treatment at 175 ° C. for 18 hours to obtain a T61 tempered material. And the test material was produced from this tempered material (Examples 1-7, Examples 10-12, Comparative Examples 1-7).

なお、前記150mm角鍛造材のうちの一部は、残留応力が問題となる用途を模擬して、前記溶体化処理の後に30〜60℃の水焼入れをした後、1.5%の冷間圧縮(加工)率で冷間圧縮(加工)を加えて残留応力を3.0kgf/mm以下に低減した。その後、この鍛造材に175℃で18時間の人工時効硬化処理を施してT652調質材とした。そして、この調質材から供試材を作製した(実施例9)。 In addition, some of the 150 mm square forged materials are simulated to be used in which residual stress is a problem, and after being subjected to water quenching at 30 to 60 ° C. after the solution treatment, 1.5% cold Cold compression (processing) was applied at a compression (processing) rate to reduce the residual stress to 3.0 kgf / mm 2 or less. Thereafter, this forged material was subjected to an artificial age hardening treatment at 175 ° C. for 18 hours to obtain a T652 tempered material. And the test material was produced from this tempered material (Example 9).

80mm角鍛造材については、小物部品やピストンなどの残留応力が比較的大きくてもよい用途を模擬して、溶体化処理後に30〜45℃の低温水焼入れ処理を行った。その後、前記鍛造材に175℃で18時間の人工時効硬化処理を施してT6調質材とした。そして、この調質材から供試材を作製した(実施例8)。   The 80 mm square forged material was subjected to a low-temperature water quenching treatment at 30 to 45 ° C. after the solution treatment, simulating the use where residual stress such as small parts and pistons may be relatively large. Thereafter, the forged material was subjected to an artificial age hardening treatment at 175 ° C. for 18 hours to obtain a T6 tempered material. And the test material was produced from this tempered material (Example 8).

(室温特性及び高温特性)
供試材の室温特性として、室温での0.2%耐力と、高温特性として180℃で100時間の高温に供試材を保持した際の0.2%耐力を測定した。これら試験片は室温での試験は平行部の径を6.35mm、標点距離を25mmとし、180℃の試験は平行部の径を6mm、標点距離を30mmとした。
また、クリープ特性試験では試験片は平行部の径を6mm、標点距離を30mmとした。これらの供試材の引張特性およびクリープ特性の測定結果を表2に示す。
さらに、供試材の室温特性として、室温における供試材の伸びを測定した。その測定方法は前記0.2%耐力の測定と同様であり、試験片は平行部の径を6.35mm、標点距離を25mmとした。伸びの測定結果は後述する。
(Room temperature characteristics and high temperature characteristics)
As a room temperature characteristic of the test material, 0.2% proof stress at room temperature and as a high temperature characteristic, 0.2% proof stress when the test material was held at 180 ° C. for 100 hours at high temperature were measured. The test pieces at room temperature had a parallel part diameter of 6.35 mm and a gauge distance of 25 mm, and the 180 ° C. test had a parallel part diameter of 6 mm and a gauge distance of 30 mm.
In the creep property test, the test piece was 6 mm in diameter at the parallel part and 30 mm in the gauge distance. Table 2 shows the measurement results of tensile properties and creep properties of these test materials.
Furthermore, the elongation of the specimen at room temperature was measured as the room temperature characteristic of the specimen. The measurement method was the same as the 0.2% proof stress measurement, and the test piece had a parallel part diameter of 6.35 mm and a gauge distance of 25 mm. The measurement result of elongation will be described later.

Figure 0005879181
Figure 0005879181

(実施例1〜12)
実施例1ないし実施例12は、比較例1ないし比較例7と対比して、室温耐力、高温耐力、高温クリープ破断強度のいずれの測定項目においてもその物理的特性が優れていることが判明した。これらは、回転ローターや回転インペラ或いはピストンなど、高速で回転ないし摺動する高速動部品に使用した場合、従来よりも優れる特性を示す。
(Examples 1-12)
In comparison with Comparative Examples 1 to 7, Examples 1 to 12 were found to have excellent physical properties in all measurement items of room temperature yield strength, high temperature yield strength, and high temperature creep rupture strength. . These exhibit characteristics superior to those of the prior art when used in high-speed moving parts that rotate or slide at high speed, such as a rotary rotor, rotary impeller, or piston.

また、実施例6と実施例7の室温での耐力値の対比から、同じ耐力値である場合、Al合金のSi添加量を増やすことによりCuの添加量を減らすことが出来ることが判明した。さらに、実施例6と実施例7の室温における伸びはそれぞれ8.5%、10.0%となった。これらのことから同じ耐力値において、Cuに関わる金属間化合物を減らすことが出来ることを示している。更にその結果、Al合金の伸びを向上できること、および、金属疲労強度の向上も可能であることを示している。すなわち、SiとCuの量(比率)を適切に調整することにより、耐力値を一定に保持しつつ、金属疲労強度、およびAl合金の伸びを更に向上させることが出来る。   Further, from the comparison of the yield strength values at room temperature in Example 6 and Example 7, it was found that the Cu addition amount can be reduced by increasing the Si addition amount of the Al alloy when the same yield strength value is obtained. Furthermore, the elongation at room temperature of Example 6 and Example 7 was 8.5% and 10.0%, respectively. From these facts, it is shown that intermetallic compounds related to Cu can be reduced at the same proof stress value. Further, as a result, it is shown that the elongation of the Al alloy can be improved and the metal fatigue strength can be improved. That is, by appropriately adjusting the amounts (ratio) of Si and Cu, it is possible to further improve the metal fatigue strength and the elongation of the Al alloy while keeping the proof stress value constant.

(比較例1、比較例5、比較例6)
比較例1、比較例5、比較例6は、Siの含有量が0.06質量%と少ないため、析出物の微細化、均一析出の効果が小さい。
このため、これら比較例1、比較例5、比較例6は、室温耐力400MPa以上、高温耐力300MPa以上、高温でのクリープ破断強度150MPa以上の値をいずれも満たしていない。
(Comparative Example 1, Comparative Example 5, Comparative Example 6)
Since Comparative Example 1, Comparative Example 5, and Comparative Example 6 have a small Si content of 0.06% by mass, the effects of refinement of precipitates and uniform precipitation are small.
Therefore, Comparative Example 1, Comparative Example 5, and Comparative Example 6 do not satisfy the values of room temperature yield strength of 400 MPa or higher, high temperature yield strength of 300 MPa or higher, and creep rupture strength at high temperature of 150 MPa or higher.

(比較例3、比較例4、比較例6、比較例7)
比較例3、比較例4、比較例6、比較例7は、Zrの含有量が0.15質量%と多いため、溶体化処理後の焼入れ処理において、AlCuなどの安定相が、前記Al−Zr系の分散粒子の周囲に粗大に析出した。このため、これら比較例3、比較例4、比較例6、比較例7は、室温耐力400MPa以上、高温耐力300MPa以上、高温でのクリープ破断強度150MPa以上の値をいずれも満たしていない。
(Comparative Example 3, Comparative Example 4, Comparative Example 6, Comparative Example 7)
Since Comparative Example 3, Comparative Example 4, Comparative Example 6, and Comparative Example 7 have a high Zr content of 0.15% by mass, in the quenching treatment after the solution treatment, the stable phase such as AlCu 2 is Precipitated roughly around the -Zr-based dispersed particles. For this reason, these comparative examples 3, 4, 4, and 7 do not satisfy any of the values of room temperature proof stress 400 MPa or higher, high temperature proof stress 300 MPa or higher, and high temperature creep rupture strength 150 MPa or higher.

(参考例)
なお、前記合金成分の規制値の上限を超えた供試体について、以下の現象が見られた。
比較例の成分としてSiの含有量が1.0質量%を超えた供試体は、Al合金中に粗大な金属間化合物を生じたため、金属疲労強度が低下した。また、Cuの含有量が7.0質量%を超えた供試体は、Al合金の強度が高くなりすぎたため、Al合金の鍛造性が低下した。さらに、Mnの含有量が1.5質量%を超えた供試体は、溶解鋳造時に不溶性金属間化合物が生成し、Al合金の鍛造性が低下した。そして、Mgの含有量が2.0質量%を超えた供試体は、Al合金の強度が高まり、Al合金の鍛造性が低下した。
(Reference example)
In addition, the following phenomenon was seen about the test piece exceeding the upper limit of the regulation value of the said alloy component.
The specimen having a Si content exceeding 1.0% by mass as a component of the comparative example produced a coarse intermetallic compound in the Al alloy, so that the metal fatigue strength decreased. Moreover, since the strength of the Al alloy was too high, the forgeability of the Al alloy was lowered in the specimen having a Cu content exceeding 7.0% by mass. Furthermore, in the specimen with the Mn content exceeding 1.5% by mass, an insoluble intermetallic compound was produced during melt casting, and the forgeability of the Al alloy was lowered. And the specimen whose Mg content exceeded 2.0 mass% increased the strength of the Al alloy, and decreased the forgeability of the Al alloy.

<第2実施例>
金属間化合物の大きさの違いによるAl合金の材料特性への影響を把握するため、後記の方法で供試材を作成した。
<Second embodiment>
In order to grasp the influence on the material properties of the Al alloy due to the difference in the size of the intermetallic compound, a test material was prepared by the method described later.

(供試材)
表1の組成7に示す組成のAl合金鋳塊を砂型鋳造、銅鋳型鋳造、連続鋳造などで鋳造する際に鋳造速度などを調整してAl合金鋳塊を溶製した。その後、前記Al合金鋳塊について510℃で20時間の均質化熱処理を行った後、熱間鍛造(280〜360℃、鍛錬比1.5以上)にて150mm角鍛造材を作製した。
(Sample material)
When an Al alloy ingot having the composition shown in composition 1 in Table 1 was cast by sand casting, copper mold casting, continuous casting, etc., the casting speed was adjusted to melt the Al alloy ingot. Thereafter, the Al alloy ingot was subjected to a homogenizing heat treatment at 510 ° C. for 20 hours, and then a 150 mm square forged material was produced by hot forging (280 to 360 ° C., forging ratio of 1.5 or more).

前記で作成した150mm角鍛造材について、空気炉を用いて528℃で6時間の溶体化処理を行い、その後に70〜100℃の温水焼入れをおこなった。更にその後175℃で18時間の人工時効硬化処理を施してT61調質材とした。   The 150 mm square forged material prepared above was subjected to a solution treatment for 6 hours at 528 ° C. using an air furnace, and then subjected to hot water quenching at 70 to 100 ° C. Further, an artificial age hardening treatment was performed at 175 ° C. for 18 hours to obtain a T61 tempered material.

(金属間化合物の大きさ)
金属間化合物の大きさの解析には、前述したように極値統計解析を用いた。すなわち、100倍の光学顕微鏡写真40枚から、それぞれの写真での検査基準面積の0.37mmの内で最大の金属間化合物を抽出し、得られた40個のデータについて前記統計処理を行い、設定した予測面積における金属間化合物の最大円相当径を各材料について推定した。今回の測定では、予測面積を100mmと設定した。
(Size of intermetallic compound)
For the analysis of the size of the intermetallic compound, extreme value statistical analysis was used as described above. That is, the largest intermetallic compound within the inspection reference area of 0.37 mm 2 in each photograph is extracted from 40 100 times optical microscope photographs, and the statistical processing is performed on the obtained 40 pieces of data. The maximum equivalent circle diameter of the intermetallic compound in the set predicted area was estimated for each material. In this measurement, the predicted area was set to 100 mm 2 .

(回転曲げ疲労強度試験)
前記T61調質材から後記試験片を作製し、この試験片を150℃の高温(最大応力130MPa、応力比―1)での金属疲労強度試験を行った。
この金属疲労試験は、平行部の直径6mm、平行部の長さ13.55mmとし、#1000のエメリーペーパー仕上げとした、丸棒試験片を回転曲げ疲労強度試験に供した。
(Rotating bending fatigue strength test)
A test piece described later was prepared from the T61 tempered material, and the test piece was subjected to a metal fatigue strength test at a high temperature of 150 ° C. (maximum stress 130 MPa, stress ratio-1).
In this metal fatigue test, a round bar test piece having a parallel part diameter of 6 mm and a parallel part length of 13.55 mm and an emery paper finish of # 1000 was subjected to a rotating bending fatigue strength test.

最大円相当径と回転曲げ疲労強度試験の測定結果である破断繰り返し回数との関係を表3に示す。破断繰り返し回数とは、回転疲労試験での破断までの繰り返し回数をいう。なお、破断繰り返し回数は最大円相当径90μmの時の値を1とする相対値で示す。   Table 3 shows the relationship between the maximum equivalent circle diameter and the number of repetitions of rupture, which is the measurement result of the rotating bending fatigue strength test. The number of repetitions of rupture refers to the number of repetitions until rupture in the rotational fatigue test. Note that the number of repetitions of breakage is shown as a relative value where the value when the maximum equivalent circle diameter is 90 μm is 1.

Figure 0005879181
Figure 0005879181

(金属疲労強度)
金属間化合物の最大円相当径を調整した材料について回転曲げ疲労強度試験を行なったところ、同じ組成(表1の組成7)の合金(試験片)では、今回の予測面積(100mm)において最大円相当径を60μm以下とすることにより、金属疲労強度が向上することを知見した。また、最大円相当径がさらに小さいほうが、金属疲労強度は向上する傾向が見られた。
(Metal fatigue strength)
When a rotating bending fatigue strength test was performed on a material in which the maximum equivalent circle diameter of the intermetallic compound was adjusted, an alloy (test specimen) having the same composition (composition 7 in Table 1) had a maximum in the current predicted area (100 mm 2 ). It has been found that when the equivalent circle diameter is 60 μm or less, the metal fatigue strength is improved. Further, the metal fatigue strength tended to improve as the maximum equivalent circle diameter decreased.

(実施例13〜18)
表3に示すように、表1の組成7に示す組成のAl合金鋳塊から作製した前記試験片において最大円相当径を60μm以下とすることにより(実施例15〜18)、破断繰り返し回数は最大円相当径90μm(実施例13)の4倍以上となることが判明した。
又、最大円相当径を40μm以下(実施例17)とすることで、破断繰り返し回数が最大円相当径90μm(実施例13)の9倍以上となり、Al合金の金属疲労強度の更なる向上が可能となる。そして、最大円相当径を25μm以下(実施例18)とすることで、破断繰り返し回数が最大円相当径90μm(実施例13)の19倍以上となり、Al合金の飛躍的な金属疲労強度の向上が可能となる。
(Examples 13 to 18)
As shown in Table 3, by setting the maximum equivalent circle diameter to 60 μm or less in the test piece produced from the Al alloy ingot having the composition shown in Composition 7 of Table 1 (Examples 15 to 18), It was found that the maximum equivalent circle diameter was 4 times or more than 90 μm (Example 13).
Further, by setting the maximum equivalent circle diameter to 40 μm or less (Example 17), the number of repeated fractures is 9 times or more of the maximum equivalent circle diameter 90 μm (Example 13), and the metal fatigue strength of the Al alloy is further improved. It becomes possible. Then, by setting the maximum equivalent circle diameter to 25 μm or less (Example 18), the number of repeated fractures is 19 times or more of the maximum equivalent circle diameter 90 μm (Example 13), and the dramatic improvement in metal fatigue strength of the Al alloy is achieved. Is possible.

このように、金属間化合物の最大円相当径90μm(実施例13)と比較して最大円相当径60μm以下(実施例15〜18)は、物理的特性がより優れていることが判明した。これらのものは、回転ローターや回転インペラ或いはピストンなど断続的に応力がかかる高速動部品に使用した場合に、従来よりも優れる特性を示す。   Thus, it was found that the maximum equivalent circle diameter of 60 μm or less (Examples 15 to 18) of the intermetallic compound maximum circle equivalent diameter of 90 μm (Example 13) is more excellent in physical properties. These are superior to conventional ones when used in high-speed moving parts that are intermittently stressed, such as a rotating rotor, rotating impeller, or piston.

本発明は、耐熱性、高温疲労強度、高温下での耐クリープ特性および高温耐力に優れており、ロケットや航空機・宇宙機材用、鉄道車両、自動車、船舶などの輸送機材用、あるいはエンジン部品、コンプレッサーなどの機械部品用など、回転ローターや回転インペラあるいはピストンなどの、特に100℃を超える高温の使用環境で使用されるAl合金製部品に適用できる。   The present invention is excellent in heat resistance, high temperature fatigue strength, high temperature creep resistance and high temperature strength, for rockets, aircraft and space equipment, railway vehicles, automobiles, ships and other transportation equipment, or engine parts, The present invention can be applied to Al alloy parts that are used in high-temperature usage environments exceeding 100 ° C., such as rotary rotors, rotary impellers, and pistons, such as for machine parts such as compressors.

Claims (2)

Si:0.1質量%を超えて1.0質量%以下、
Cu:3.0質量%以上7.0質量%以下、
Mn:0.05質量%以上1.5質量%以下、
Mg:0.01質量%以上2.0質量%以下、
Ti:0.01質量%以上0.10質量%以下、
Ag:0.05質量%以上1.0質量%以下
を含有し、かつ、
Zr:0.1質量%未満に規制し、
残部がAlおよび不可避的不純物からなり、
金属間化合物の最大円相当径が60μm以下であることを特徴とする高温特性に優れたアルミニウム合金。
Si: more than 0.1% by mass and 1.0% by mass or less,
Cu: 3.0% by mass or more and 7.0% by mass or less,
Mn: 0.05 mass% or more and 1.5 mass% or less,
Mg: 0.01% by mass or more and 2.0% by mass or less,
Ti: 0.01% by mass or more and 0.10% by mass or less,
Ag: 0.05 mass% or more and 1.0 mass% or less, and
Zr: restricted to less than 0.1% by mass,
Remainder Ri is Do Al and inevitable impurities,
Excellent aluminum alloy to a high temperature properties up to the circle equivalent diameter of the intermetallic compound, characterized in der Rukoto below 60 [mu] m.
請求項1に記載のアルミニウム合金であって、
V:0.15質量%以下
をさらに含有することを特徴とする高温特性に優れたアルミニウム合金。
The aluminum alloy according to claim 1,
V: An aluminum alloy excellent in high temperature characteristics, further comprising 0.15% by mass or less.
JP2012085178A 2011-06-10 2012-04-04 Aluminum alloy with excellent high temperature characteristics Expired - Fee Related JP5879181B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012085178A JP5879181B2 (en) 2011-06-10 2012-04-04 Aluminum alloy with excellent high temperature characteristics
KR1020187029507A KR20180115350A (en) 2011-06-10 2012-05-14 Aluminum alloy having excellent high-temperature characteristics
KR1020157032372A KR20150132604A (en) 2011-06-10 2012-05-14 Aluminum alloy having excellent high-temperature characteristics
CN201280015095.3A CN103459630B (en) 2011-06-10 2012-05-14 The aluminium alloy of hot properties excellence
KR1020137030509A KR20140002063A (en) 2011-06-10 2012-05-14 Aluminum alloy having excellent high-temperature characteristics
PCT/JP2012/062266 WO2012169317A1 (en) 2011-06-10 2012-05-14 Aluminum alloy having excellent high-temperature characteristics
EP12796774.3A EP2719784A4 (en) 2011-06-10 2012-05-14 Aluminum alloy having excellent high-temperature characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011130719 2011-06-10
JP2011130719 2011-06-10
JP2012085178A JP5879181B2 (en) 2011-06-10 2012-04-04 Aluminum alloy with excellent high temperature characteristics

Publications (2)

Publication Number Publication Date
JP2013014835A JP2013014835A (en) 2013-01-24
JP5879181B2 true JP5879181B2 (en) 2016-03-08

Family

ID=47295887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085178A Expired - Fee Related JP5879181B2 (en) 2011-06-10 2012-04-04 Aluminum alloy with excellent high temperature characteristics

Country Status (5)

Country Link
EP (1) EP2719784A4 (en)
JP (1) JP5879181B2 (en)
KR (3) KR20150132604A (en)
CN (1) CN103459630B (en)
WO (1) WO2012169317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102987A1 (en) 2020-02-28 2021-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ALUMINUM FORGING ALLOY AND PROCESS FOR THEIR PRODUCTION

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981409B (en) * 2014-04-10 2016-07-06 安徽乾通教育制造有限公司 A kind of heat-resisting aluminium alloy section bar and preparation method thereof
RU2558807C1 (en) * 2014-08-25 2015-08-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength aluminium foundry alloy
JP2016079454A (en) * 2014-10-16 2016-05-16 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
EP3048179B1 (en) * 2015-01-21 2017-05-24 Nemak, S.A.B. de C.V. Method for forming complex cast parts and cast part consisting of an AlCu alloy
JP6348466B2 (en) * 2015-08-25 2018-06-27 株式会社Uacj Aluminum alloy extruded material and method for producing the same
JP6792618B2 (en) 2015-12-18 2020-11-25 ノベリス・インコーポレイテッドNovelis Inc. High-strength 6XXX aluminum alloy and its manufacturing method
KR102063133B1 (en) * 2015-12-18 2020-01-07 노벨리스 인크. High-strength 6xxx aluminum alloys and methods of making the same
CN105714223B (en) * 2016-03-17 2017-05-31 中铝科学技术研究院有限公司 A kind of homogenization heat treatment method of Al Zn Mg Cu Zr aluminium alloys
US10232442B2 (en) 2016-07-15 2019-03-19 Caterpillar Inc. Method of making machine component with aluminum alloy under temperature-limited forming conditions
CN108251724B (en) * 2018-02-27 2019-12-13 中南大学 High-strength heat-resistant aluminum alloy suitable for large-size complex-structure castings and preparation process thereof
CN112281034A (en) * 2020-10-16 2021-01-29 中国航发北京航空材料研究院 Cast aluminum alloy and preparation method thereof
CN113151758B (en) * 2021-03-16 2022-02-18 中南大学 Al-Mg-Si aluminum alloy with excellent fatigue resistance and preparation method thereof
KR20240029215A (en) * 2022-08-26 2024-03-05 국립한국해양대학교산학협력단 Aluminum alloy with reduced residual stress and manufacturing method of the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1320271A (en) * 1971-01-29 1973-06-13 Atomic Energy Authority Uk Aluminium alloys
FR2737224B1 (en) * 1995-07-28 1997-10-17 Aerospatiale ELEMENT OF STRUCTURE OF AIRCRAFT, AND PARTICULARLY OF SUPERSONIC AIRCRAFT, IN ALUMINUM ALLOY HAVING A LONG SERVICE LIFE, A GOOD TOLERANCE TO DAMAGES AND A GOOD RESISTANCE TO CORROSION UNDER STRESS
FR2737225B1 (en) * 1995-07-28 1997-09-05 Pechiney Rhenalu AL-CU-MG ALLOY WITH HIGH FLUID RESISTANCE
JP4058398B2 (en) * 2003-09-04 2008-03-05 株式会社神戸製鋼所 Aluminum alloy forging with excellent high-temperature fatigue strength
US7449073B2 (en) * 2004-07-15 2008-11-11 Alcoa Inc. 2000 Series alloys with enhanced damage tolerance performance for aerospace applications
JP4676906B2 (en) * 2006-03-09 2011-04-27 古河スカイ株式会社 Heat-resistant aluminum alloy for drawing
US20100199495A1 (en) 2006-04-29 2010-08-12 Oerlikon Leybold Vacuum Gmbh Process for preparing rotors or stators of a turbomolecular pump
US8002913B2 (en) * 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
EP2559779B1 (en) * 2011-08-17 2016-01-13 Otto Fuchs KG High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102987A1 (en) 2020-02-28 2021-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ALUMINUM FORGING ALLOY AND PROCESS FOR THEIR PRODUCTION

Also Published As

Publication number Publication date
CN103459630B (en) 2015-12-02
EP2719784A4 (en) 2014-12-24
KR20140002063A (en) 2014-01-07
CN103459630A (en) 2013-12-18
EP2719784A1 (en) 2014-04-16
KR20150132604A (en) 2015-11-25
WO2012169317A1 (en) 2012-12-13
JP2013014835A (en) 2013-01-24
KR20180115350A (en) 2018-10-22

Similar Documents

Publication Publication Date Title
JP5879181B2 (en) Aluminum alloy with excellent high temperature characteristics
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
JP4995570B2 (en) Nickel base alloy and heat treatment method of nickel base alloy
JP5431233B2 (en) Aluminum alloy forging and method for producing the same
JP6057363B1 (en) Method for producing Ni-base superalloy
JP5201334B2 (en) Co-based alloy
JP5582532B2 (en) Co-based alloy
NO339946B1 (en) Al-Si-Mg-Zn-Cu alloy for castings for the aerospace and automotive industries
JP2000119786A (en) Aluminum alloy forging material for high speed motion part
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JP6540075B2 (en) TiAl heat resistant member
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JP2021021138A (en) Aluminum alloy for die casting, and method for producing cast product using the same
JP2020196951A (en) Ni-BASED ALLOY FOR HOT DIE, HOT FORGING DIE USING THE Ni-BASED ALLOY FOR HOT DIE, AND METHOD FOR MANUFACTURING FORGED PRODUCT USING THE HOT FORGING DIE
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP2019210502A (en) PREFORM, AND MANUFACTURING METHOD OF TiAl-BASED TURBINE WHEEL
JP4058398B2 (en) Aluminum alloy forging with excellent high-temperature fatigue strength
US8241560B2 (en) Nickel base superalloy and single crystal castings
JP5522692B2 (en) High strength copper alloy forging
JP2020125527A (en) Aluminum alloy casting material
JP7319447B1 (en) Aluminum alloy material and its manufacturing method
KR100560252B1 (en) Alluminum alloy forged material excellent in high temperature fatigue strength
JP2021011604A (en) Aluminum alloy material and method for producing aluminum alloy forging
JP2021011595A (en) Aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5879181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees