JP7472318B2 - Aluminum alloys and aluminum alloy castings - Google Patents
Aluminum alloys and aluminum alloy castings Download PDFInfo
- Publication number
- JP7472318B2 JP7472318B2 JP2022569355A JP2022569355A JP7472318B2 JP 7472318 B2 JP7472318 B2 JP 7472318B2 JP 2022569355 A JP2022569355 A JP 2022569355A JP 2022569355 A JP2022569355 A JP 2022569355A JP 7472318 B2 JP7472318 B2 JP 7472318B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- aluminum alloy
- aluminum
- present
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 66
- 238000005266 casting Methods 0.000 title claims description 41
- 239000000463 material Substances 0.000 claims description 33
- 239000012535 impurity Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 28
- 239000010949 copper Substances 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 19
- 239000011777 magnesium Substances 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 239000000956 alloy Substances 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 230000032683 aging Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Casings For Electric Apparatus (AREA)
- Continuous Casting (AREA)
Description
本発明は鋳物用のアルミニウム合金及び当該アルミニウム合金からなるアルミニウム合金鋳物材に関する。 The present invention relates to an aluminum alloy for casting and an aluminum alloy casting material made of said aluminum alloy.
軽量であることに加えて優れた質感を有していることから、携帯可能な電子機器や電子端末の筐体にアルミニウム合金材が使用されている。これらの携帯用電子機器に対する薄さ及び軽量化の要求は年々高くなっており、筐体に用いられるアルミニウム合金にはより高い強度が求められている。 Aluminum alloy materials are used for the housings of portable electronic devices and electronic terminals because they are lightweight and have an excellent texture. The demand for thinner and lighter portable electronic devices is increasing year by year, and the aluminum alloys used for the housings are required to have higher strength.
特に、スマートフォンは使用されない際はポケット等にしまわれることが多く、当該状況においては曲げ応力が印加される場合が多い。即ち、携帯用電子機器の筐体に使用されるアルミニウム合金は優れた鋳造性に加えて、高い強度と延性(靭性)を有することが必要不可欠である。In particular, smartphones are often stored in pockets when not in use, and in such situations bending stress is often applied. In other words, it is essential that the aluminum alloys used for the housings of portable electronic devices have high strength and ductility (toughness) in addition to excellent castability.
これに対し、例えば、特許文献1(特開昭48-32719号公報)では、Al-Cu-Si系あるいはAl-Si-Cu-Mg系合金の優れた鋳造性を生かして、且つ従来の鋳造用高力アルミニウム合金に匹敵する強度を有する合金を得ることを目的とし、重量で珪素7.5~1.2%、銅4.0~5.5%、マグネシウム0.2~1.0%、残部アルミニウム及び不純物からなる鋳造性の優れた鋳物用高力アルミニウム合金、が開示されている。In response to this, for example, Patent Document 1 (JP Patent Publication 48-32719 A) discloses a high-strength aluminum alloy for casting with excellent castability, which is composed by weight of 7.5 to 1.2% silicon, 4.0 to 5.5% copper, 0.2 to 1.0% magnesium, with the remainder being aluminum and impurities, with the aim of taking advantage of the excellent castability of Al-Cu-Si or Al-Si-Cu-Mg alloys and obtaining an alloy with strength comparable to that of conventional high-strength aluminum alloys for casting.
上記特許文献1に記載の鋳物用高力アルミニウム合金においては、約500℃の溶体化処理を行った後に時効硬化させることで、アルミニウム合金鋳物に優れた機械的性質を与えることができる、とされている。The high-strength aluminum alloy for casting described in the above-mentioned Patent Document 1 is said to be able to give excellent mechanical properties to the aluminum alloy casting by performing solution treatment at about 500°C and then age hardening.
また、特許文献2(特開昭60-57497号公報)では、鋳造性が良好で強靭性に富み、且つ耐熱性の優れた熱処理型の高力アルミニウム合金を得ることを目的として、重量で6%を超え13%までの珪素、3%を超え5.5%までの銅、1%を超え4%までの亜鉛、0.2%を超え1%までのマグネシウム及び0.03%を超え1%までのアンチモンを含み、残部アルミニウム及び不純物よりなる耐熱性高力アルミニウム合金、が開示されている。Furthermore, Patent Document 2 (JP Patent Publication 60-57497 A) discloses a heat-resistant high-strength aluminum alloy containing, by weight, more than 6% to 13% silicon, more than 3% to 5.5% copper, more than 1% to 4% zinc, more than 0.2% to 1% magnesium, and more than 0.03% to 1% antimony, with the remainder being aluminum and impurities, with the aim of obtaining a heat-treatable high-strength aluminum alloy that has good castability, excellent toughness, and excellent heat resistance.
上記特許文献2に記載の耐熱性高力アルミニウム合金においては、Al-Si-Cu-Zn-Mg系合金において銅が3%を超えて含まれる場合に、合金中にアンチモンを添加すると時効処理に際して合金の時効硬化性が促進され靭性をそれほど低下することなしに合金強度が著しく向上すると共に合金の耐熱衝撃性が著しく改善される、とされている。In the heat-resistant high-strength aluminum alloy described in Patent Document 2 above, when the copper content of an Al-Si-Cu-Zn-Mg alloy exceeds 3%, the addition of antimony to the alloy promotes the age hardening of the alloy during aging treatment, significantly improving the strength of the alloy without a significant decrease in toughness, and significantly improving the thermal shock resistance of the alloy.
上記特許文献1に記載の鋳物用高力アルミニウム合金及び上記特許文献2に記載の耐熱性高力アルミニウム合金においては、優れた鋳造性に加えて優れた機械的性質が付与されているとしているが、当該機械的性質を実現するためには人工時効等の熱処理が必須となっている。The high-strength aluminum alloy for casting described in Patent Document 1 and the heat-resistant high-strength aluminum alloy described in Patent Document 2 are said to have excellent mechanical properties in addition to excellent castability, but heat treatment such as artificial aging is essential to achieve these mechanical properties.
しかしながら、熱処理工程は製造コストや製造時間を増加させるだけでなく、アルミニウム合金鋳物材の寸法及び形状にも影響する。特に、携帯用電子機器の筐体は薄いことに加えて高い寸法精度が求められるため、熱処理を施すことなく高い強度及び優れた延性を実現できることが望ましい。However, the heat treatment process not only increases the manufacturing cost and time, but also affects the dimensions and shape of the aluminum alloy casting material. In particular, since the housings of portable electronic devices must be thin and have high dimensional accuracy, it is desirable to achieve high strength and excellent ductility without heat treatment.
以上のような従来技術における問題点に鑑み、本発明の目的は、優れた鋳造性を有すると共に、熱処理を施すことなく高い機械的性質を発現することができるアルミニウム合金及びアルミニウム合金鋳物材を提供することにある。より具体的には、本発明は、優れた鋳造性を有すると共に、熱処理を施すことなく高い0.2%耐力と優れた延性を有するアルミニウム合金及びアルミニウム合金鋳物材を提供することを目的としている。In view of the problems in the prior art as described above, the object of the present invention is to provide an aluminum alloy and an aluminum alloy casting material that have excellent castability and can exhibit high mechanical properties without heat treatment. More specifically, the object of the present invention is to provide an aluminum alloy and an aluminum alloy casting material that have excellent castability and have high 0.2% yield strength and excellent ductility without heat treatment.
本発明者らは、上記目的を達成すべく、アルミニウム合金の組成範囲について鋭意研究を重ねた結果、Si、Cu、Mg、Fe、Mn及びZnの添加量を全て厳密に制御すること等が極めて有効であることを見出し、本発明に到達した。In order to achieve the above-mentioned objective, the inventors conducted extensive research into the composition range of aluminum alloys and discovered that strictly controlling the amounts of Si, Cu, Mg, Fe, Mn and Zn added is extremely effective, leading to the invention.
即ち、本発明は、
Si:7.0~9.0質量%、
Cu:2.0~4.0質量%、
Mg:0.8~1.2質量%、
Fe:0.3~0.5質量%、
Mn:0.3~0.5質量%、
Zn:2.0~4.0質量%、を含み、
残部がAl及び不可避不純物よりなること、
を特徴とするアルミニウム合金、を提供する。
That is, the present invention provides:
Si: 7.0 to 9.0 mass%;
Cu: 2.0 to 4.0 mass%;
Mg: 0.8 to 1.2% by mass,
Fe: 0.3 to 0.5 mass%,
Mn: 0.3 to 0.5 mass%,
Zn: 2.0 to 4.0 mass%;
the balance being Al and unavoidable impurities;
The present invention provides an aluminum alloy comprising:
本発明のアルミニウム合金は、
Sr:0.008~0.04質量%、
Be:0.001~0.004質量%、
Ti:0.05~0.005質量%、
B:0.01~0.005質量%、
のうちのいずれか一種以上を含むこと、が好ましい。
The aluminum alloy of the present invention is
Sr: 0.008 to 0.04 mass%,
Be: 0.001 to 0.004 mass%,
Ti: 0.05 to 0.005 mass%,
B: 0.01 to 0.005 mass%,
It is preferable that the composition contains at least one of the following:
また、本発明は、
本発明のアルミニウム合金からなり、
0.2%耐力が230MPa以上であり、
破断伸びが2.5%以上であること、
を特徴とするアルミニウム合金鋳物材、も提供する。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
The aluminum alloy of the present invention is
The 0.2% yield strength is 230 MPa or more,
The breaking elongation is 2.5% or more.
The present invention also provides an aluminum alloy casting material, characterized in that
本発明のアルミニウム合金鋳物材は、鋳造によって所望の形状とした後、熱処理を施すことなく230MPa以上の0.2%耐力と2.5%以上の破断伸びを発現することができる。より好ましい0.2%耐力は240MPa以上であり、より好ましい破断伸びは3.0%以上である。The aluminum alloy casting material of the present invention can exhibit a 0.2% yield strength of 230 MPa or more and a fracture elongation of 2.5% or more without heat treatment after being cast into the desired shape. A more preferable 0.2% yield strength is 240 MPa or more, and a more preferable fracture elongation is 3.0% or more.
本発明によれば、優れた鋳造性を有すると共に、熱処理を施すことなく高い機械的性質を発現することができるアルミニウム合金及びアルミニウム合金鋳物材を提供することができる。より具体的には、本発明によれば、優れた鋳造性を有すると共に、熱処理を施すことなく高い0.2%耐力と優れた延性を有するアルミニウム合金及びアルミニウム合金鋳物材を提供することができる。According to the present invention, it is possible to provide an aluminum alloy and an aluminum alloy casting material that have excellent castability and can exhibit high mechanical properties without heat treatment. More specifically, according to the present invention, it is possible to provide an aluminum alloy and an aluminum alloy casting material that have excellent castability and have high 0.2% yield strength and excellent ductility without heat treatment.
以下、本発明のアルミニウム合金及びアルミニウム合金鋳物材の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。 Representative embodiments of the aluminum alloy and aluminum alloy casting material of the present invention are described in detail below, but the present invention is not limited to these.
1.アルミニウム合金
本発明のアルミニウム合金は、Si:7.0~9.0質量%、Cu:2.0~4.0質量%、Mg:0.8~1.2質量%、Fe:0.3~0.5質量%、Mn:0.3~0.5質量%、Zn:2.0~4.0質量%、を含み、残部がAl及び不可避不純物よりなるアルミニウム合金である。以下、各成分について詳細に説明する。
1. Aluminum Alloy The aluminum alloy of the present invention is an aluminum alloy containing 7.0 to 9.0 mass% Si, 2.0 to 4.0 mass% Cu, 0.8 to 1.2 mass% Mg, 0.3 to 0.5 mass% Fe, 0.3 to 0.5 mass% Mn, 2.0 to 4.0 mass% Zn, with the balance being Al and inevitable impurities. Each component will be described in detail below.
(1)必須の添加元素
Si:7.0~9.0質量%
Siはアルミニウムの鋳造性を向上させる特性を有するとともに引張強度等の機械的性質を向上させる作用がある。この作用はSi:7.0質量%以上で顕著となる。逆にSi:9.0質量%以上となると晶出する共晶Siや初晶Siが粗大化しやすくなる。それら化合物が粗大化すると破断する際の起点となりやすいため、伸びの低下につながりやすい。より好ましいSiの添加量は7.5~8.5質量%である。
(1) Essential additive elements Si: 7.0 to 9.0 mass%
Silicon has the property of improving the castability of aluminum and also has the effect of improving mechanical properties such as tensile strength. This effect is remarkable when the silicon content is 7.0 mass% or more. Conversely, when the silicon content is 9.0 mass% or more, the crystallized eutectic silicon and primary silicon crystals tend to become coarse. When these compounds become coarse, they tend to become the starting point for fracture, which tends to lead to a decrease in elongation. A more preferable amount of silicon added is 7.5 to 8.5 mass%.
Cu:2.0~4.0質量%
Cuは、引張強度等の機械的性質を向上させる作用を有する。この作用はCu:2.0質量%以上で顕著となる。逆に、4.0質量%より多くするとCu系晶出物が粗大化しやすくなり、伸びが低下しやすくなる。またCuの含有量が大きくなると耐食性も低下する。更に、アルマイト処理した際に、色彩が黄色味を帯びやすくなる。より好ましいCuの添加量は2.5~3.7質量%であり、更に好ましくは3.5質量%以下である。
Cu: 2.0 to 4.0% by mass
Cu has the effect of improving mechanical properties such as tensile strength. This effect becomes prominent when Cu is 2.0 mass% or more. On the other hand, when it is more than 4.0 mass%, Cu-based crystallized products tend to become coarse and elongation tends to decrease. Furthermore, when the Cu content is large, the corrosion resistance also decreases. Furthermore, when anodized, the color tends to become yellowish. The more preferable Cu content is 2.5 to 3.7 mass%, and even more preferably 3.5 mass% or less.
Mg:0.8~1.2質量%
Mgは、引張強度等の機械的性質を向上させる作用を有する。この作用はMg:0.8質量%以上で顕著となる。逆に1.2質量%を超えると粗大な化合物が形成されやすくなり、伸びが低下しやすくなる。
Mg: 0.8 to 1.2% by mass
Mg has the effect of improving mechanical properties such as tensile strength. This effect becomes significant when the Mg content is 0.8% by mass or more. On the other hand, when the Mg content exceeds 1.2% by mass, coarse compounds are easily formed, and elongation is easily reduced.
Si、Mg及びCuは、時効処理によって化合物として析出し、析出強化に寄与する元素であるが、本発明のアルミニウム合金は非熱処理材として用いられることを主としており、これらの元素による強化機構は基本的に固溶強化となる。 Si, Mg and Cu are elements that precipitate as compounds through aging treatment and contribute to precipitation strengthening, but the aluminum alloy of the present invention is primarily intended to be used as a non-heat-treated material, and the strengthening mechanism provided by these elements is essentially solid solution strengthening.
Fe:0.2~0.5質量%
Feは、引張強度等の機械的性質を向上させる作用を有する。この作用はFe:0.2質量%以上で顕著となる。また、ダイカスト法等の金型鋳造において、焼き付きを防止する効果もある。0.5質量%を超えると破断の起点となる粗大な針状のAl-(Si,Fe,Mn)系化合物を形成しやすくなる。
Fe: 0.2 to 0.5 mass%
Fe has the effect of improving mechanical properties such as tensile strength. This effect becomes significant when Fe is 0.2 mass% or more. It also has the effect of preventing seizure in mold casting such as die casting. If the Fe content exceeds 0.5 mass%, coarse, needle-like Al-(Si, Fe, Mn) compounds that become the starting points of fracture are easily formed.
Mn:0.3~0.5質量%
Mnは、引張強度等の機械的性質を向上させる作用を有する。この作用は、Mn:0.3質量%以上で顕著となる。また、Al-(Si,Fe,Mn)系化合物を粒状にする作用も有する。逆に0.5質量%を超えるとAl-(Si,Fe,Mn)系化合物が粗大化しやすい。
Mn: 0.3 to 0.5 mass%
Mn has the effect of improving mechanical properties such as tensile strength. This effect becomes significant when the Mn content is 0.3 mass% or more. It also has the effect of making Al-(Si, Fe, Mn)-based compounds granular. Conversely, when the Mn content exceeds 0.5 mass%, the Al-(Si, Fe, Mn)-based compounds tend to become coarse.
Zn:2.0~4.0質量%
Znは、引張強度等の機械的性質を向上させる作用を有する。この作用は、Zn:2.0質量%以上で顕著となる。逆に4.0質量%を超えると応力腐食割れが起こりやすくなる。また、陽極酸化皮膜処理を施した際に、変色や色むらが起こりやすくなる。
Zn: 2.0 to 4.0% by mass
Zn has the effect of improving mechanical properties such as tensile strength. This effect becomes prominent when the Zn content is 2.0 mass% or more. On the other hand, when the Zn content exceeds 4.0 mass%, stress corrosion cracking is likely to occur. In addition, discoloration and color unevenness are likely to occur when an anodizing film is applied.
(2)任意の添加元素
Sr:0.008~0.04質量%
Srは、共晶Siを微細化、粒状化させる作用を有し、この効果は、Sr:0.008質量%以上で顕著となる。0.04質量%を超えて添加しても、効果の向上があまり認められないため、0.04質量%未満にすることが好ましい。
(2) Optionally Added Elements Sr: 0.008 to 0.04 mass%
Sr has the effect of refining and granulating eutectic Si, and this effect becomes significant when the Sr content is 0.008% by mass or more. Even if the Sr content exceeds 0.04% by mass, the effect is not significantly improved, so it is preferable to add less than 0.04% by mass.
Be:0.001~0.004質量%
Beは、溶解した際に溶湯表面に酸化被膜を形成し、Mg等の他の元素の減耗を抑制する効果がある。また、鋳物の表面が黒色化することを抑制する効果もある。この効果は、Be0.001質量%以上で顕著となる。0.004質量%を超えて添加されても、効果の向上があまり認められないため、0.004質量%未満にすることが好ましい。
Be: 0.001 to 0.004 mass%
Be forms an oxide film on the surface of the molten metal when melted, and has the effect of suppressing the loss of other elements such as Mg. It also has the effect of suppressing the surface of the casting from turning black. This effect is remarkable when the Be content is 0.001% by mass or more. Even if the content exceeds 0.004% by mass, the effect is not significantly improved, so it is preferable to add less than 0.004% by mass.
Ti:0.05~0.005質量%
Tiは組織を微細化することで、主に靭性に寄与する。下限値未満ではその効果が小さく、上限値を超えて含有させても、すでに十分に微細化されており効果がない上、過剰に加えると粗大晶出物を形成することで延性に悪影響を及ぼすようになるため、上記範囲で制限する必要がある。
Ti: 0.05 to 0.005 mass%
Ti mainly contributes to toughness by refining the structure. If the content is less than the lower limit, the effect is small, and if the content exceeds the upper limit, the structure is already sufficiently refined and has no effect. In addition, if added in excess, coarse crystals are formed, which adversely affects ductility. Therefore, it is necessary to limit the content within the above range.
B:0.01~0.005質量%
Bは組織を微細化することで、主に靭性に寄与する。下限値未満ではその効果が小さく、上限値を超えて含有させても、すでに十分に微細化されており効果がない上、過剰に加えると粗大晶出物を形成することで延性に悪影響を及ぼすようになるため、上記範囲で制限する必要がある。
B: 0.01 to 0.005% by mass
B mainly contributes to toughness by refining the structure. If the content is less than the lower limit, the effect is small, and if the content exceeds the upper limit, the structure is already sufficiently refined and there is no effect. In addition, if added in excess, coarse crystals are formed, which adversely affects ductility. Therefore, it is necessary to limit the content within the above range.
なお、本発明の効果を損なわない限りにおいて、本発明のアルミニウム合金の製造方法は特に限定されず、従来公知の種々の製造方法を用いればよい。In addition, the method for manufacturing the aluminum alloy of the present invention is not particularly limited as long as it does not impair the effects of the present invention, and various conventional manufacturing methods may be used.
2.アルミニウム合金鋳物材
本発明のアルミニウム合金鋳物材は、本発明のアルミニウム合金からなり、0.2%耐力が230MPa以上、破断伸びが2.5%以上であること、を特徴としている。より好ましい0.2%耐力は240MPa以上であり、より好ましい破断伸びは3.0%以上である。
The aluminum alloy casting material of the present invention is made of the aluminum alloy of the present invention and is characterized in that it has a 0.2% yield strength of 230 MPa or more and a fracture elongation of 2.5% or more. The 0.2% yield strength is more preferably 240 MPa or more and the fracture elongation is more preferably 3.0% or more.
優れた機械的性質は基本的に組成を厳密に最適化したことによって実現されており、アルミニウム合金鋳物材の形状及びサイズに依らず、またアルミニウム合金鋳物材の部位及び方位に依らず、当該機械的性質を有している。 The excellent mechanical properties are essentially achieved by rigorously optimizing the composition, and these mechanical properties are possessed regardless of the shape and size of the aluminum alloy casting material, or the location and orientation of the aluminum alloy casting material.
また、本発明のアルミニウム合金鋳物材においては、時効処理等の熱処理を施すことなく、230MPa以上の0.2%耐力と2.5%以上の破断伸びを発現することができる。 Furthermore, the aluminum alloy casting material of the present invention can exhibit a 0.2% yield strength of 230 MPa or more and a fracture elongation of 2.5% or more without undergoing heat treatment such as aging treatment.
なお、本発明の効果を損なわない限りにおいて、アルミニウム合金鋳物材の形状及びサイズは特に限定されず、従来公知の種々の部材として使用することができる。当該部材としては、例えば、電子端末筐体を挙げることができる。In addition, the shape and size of the aluminum alloy casting material are not particularly limited as long as they do not impair the effects of the present invention, and the aluminum alloy casting material can be used as various conventionally known components. Examples of such components include electronic terminal housings.
また、本発明の効果を損なわない限りにおいて、本発明のアルミニウム合金鋳物材の製造方法は特に限定されず、本発明のアルミニウム合金を用いて従来公知の種々の方法で鋳造を行えばよい。更に、本発明の合金を用いた鋳物材は、非熱処理でも優れた機械的特性、特に靭性を有するが、時効処理等の熱処理を行っても良い。時効処理を行うとSi,Mg,Cu,Zn等の化合物の析出強化により、より高い機械的特性を得ることができる。In addition, the method of manufacturing the aluminum alloy casting material of the present invention is not particularly limited as long as it does not impair the effects of the present invention, and casting may be performed using the aluminum alloy of the present invention by various conventionally known methods. Furthermore, although the casting material using the alloy of the present invention has excellent mechanical properties, especially toughness, even without heat treatment, it may be subjected to heat treatment such as aging treatment. When aging treatment is performed, higher mechanical properties can be obtained due to precipitation strengthening of compounds such as Si, Mg, Cu, and Zn.
以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 The above describes representative embodiments of the present invention, but the present invention is not limited to these, and various design modifications are possible, all of which are within the technical scope of the present invention.
≪実施例≫
表1において、実施例1~実施例5として記載されている組成を有するアルミニウム合金を溶製し、鋳造圧力を120MPa、溶湯温度を730℃、金型温度を170℃ とし、ダイカストを行った。金型形状は55mm×110mm×3mmの板状である。アルミニウム合金は優れたダイカスト性を有しており、良好なアルミニウム合金鋳物材(ダイカスト材)が得られた。なお、表1に記載の数値の単位は質量%濃度である。
Example
Aluminum alloys having compositions shown in Table 1 as Examples 1 to 5 were melted and die cast at a casting pressure of 120 MPa, a molten metal temperature of 730°C, and a die temperature of 170°C. The die shape was a plate of 55 mm x 110 mm x 3 mm. The aluminum alloys had excellent die castability, and good aluminum alloy casting materials (die cast materials) were obtained. The numerical values shown in Table 1 are expressed in mass% concentration.
得られた各実施アルミニウム合金鋳物材よりJIS-Z2241に定められる14B号試験片を採取し、室温にて引張試験を行ったところ、引張強度、0.2%耐力及び破断伸びは表2に記載の値となった。また、得られた実施アルミニウム合金鋳物材のロックウェル硬さを測定したところ、表2に記載の値となった。ここで、実施アルミニウム合金鋳物材はダイカストのままであり、時効処理等の熱処理は施していない。 Test pieces No. 14B as specified in JIS-Z2241 were taken from each of the resulting aluminum alloy casting materials and subjected to tensile tests at room temperature, resulting in the tensile strength, 0.2% yield strength and breaking elongation values shown in Table 2. In addition, the Rockwell hardness of the resulting aluminum alloy casting materials was measured, resulting in the values shown in Table 2. Here, the aluminum alloy casting materials were as die-cast and were not subjected to heat treatment such as aging treatment.
≪比較例≫
表1に比較例1~比較例22として記載の成分となるように溶解材を調整したこと以外は実施例と同様にして、比較アルミニウム合金鋳物材(ダイカスト材)を得た。また、実施例と同様にして、引張特性及びロックウェル硬さを測定した。得られた値を表2に示す。なお、数値の記載がない場合は測定を行っていないことを意味している。
Comparative Example
Comparative aluminum alloy casting materials (die-cast materials) were obtained in the same manner as in the Examples, except that the melted materials were adjusted to have the compositions shown as Comparative Examples 1 to 22 in Table 1. Tensile properties and Rockwell hardness were measured in the same manner as in the Examples. The obtained values are shown in Table 2. Note that when no numerical value is shown, it means that no measurement was performed.
実施例及び比較例で得られた各アルミニウム合金鋳物材の引張特性を比較すると、実施例で得られたアルミニウム合金鋳物材のみが230MPa以上の0.2%耐力と2.5%以上の破断伸びを共に有していることが分かる。また、実施例において、Srを添加した実施例1の方が、Srを添加していない(Srの含有量が極めて少ない)実施例4より、引張強度と伸びが高いことが分かる。 Comparing the tensile properties of the aluminum alloy casting materials obtained in the Examples and Comparative Examples, it can be seen that only the aluminum alloy casting materials obtained in the Examples have both a 0.2% yield strength of 230 MPa or more and a fracture elongation of 2.5% or more. In addition, it can be seen that in the Examples, Example 1, in which Sr is added, has higher tensile strength and elongation than Example 4, in which Sr is not added (Sr content is extremely low).
Si、Cu及びMnの含有量が多い比較例1~比較例5の組成を有するアルミニウム合金鋳物材は高い0.2%耐力を示しているが、破断伸びが2.0%以下となっている。また、Feの含有量が多い比較例6~比較例10、比較例13~19の組成を有するアルミニウム合金鋳物材も破断伸びが2.5%に達していない。The aluminum alloy casting materials having the compositions of Comparative Examples 1 to 5, which have high contents of Si, Cu, and Mn, exhibit high 0.2% yield strength, but the fracture elongation is 2.0% or less. Furthermore, the aluminum alloy casting materials having the compositions of Comparative Examples 6 to 10 and Comparative Examples 13 to 19, which have high contents of Fe, also do not reach a fracture elongation of 2.5%.
また、Mgの添加量が少なくZnを含んでいない比較例11及びMgの添加量が少ない比較例12の組成を有するアルミニウム合金鋳物材の硬度は低い値となっており、十分な強度が得られていないことが分かる。 In addition, the hardness of the aluminum alloy casting material having the composition of Comparative Example 11, which has a small amount of added Mg and no Zn, and Comparative Example 12, which has a small amount of added Mg, is low, indicating that sufficient strength is not obtained.
更に、Si及びCuの含有量が少ない比較例20の組成を有するアルミニウム合金鋳物材は2.5%以上の破断伸びを有しているが、0.2%耐力が低い値となっている。また、SiとZnの含有量が少なく、CuとMnの含有量が多い比較例21は、高い引張強度と0.2%耐力を有しているが、破断伸びが2.5%未満と低い値となっている。また、CuとMnの含有量が多い比較例22は、破断伸びが2.5%未満と低い値となっていることに加え、0.2%耐力も230MPaに達していない。Furthermore, the aluminum alloy casting material having the composition of Comparative Example 20, which has a low Si and Cu content, has a fracture elongation of 2.5% or more, but a low 0.2% yield strength. Comparative Example 21, which has a low Si and Zn content and a high Cu and Mn content, has high tensile strength and 0.2% yield strength, but a low fracture elongation of less than 2.5%. Comparative Example 22, which has a high Cu and Mn content, has a low fracture elongation of less than 2.5%, and the 0.2% yield strength does not reach 230 MPa.
以上の結果より、アルミニウム合金鋳物材に熱処理を施すことなく230MPa以上の0.2%耐力と2.5%以上の破断伸びを発現させるためには、Si、Cu、Mg、Fe、Mn及びZnの添加量を厳密に制御することが必要であることが分かる。 From the above results, it can be seen that in order to achieve a 0.2% yield strength of 230 MPa or more and a fracture elongation of 2.5% or more in aluminum alloy castings without heat treatment, it is necessary to strictly control the amounts of Si, Cu, Mg, Fe, Mn and Zn added.
Claims (3)
Cu:2.0~4.0質量%、
Mg:0.8~1.2質量%、
Fe:0.3~0.5質量%、
Mn:0.3~0.5質量%、
Zn:2.0~4.0質量%、
Sr:0.008~0.04質量%、を含み、
残部がAl及び不可避不純物よりなること、
を特徴とするアルミニウム合金。 Si: 7.0 to 9.0 mass%;
Cu: 2.0 to 4.0 mass%;
Mg: 0.8 to 1.2% by mass,
Fe: 0.3 to 0.5 mass%,
Mn: 0.3 to 0.5 mass%,
Zn: 2.0 to 4.0% by mass,
Sr: 0.008 to 0.04 mass%;
the balance being Al and unavoidable impurities;
An aluminum alloy characterized by:
Ti:0.005~0.05質量%、
B:0.005~0.01質量%、
のうちのいずれか一種以上を含むこと、
を特徴とする請求項1に記載のアルミニウム合金。 B e: 0.001 to 0.004 mass%,
Ti: 0.005 to 0.05 mass%,
B: 0.005 to 0.01 mass%,
Containing one or more of the following:
The aluminum alloy according to claim 1 .
0.2%耐力が230MPa以上であり、
破断伸びが2.5%以上であること、
を特徴とするアルミニウム合金鋳物材。 The aluminum alloy according to claim 1 or 2 is used.
The 0.2% yield strength is 230 MPa or more,
The breaking elongation is 2.5% or more.
An aluminum alloy casting material characterized by:
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/046678 WO2022130484A1 (en) | 2020-12-15 | 2020-12-15 | Aluminum alloy and aluminum alloy casting material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2022130484A1 JPWO2022130484A1 (en) | 2022-06-23 |
JP7472318B2 true JP7472318B2 (en) | 2024-04-22 |
Family
ID=82057449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022569355A Active JP7472318B2 (en) | 2020-12-15 | 2020-12-15 | Aluminum alloys and aluminum alloy castings |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240018632A1 (en) |
JP (1) | JP7472318B2 (en) |
CN (1) | CN116635549A (en) |
WO (1) | WO2022130484A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117646138A (en) * | 2024-01-30 | 2024-03-05 | 鸿劲新材料研究(南通)有限公司 | Explosion-proof aluminum alloy material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108754250A (en) | 2018-06-03 | 2018-11-06 | 深圳市鑫申新材料科技有限公司 | A kind of high strength die-casting aluminum alloy and its manufacturing method |
JP2020509232A (en) | 2017-02-17 | 2020-03-26 | ジエーエムカンパニー リミテッドGam Co.,Ltd. | High-strength aluminum alloy and high-strength aluminum alloy casting |
CN110952001A (en) | 2019-12-19 | 2020-04-03 | 山东泰来铸铝科技有限公司 | High-strength and high-toughness Al-Si-Cu-Mg cast aluminum alloy added with Mn and Zn and heat treatment method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4713724B1 (en) * | 1968-02-20 | 1972-04-25 | ||
JPS5142567B2 (en) * | 1971-05-15 | 1976-11-16 | ||
CN101671787A (en) * | 2009-10-23 | 2010-03-17 | 瑞立集团瑞安汽车零部件有限公司 | Natural destressing die-casting aluminum alloy and preparation method thereof |
JP2011208178A (en) * | 2010-03-29 | 2011-10-20 | Mazda Motor Corp | Casting aluminum alloy |
JP5575028B2 (en) * | 2011-03-24 | 2014-08-20 | 株式会社豊田中央研究所 | High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method |
CN105734368B (en) * | 2014-12-24 | 2020-03-17 | 三菱铝株式会社 | Aluminum alloy fin material, method for producing same, and heat exchanger provided with same |
CN111155000A (en) * | 2020-02-29 | 2020-05-15 | 张逸智 | Rapid heat treatment strengthening high-strength and high-toughness aluminum alloy material for die-casting thin-walled piece and preparation method and application thereof |
-
2020
- 2020-12-15 CN CN202080107953.1A patent/CN116635549A/en active Pending
- 2020-12-15 WO PCT/JP2020/046678 patent/WO2022130484A1/en active Application Filing
- 2020-12-15 JP JP2022569355A patent/JP7472318B2/en active Active
- 2020-12-15 US US18/039,829 patent/US20240018632A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020509232A (en) | 2017-02-17 | 2020-03-26 | ジエーエムカンパニー リミテッドGam Co.,Ltd. | High-strength aluminum alloy and high-strength aluminum alloy casting |
CN108754250A (en) | 2018-06-03 | 2018-11-06 | 深圳市鑫申新材料科技有限公司 | A kind of high strength die-casting aluminum alloy and its manufacturing method |
CN110952001A (en) | 2019-12-19 | 2020-04-03 | 山东泰来铸铝科技有限公司 | High-strength and high-toughness Al-Si-Cu-Mg cast aluminum alloy added with Mn and Zn and heat treatment method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2022130484A1 (en) | 2022-06-23 |
JPWO2022130484A1 (en) | 2022-06-23 |
US20240018632A1 (en) | 2024-01-18 |
CN116635549A (en) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101211984B1 (en) | Cu-ni-si-based alloy for electronic material | |
JP5703881B2 (en) | High strength magnesium alloy and method for producing the same | |
CN110592444B (en) | 700-doped 720 MPa-strength heat-resistant high-intergranular corrosion-resistant aluminum alloy and preparation method thereof | |
CN107829000B (en) | Die-casting aluminum alloy material and preparation method thereof | |
CN102912196A (en) | Aluminum-silicon-magnesium cast aluminum alloy and manufacturing method thereof | |
CN111197132A (en) | Non-heat treatment type high-strength die-casting aluminum alloy and preparation method thereof | |
JP5305323B2 (en) | Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting | |
CN110592445B (en) | 720-doped 740MPa cold extrusion Al-Zn-Mg-Cu-Ti aluminum alloy and preparation method thereof | |
JP2007126739A (en) | Copper alloy for electronic material | |
JP4754930B2 (en) | Cu-Ni-Si based copper alloy for electronic materials | |
JP2006063420A (en) | Aluminum alloy material for heat sink and its production method | |
JP7472318B2 (en) | Aluminum alloys and aluminum alloy castings | |
WO2019101316A1 (en) | Al-si-mg-zr-sr alloy with particle-free grain refinement and improved heat conductivity | |
KR101274089B1 (en) | High strength aluminum alloys for die casting | |
JP5590413B2 (en) | High thermal conductivity magnesium alloy | |
KR20220141742A (en) | Aluminum alloy | |
JP5522692B2 (en) | High strength copper alloy forging | |
WO2021254154A1 (en) | Aluminum alloy, preparation method therefor and application thereof | |
KR20140050172A (en) | High strength and high toughness magnesium alloy with suppressed discontinuous precipitation | |
KR102617997B1 (en) | Manufacturing method of die casting Al alloy | |
JP7126915B2 (en) | Aluminum alloy extruded material and its manufacturing method | |
JP2002226932A (en) | Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor | |
KR20240080659A (en) | Manufacturing method of die casting Al alloy | |
JP2024514616A (en) | Oxidation resistant Al-Mg high strength die casting alloy | |
JP2022147009A (en) | Heat-resistant aluminum alloy and heat-resistant aluminum alloy member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7472318 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |