JPWO2009060873A1 - Copper alloy sheet - Google Patents

Copper alloy sheet Download PDF

Info

Publication number
JPWO2009060873A1
JPWO2009060873A1 JP2009540067A JP2009540067A JPWO2009060873A1 JP WO2009060873 A1 JPWO2009060873 A1 JP WO2009060873A1 JP 2009540067 A JP2009540067 A JP 2009540067A JP 2009540067 A JP2009540067 A JP 2009540067A JP WO2009060873 A1 JPWO2009060873 A1 JP WO2009060873A1
Authority
JP
Japan
Prior art keywords
mass
copper alloy
alloy sheet
less
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009540067A
Other languages
Japanese (ja)
Other versions
JP4785092B2 (en
Inventor
洋 金子
洋 金子
清慈 廣瀬
清慈 廣瀬
邦照 三原
邦照 三原
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009540067A priority Critical patent/JP4785092B2/en
Publication of JPWO2009060873A1 publication Critical patent/JPWO2009060873A1/en
Application granted granted Critical
Publication of JP4785092B2 publication Critical patent/JP4785092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

引張強度が730〜820MPaであり、銅と不可避的不純物のほかに少なくともNiとSiを含む銅合金板材であって、180°密着曲げ可能な材料板幅をW(単位:mm)、材料板厚をT(単位:mm)としたときに、WとTとの積が0.16以下である。好ましくは、Niを1.8〜3.3mass%、Siを0.4〜1.1mass%、Crを0.01〜0.5mass%含有し、残部がCuと不可避不純物からなる合金成分である。また、Sn、Mg、Ag、Mn、Ti、Fe、Pの少なくとも1種を合計で0.01〜1mass%、Znを0.01〜10mass%、Coを0.01〜1.5mass%の中から、1種または2種以上を含んでいてもよい。A tensile strength of 730 to 820 MPa, a copper alloy plate material containing at least Ni and Si in addition to copper and unavoidable impurities, and a material plate width that can be bent by 180 ° is W (unit: mm), and a material plate thickness Is T (unit: mm), the product of W and T is 0.16 or less. Preferably, it is an alloy component that contains 1.8 to 3.3 mass% of Ni, 0.4 to 1.1 mass% of Si, 0.01 to 0.5 mass% of Cr, and the balance of Cu and inevitable impurities. . Further, a total of at least one of Sn, Mg, Ag, Mn, Ti, Fe, and P is 0.01 to 1 mass%, Zn is 0.01 to 10 mass%, and Co is 0.01 to 1.5 mass%. 1 type or 2 types or more may be included.

Description

本発明は、銅合金板材に関する。   The present invention relates to a copper alloy sheet.

電気・電子機器用途に使用される銅合金板材に要求される特性項目には、例えばそれぞれ一定の、導電率、引張強度、曲げ加工性、耐応力緩和特性等が挙げられる。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの要求特性の水準が高まっている。   Examples of the characteristic items required for the copper alloy sheet used for electric / electronic equipment include, for example, constant conductivity, tensile strength, bending workability, stress relaxation resistance, and the like. In recent years, the level of these required characteristics has increased as electric and electronic devices have become smaller, lighter, more functional, higher-density mounted, and used in higher temperatures.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、リン青銅、丹銅、黄銅等の銅系材料も広く用いられている。これらの合金はSnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせにより強度を向上させている。この強化方法で得られる合金は、近年の要求水準に対しては、導電率が不十分であり、また、高い冷間加工率を加えることによって高強度を得ているために、曲げ加工性や耐応力緩和特性が不十分である。
これに替わる強化法として材料中にナノメートルオーダーの微細な第二相(粒子)を析出させる析出強化がある。この強化方法は強度が高くなることに加えて、導電率を同時に向上させるメリットがあるため、多くの合金系で行われている。その中で、Cu中にNiとSiの化合物を微細に析出させて強化させたCu−Ni−Si系合金(例えば、CDA[Copper Development Association]登録合金であるCDA70250:特許文献1〜2参照)は、その市場で使用される量が増えている。
Conventionally, as materials for electric and electronic devices, copper-based materials such as phosphor bronze, red brass, brass and the like are widely used in addition to iron-based materials. These alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. The alloy obtained by this strengthening method has insufficient electrical conductivity with respect to the recent required level, and has obtained high strength by adding a high cold work rate. The stress relaxation resistance is insufficient.
An alternative strengthening method is precipitation strengthening, in which a fine second phase (particles) of nanometer order is precipitated in the material. This strengthening method has a merit of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. Among them, a Cu—Ni—Si alloy strengthened by finely depositing a compound of Ni and Si in Cu (for example, CDA 70250 which is a CDA [Copper Development Association] registered alloy: see Patent Documents 1 and 2) The amount used in that market is increasing.

特開平11−43731号公報JP 11-43731 A 特表2005−532477号公報JP 2005-532477 A

一般的に析出硬化型合金では微細な析出状態を得る時効析出熱処理の前に、溶質原子を固溶させるための溶体化熱処理が中間工程で導入される。この温度は合金系や溶質濃度によって異なるものの例えば750℃程度と高温である。この溶体化処理温度が高温のために、材料の結晶粒径が粗大になる問題がある。結晶粒径が粗大な場合、曲げ加工時の局所変形を助長してクラックが発生する不具合や、曲げ部表面のシワが大きくなるために、曲げ部を接点として使用する場合は電流の集中や、材料表面に施されたメッキが割れたりなどの不具合が発生する。また、結晶粒径の粗大化を防止するために、溶体化熱処理の温度を低くすると、固溶する原子の量が少なくなってしまい、時効処理において微細な析出物の密度が低くなり、時効硬化量が少なくなってしまい、材料強度が低下する問題が発生する。
このように、充分に溶質原子のNiとSiを固溶できる高温での溶体化熱処理下において結晶粒径を小さく制御し、高強度で高曲げ加工性の材料を得る技術が求められている。
In general, in a precipitation hardening type alloy, a solution heat treatment for dissolving solute atoms is introduced in an intermediate step before an aging precipitation heat treatment for obtaining a fine precipitation state. Although this temperature varies depending on the alloy system and solute concentration, it is as high as about 750 ° C., for example. Since the solution treatment temperature is high, there is a problem that the crystal grain size of the material becomes coarse. If the crystal grain size is coarse, the problem of cracking by promoting local deformation during bending, and the wrinkle on the surface of the bent part will increase, so when using the bent part as a contact point, Problems such as cracking of the plating applied to the material surface occur. In addition, if the temperature of the solution heat treatment is lowered in order to prevent the crystal grain size from becoming coarse, the amount of solid solution atoms decreases, and the density of fine precipitates in the aging treatment decreases, and age hardening occurs. The amount is reduced, causing a problem that the material strength is reduced.
Thus, there is a demand for a technique for controlling the crystal grain size to be small under a high temperature solution heat treatment that can sufficiently dissolve Ni and Si as solute atoms and obtaining a material having high strength and high bending workability.

上記のような問題点に鑑み、本発明の目的は、曲げ加工性に優れ、優れた強度を有する電気・電子機器材料用の銅合金板材を提供することにある。   In view of the problems as described above, an object of the present invention is to provide a copper alloy sheet for electrical and electronic equipment materials having excellent bending workability and excellent strength.

本発明者らは、電気・電子部品用途に適した銅合金について研究を行い、Cu−Ni−Si系銅合金において、曲げ加工性、強度を大きく向上させるために、第二相粒子を分散させる方法に着眼し、鋭意検討の末に本発明に至った。また、本合金系において、導電性を損なうことなく、強度や耐応力緩和特性を向上させる働きのある添加元素を見出し、本発明の好ましい態様に至ったものである。ここで、第二相粒子とは、析出物および晶出物のことを示す。   The present inventors have studied a copper alloy suitable for electric / electronic component applications, and in the Cu—Ni—Si based copper alloy, the second phase particles are dispersed in order to greatly improve the bending workability and strength. Focusing on the method, the present invention was reached after intensive studies. Further, in the present alloy system, an additive element having a function of improving the strength and the stress relaxation resistance characteristic is found without impairing the conductivity, and the preferred embodiment of the present invention has been achieved. Here, the second phase particles indicate a precipitate and a crystallized product.

本発明によれば、以下の手段が提供される:
(1)引張強度が730〜820MPaであり、銅と不可避的不純物のほかに少なくともNiとSiを含む銅合金板材であって、180°密着曲げ可能な材料板幅をW(単位:mm)、材料板厚をT(単位:mm)としたときに、WとTとの積(単位:mm)が0.16以下であることを特徴とする銅合金板材、
(2)結晶粒界上に存在する第二相粒子が、10〜10個/mmの密度で存在し、平均結晶粒径が10μm以下であることを特徴とする、(1)に記載の銅合金板材、
(3)結晶粒内と結晶粒界上を含めた全第二相粒子の粒子径r(単位:μm)と、粒子の体積分率fの比であるr/fの値が1以上100以下であり、平均結晶粒径が10μm以下であることを特徴とする(1)に記載の銅合金板材、
(4)前記第二相粒子のうち、構成元素にCrを含む粒子の割合が50%以上であることを特徴とする、(2)または(3)に記載の銅合金板材、
(5)Niを1.8〜3.3mass%、Siを0.4〜1.1mass%、Crを0.01〜0.5mass%含有し、残部がCuと不可避不純物からなる合金成分であることを特徴とする、(1)〜(4)のいずれか1項に記載の銅合金板材、
(6)Sn、Mg、Ag、Mn、Ti、Fe、Pの少なくとも1種を合計で0.01〜1mass%、Znを0.01〜10mass%、Coを0.01〜1.5mass%の中から、1種または2種以上を含むことを特徴とする、(1)〜(5)のいずれか1項に記載の銅合金板材、および
(7)165℃で3000時間保持した場合の応力緩和率が30%以下であることを特徴とする、(1)〜(6)のいずれか1項に記載の銅合金板材。
According to the present invention, the following means are provided:
(1) A tensile strength of 730 to 820 MPa, a copper alloy plate material containing at least Ni and Si in addition to copper and inevitable impurities, and a material plate width that can be bent by 180 ° is W (unit: mm), A copper alloy sheet characterized in that the product of W and T (unit: mm 2 ) is 0.16 or less when the material sheet thickness is T (unit: mm);
(2) The second phase particles present on the grain boundaries are present at a density of 10 4 to 10 8 particles / mm 2 , and the average crystal grain size is 10 μm or less. The copper alloy sheet material according to the description,
(3) The value of r / f, which is the ratio of the particle diameter r (unit: μm) of all second phase particles including the inside of the crystal grains and the crystal grain boundary, to the volume fraction f of the particles is 1 or more and 100 or less. The copper alloy sheet material according to (1), wherein the average crystal grain size is 10 μm or less,
(4) The copper alloy sheet according to (2) or (3), wherein the proportion of particles containing Cr as a constituent element is 50% or more of the second phase particles,
(5) It is an alloy component containing 1.8 to 3.3 mass% of Ni, 0.4 to 1.1 mass% of Si, 0.01 to 0.5 mass% of Cr, and the balance of Cu and inevitable impurities. The copper alloy sheet material according to any one of (1) to (4),
(6) A total of at least one of Sn, Mg, Ag, Mn, Ti, Fe, and P is 0.01 to 1 mass%, Zn is 0.01 to 10 mass%, and Co is 0.01 to 1.5 mass%. The copper alloy sheet according to any one of (1) to (5), and (7) stress when held at 165 ° C. for 3000 hours The copper alloy sheet according to any one of (1) to (6), wherein the relaxation rate is 30% or less.

本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。   The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1は、耐応力緩和特性の試験方法の説明図であり、図1(a)は熱処理前、図1(b)は熱処理後の状態を示す。1A and 1B are explanatory diagrams of a stress relaxation resistance test method. FIG. 1A shows a state before heat treatment, and FIG. 1B shows a state after heat treatment. 図2は、各実施例及び比較例における試験片の板幅W(mm)と板厚T(mm)を変更した時のクラック発生の有無に関する結果を示すグラフである。FIG. 2 is a graph showing the results regarding the presence or absence of cracking when the plate width W (mm) and the plate thickness T (mm) of the test pieces in each of the examples and comparative examples are changed.

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。   A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail.

本発明の銅合金板材の引張強度は730〜820MPaの強度である。好ましくは、740〜800MPaである。
曲げ加工性は材料板幅W(mm)と材料板厚T(mm)の積が0.16(mm)以下のような厳しい条件での180°密着曲げが可能であることである。このWとTの積は、好ましくは0.14以下である。また、WとTの積の下限値には特に制限はないが、通常、0.01以上である。
また、導電率は30%IACS以上が好ましく、耐応力緩和特性は165℃で3000時間以上保持した場合の応力緩和率が30%以下であることが好ましい。
曲げ加工性を悪化させる、溶体化時の結晶粒粗大化に対し、第二相を適切に分散させることが有効である。これは、結晶粒の粒成長の時に、結晶粒界が第二相粒子を通過する際の分散粒子と結晶粒界の界面においてエネルギーの利得が生まれ、粒界移動を抑制するからと考えられる。
得られる結晶粒径は10μm以下が好ましく、より好ましくは8μm以下、更に好ましくは6μm以下である。結晶粒径の下限値には特に制限はないが、通常、2μm以上である。なお、結晶粒径は、JIS H 0501(切断法)に基づき測定した。
The tensile strength of the copper alloy sheet of the present invention is 730 to 820 MPa. Preferably, it is 740-800 MPa.
The bending workability is that 180 ° contact bending is possible under severe conditions such that the product of the material plate width W (mm) and the material plate thickness T (mm) is 0.16 (mm 2 ) or less. The product of W and T is preferably 0.14 or less. The lower limit of the product of W and T is not particularly limited, but is usually 0.01 or more.
The electrical conductivity is preferably 30% IACS or more, and the stress relaxation resistance is preferably 30% or less when held at 165 ° C. for 3000 hours or more.
It is effective to disperse the second phase appropriately for the coarsening of the crystal grains during solution treatment, which deteriorates the bending workability. This is considered to be because energy gain is generated at the interface between the dispersed particles and the crystal grain boundary when the crystal grain boundary passes through the second phase particle during grain growth of the crystal grain, and the grain boundary movement is suppressed.
The crystal grain size obtained is preferably 10 μm or less, more preferably 8 μm or less, and even more preferably 6 μm or less. Although there is no restriction | limiting in particular in the lower limit of a crystal grain diameter, Usually, it is 2 micrometers or more. The crystal grain size was measured based on JIS H 0501 (cutting method).

この制御された結晶粒径を得る効果を充分に発揮するための、本発明における好ましい分散状態の規定は以下の2種類の方法による。
第一は、結晶粒界上に存在する第二相粒子が、10〜10個/mmの密度で存在することである。この場合、更に好ましくは、5×10〜5×10個/mmである。
第二は、結晶粒内と結晶粒界上を含めた全第二相粒子の粒子径r(単位はμm)と、粒子の体積分率fの比、r/fの値が1〜100であることである。第二相粒子の粒子径rは、測定した全粒子の粒子径の算術平均値とした。なお、体積分率fの表示は、f=0.005が0.5vol%を表すということである。
In order to sufficiently exhibit the effect of obtaining the controlled crystal grain size, the preferable dispersion state in the present invention is defined by the following two methods.
The first is that the second phase particles present on the grain boundaries are present at a density of 10 4 to 10 8 particles / mm 2 . In this case, it is more preferably 5 × 10 5 to 5 × 10 7 pieces / mm 2 .
Second, the ratio of the particle diameter r (unit: μm) of all second phase particles including the inside of the crystal grains and the crystal grain boundaries to the volume fraction f of the particles, and the value of r / f is 1-100. That is. The particle diameter r of the second phase particles was the arithmetic average value of the measured particle diameters of all particles. In addition, the display of the volume fraction f is that f = 0.005 represents 0.5 vol%.

本発明者らは、このような第二相粒子は耐応力緩和特性を向上させる好ましい働きを持つことを見い出した。応力緩和現象は、結晶粒内の転位が粒界に移動することや、粒界の一部において粒界滑りを起こすことが原因で、弾性限界内の歪みが永久歪みに変化すると考えられる。本発明における前記の好ましい第二相粒子は、粒内に存在する粒子は転位の移動を、また、粒界に存在する粒子は粒界の滑り運動を抑制する働きがあると考えられる。
これら全ての第二相粒子の中で、構成元素にCrを含む粒子の割合が50%以上である場合が更に好ましい。これはCrを含む場合に、より高温でもCu中に固溶しない安定な化合物として、存在できるためである。第二相粒子の高密化に寄与し、結晶粒の成長抑制の効果を高める。この割合は、より好ましくは70%以上である。この割合の上限値には特に制限はないが、通常、90%以下である。
The present inventors have found that such second phase particles have a preferable function of improving stress relaxation resistance. The stress relaxation phenomenon is considered that the strain within the elastic limit is changed to a permanent strain because the dislocation within the crystal grain moves to the grain boundary or the grain boundary slips at a part of the grain boundary. In the preferred second phase particles in the present invention, it is considered that particles existing in the grains have a function of suppressing dislocation movement, and particles existing in the grain boundaries have a function of suppressing the sliding motion of the grain boundaries.
Of all the second phase particles, the proportion of particles containing Cr as a constituent element is more preferably 50% or more. This is because when Cr is contained, it can exist as a stable compound that does not dissolve in Cu even at higher temperatures. This contributes to the densification of the second phase particles and enhances the effect of suppressing the growth of crystal grains. This ratio is more preferably 70% or more. The upper limit of this ratio is not particularly limited, but is usually 90% or less.

主溶質成分であるNiとSiについては、下記のように配合量を制御することにより良好な特性が得られる。Niの含有量は好ましくは1.8〜3.3mass%、より好ましくは2.0〜3.0mass%、Siの含有量は好ましくは0.4〜1.1mass%、より好ましくは0.5〜1.0mass%である。これらの元素は添加量が多すぎると導電率を低下させ、また、粒界への析出などによって曲げ加工時の粒界割れを引き起こす。また、これらの元素の含有量が少なすぎると強度が不足する。   About Ni and Si which are main solute components, a favorable characteristic is acquired by controlling a compounding quantity as follows. The Ni content is preferably 1.8 to 3.3 mass%, more preferably 2.0 to 3.0 mass%, and the Si content is preferably 0.4 to 1.1 mass%, more preferably 0.5. -1.0 mass%. If these elements are added in an excessive amount, the electrical conductivity is lowered, and grain boundary cracking during bending is caused by precipitation at the grain boundaries. Moreover, when there is too little content of these elements, intensity | strength will run short.

Crは、NiやSiとの第二相粒子として析出し、結晶粒径の制御に有効である。また、Cr単体としての析出硬化の効果もある。含有量は好ましくは0.01〜0.5mass%、より好ましくは0.03〜0.4mass%である。少なすぎる場合は効果が得られず、多すぎる場合は凝固時に粗大な晶出物として晶出し、メッキ性を悪化させ、塑性加工時のクラックの基点やクラックの伝播を助長する悪影響がある。   Cr precipitates as second phase particles with Ni and Si and is effective in controlling the crystal grain size. In addition, there is an effect of precipitation hardening as a Cr simple substance. The content is preferably 0.01 to 0.5 mass%, more preferably 0.03 to 0.4 mass%. If the amount is too small, the effect cannot be obtained. If the amount is too large, the crystallized as a coarse crystallized product at the time of solidification, which deteriorates the plating property and promotes the base point of cracks and the propagation of cracks during plastic working.

その他、(1)Sn、Mg、Ag、Mn、Ti、Fe、Pの少なくとも1種を合計で0.01〜1mass%、(2)Znを0.01〜10mass%、(3)Coを0.01〜1.5mass%から選ばれる少なくとも1種の元素は、合金特性を向上させるため、添加しても良い。
これらの元素は強度や耐応力緩和特性を向上させ、特にSnとMgにはその効果が高い。ZnやSnは半田接合性を、Coは導電率を、Mnは熱間加工性を、向上させる働きがある。添付する場合の含有量が少なすぎる場合はその効果が不十分であり、多すぎる場合は導電率の低下を招く。
In addition, (1) at least one of Sn, Mg, Ag, Mn, Ti, Fe, and P in total is 0.01 to 1 mass%, (2) 0.01 to 10 mass% of Zn, and (3) Co is 0 At least one element selected from 0.01 to 1.5 mass% may be added to improve the alloy characteristics.
These elements improve strength and stress relaxation resistance, and are particularly effective for Sn and Mg. Zn and Sn function to improve solder bonding, Co to improve conductivity, and Mn to improve hot workability. When the content is too small, the effect is insufficient, and when it is too large, the conductivity is lowered.

耐応力緩和特性は、165℃で3000時間保持した場合の応力緩和率が30%以下であることが好ましい。より好ましくは、25%以下である。   As for the stress relaxation resistance, it is preferable that the stress relaxation rate when held at 165 ° C. for 3000 hours is 30% or less. More preferably, it is 25% or less.

以下に、本発明の銅合金板材の好ましい製造方法について説明する。本発明の銅合金板材は、例えば、鋳造−(均質化)熱処理−熱間加工(例えば、熱間圧延)−冷間加工(例えば、冷間圧延)(1)−溶体化熱処理−冷間加工(例えば、冷間圧延)(2)−(時効析出)熱処理−冷間加工(例えば、冷間圧延)(3)−(歪み取り)焼鈍、の各工程からなる方法によって製造することができる。ここで、熱間加工後で冷間加工(1)前には、急冷−面削を行うことが好ましい。次に、各工程の好ましい条件について説明する。
まず、前記所定の合金成分組成になるように各元素を配合し、残部がCuと不可避不純物から成る銅合金材料を準備して、これを例えば高周波溶解炉により溶解する。鋳造は、好ましくは0.1〜100℃/秒(より好ましくは0.5〜50℃/秒)の冷却速度で行い、鋳塊を得る。(均質化)熱処理は、鋳塊を、好ましくは900〜1050℃で0.5〜10時間(より好ましくは0.8〜8時間)保持することにより行う。熱間加工(熱間圧延)は、好ましくは、断面減少率(圧下率)が50%以上(より好ましくは60〜98%)で処理温度が600℃以上(より好ましくは620〜1000℃)にて行い、板を作製する。急冷(例えば、水冷)は、この板を、好ましくは10℃/秒以上(より好ましくは15〜300℃/秒)の冷却速度にて冷却することにより行う。この熱間圧延板は常法により面削してもよい。冷間加工(冷間圧延)(1)は、断面減少率が好ましくは90%以上(より好ましくは92〜99%)で行う。溶体化熱処理は、好ましくは720〜860℃に3秒〜2時間(より好ましくは5秒〜0.5時間)保持することにより行う。前記溶体化熱処理において、昇温中の400℃〜700℃における昇温速度を好ましくは0.1℃/秒〜200℃/秒(より好ましくは0.5〜100℃/秒)の範囲で行うことが好ましい。冷間加工(冷間圧延)(2)は、断面減少率が好ましくは5〜50%(より好ましくは7〜45%)にて行う。時効析出熱処理は、好ましくは400℃〜540℃において5分間〜10時間(より好ましくは、410〜520℃において10分間〜8時間)保持することにより行う。冷間加工(冷間圧延)(3)は、好ましくは断面減少率が10%以下(0%を超え10%以下の意味である)で行う。歪み取り焼鈍は、好ましくは200℃〜600℃において15秒間〜10時間(より好ましくは、250〜570℃において20秒〜8時間)保持することにより行う。
なお、時効析出熱処理の時点で強度が充分な場合は、その後の冷間加工(3)と歪み取り焼鈍は行わないで省略することができる。
Below, the preferable manufacturing method of the copper alloy board | plate material of this invention is demonstrated. The copper alloy sheet material of the present invention is, for example, casting-(homogenization) heat treatment-hot working (for example, hot rolling)-cold working (for example, cold rolling) (1)-solution heat treatment-cold working. (For example, cold rolling) (2)-(aging precipitation) heat treatment-cold working (for example, cold rolling) (3)-(strain relief) It can manufacture by the method which consists of each process of annealing. Here, it is preferable to perform rapid cooling-facing after hot working and before cold working (1). Next, preferable conditions for each step will be described.
First, the respective elements are blended so as to have the predetermined alloy component composition, and a copper alloy material consisting of Cu and inevitable impurities is prepared, and this is melted by, for example, a high-frequency melting furnace. Casting is preferably performed at a cooling rate of 0.1 to 100 ° C./second (more preferably 0.5 to 50 ° C./second) to obtain an ingot. The (homogenization) heat treatment is performed by holding the ingot at 900 to 1050 ° C. for 0.5 to 10 hours (more preferably 0.8 to 8 hours). In the hot working (hot rolling), preferably, the cross-section reduction rate (rolling rate) is 50% or more (more preferably 60 to 98%) and the processing temperature is 600 ° C. or more (more preferably 620 to 1000 ° C.). To make a plate. Rapid cooling (for example, water cooling) is performed by cooling the plate at a cooling rate of preferably 10 ° C./second or more (more preferably 15 to 300 ° C./second). This hot rolled plate may be chamfered by a conventional method. Cold working (cold rolling) (1) is preferably performed with a cross-sectional reduction rate of 90% or more (more preferably 92 to 99%). The solution heat treatment is preferably performed by holding at 720 to 860 ° C. for 3 seconds to 2 hours (more preferably 5 seconds to 0.5 hours). In the solution heat treatment, the heating rate at 400 ° C. to 700 ° C. during the heating is preferably in the range of 0.1 ° C./second to 200 ° C./second (more preferably 0.5 to 100 ° C./second). It is preferable. Cold working (cold rolling) (2) is preferably performed at a cross-sectional reduction rate of 5 to 50% (more preferably 7 to 45%). The aging precipitation heat treatment is preferably performed by holding at 400 ° C. to 540 ° C. for 5 minutes to 10 hours (more preferably at 410 to 520 ° C. for 10 minutes to 8 hours). The cold working (cold rolling) (3) is preferably performed with a cross-sectional reduction rate of 10% or less (meaning more than 0% and 10% or less). The strain relief annealing is preferably performed by holding at 200 ° C. to 600 ° C. for 15 seconds to 10 hours (more preferably at 250 to 570 ° C. for 20 seconds to 8 hours).
If the strength is sufficient at the time of aging precipitation heat treatment, the subsequent cold working (3) and strain relief annealing can be omitted without performing.

上記各工程の少なくとも1つの工程を上記の好ましい条件で行うことによって、特に好ましくは各工程を全て上記の好ましい条件で行うことによって、本発明の銅合金板材において所定の好ましい金属組織の状態を得ることができる。例えば、鋳造速度(鋳造時の冷却速度)を調整することによって、Cr系の化合物の晶出が過度に起こることを防止することができる。また例えば、熱間圧延の温度範囲と該温度に保持する時間を調整することで、熱間圧延中の粗大析出を抑制し、後の工程にて充分な析出を行わせることができる。また例えば、結晶粒の粗大化を抑制する第二相粒子は、主に溶体化熱処理の昇温中で析出するが、その析出を効果的に引き起こすためには、その前加工である冷間加工(1)の加工率と、溶体化熱処理の昇温速度とが上記の好ましい条件内となるようにしてそれぞれ行うことが好ましい。また例えば、時効析出熱処理の前に、冷間加工(2)を導入することで、析出硬化に寄与する微細な析出物の高密化を促し、また、時効析出熱処理の間に溶体化時に残っている第二相粒子が粗大化することを抑制することができる。   By performing at least one of the above steps under the above preferable conditions, and particularly preferably by performing all of the steps under the above preferable conditions, a predetermined preferable metallographic state is obtained in the copper alloy sheet of the present invention. be able to. For example, excessive crystallization of Cr-based compounds can be prevented by adjusting the casting speed (cooling speed during casting). Further, for example, by adjusting the temperature range of hot rolling and the time for maintaining the temperature, coarse precipitation during hot rolling can be suppressed, and sufficient precipitation can be performed in a later step. In addition, for example, the second phase particles that suppress the coarsening of crystal grains are precipitated mainly during the temperature rise of the solution heat treatment, but in order to cause the precipitation effectively, the cold working which is the pre-processing is performed. It is preferable that the processing rate of (1) and the temperature increase rate of the solution heat treatment be performed within the above-mentioned preferable conditions. Also, for example, by introducing cold working (2) before the aging precipitation heat treatment, it promotes the densification of fine precipitates that contribute to precipitation hardening, and remains during solution treatment during the aging precipitation heat treatment. It is possible to suppress the coarsening of the second phase particles.

本発明の銅合金板材は、強度、曲げ加工性に優れ、電気・電子機器用途に適する。本発明の好ましい銅合金板材は、さらに、導電率、耐応力緩和特性にも優れる。本発明の銅合金板材は、上記のような特性により、電気・電子機器用のリードフレーム、コネクタ、端子材等、特に自動車車載用などのコネクタや端子材、リレー、スイッチ、ソケットなどに特に好適に用いることができる。
本発明のような、高強度かつ高曲げ加工性を持つ材料はこれまでになく、今後の最先端の用途に対して部品設計の自由度を向上させ、電子機器の高機能化に対して大きな効果を持つ。また、高強度化によって銅合金材料の薄肉化を可能にし、地球資源使用量の低減にも寄与する。
The copper alloy sheet of the present invention is excellent in strength and bending workability, and is suitable for electric / electronic equipment applications. The preferable copper alloy sheet of the present invention is further excellent in conductivity and stress relaxation resistance. The copper alloy sheet material of the present invention is particularly suitable for lead frames, connectors, terminal materials, etc. for electrical and electronic devices, especially connectors and terminal materials for automobiles, relays, switches, sockets, etc., due to the characteristics as described above. Can be used.
There has never been a material with high strength and high bending workability like the present invention, and it will improve the degree of freedom of component design for the most advanced applications in the future, and it will be great for enhancing the functionality of electronic devices. Has an effect. In addition, it is possible to reduce the thickness of copper alloy materials by increasing the strength and contribute to the reduction of the amount of earth resources used.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
表中に示す成分になるように元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの保持後、断面減少率が50%以上で処理温度が600℃以上の熱間加工により板を作製し、10℃/秒以上の冷却速度にて水冷を行った。この熱間圧延板を面削し、断面減少率が90%以上の冷間加工(1)を行った。その後、720〜860℃に3秒〜2時間保持する溶体化熱処理を行った。溶体化熱処理において、昇温中の400℃〜700℃における昇温速度を0.1℃/秒〜200℃/秒の範囲で行った。その後に、断面減少率が5〜50%の冷間加工(2)、400℃〜540℃において5分〜10時間の保持を行う時効析出熱処理、断面減少率が10%以下の冷間加工(3)、200℃〜600℃において15秒〜10時間保持する歪み取り焼鈍を行って供試材とした。時効析出熱処理の時点で強度が充分な場合は、その後の冷間加工(3)と歪み取り焼鈍は行わなかった。
Example 1
The elements are blended so as to be the components shown in the table, and the remainder consisting of an alloy consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is cast at a cooling rate of 0.1 to 100 ° C./second to make an ingot Got. After maintaining this at 900 to 1050 ° C. for 0.5 to 10 hours, a plate is produced by hot working with a cross-section reduction rate of 50% or more and a processing temperature of 600 ° C. or more, and at a cooling rate of 10 ° C./second or more. Water cooling was performed. This hot-rolled sheet was chamfered, and cold working (1) with a cross-section reduction rate of 90% or more was performed. Thereafter, solution heat treatment was performed at 720 to 860 ° C. for 3 seconds to 2 hours. In the solution heat treatment, the heating rate at 400 ° C. to 700 ° C. during the heating was performed in the range of 0.1 ° C./second to 200 ° C./second. Thereafter, cold working (2) with a cross-sectional reduction rate of 5 to 50%, aging precipitation heat treatment for holding at 400 ° C. to 540 ° C. for 5 minutes to 10 hours, cold working with a cross-sectional reduction rate of 10% or less ( 3) Strain-relief annealing was performed at 200 ° C. to 600 ° C. for 15 seconds to 10 hours to obtain test materials. When the strength was sufficient at the time of aging precipitation heat treatment, the subsequent cold working (3) and strain relief annealing were not performed.

下記の実施例と併記した比較例は、これらの製造条件の範囲外で製造し、本発明の実施例の範囲から外れるようにしたものである。
その詳細は、以下の通りである:
比較例1−1は、鋳造工程の冷却速度が低すぎた例である。
比較例1−2は、均質化工程の温度が低すぎた例である。
比較例1−3は、時効析出熱処理工程の温度が高すぎた例である。
比較例1−4は、均質化工程の温度が低すぎた例である。
なお、各表中で、例えば、表1の識別番号として本発明例1−1とある試験結果には、曲げ加工性に評価に関し、W×T>0.16である本発明の範囲外の曲げ加工条件の判定結果も、本発明の範囲内の曲げ加工条件の判定結果と同じ行に示しているが、これは識別番号の記載の便宜のためである。以下、各表の各試験例の記載においても同様である。
The comparative example written together with the following example is manufactured outside the range of these manufacturing conditions, and is out of the range of the example of the present invention.
The details are as follows:
Comparative Example 1-1 is an example in which the cooling rate in the casting process was too low.
Comparative Example 1-2 is an example in which the temperature of the homogenization step is too low.
Comparative Example 1-3 is an example in which the temperature of the aging precipitation heat treatment step is too high.
Comparative Example 1-4 is an example in which the temperature of the homogenization step is too low.
In each table, for example, the test result as Example 1-1 of the present invention as the identification number in Table 1 is outside the scope of the present invention where W × T> 0.16 in terms of evaluation of bending workability. The determination result of the bending condition is also shown in the same line as the determination result of the bending condition within the scope of the present invention, but this is for convenience of description of the identification number. Hereinafter, the same applies to the description of each test example in each table.

これらの供試材について下記の特性調査を行った。
a.導電率[EC]:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率(%IACS)を算出した。なお、端子間距離は100mmとした。
b.引張強度[TS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値(MPa)を示した。
c.180°密着曲げ加工性:
JIS Z 2248に準じて曲げ加工を行った。0.4mmRの90°曲げ金型を使用して予備曲げを行った後に、圧縮試験機によって密着曲げを行った。曲げ部外側における割れの有無を50倍の光学顕微鏡で目視観察によりその曲げ加工部位を観察し、割れの有無を調査した。試験片の条件は、Wは板幅を、Tは板厚をそれぞれmmで示す。表中、「GW(Good way)」とは曲げ軸が圧延方向に直角であった場合の試験であることを、「BW(Bad way)」とは曲げ軸が圧延方向に平行であった場合の試験であることを、それぞれ意味する。表中には、観察結果を、クラックが生じなかった場合を「○(良)」と、クラックが生じた場合を「×(不良)」として、それぞれ表す。
d.第二相粒子の粒子径[r]と分布密度[ρ]と体積分率[f]:
供試材を直径3mmへ打ち抜き、ツインジェット研磨法を用いて薄膜研磨を行って観察試験片を作製した。加速電圧300kVの透過型電子顕微鏡で5000倍の写真を任意で10視野ずつ撮影して、その写真上で第二相粒子の粒子径r(μm)と分布密度ρ(個/mm)を測定した。第二相粒子の粒子径rは、まず各粒子の粒子径を粒子ごとに求め、次に測定した全粒子に関して、各粒子の粒子径の算術平均値をとって求めた。なお、各粒子の粒子径は、その粒子の長径と短径の算術平均値とした。また、等厚干渉縞から観察試験片の厚さを測定して、観察視野内の全体積のうちの第二相粒子の体積が占める割合を体積分率fとした。
e.第二相の構成原子の同定[C]
TEM付属のEDX分析装置を使用した。20個の第二相について分析し、測定した全数に対してCrを含有するものの割合を算出した。
f.耐応力緩和特性[SR]:
日本電子材料工業会標準規格 EMAS−3003に準じて165℃×3000hの条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
図1は応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。応力緩和率(%)は(H−H)/δ×100と算出した。
g.平均結晶粒径[GS]:
JIS H 0501(切断法)に基づき測定した。圧延方向に対して平行の断面と、垂直の断面において測定し、その両者の平均をとった。金属組織の観察は、鏡面研磨した材料面を化学エッジングし、SEMの反射電子像撮影により行った。
The following characteristics were investigated for these test materials.
a. Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate conductivity (% IACS). In addition, the distance between terminals was 100 mm.
b. Tensile strength [TS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value (MPa) was shown.
c. 180 ° adhesion bending workability:
Bending was performed according to JIS Z 2248. Preliminary bending was performed using a 0.4 mm R 90 ° bending mold, and then contact bending was performed using a compression tester. The presence or absence of cracks on the outside of the bent part was observed by visual observation with a 50 × optical microscope, and the presence or absence of cracks was investigated. The test piece conditions are as follows: W is the plate width and T is the plate thickness in mm. In the table, “GW (Good way)” means that the bending axis is a test perpendicular to the rolling direction, and “BW (Bad way)” means that the bending axis is parallel to the rolling direction. It means that it is a test of each. In the table, the observation results are expressed as “◯ (good)” when no crack is generated and “× (defective)” when the crack is generated.
d. Particle size [r], distribution density [ρ] and volume fraction [f] of the second phase particles:
The specimen was punched into a diameter of 3 mm, and thin film polishing was performed using a twin jet polishing method to produce an observation test piece. Photographs with a viewing electron microscope with an acceleration voltage of 300 kV are arbitrarily photographed at a magnification of 10 for each 10 fields, and the particle diameter r (μm) and distribution density ρ (particles / mm 2 ) of the second phase particles are measured on the photographs. did. The particle diameter r of the second phase particles was obtained by first obtaining the particle diameter of each particle for each particle and then taking the arithmetic average value of the particle diameter of each particle for all the measured particles. In addition, the particle diameter of each particle | grain was taken as the arithmetic mean value of the major axis and the minor axis of the particle. In addition, the thickness of the observation test piece was measured from the equal thickness interference fringes, and the ratio of the volume of the second phase particles in the total volume in the observation field was defined as the volume fraction f.
e. Identification of constituent atoms of the second phase [C]
An EDX analyzer attached to TEM was used. Twenty second phases were analyzed, and the ratio of those containing Cr to the total number measured was calculated.
f. Stress relaxation resistance [SR]:
The measurement was performed under the conditions of 165 ° C. × 3000 h in accordance with Japan Electronic Material Industries Association Standard EMAS-3003. An initial stress of 80% of the proof stress was applied by the cantilever method.
FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. The stress relaxation rate (%) was calculated as (H t −H 1 ) / δ 0 × 100.
g. Average crystal grain size [GS]:
Measured based on JIS H 0501 (cutting method). Measurements were taken on a cross section parallel to the rolling direction and a cross section perpendicular to the rolling direction, and the average of the two was taken. The metal structure was observed by chemically edging the mirror-polished material surface and taking a reflection electron image of the SEM.

Figure 2009060873
Figure 2009060873

表1で明らかなように、本発明例1−1〜1−8は強度、導電性、曲げ加工性、耐応力緩和特性とも優れた特性を有する。しかし、本発明のいずれかの要件を満たさない場合は、いずれかの特性が劣ることがある。例えば、比較例1−1〜1−4は、いずれも曲げ加工性が劣った例である。これらの比較例1−1、1−2、1−4では、粒界上の析出物の密度が低く、結晶粒径が粗大化していた。また、比較例1−3では、粒界上の析出物の密度が高く、結晶粒界にて割れが発生したことが観察された。   As is apparent from Table 1, Examples 1-1 to 1-8 of the present invention have excellent properties in terms of strength, conductivity, bending workability, and stress relaxation resistance. However, if any of the requirements of the present invention is not satisfied, any of the characteristics may be inferior. For example, Comparative Examples 1-1 to 1-4 are examples in which bending workability is inferior. In Comparative Examples 1-1, 1-2, and 1-4, the density of precipitates on the grain boundaries was low, and the crystal grain size was coarsened. In Comparative Example 1-3, the density of precipitates on the grain boundaries was high, and it was observed that cracks occurred at the crystal grain boundaries.

(実施例2)
表2に示す組成で、残部がCuと不可避不純物から成る銅合金について実施例1と同様の調査を行った。製造方法、測定方法についても実施例1と同様とした。
なお、下記の実施例と併記した比較例は、これらの製造条件の範囲外で製造し、本発明の実施例の範囲から外れるようにしたものである。その詳細は、以下の通りである:
比較例2−1は、冷間加工(冷間圧延)工程の加工率が低すぎた例である。
比較例2−2は、均質化工程の温度が低すぎた例である。
比較例2−3は、鋳造工程の冷却速度が低すぎた例である。
比較例2−4は、均質化工程の温度が低すぎた例である。
(Example 2)
The same investigation as in Example 1 was performed on a copper alloy having the composition shown in Table 2 with the balance being Cu and inevitable impurities. The manufacturing method and the measuring method were the same as in Example 1.
In addition, the comparative example written together with the following Example was manufactured out of the range of these manufacturing conditions, and was made to remove | deviate from the range of the Example of this invention. The details are as follows:
Comparative Example 2-1 is an example in which the processing rate in the cold working (cold rolling) process was too low.
Comparative Example 2-2 is an example in which the temperature of the homogenization step is too low.
Comparative Example 2-3 is an example in which the cooling rate in the casting process was too low.
Comparative Example 2-4 is an example in which the temperature of the homogenization step is too low.

Figure 2009060873
Figure 2009060873

表2で明らかなように、本発明例2−1〜2−8は強度、導電性、曲げ加工性、耐応力緩和特性とも優れた特性を有する。しかし、本発明のいずれかの要件を満たさない場合は、いずれかの特性が劣ることがある。例えば、比較例2−1は、引張強度が劣った例である。この比較例2−1では、溶体化温度を下げて結晶粒径を小さくしたが、析出硬化が不十分で強度が不足したものと考えられる。比較例2−2、2−4は曲げ加工性が劣った例である。この比較例2−2、2−4では、析出分率が小さいためにr/fの値が大きく、結晶粒径が粗大化していたことが分かる。比較例2−3は曲げ加工性が劣った例である。この比較例2−3では、第二相粒子径が小さいためにr/fの値が小さく、有効に結晶粒の制御ができずに結晶粒径が粗大化していたことが分かる。   As is apparent from Table 2, Examples 2-1 to 2-8 of the present invention have excellent properties in terms of strength, conductivity, bending workability, and stress relaxation resistance. However, if any of the requirements of the present invention is not satisfied, any of the characteristics may be inferior. For example, Comparative Example 2-1 is an example in which the tensile strength is inferior. In Comparative Example 2-1, the solution temperature was lowered to reduce the crystal grain size, but it is considered that the precipitation hardening was insufficient and the strength was insufficient. Comparative Examples 2-2 and 2-4 are examples inferior in bending workability. In Comparative Examples 2-2 and 2-4, it can be seen that the value of r / f was large because the precipitation fraction was small, and the crystal grain size was coarsened. Comparative Example 2-3 is an example inferior in bending workability. In Comparative Example 2-3, since the second phase particle diameter is small, the value of r / f is small, and it can be seen that the crystal grain size is coarsened without effective control of the crystal grains.

(実施例3)
表3に示す組成で、残部がCuと不可避不純物から成る銅合金について実施例1と同様の調査を行った。製造方法、測定方法についても実施例1と同様とした。
なお、表3において下記の実施例と併記した比較例は、NiとSiの含有量が本発明の好ましい範囲から外れているものである。
(Example 3)
The same investigation as in Example 1 was performed on a copper alloy having the composition shown in Table 3 with the balance being Cu and inevitable impurities. The manufacturing method and the measuring method were the same as in Example 1.
In Table 3, the comparative examples written together with the following examples are those in which the contents of Ni and Si deviate from the preferred range of the present invention.

Figure 2009060873
Figure 2009060873

表3で明らかなように、NiとSiの含有量が特に好ましい範囲内にある、本発明例3−1〜3−4は強度、導電性、曲げ加工性、耐応力緩和特性とも優れた特性を有する。しかし、NiとSiの添加量が特に好ましい範囲内にない場合は、いずれかの特性が劣ることがある。例えば、比較例3−1はNiとSiの量が不足しているために、強度が不足した例を示す。比較例3−2は、NiとSiの量が多いために、粒界への析出が起こり、曲げ加工性がやや劣化した例を示す。もちろん、NiとSiの含有量は、特に好ましい範囲内とする必要はないが、この範囲外となることで特性が劣る例が見られるため、できる限りNiを1.8〜3.3mass%、Siを0.4〜1.1mass%の範囲内とすることが好ましいといえる。   As is apparent from Table 3, the inventive examples 3-1 to 3-4, in which the contents of Ni and Si are in a particularly preferable range, are excellent in strength, conductivity, bending workability, and stress relaxation resistance. Have However, when the addition amounts of Ni and Si are not particularly within the preferable range, any of the characteristics may be inferior. For example, Comparative Example 3-1 shows an example in which the strength is insufficient because the amounts of Ni and Si are insufficient. Comparative Example 3-2 shows an example in which the amount of Ni and Si is large, so that precipitation at grain boundaries occurs and bending workability is slightly deteriorated. Of course, the contents of Ni and Si do not need to be in a particularly preferable range, but examples in which the characteristics are inferior by being out of this range can be seen. Therefore, as much as possible, Ni is 1.8 to 3.3 mass%, It can be said that Si is preferably in the range of 0.4 to 1.1 mass%.

(実施例4)
表4に示す組成で、残部がCuと不可避不純物から成る銅合金について実施例1と同様の調査を行った。製造方法、測定方法についても実施例1と同様とした。
なお、表4において下記の実施例と併記した比較例は、その他の添加元素の含有量が本発明の好ましい範囲から外れているものである。
Example 4
The same investigation as in Example 1 was performed on a copper alloy having the composition shown in Table 4 with the balance being Cu and inevitable impurities. The manufacturing method and the measuring method were the same as in Example 1.
In Table 4, the comparative examples written together with the following examples are those in which the content of other additive elements is out of the preferred range of the present invention.

Figure 2009060873
Figure 2009060873

表4で明らかなように、NiとSi以外のその他の添加元素(副添加元素ともいう)の含有量が特に好ましい範囲内にある、本発明例4−1〜4−4は強度、導電性、曲げ加工性、耐応力緩和特性とも優れた特性を有する。しかし、その他の添加元素の含有量が特に好ましい範囲内にない場合は、いずれかの特性が劣ることがある。例えば、比較例4−1は曲げ加工性が劣った例を示す。この比較例4−1では、副添加元素の添加量が多すぎたために、粒界が脆弱になったものと考えられる。比較例4−2は機械強度が劣った例を示す。この比較例4−2では、副添加元素の添加量が多すぎたために、析出硬化に寄与するNi−Si系以外の化合物が多く形成されたものと考えられる。もちろん、その他の添加元素の含有量は、特に好ましい範囲内とする必要はないが、この範囲外となることで特性が劣る例が見られるため、その他の添加元素を添加する場合には、できる限りSn、Mg、Ag、Mn、Ti、Fe、Pの少なくとも1種を合計で0.01〜1mass%、Znを0.01〜10mass%、Coを0.01〜1.5mass%の中から、1種または2種以上の元素を含むようにすることが好ましいといえる。   As is apparent from Table 4, Examples 4-1 to 4-4 of the present invention in which the content of other additive elements (also referred to as secondary additive elements) other than Ni and Si are particularly preferable are strength and conductivity. In addition, it has excellent properties in bending workability and stress relaxation resistance. However, if the content of other additive elements is not within the particularly preferred range, any of the characteristics may be inferior. For example, Comparative Example 4-1 shows an example in which bending workability is inferior. In Comparative Example 4-1, it was considered that the grain boundary became brittle because the amount of the auxiliary additive element was too large. Comparative Example 4-2 shows an example in which the mechanical strength is inferior. In Comparative Example 4-2, it is considered that a large amount of a compound other than the Ni—Si compound that contributes to precipitation hardening was formed because the addition amount of the secondary additive element was too large. Of course, the content of other additive elements does not need to be in a particularly preferable range, but there are cases where the characteristics are inferior due to being outside this range. As long as at least one of Sn, Mg, Ag, Mn, Ti, Fe, and P is added in total from 0.01 to 1 mass%, Zn from 0.01 to 10 mass%, and Co from 0.01 to 1.5 mass% It can be said that it is preferable to include one or more elements.

以上の実施例1〜4の結果を図2に示す。本発明例は、180°密着曲げにおける材料寸法の試験片厚さTと試験片幅Wの積が0.16以下の条件において、クラックなく加工ができたのに対し、比較例では加工ができなかったことが分かる。   The results of the above Examples 1 to 4 are shown in FIG. In the example of the present invention, the product of the specimen thickness T and the specimen width W of the material dimensions in 180 ° close contact bending was able to be processed without cracks on the condition that the product was 0.16 or less, whereas the comparative example could be processed. You can see that there wasn't.

本発明の銅合金板材は、電気・電子機器用のリードフレーム、コネクタ、端子材等、例えば、自動車車載用などのコネクタや端子材、リレー、スイッチ、ソケットなどに好適に適用されるものである。   The copper alloy plate material of the present invention is suitably applied to lead frames, connectors, terminal materials, etc. for electrical and electronic equipment, such as connectors and terminal materials for automobiles, relays, switches, sockets, etc. .

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While the invention has been described in conjunction with its embodiments, it is not intended that the invention be limited in any detail to the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

本願は、2007年11月5日に日本国で特許出願された特願2007-287066に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。   This application claims priority based on Japanese Patent Application No. 2007-287066 filed in Japan on November 5, 2007, which is incorporated herein by reference. Capture as part.

Claims (7)

引張強度が730〜820MPaであり、銅と不可避的不純物のほかに少なくともNiとSiを含む銅合金板材であって、180°密着曲げ可能な材料板幅をW(単位:mm)、材料板厚をT(単位:mm)としたときに、WとTとの積(単位:mm)が0.16以下であることを特徴とする銅合金板材。A tensile strength of 730 to 820 MPa, a copper alloy plate material containing at least Ni and Si in addition to copper and unavoidable impurities, and a material plate width that can be bent by 180 ° is W (unit: mm), and a material plate thickness A copper alloy sheet, wherein the product of W and T (unit: mm 2 ) is 0.16 or less, where T is a unit (mm). 結晶粒界上に存在する第二相粒子が、10〜10個/mmの密度で存在し、平均結晶粒径が10μm以下であることを特徴とする、請求項1に記載の銅合金板材。 2. The copper according to claim 1, wherein the second phase particles present on the grain boundaries are present at a density of 10 4 to 10 8 particles / mm 2 and the average crystal grain size is 10 μm or less. Alloy plate material. 結晶粒内と結晶粒界上を含めた全第二相粒子の粒子径r(単位:μm)と、粒子の体積分率fの比であるr/fの値が1以上100以下であり、平均結晶粒径が10μm以下であることを特徴とする、請求項1に記載の銅合金板材。   The value of r / f, which is the ratio of the particle diameter r (unit: μm) of all second phase particles including the inside of the crystal grains and the crystal grain boundaries, to the volume fraction f of the particles is 1 or more and 100 or less, The copper alloy sheet according to claim 1, wherein an average crystal grain size is 10 μm or less. 前記第二相粒子のうち、構成元素にCrを含む粒子の割合が50%以上であることを特徴とする、請求項2または請求項3の銅合金板材。   4. The copper alloy sheet according to claim 2, wherein a ratio of particles containing Cr as a constituent element in the second phase particles is 50% or more. 5. Niを1.8〜3.3mass%、Siを0.4〜1.1mass%、Crを0.01〜0.5mass%含有し、残部がCuと不可避不純物からなる合金成分であることを特徴とする、請求項1〜4のいずれか1項に記載の銅合金板材。   It is characterized in that it contains 1.8 to 3.3 mass% of Ni, 0.4 to 1.1 mass% of Si, 0.01 to 0.5 mass% of Cr, and the balance is an alloy component composed of Cu and inevitable impurities. The copper alloy sheet material according to any one of claims 1 to 4. Sn、Mg、Ag、Mn、Ti、Fe、Pの少なくとも1種を合計で0.01〜1mass%、Znを0.01〜10mass%、Coを0.01〜1.5mass%の中から、1種または2種以上の元素を含むことを特徴とする、請求項1〜5のいずれか1項に記載の銅合金板材。   At least one of Sn, Mg, Ag, Mn, Ti, Fe, and P is 0.01 to 1 mass% in total, Zn is 0.01 to 10 mass%, Co is 0.01 to 1.5 mass%, The copper alloy sheet according to any one of claims 1 to 5, comprising one or more elements. 165℃で3000時間保持した場合の応力緩和率が30%以下であることを特徴とする、請求項1〜6のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 6, wherein a stress relaxation rate when held at 165 ° C for 3000 hours is 30% or less.
JP2009540067A 2007-11-05 2008-11-05 Copper alloy sheet Active JP4785092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009540067A JP4785092B2 (en) 2007-11-05 2008-11-05 Copper alloy sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007287066 2007-11-05
JP2007287066 2007-11-05
PCT/JP2008/070139 WO2009060873A1 (en) 2007-11-05 2008-11-05 Copper alloy sheet material
JP2009540067A JP4785092B2 (en) 2007-11-05 2008-11-05 Copper alloy sheet

Publications (2)

Publication Number Publication Date
JPWO2009060873A1 true JPWO2009060873A1 (en) 2011-03-24
JP4785092B2 JP4785092B2 (en) 2011-10-05

Family

ID=40625761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540067A Active JP4785092B2 (en) 2007-11-05 2008-11-05 Copper alloy sheet

Country Status (6)

Country Link
US (1) US20110038753A1 (en)
EP (1) EP2221391B1 (en)
JP (1) JP4785092B2 (en)
KR (1) KR101515668B1 (en)
CN (1) CN101849027B (en)
WO (1) WO2009060873A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690170B2 (en) * 2011-02-25 2015-03-25 株式会社神戸製鋼所 Copper alloy
JP5690169B2 (en) * 2011-02-25 2015-03-25 株式会社神戸製鋼所 Copper alloy
JP6154996B2 (en) * 2012-07-13 2017-06-28 古河電気工業株式会社 High-strength copper alloy material and manufacturing method thereof
JP6154997B2 (en) * 2012-07-13 2017-06-28 古河電気工業株式会社 Copper alloy material excellent in strength and plating property and method for producing the same
CN105803253B (en) * 2013-11-29 2017-07-28 国网河南省电力公司平顶山供电公司 A kind of production technology for producing high-power generator rotor slot wedge alloy
CN104561643A (en) * 2014-12-25 2015-04-29 春焱电子科技(苏州)有限公司 Microalloy for electronic material
CN108823466B (en) * 2018-06-14 2020-10-13 北京科技大学 Multi-element composite precipitation strengthening type high-strength high-conductivity copper alloy and preparation method thereof
KR20210059699A (en) * 2018-07-12 2021-05-25 마테리온 코포레이션 Copper-nickel-silicon alloy with high strength and high electrical conductivity
CN109112351B (en) * 2018-08-27 2020-12-11 山东光韵智能科技有限公司 High-elasticity-modulus brass alloy material and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191601A (en) * 1979-02-12 1980-03-04 Ampco-Pittsburgh Corporation Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JPH03236432A (en) * 1990-02-14 1991-10-22 Furukawa Electric Co Ltd:The Cassette tape member
JPH05156392A (en) * 1991-12-03 1993-06-22 Furukawa Electric Co Ltd:The Bent member for damper
JP3800269B2 (en) 1997-07-23 2006-07-26 株式会社神戸製鋼所 High strength copper alloy with excellent stamping workability and silver plating
JP3739214B2 (en) * 1998-03-26 2006-01-25 株式会社神戸製鋼所 Copper alloy sheet for electronic parts
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
JP3797882B2 (en) 2001-03-09 2006-07-19 株式会社神戸製鋼所 Copper alloy sheet with excellent bending workability
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP3977376B2 (en) * 2004-02-27 2007-09-19 古河電気工業株式会社 Copper alloy
KR100861152B1 (en) * 2004-02-27 2008-09-30 후루카와 덴키 고교 가부시키가이샤 Copper alloy
JP4809602B2 (en) * 2004-05-27 2011-11-09 古河電気工業株式会社 Copper alloy
JP4584692B2 (en) * 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
WO2006093140A1 (en) * 2005-02-28 2006-09-08 The Furukawa Electric Co., Ltd. Copper alloy
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy
JP4566048B2 (en) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5002766B2 (en) * 2006-03-01 2012-08-15 Dowaメタルテック株式会社 High strength copper alloy sheet with excellent bending workability and manufacturing method
JP2007287066A (en) 2006-04-20 2007-11-01 Konica Minolta Business Technologies Inc Image processing apparatus, method for installing application in the same and application installation processing program
JP4006460B1 (en) * 2006-05-26 2007-11-14 株式会社神戸製鋼所 Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
EP2426225B1 (en) * 2006-05-26 2015-12-02 Kabushiki Kaisha Kobe Seiko Sho Copper alloy with high strength, high electrical conductivity, and excellent bendability

Also Published As

Publication number Publication date
KR101515668B1 (en) 2015-04-27
JP4785092B2 (en) 2011-10-05
EP2221391A4 (en) 2012-06-27
WO2009060873A1 (en) 2009-05-14
US20110038753A1 (en) 2011-02-17
KR20100095431A (en) 2010-08-30
CN101849027B (en) 2013-05-15
EP2221391A1 (en) 2010-08-25
CN101849027A (en) 2010-09-29
EP2221391B1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
JP4785092B2 (en) Copper alloy sheet
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
KR101570555B1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP4615616B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
KR101570556B1 (en) Method for Producing Copper Alloy Material for Electrical/Electronic Component
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP2008266787A (en) Copper alloy material and its manufacturing method
JP2009242814A (en) Copper alloy material and producing method thereof
JP4959141B2 (en) High strength copper alloy
JP4934785B2 (en) Sn-plated copper alloy material and manufacturing method thereof
JP2007169765A (en) Copper alloy and its production method
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP5619389B2 (en) Copper alloy material
JP4887851B2 (en) Ni-Sn-P copper alloy
JP2012007231A (en) Cu-Mg-P-BASED COPPER ALLOY BAR MATERIAL AND MANUFACTURING METHOD THEREFOR
KR20060130183A (en) Copper alloy
JP5468798B2 (en) Copper alloy sheet
WO2011019042A1 (en) Copper alloy material for electrical/electronic components
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP2005344163A (en) Copper alloy for electrical and electronic equipment
JP4728704B2 (en) Copper alloy for electrical and electronic equipment
JP2007100146A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2010150669A (en) Copper alloy material for electrical and electronic device, and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

R151 Written notification of patent or utility model registration

Ref document number: 4785092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350