JP2010150669A - Copper alloy material for electrical and electronic device, and method for producing the same - Google Patents

Copper alloy material for electrical and electronic device, and method for producing the same Download PDF

Info

Publication number
JP2010150669A
JP2010150669A JP2010058473A JP2010058473A JP2010150669A JP 2010150669 A JP2010150669 A JP 2010150669A JP 2010058473 A JP2010058473 A JP 2010058473A JP 2010058473 A JP2010058473 A JP 2010058473A JP 2010150669 A JP2010150669 A JP 2010150669A
Authority
JP
Japan
Prior art keywords
intermetallic compound
stress relaxation
copper alloy
mass
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010058473A
Other languages
Japanese (ja)
Inventor
Kuniteru Mihara
邦照 三原
Hiroshi Kaneko
洋 金子
Tatsuhiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010058473A priority Critical patent/JP2010150669A/en
Publication of JP2010150669A publication Critical patent/JP2010150669A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material for electrical and electronic devices which has excellent stress relaxation resistance, electric conductivity, strength, bendability and solder adhesion, and to provide a method for producing the same. <P>SOLUTION: The copper alloy material includes, by mass, 1 to 3% Ni, 0.2 to 1.2% Ti, 0.02 to 0.2% Sn and/or Si and 0.1 to 1% Zn, and the balance Cu with inevitable impurities, and contains at least one selected from among an intermetallic compound containing Ni, Ti and Sn, an intermetallic compound containing Ni, Ti and Si and an intermetallic compound containing Ni, Ti, Sn and Si, wherein the mean particle diameter of the intermetallic compound containing Ni, Ti and Sn, an intermetallic compound containing Ni, Ti and Si or an intermetallic compound containing Ni, Ti, Sn and Si is 5 to 100 nm; distribution density is 1×10<SP>10</SP>to 10<SP>13</SP>pieces/mm<SP>2</SP>; the crystal grain size of a basal phase is 4 to 10 μm; electric conductivity is ≥47.6%IACS; and a stress relaxation rate when it is held at 150°C for 1,000 hr is ≤20%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電気電子機器用銅合金材料に関し、詳しくは電子電気機器用のコネクタ、端子材などのコネクタや端子材などに好適な電気電子機器用銅合金材料に関する。   The present invention relates to a copper alloy material for electrical and electronic equipment, and more particularly to a copper alloy material for electrical and electronic equipment suitable for connectors and terminal materials such as connectors and terminal materials for electronic and electrical equipment.

従来、一般的に電気電子機器用材料としては、ステンレス系鋼のほか、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅(Cu)系材料も広く用いられている。
近年、電気電子機器の小型化、軽量化、さらにこれに伴う高密度実装化に対する要求が高まっている。小型化が進めればコンタクト部分の接点面積が減少となり、使用される板厚も薄くなり、従来と同等な信頼性を保つためにはより高強度な材料が必要となっている。コネクタは一般的に材料が「たわむ」、すなわち、変形することにより、所定の接圧を発生させて互いに嵌合(接合)する機構により通電や情報信号のやり取りを行っている。よって、使用中にこの接圧が減少することにより嵌合(接合)する力が低下して、通電や情報信号のやり取りができなくなることは致命的な欠陥である。この嵌合(接合)力の低下を応力緩和(耐クリープ)特性と称し、応力緩和特性が劣化しない、つまり、耐応力緩和特性が優れる銅合金がこれら電子部品に使用される材料に求められている。
Conventionally, as materials for electrical and electronic equipment, in addition to stainless steel, copper (Cu) materials such as phosphor bronze, red brass, brass, etc., which are excellent in electrical conductivity and thermal conductivity, have been widely used.
In recent years, there has been an increasing demand for miniaturization and weight reduction of electric and electronic equipment and further high density mounting. As miniaturization progresses, the contact area of the contact portion decreases, the thickness of the plate used decreases, and a higher-strength material is required to maintain the same level of reliability as before. In general, a connector “bends” a material, that is, deforms to generate a predetermined contact pressure, and perform electrical conduction and exchange of information signals by a mechanism that fits (joins) each other. Accordingly, it is a fatal defect that the force for fitting (joining) is reduced due to the reduction of the contact pressure during use, and the power supply and the exchange of information signals cannot be performed. This decrease in fitting (joining) force is called stress relaxation (creep resistance) characteristics, and the stress relaxation characteristics do not deteriorate, that is, copper alloys with excellent stress relaxation characteristics are required for materials used in these electronic components. Yes.

また、コネクタの種類によってはパソコンなどのCPU(集積演算装置)のように発熱を伴う機器に接続されている場合がある。この場合、コネクタ材料は加熱されることで、応力緩和が促進して速く嵌合(接合)力が低下するため、熱を速く放散させる機能を有している必要がある。放熱特性は材料の導電性に起因しており、より導電率の高い材料が求められている。なお、導電性が高い材料の要求は今後の高い周波数を用いた情報のやり取りからも要望されている。
さらに、電子電気機器の小型化は良好な曲げ加工性も材料に要求される。小型化の1つの方向に機器の薄型化がある。薄型化によりコネクタの低背化(高さが低い)が進む。そのため、コネクタにはより加工性の良好な材料が求められている。
Also, depending on the type of connector, it may be connected to a device that generates heat, such as a CPU (integrated processing unit) such as a personal computer. In this case, since the connector material is heated, stress relaxation is promoted and the fitting (joining) force is quickly reduced. Therefore, it is necessary to have a function of quickly dissipating heat. The heat dissipation characteristic is caused by the conductivity of the material, and a material having higher conductivity is required. In addition, the request | requirement of the material with high electroconductivity is also requested | required from the exchange of information using a future high frequency.
Furthermore, miniaturization of electronic and electrical equipment requires materials to have good bending workability. One direction of downsizing is the thinning of equipment. Thinner connectors will lead to lower connector height (low height). Therefore, a material with better workability is required for the connector.

これらの理由で、強度が高く、優れた導電性を保ち、かつ、耐応力緩和特性と曲げ加工性に優れた材料が望まれている。具体的には、強度は600MPa以上、導電率は望ましくは50%IACS以上、応力緩和率は150℃×1000h後の緩和率が20%以下で、曲げ加工性の指針のR/tが望ましくは1以下の性能を有する材料が求められている。
金属材料の強度を増加させる手法として材料に加工歪を導入する加工強化法や他の元素を固溶させた固溶強化法、第二相を析出させて強化する析出強化法が一般に行われている。
For these reasons, a material having high strength, maintaining excellent conductivity, and excellent stress relaxation resistance and bending workability is desired. Specifically, the strength is 600 MPa or more, the electrical conductivity is preferably 50% IACS or more, the stress relaxation rate is 150 ° C x 1000h after 20% or less, and the R / t of the bending workability guideline is desirable. A material having a performance of 1 or less is required.
As methods for increasing the strength of metal materials, there are generally used the process strengthening method that introduces processing strain into the material, the solid solution strengthening method that dissolves other elements in solid solution, and the precipitation strengthening method that precipitates and strengthens the second phase. Yes.

析出強化法を利用したCu−Be合金(C17200)、Cu−Ni−Si合金(C70250)、Cu−Fe合金(C19400)、Cu−Cr合金(C18040)などがある。しかしながら、C17200はBeをCu母相中に析出させる強化機構を使うことで、強度が1000MPa以上で応力緩和率は20%以下、曲げ加工性も良好であるが、導電率が約25%IACSである。さらに、ベリリウム(Be)はその環境問題から使用について懸念があることも事実である。
C70250は、Ni−Siから成る金属間化合物をCu母相中に析出させることで強度が600MPa以上で応力緩和率が20%以下、曲げ加工性も良好であるが、導電率が50%IACS以上にならない。
There are a Cu-Be alloy (C17200), a Cu-Ni-Si alloy (C70250), a Cu-Fe alloy (C19400), a Cu-Cr alloy (C18040), etc. using a precipitation strengthening method. However, C17200 uses a strengthening mechanism that precipitates Be in the Cu matrix, so that the strength is 1000 MPa or more, the stress relaxation rate is 20% or less, and the bending workability is good, but the conductivity is about 25% IACS. is there. It is also true that beryllium (Be) is concerned about its use due to its environmental problems.
C70250 has a strength of 600 MPa or more, a stress relaxation rate of 20% or less, and good bending workability by precipitating an intermetallic compound consisting of Ni-Si in the Cu matrix, but it has a conductivity of 50% IACS or more. do not become.

C19400は、鉄(Fe)をCu母相中に析出させる強化機構を使用しており、強度が600MPa以上で導電率も約65%IACSであるが、応力緩和率と曲げ加工性が要求特性を満足できない。
C18040の導電率は約80%IACSで強度は約600MPaであるが、C19400と同じく応力緩和率と曲げ加工性が要求特性を満足できない。
このようにいずれの析出強化手法でも要求した特性を満足できる材料はなく、新しい材料を開発することが強く求められている。
C19400 uses a strengthening mechanism that precipitates iron (Fe) in the Cu matrix, and its strength is 600MPa and conductivity is about 65% IACS, but the stress relaxation rate and bending workability have the required characteristics. I'm not satisfied.
The electrical conductivity of C18040 is about 80% IACS and the strength is about 600MPa. Like C19400, the stress relaxation rate and bending workability cannot satisfy the required characteristics.
Thus, there is no material that can satisfy the characteristics required by any precipitation strengthening technique, and there is a strong demand for the development of new materials.

これに対し、電子機器用銅合金材料において、Ni−Ti金属間化合物を均一微細にCuマトリックス中に析出させ、強度及び導電性を向上させた例がある(たとえば、特許文献1)。
また、Cu−Ni−Ti合金に、アルミニウム(Al)、ケイ素(Si)、マンガン(Mn)、マグネシウム(Mg)を添加することにより、リードフレームとレジンの密着性を向上させた例がある(たとえば、特許文献2)。
しかしながら、これらの銅合金材料であっても、強度と導電率と曲げ加工性、さらには耐応力緩和特性を同時に満足できないため、近年の電子機器の性能向上に伴う銅合金材料への特性要求を満たせなくなっている。
On the other hand, in the copper alloy material for electronic devices, there is an example in which Ni-Ti intermetallic compounds are uniformly and finely precipitated in a Cu matrix to improve strength and conductivity (for example, Patent Document 1).
Moreover, there is an example in which the adhesion between the lead frame and the resin is improved by adding aluminum (Al), silicon (Si), manganese (Mn), and magnesium (Mg) to the Cu-Ni-Ti alloy ( For example, Patent Document 2).
However, even these copper alloy materials cannot satisfy the strength, electrical conductivity, bending workability, and stress relaxation resistance at the same time. I can't meet.

特開昭63−219540号公報JP-A-63-219540 特開昭61−157651号公報JP-A 61-157651

そこで、本発明の目的は、強度、導電率、曲げ加工性、耐応力緩和特性、さらにハンダ密着性に優れた新しい電気電子機器用銅合金材料およびその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a new copper alloy material for electrical and electronic equipment and a method for producing the same, which are excellent in strength, electrical conductivity, bending workability, stress relaxation resistance, and solder adhesion.

本発明者らは、第二相を析出させて強化する析出強化法で、ニッケル(Ni)とチタン(Ti)から成る金属間化合物による強化の研究を進めていく中でスズ(Sn)、ケイ素(Si)を加えることにより金属間化合物が変化することで、強度、導電率、曲げ加工性、耐応力緩和特性、さらにハンダ密着性についての要求特性をほぼ満たすことのできる材料を製造し得ることを見出した。
すなわち、本発明は、
(1)Niが1〜3mass%、Tiが0.2〜1.2mass%、SnとSiのいずれか一方または両方が0.02〜0.2mass%、Znが0.1〜1mass%、並びに残部がCuと不回避なる不純物からなり、Ni、Ti、およびSnからなる金属間化合物、Ni、Ti、およびSiからなる金属間化合物、またはNi、Ti、Sn、およびSiからなる金属間化合物を少なくとも1つ含有し、Ni、Ti、およびSnからなる金属間化合物、Ni、Ti、およびSiからなる金属間化合物、またはNi、Ti、Sn、およびSiからなる金属間化合物の平均粒径が5〜100nm、分布密度が1×1010〜1013個/mm2であり、母相の結晶粒径が4μm以上10μm以下であり、導電率が47.6%IACS以上であり、150℃で1000時間保持したときの応力緩和率が20%以下であることを特徴とする電気電子機器用銅合金材料、
(2)(1)に記載の電気電子機器用銅合金材料を製造する方法であって、850℃以上で35秒以下の溶体化処理を行い、該溶体化処理の温度から50℃/sec以上の冷却速度で300℃まで冷却し、次いで圧延加工率が0%を超え50%以下で冷間圧延を行い、450〜600℃で5時間以内の時効処理を行うことを特徴とする電気電子機器用銅合金材料の製造方法、
(3)(1)に記載の電気電子機器用銅合金材料を製造する方法であって、850℃以上で35秒以下の溶体化処理を行い、該溶体化処理の温度から50℃/sec以上の冷却速度で300℃まで冷却し、次いで450〜600℃で5時間以内の時効処理を行うことを特徴とする電気電子機器用銅合金材料の製造方法
を提供するものである。
なお、本発明において、電気電子機器には、車載用の機器が含まれるものである。
The present inventors are a precipitation strengthening method that precipitates and strengthens the second phase, and in the course of conducting research on strengthening with an intermetallic compound composed of nickel (Ni) and titanium (Ti), tin (Sn), silicon By changing the intermetallic compound by adding (Si), it is possible to produce a material that can almost satisfy the required properties of strength, electrical conductivity, bending workability, stress relaxation resistance, and solder adhesion. I found.
That is, the present invention
(1) Ni is 1 to 3 mass%, Ti is 0.2 to 1.2 mass%, one or both of Sn and Si is 0.02 to 0.2 mass%, Zn is 0.1 to 1 mass%, and The remainder consists of impurities that are unavoidable with Cu, intermetallic compounds composed of Ni, Ti, and Sn, intermetallic compounds composed of Ni, Ti, and Si, or intermetallic compounds composed of Ni, Ti, Sn, and Si. The average particle size of an intermetallic compound containing at least one, consisting of Ni, Ti, and Sn, an intermetallic compound consisting of Ni, Ti, and Si, or an intermetallic compound consisting of Ni, Ti, Sn, and Si is 5 ~ 100nm, distribution density is 1 × 10 10 ~ 10 13 / mm 2 , crystal grain size of parent phase is 4μm or more and 10μm or less, conductivity is 47.6% IACS or more, and kept at 150 ° C for 1000 hours A copper alloy material for electrical and electronic equipment, characterized by having a stress relaxation rate of 20% or less when
(2) A method for producing a copper alloy material for electrical and electronic equipment according to (1), wherein a solution treatment is performed at 850 ° C. or more for 35 seconds or less, and the solution treatment temperature is 50 ° C./sec or more. Electrical and electronic equipment characterized in that it is cooled to 300 ° C at a cooling rate of 50 ° C, then cold-rolled at a rolling rate exceeding 0% and 50% or less, and subjected to aging treatment at 450 to 600 ° C for 5 hours or less Method for producing copper alloy material,
(3) A method for producing a copper alloy material for electrical and electronic equipment according to (1), wherein a solution treatment is performed at 850 ° C. or more for 35 seconds or less, and the solution treatment temperature is 50 ° C./sec or more. And cooling to 300 ° C. at a cooling rate of 450 ° C., followed by aging treatment within 450 hours at 450 to 600 ° C. to provide a method for producing a copper alloy material for electrical and electronic equipment.
In the present invention, the electric and electronic equipment includes in-vehicle equipment.

本発明の銅合金材料は、強度、導電率、曲げ加工性、耐応力緩和特性、さらにハンダ密着性に優れる。さらに、強度は600MPa以上、応力緩和率は150℃×1000h後の緩和率が20%以下、導電率は47.6%IACS以上、曲げ加工性の指針のR/tが1以下の性能を具備することができ、これらの金属材料は、電気電子機器及び車載用端子・コネクタあるいはリレースイッチ等に好適な合金材料である。   The copper alloy material of the present invention is excellent in strength, electrical conductivity, bending workability, stress relaxation resistance, and solder adhesion. Furthermore, the strength should be 600 MPa or more, the stress relaxation rate should be 20% or less after 150 ° C x 1000h, the conductivity should be 47.6% IACS or more, and the bending workability guideline R / t should be 1 or less. These metal materials are alloy materials suitable for electrical and electronic equipment, on-vehicle terminals / connectors, relay switches, and the like.

応力緩和特性の試験方法の模式的な説明図である。It is typical explanatory drawing of the test method of a stress relaxation characteristic. ハンダ密着性の試験方法の模式的な説明図である。It is a typical explanatory view of a solder adhesion test method.

以下に、本発明の好ましい実施の形態を述べる。
本発明において、Cu母相中に析出するNi、Ti、およびSnからなる金属間化合物(以下「Ni−Ti−Sn」とする)、Ni、Ti、およびSiからなる金属間化合物(以下、「Ni−Ti−Si」とする)あるいはNi、Ti、SnおよびSiからなる金属間化合物(以下、「Ni−Ti−Sn−Si」とする)が形成することにより合金の諸特性を格段に向上させる。これは、従来の合金においてNi−Ti析出物が形成した場合とは全くことなり、これらの金属間化合物が極めて高い耐応力緩和特性を発現する。
The preferred embodiments of the present invention will be described below.
In the present invention, an intermetallic compound composed of Ni, Ti, and Sn (hereinafter referred to as “Ni—Ti—Sn”) precipitated in the Cu matrix, and an intermetallic compound composed of Ni, Ti, and Si (hereinafter, “ Ni-Ti-Si ") or an intermetallic compound consisting of Ni, Ti, Sn and Si (hereinafter referred to as" Ni-Ti-Sn-Si ") significantly improves the properties of the alloy. Let This is completely different from the case where Ni-Ti precipitates are formed in the conventional alloys, and these intermetallic compounds exhibit extremely high stress relaxation resistance.

上述したように、Ni−TiがCu母相中に微細に分散した場合、析出強化機構により強度が向上し、同時に、導電率が上昇する。この時、Ni−Ti−Sn、Ni−Ti−SiあるいはNi−Ti−Sn−Siが個々に、あるいは複合的にCu母相中に微細分散することにより、Ni−Tiが析出した場合と比較して非常に大きな強化量を示す。この効果により、良好な強度と導電率を有する材料を得ることができる。なお、同時にNi−Ti化合物が分散していても、その効果は現れ、Ni−Ti−Sn、Ni−Ti−SiあるいはNi−Ti−Sn−Siの分散密度が高くなればなるほど強化量は大きい。その場合、Ni−Ti−Sn、Ni−Ti−SiあるいはNi−Ti−Sn−Siの分散密度は、Ni−Tiと比較して同量以上が望ましい。   As described above, when Ni—Ti is finely dispersed in the Cu matrix, the strength is improved by the precipitation strengthening mechanism, and at the same time, the conductivity is increased. At this time, Ni-Ti-Sn, Ni-Ti-Si or Ni-Ti-Sn-Si was individually or combined and finely dispersed in the Cu matrix, and compared with the case where Ni-Ti was precipitated. And shows a very large amount of reinforcement. By this effect, a material having good strength and conductivity can be obtained. In addition, even if the Ni-Ti compound is dispersed at the same time, the effect appears, and the higher the dispersion density of Ni-Ti-Sn, Ni-Ti-Si or Ni-Ti-Sn-Si, the greater the amount of reinforcement. . In that case, the dispersion density of Ni—Ti—Sn, Ni—Ti—Si, or Ni—Ti—Sn—Si is preferably equal to or greater than that of Ni—Ti.

次に、応力緩和特性について述べる。Ni−TiがCu母相中に微細に分散した場合と比較して、Ni−Ti−Sn、Ni−Ti−SiあるいはNi−Ti−Sn−Siが個々に、あるいは複合的にCu母相中に微細分散すると格段に耐応力緩和特性が向上する。これに対し、Ni−Ti析出物のみでは応力緩和率が20%以下を達成できない。
これは、Ni−Ti化合物と比べるとNi−Ti−Sn、Ni−Ti−SiあるいはNi−Ti−Sn−Siは結晶構造が異なる。この結晶構造が異なる金属間化合物がCu母相に微細分散することにより、格段に耐応力緩和特性を改善できるためと考えられる。
Next, stress relaxation characteristics will be described. Compared to the case where Ni-Ti is finely dispersed in the Cu matrix, Ni-Ti-Sn, Ni-Ti-Si, or Ni-Ti-Sn-Si are individually or combined in the Cu matrix. When it is finely dispersed, the stress relaxation resistance is remarkably improved. On the other hand, the stress relaxation rate cannot be achieved below 20% with Ni-Ti precipitates alone.
This is because the crystal structure of Ni-Ti-Sn, Ni-Ti-Si or Ni-Ti-Sn-Si is different from that of Ni-Ti compounds. It is thought that the stress relaxation resistance can be remarkably improved by finely dispersing the intermetallic compounds having different crystal structures in the Cu matrix.

応力緩和とは金属中の転位が移動して歪みが解放されていく現象であり、転位を固着する力がNi−Ti−Sn、Ni−Ti−SiあるいはNi−Ti−Sn−Si の方がNi−Ti化合物より大きく、緩和されにくい現象が見出された。
この所望の特性は下記に規定された成分の含有量により得ることができる。
Stress relaxation is a phenomenon in which dislocations in a metal move and strain is released, and the force to fix the dislocations is Ni-Ti-Sn, Ni-Ti-Si, or Ni-Ti-Sn-Si. A phenomenon that is larger than Ni-Ti compounds and difficult to relax was found.
This desired property can be obtained by the content of the components specified below.

Niの含有量を1〜3mass%に限定したのは、1mass%未満では析出による強化量が小さく十分な強度を得ることができず、また応力緩和特性も改善できないためである。また、Niが3mass%を超えると時効処理後も過剰なNiが母相に固溶するため導電率の低下を招くためである。また、溶体化処理温度が融点近傍温度となり、工業的に安定なプロセスで製造できなくなる。さらに、高温、長時間の溶体化処理が必要となり、結晶粒が粗大化して曲げ加工性が劣るという問題が発生する。Niの含有量は、好ましくは1.4〜2.6mass%、より好ましくは1.8〜2.3mass%である。   The reason why the Ni content is limited to 1 to 3 mass% is that if it is less than 1 mass%, the amount of strengthening by precipitation is small and sufficient strength cannot be obtained, and the stress relaxation characteristics cannot be improved. In addition, if Ni exceeds 3 mass%, excessive Ni is dissolved in the matrix even after the aging treatment, leading to a decrease in conductivity. Further, the solution treatment temperature becomes a temperature near the melting point, and it cannot be produced by an industrially stable process. Furthermore, a solution treatment for a long time at a high temperature is required, and the problem arises that the crystal grains become coarse and bending workability is poor. The content of Ni is preferably 1.4 to 2.6 mass%, more preferably 1.8 to 2.3 mass%.

Tiの含有量を0.2〜1.2mass%に限定した理由は、0.2%mass未満では析出による強化量が小さく十分な強度を得ることができず、また応力緩和特性も改善できないためである。また、Tiが1.2mass%を超えると時効処理後も過剰なTiが母相に固溶するため導電率の低下を招くためである。また高温、長時間の溶体化処理が必要となり、結晶粒が粗大化して曲げ加工性が劣るという問題が発生する。Tiの含有量は、好ましくは0.5〜1.1mass%、より好ましくは0.7〜1.0mass%である。   The reason for limiting the Ti content to 0.2 to 1.2 mass% is that if it is less than 0.2% mass, the amount of strengthening due to precipitation is small and sufficient strength cannot be obtained, and the stress relaxation characteristics cannot be improved. It is. Moreover, when Ti exceeds 1.2 mass%, excessive Ti is dissolved in the matrix even after the aging treatment, so that the conductivity is lowered. In addition, a solution treatment for a long time at a high temperature is required, resulting in a problem that the crystal grains become coarse and bending workability is poor. The Ti content is preferably 0.5 to 1.1 mass%, more preferably 0.7 to 1.0 mass%.

SnはNi、Ti、Siとともに析出物を形成し、強度、導電率、曲げ加工性、応力緩和特性等を向上させる。Snの含有量を0.02〜0.2mass%に限定した理由は、0.02mass%未満であるとNi、Ti、Snから成る析出物が少ないため応力緩和率が劣るためである。また、0.2mass%を超えると過剰なSnが固溶したままとなり導電率、曲げ加工性が劣るためである。また応力緩和率が劣る。これは析出物の元素の構成比率が異なることが影響していると思われる。Snの含有量は、好ましくは0.05〜0.15mass%、より好ましくは0.08〜0.12mass%である。   Sn forms precipitates with Ni, Ti, and Si, and improves strength, conductivity, bending workability, stress relaxation characteristics, and the like. The reason why the Sn content is limited to 0.02 to 0.2 mass% is that when it is less than 0.02 mass%, the stress relaxation rate is inferior because there are few precipitates composed of Ni, Ti, and Sn. On the other hand, if it exceeds 0.2 mass%, excessive Sn remains in a solid solution, resulting in poor conductivity and bending workability. Moreover, the stress relaxation rate is inferior. This seems to be due to the fact that the constituent ratios of the elements in the precipitates are different. The Sn content is preferably 0.05 to 0.15 mass%, more preferably 0.08 to 0.12 mass%.

Siの含有量を0.02〜0.2mass%に限定した理由は0.02mass%未満であるとNi、Ti、Siから成る析出物が少ないため応力緩和率が劣るためである。また過剰なSiが母相に固溶しているため導電率が劣る。さらに、応力緩和率が劣る。これは析出物の元素の構成比率が異なることが影響していると思われる。また、0.2mass%を超えると所望の析出物が形成された際に、過剰なSiが銅母相に固溶して導電率が下がるためである。Siの含有量は、好ましくは0.05〜0.15mass%、より好ましくは0.08〜0.12mass%である。   The reason why the Si content is limited to 0.02 to 0.2 mass% is that when it is less than 0.02 mass%, the stress relaxation rate is inferior because there are few precipitates composed of Ni, Ti, and Si. In addition, the conductivity is inferior because excess Si is dissolved in the matrix. Furthermore, the stress relaxation rate is inferior. This seems to be due to the fact that the constituent ratios of the elements in the precipitates are different. On the other hand, when the content exceeds 0.2 mass%, when a desired precipitate is formed, excess Si is dissolved in the copper matrix and the conductivity is lowered. The Si content is preferably 0.05 to 0.15 mass%, more preferably 0.08 to 0.12 mass%.

前記金属間化合物は、大きさが等体積球相当径としての平均粒径で1〜100nmであり、また、分布密度が1×1010〜1013個/mm2であると強度及び曲げ加工性に優れ、好ましい。
金属間化合物の平均粒径が5nm未満であると析出による強度向上の効果が不足し、100nmを超えると析出による強度向上に寄与しないという問題が発生する。平均粒径は、さらに好ましくは10〜60nm、より好ましくは20〜50nmである。
また、金属間化合物の分布密度が1×1010個/mm2未満であると析出による強度向上の効果が不足し、1×1013個/mm2を超えると粒界に粗大な析出物が形成しやすくなり、曲げ加工性を劣化させるという問題が発生する。分布密度は、さらに好ましくは3×1010〜5×1012個/mm2、よりこのましくは1×1011〜3×1012個/mm2である。
一方、母相の結晶粒径は10μm以下が好ましい。10μmを超えると曲げ加工性が低下する。好ましくは5μm以下である。ここで、結晶粒径は長径のことを指す。
The intermetallic compound has a size and an average particle diameter of 1 to 100 nm as an equivalent volume sphere equivalent diameter, and a distribution density of 1 × 10 10 to 10 13 particles / mm 2 provides strength and bending workability. Excellent and preferable.
If the average particle size of the intermetallic compound is less than 5 nm, the effect of improving the strength by precipitation is insufficient, and if it exceeds 100 nm, the problem of not contributing to the improvement of the strength by precipitation occurs. The average particle size is more preferably 10 to 60 nm, and more preferably 20 to 50 nm.
Moreover, if the distribution density of intermetallic compounds is less than 1 × 10 10 pieces / mm 2 , the effect of improving the strength by precipitation is insufficient, and if it exceeds 1 × 10 13 pieces / mm 2 , coarse precipitates are formed at the grain boundaries. It becomes easy to form and the problem of deteriorating bending workability occurs. The distribution density is more preferably 3 × 10 10 to 5 × 10 12 pieces / mm 2 , more preferably 1 × 10 11 to 3 × 10 12 pieces / mm 2 .
On the other hand, the crystal grain size of the parent phase is preferably 10 μm or less. If it exceeds 10 μm, the bending workability will deteriorate. Preferably it is 5 micrometers or less. Here, the crystal grain size refers to the major axis.

Znはハンダ密着性を向上させ、メッキの剥離を防止する効果がある。本発明の好ましい用途は電子機器であり、その多くの部品はハンダで接合される。そのため、ハンダの密着性が向上することは部品の信頼性向上につながり、電子機器用途には不可欠な要求特性である。Znの効果には昨今の議論がある(たとえば、伸銅技術研究会誌 vol.026(1987) p51〜p56)。この中ではZnを添加すると、耐熱剥離性は良好とされている。これは、Znを添加することにより、ボイドの生成が抑制され、またNi、Siの母材と拡散層の界面への濃縮が抑えられるために、耐熱剥離性が向上するとされている。この例は同じ析出型合金のCu−Ni−Si合金であるが、同様の効果を本発明でも確認した。   Zn improves solder adhesion and has the effect of preventing plating peeling. A preferred application of the present invention is electronic equipment, many of which are joined with solder. Therefore, the improvement in solder adhesion leads to an improvement in the reliability of parts, which is an essential characteristic required for electronic equipment applications. There is a recent debate on the effect of Zn (for example, Journal of Copper Technology Research vol. 026 (1987) p51-p56). Among these, when Zn is added, the heat-resistant peelability is considered good. The addition of Zn suppresses the formation of voids and suppresses the concentration of Ni and Si at the interface between the base material and the diffusion layer, thereby improving the heat-resistant peelability. This example is a Cu-Ni-Si alloy of the same precipitation type alloy, but the same effect was confirmed in the present invention.

Znの含有量を0.1〜1mass%に限定したのは、0.1mass%未満では耐熱剥離特性の効果が現れず、0.5mass%を超えると導電率の低下を招くという問題があるためである。Znの含有量は、好ましくは0.2〜0.8mass%、より好ましくは0.35〜0.65mass%である。   The reason why the content of Zn is limited to 0.1 to 1 mass% is that if it is less than 0.1 mass%, the effect of the heat-resistant peeling property does not appear, and if it exceeds 0.5 mass%, there is a problem that the conductivity is lowered. It is. The Zn content is preferably 0.2 to 0.8 mass%, more preferably 0.35 to 0.65 mass%.

本発明に係る銅合金材料は、例えば熱間圧延、冷間圧延、溶体化処理、時効処理、必要に応じて更に仕上げ冷間圧延、歪み取り焼鈍という工程で製造される。この製造工程において、溶体化処理(温度)とその後の冷却における冷却速度の条件を制御することにより、前記金属間化合物を本願発明の範囲にすることが出来る。熱間圧延温度は、例えば、850〜1000℃とし、次いで行う冷間圧延は、例えば、加工率90%以上で行うことができる。
また、本発明の製造方法の一実施態様では、850℃以上で35秒以内の溶体化処理を行い、その溶体化処理の温度から50℃/sec以上の冷却速度で300℃まで冷却し、次いで圧延加工率が0%を超え50%以下で冷間圧延を行い、450〜600℃で5時間以内の時効処理を行うものである。また、本発明の製造方法の別の実施態様では、850℃以上で35秒以内の溶体化処理を行い、その溶体化処理の温度から50℃/sec以上の冷却速度で300℃まで冷却し、次いで450〜600℃で5時間以内の時効処理を行うものである。
その後の仕上げ冷間圧延は30%以下が好ましい。
The copper alloy material according to the present invention is produced, for example, by processes such as hot rolling, cold rolling, solution treatment, aging treatment, and further finish cold rolling and strain relief annealing as necessary. In this production process, the intermetallic compound can be brought within the scope of the present invention by controlling the conditions of the solution treatment (temperature) and the cooling rate in the subsequent cooling. The hot rolling temperature is, for example, 850 to 1000 ° C., and the cold rolling performed next can be performed at a processing rate of 90% or more, for example.
Further, in one embodiment of the production method of the present invention, a solution treatment is performed at 850 ° C. or more for 35 seconds or less, and the solution treatment temperature is cooled to 300 ° C. at a cooling rate of 50 ° C./sec or more. Cold rolling is performed at a rolling processing rate exceeding 0% and 50% or less, and aging treatment is performed at 450 to 600 ° C. within 5 hours. Further, in another embodiment of the production method of the present invention, a solution treatment is performed at 850 ° C. or more within 35 seconds, and the solution treatment temperature is cooled to 300 ° C. at a cooling rate of 50 ° C./sec or more. Next, an aging treatment is performed at 450 to 600 ° C. within 5 hours.
Subsequent finish cold rolling is preferably 30% or less.

本発明において、溶体化処理は850℃以上で35秒以内が好ましい。850℃未満であると、再結晶が行われず、曲げ加工性の大きな低下(劣化)を引き起こす。また、再結晶が行われた場合でも、未溶体化状態となり、晶出物や粗大な析出物が存在して、後の時効で最高の析出強化量を得ることができない。さらに、これらが残存することによる曲げ加工性の低下も懸念される。溶体化処理後の冷却は50℃/秒以上の冷却速度で300℃まで冷却するのが好ましい。50℃/秒未満であると、一旦、固溶された元素が析出を起こすためである。その場合の析出物は粗大なために強化に寄与しない。
溶体化温度の上限は、1000℃以下とするのが燃料等のコストの点から好ましい。溶体化時間が35秒を超えると結晶粒の粗大化により曲げ加工性が劣化する。より好ましくは25秒以内である。
In the present invention, the solution treatment is preferably performed at 850 ° C. or higher and within 35 seconds. When the temperature is lower than 850 ° C., recrystallization is not performed, and the bending workability is greatly reduced (deteriorated). Moreover, even when recrystallization is performed, it becomes an unsolubilized state, and there are crystallized substances and coarse precipitates, and the maximum precipitation strengthening amount cannot be obtained by later aging. Furthermore, there is a concern that bending workability may be reduced due to the remaining of these. The cooling after the solution treatment is preferably performed at 300 ° C. at a cooling rate of 50 ° C./second or more. This is because once it is less than 50 ° C./second, the element once dissolved causes precipitation. The precipitate in that case is coarse and therefore does not contribute to strengthening.
The upper limit of the solution temperature is preferably 1000 ° C. or less from the viewpoint of the cost of fuel and the like. When the solution time exceeds 35 seconds, the bending workability deteriorates due to the coarsening of crystal grains. More preferably, it is within 25 seconds.

溶体化処理の次の冷間圧延は、行わないか、行う場合には冷間加工率は50%以下が好ましい。50%を超えると曲げ加工性が劣化する。さらに好ましくは30%以下である。
時効処理は450〜600℃で5時間以内が好ましい。450℃未満であると析出が不足して強度が足りない。600℃を超えると析出物が粗大化してしまい強度に寄与しなくなる。好ましくは480℃〜560℃である。
The cold rolling subsequent to the solution treatment is not performed or, if it is performed, the cold working rate is preferably 50% or less. If it exceeds 50%, the bending workability deteriorates. More preferably, it is 30% or less.
The aging treatment is preferably performed at 450 to 600 ° C. within 5 hours. If it is less than 450 ° C, precipitation is insufficient and the strength is insufficient. If the temperature exceeds 600 ° C., the precipitate becomes coarse and does not contribute to the strength. Preferably it is 480 degreeC-560 degreeC.

本発明において、最終塑性加工方向とは、最終に施した塑性加工が圧延加工の場合は圧延方向、引抜(線引)の場合は引抜方向を指す。なお、塑性加工とは圧延加工や引抜加工であり、テンションレベラーなどの矯正(整直)を目的とする加工は含めない。   In the present invention, the final plastic working direction refers to the rolling direction when the last plastic working is rolling, and the drawing direction when drawing (drawing). The plastic processing is rolling processing or drawing processing, and does not include processing for the purpose of correction (straightening) such as a tension leveler.

本発明の電気電子機器用銅合金材料は、それに限定されるものではないが、例えば、コネクタ、端子、リレー・スイッチ、リードフレームなどに好適に用いることができる。   The copper alloy material for electrical and electronic equipment of the present invention is not limited thereto, but can be suitably used for connectors, terminals, relays / switches, lead frames, and the like.

次に、本発明を実施例に基づき更に詳細に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<製造例1>
Ni、Ti、Mg、Zr、Zn、Sn、およびSiを表1〜3に示す量含有し、残部をCuとする組成の合金を高周波溶解炉により溶解し、これを10〜30℃/秒の冷却速度で鋳造して厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。その鋳塊を1000℃×1hの保持後、熱間圧延機で厚さ約10mmの熱延板を仕上げた。その熱間圧延材を両面約1.0mm面削して酸化膜を除去し、次いで厚さ0.29mmに冷間圧延したのち不活性ガス中で950℃×15秒の溶体化処理し、溶体化後の冷却速度は300℃まで約3秒(約300℃/秒)で冷却した。さらに0.23mmまで冷間圧延し、550℃×2時間時効処理を行い、厚さ0.2mmまで圧延した後、350℃×2時間低温焼鈍を行って参考例1〜18および本発明例40〜57、並びに比較例60〜67および比較例70〜73の板材を得て、供試材とした。
<Production Example 1>
An alloy having a composition containing Ni, Ti, Mg, Zr, Zn, Sn, and Si shown in Tables 1 to 3 and the balance being Cu is melted in a high-frequency melting furnace, and this is melted at 10 to 30 ° C./second. An ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm was obtained by casting at a cooling rate. After holding the ingot at 1000 ° C. for 1 hour, a hot rolled sheet having a thickness of about 10 mm was finished with a hot rolling mill. The hot-rolled material was scraped about 1.0 mm on both sides to remove the oxide film, then cold-rolled to a thickness of 0.29 mm, and then subjected to a solution treatment in an inert gas at 950 ° C. for 15 seconds. The cooling rate after conversion to 300 ° C. was about 3 seconds (about 300 ° C./second). Further, it was cold-rolled to 0.23 mm, subjected to aging treatment at 550 ° C. for 2 hours, rolled to a thickness of 0.2 mm, and then subjected to low-temperature annealing at 350 ° C. for 2 hours to obtain Reference Examples 1 to 18 and Invention Example 40. To 57 and Comparative Examples 60 to 67 and Comparative Examples 70 to 73 were obtained as test materials.

このようにして得られた各々の板材について、[1]引張強度、[2]導電率、[3]応力緩和特性(SR)、[4]曲げ加工性(R/t)、[5]結晶粒径(GS)、[6]析出物(PPT)のサイズと密度、[7]ハンダ密着性を下記方法により調べた。各評価項目の測定方法は以下の通りである。
[1]引張強度(TS):圧延平行方向から切り出したJIS−13B号の試験片をJIS−Z2241に準じて3本測定しその平均値(MPa)を示した。
[2]導電率(EC):圧延平行方向から切り出した10×150mmの試験片を作製して四端子法を用いて、20℃(±1℃)に管理された恒温槽中で2本測定しその平均値(%IACS)を示した。なお、端子間距離は100mmである。
[3]応力緩和特性(SR):日本電子材料工業会標準規格 EMAS−3003に準じて150℃×1000hの条件で測定した。図1は、応力緩和特性の試験方法の説明図である。図1(a)は初期たわみ量δの測定を模式的に示した説明図である。1は試験片、4は試料台を示す。片持ち梁法を採用し初期応力として0.2%耐力の80%を負荷した。この後、150℃で1000hrまで暴露した。試験片は図1(b)の2に示す位置になる。図1(b)中、3はたわみを生じさせない試験片の位置を示す。永久たわみ量δはH−Hの値となる。
そこで、応力緩和率(%)は、δ/δ×100で表される。この試験は端子材などに用いたときに長時間一定歪みのもとでの応力変化を調べるものであり、緩和率が小さい合金ほど良好と見なされる。
For each plate material thus obtained, [1] tensile strength, [2] conductivity, [3] stress relaxation property (SR), [4] bending workability (R / t), [5] crystal The particle size (GS), [6] size and density of the precipitate (PPT), and [7] solder adhesion were examined by the following methods. The measurement method for each evaluation item is as follows.
[1] Tensile strength (TS): Three test pieces of JIS-13B cut out from the rolling parallel direction were measured according to JIS-Z2241, and the average value (MPa) was shown.
[2] Conductivity (EC): A 10 x 150 mm test piece cut out from the rolling parallel direction was prepared and measured in a thermostat controlled at 20 ° C (± 1 ° C) using a four-terminal method. The average value (% IACS) was shown. The distance between terminals is 100 mm.
[3] Stress relaxation property (SR): Measured under conditions of 150 ° C. × 1000 h in accordance with Japan Electronic Materials Association Standard EMAS-3003. FIG. 1 is an explanatory diagram of a test method for stress relaxation characteristics. FIG. 1A is an explanatory diagram schematically showing the measurement of the initial deflection amount δ 0 . 1 is a test piece, 4 is a sample stage. The cantilever method was adopted and 80% of the 0.2% proof stress was applied as the initial stress. This was followed by exposure at 150 ° C. for up to 1000 hours. The test piece is at the position indicated by 2 in FIG. In FIG.1 (b), 3 shows the position of the test piece which does not produce a bending. Permanent deflection amount [delta] t is the value of H t -H 1.
Therefore, the stress relaxation rate (%) is represented by δ t / δ 0 × 100. This test examines the change in stress under a constant strain for a long time when used as a terminal material and the like, and an alloy having a smaller relaxation rate is considered better.

[4]曲げ加工性(R/t):板材を幅10mm、長さ25mm(長さ方向と圧延方向が平行をGW、垂直方向をBW)に切出し、これに曲げ半径R=0でW(90°)曲げし、曲げ部における割れの有無を50倍の光学顕微鏡で目視観察した。評価基準はワレ無きが得られた限界曲げ半径を求め、R/t(Rは曲げ半径、tは板厚)で表記した。
[5]結晶粒径(GS):最終加工前の結晶組織を走査型電子顕微鏡(200〜1000倍)により観察しJIS−H0501の切断法に準じ測定した。
[6]析出物(PPT):析出物のサイズは透過電子顕微鏡により観察を行って×100K〜×200K倍の写真を撮影した後、その径を測定して10〜50個の平均値を求め、その測定した面積で割って、密度を算出した。
[4] Bending workability (R / t): The plate material is cut into a width of 10 mm and a length of 25 mm (the length direction and the rolling direction are parallel GW, the vertical direction is BW), and the bending radius R = 0 to W ( 90 °), and the presence or absence of cracks in the bent portion was visually observed with a 50 × optical microscope. The evaluation criteria was the critical bending radius at which no crack was obtained, and expressed as R / t (R is the bending radius and t is the plate thickness).
[5] Crystal grain size (GS): The crystal structure before final processing was observed with a scanning electron microscope (200 to 1000 times) and measured according to the cutting method of JIS-H0501.
[6] Precipitate (PPT): The size of the precipitate was observed with a transmission electron microscope, and after taking a photograph of × 100K to × 200K, the diameter was measured to obtain an average value of 10 to 50 pieces. The density was calculated by dividing by the measured area.

[7]ハンダ密着性:図2に模式的に示した説明図に従いハンダ密着性を試験した。供試材を20×20mmへ切断し、前処理として材料表面の電解脱脂を実施し厚さ6mmの材料13とした。材料13の表面にSn−Pbの共晶はんだを盛ってハンダ部12とし、そこへFe線にCuを被覆したφ2mmの鉄線11(長さ約100mm)を材料13と前記線11が直角になるように固定した(図2(a))。
前記線11を付けた試験片を大気中で加熱し、加熱前後の鉄線11と材料13とのハンダ接続強度を測定した。加熱条件は恒温漕中で150℃×500hとし、恒温漕から取り出した後、十分に空冷にて徐冷させたのち(b)に示すように矢印方向への引張試験を行い荷重を測定した。引張試験の条件はロードセル速度を10mm/minとし室温で測定した。引張試験では供試材の線11とハンダ部12の界面から剥離した試験材料13の引張強度を求めた。なお、界面から剥離せず、鉄線11がハンダ部12より抜けたものは鉄線11とハンダとの密着が悪かったと判断し評価対象にはしていない。
同様に熱処理前の引っ張り強度も測定し、熱処理前の試験材料13の強度と熱処理後の試験材料13の強度を測定し、その強度低下量が50%以下の場合は○、50%以上の場合は×として評価した。経時的に接合強度が低下しない(強度残存率が高い)方が、はんだ性が良好であり、信頼性が高い。
[7] Solder adhesion: Solder adhesion was tested according to the explanatory diagram schematically shown in FIG. The test material was cut to 20 × 20 mm, and the material surface was subjected to electrolytic degreasing as a pretreatment to obtain a material 13 having a thickness of 6 mm. Sn—Pb eutectic solder is deposited on the surface of the material 13 to form a solder portion 12, and a φ2 mm iron wire 11 (about 100 mm in length) coated with Cu on the Fe wire is formed at a right angle between the material 13 and the wire 11. (Fig. 2 (a)).
The test piece with the wire 11 was heated in the atmosphere, and the solder connection strength between the iron wire 11 and the material 13 before and after heating was measured. The heating condition was 150 ° C. × 500 h in a constant temperature bath, and after taking out from the constant temperature bath, it was sufficiently cooled by air cooling and then subjected to a tensile test in the direction of the arrow as shown in FIG. The tensile test was performed at room temperature with a load cell speed of 10 mm / min. In the tensile test, the tensile strength of the test material 13 peeled from the interface between the wire 11 of the test material and the solder part 12 was determined. In addition, the thing which did not peel from an interface and the iron wire 11 slipped out from the solder part 12 judges that the contact | adherence with the iron wire 11 and solder was bad, and is not made into evaluation object.
Similarly, the tensile strength before heat treatment is also measured, and the strength of the test material 13 before heat treatment and the strength of the test material 13 after heat treatment are measured. If the strength decrease is 50% or less, ○, 50% or more Was evaluated as x. If the joint strength does not decrease with time (the strength remaining rate is high), the solderability is good and the reliability is high.

また、析出物の同定は透過電子顕微鏡観察を行い、透過電子顕微鏡の附属のEDX分析装置(エネルギー分散型装置)にて5〜10個の析出物の分析をして、Ni、Ti、Mg、ZrならびにSn、Siの分析ピークを確認した。また、透過電子顕微鏡で回折像を撮影し、Ni−Ti析出物が形成されている場合とは異なる回折像になることを確認した。つまり、回折像が異なるとは、Ni−Ti以外の析出物が形成されていることを示している。回折像の撮影には析出物が約10〜100個ある結晶粒を選択して同定の評価を実施した。
上記の[1]〜[7]の評価結果についても、表1〜3に合わせて示した。
In addition, the identification of the precipitate is performed by observation with a transmission electron microscope, and 5 to 10 precipitates are analyzed with an EDX analyzer (energy dispersive apparatus) attached to the transmission electron microscope, and Ni, Ti, Mg, Analysis peaks of Zr, Sn, and Si were confirmed. Moreover, the diffraction image was image | photographed with the transmission electron microscope, and it confirmed that it became a diffraction image different from the case where the Ni-Ti precipitate is formed. That is, the fact that the diffraction images are different indicates that precipitates other than Ni-Ti are formed. For taking a diffraction image, crystal grains having about 10 to 100 precipitates were selected and evaluated for identification.
The evaluation results of the above [1] to [7] are also shown in Tables 1 to 3.

Figure 2010150669
Figure 2010150669

Figure 2010150669
Figure 2010150669

Figure 2010150669
Figure 2010150669

表1、表2から明らかなように、参考例1〜18、本発明例40〜57はいずれも応力緩和特性が20%以下の優れた特性を有した。   As is clear from Tables 1 and 2, all of Reference Examples 1 to 18 and Invention Examples 40 to 57 had excellent stress relaxation characteristics of 20% or less.

比較例60はNiが少ないので十分な析出強化量を得られないため引張強度が劣った。またNi−Ti析出物の密度が十分でないのと、Sn、Siが添加されていないため応力緩和率が劣った。
比較例61はNiとTiが多いので高温、長時間の溶体化処理が必要となり、結晶粒が粗大化して曲げ加工性が劣った。また時効処理を行っても過剰なNi、Tiが母相に固溶しているため導電率が劣った。またSn、Siが添加されていないため応力緩和率が劣った。
比較例62はNiが多いので高温、長時間の溶体化処理が必要となり、結晶粒が粗大化して曲げ加工性が劣った。また、Niが過剰なため、強度に寄与するNi−Ti析出物の密度が低下して引張強度が劣った。また時効処理を行っても過剰なNiが母相に固溶しているため導電率が劣った。さらにSn、Siが添加されていないため応力緩和率が劣った。
Comparative Example 60 was inferior in tensile strength because a sufficient amount of precipitation strengthening could not be obtained because Ni was small. Moreover, since the density | concentration of Ni-Ti precipitate was not enough and Sn and Si were not added, the stress relaxation rate was inferior.
Since Comparative Example 61 has a large amount of Ni and Ti, a solution treatment for a long time at a high temperature is required, and the crystal grains become coarse and bending workability is inferior. Even when aging treatment was performed, the conductivity was inferior because excess Ni and Ti were dissolved in the matrix. Moreover, since Sn and Si were not added, the stress relaxation rate was inferior.
Since Comparative Example 62 has a large amount of Ni, a solution treatment for a long time at a high temperature is required, and the crystal grains become coarse and bending workability is inferior. Moreover, since Ni was excessive, the density of the Ni-Ti precipitate which contributes to the strength was lowered and the tensile strength was inferior. Even after aging treatment, the conductivity was inferior because excess Ni was dissolved in the matrix. Furthermore, since Sn and Si were not added, the stress relaxation rate was inferior.

比較例63はTiが多いので、高温、長時間の溶体化処理が必要となり、結晶粒が粗大化して曲げ加工性が劣った。また時効処理を行っても過剰なTiが母相に固溶しているため導電率が劣った。さらにSn、Siが添加されていないため応力緩和率が劣った。
比較例64はSnが少ないので、Ni、Ti、Snから成る析出物が少ないため応力緩和率が劣った。
比較例65はSnが多いので過剰なSnが固溶したままとなり導電率、曲げ加工性ともに劣った。また応力緩和率が劣った。
Since Comparative Example 63 contained a large amount of Ti, a solution treatment for a long time at a high temperature was required, the crystal grains were coarsened, and the bending workability was inferior. Even after aging treatment, the conductivity was inferior because excess Ti was dissolved in the matrix. Furthermore, since Sn and Si were not added, the stress relaxation rate was inferior.
Since Comparative Example 64 has a small amount of Sn, the stress relaxation rate was inferior because there were few precipitates composed of Ni, Ti, and Sn.
Since Comparative Example 65 contained a large amount of Sn, excess Sn remained in solid solution, and both conductivity and bending workability were poor. Moreover, the stress relaxation rate was inferior.

比較例66はSiが少ないのでNi、Ti、Siから成る析出物が少ないため応力緩和率が劣った。
比較例67はSiが多いので高温、長時間の溶体化処理が必要となり、結晶粒が粗大化して曲げ加工性が劣った。また過剰なSiが母相に固溶しているため導電率が劣った。さらに応力緩和率が劣った。
比較例70、71はZnが無いのでハンダ密着性が悪化した。
In Comparative Example 66, since the amount of Si was small, the amount of precipitates composed of Ni, Ti, and Si was small, so the stress relaxation rate was inferior.
Since Comparative Example 67 had a large amount of Si, a solution treatment for a long time at a high temperature was required, the crystal grains were coarsened, and the bending workability was inferior. In addition, the conductivity was inferior because excess Si was dissolved in the matrix. Furthermore, the stress relaxation rate was inferior.
Since Comparative Examples 70 and 71 did not contain Zn, solder adhesion deteriorated.

<製造例2>
前記製造例1の参考例15と同様の組成の合金を用い、溶体化処理条件、次いで行う冷間加工条件、次いで行う時効条件を各種変更した。その他の製造条件は製造例1と同様である。さらに、製造例1と同様に評価項目[1]〜[7]の測定を行った。表4に溶体化条件と評価結果を示す。
<Production Example 2>
An alloy having the same composition as in Reference Example 15 of Production Example 1 was used, and the solution treatment conditions, the cold working conditions to be performed next, and the aging conditions to be performed were variously changed. Other manufacturing conditions are the same as those in Manufacturing Example 1. Furthermore, the evaluation items [1] to [7] were measured in the same manner as in Production Example 1. Table 4 shows the solution conditions and the evaluation results.

Figure 2010150669
Figure 2010150669

表4から明らかなように、参考例81〜88では優れた特性を有する。
これに対し、参考例91、92は冷却速度が遅いので析出物が粗大となるため応力緩和率が劣った。
参考例93は溶体化温度が低いので析出に寄与する元素の固溶が少なくなり、時効処理の際の析出密度が小さくなって応力緩和率が劣った。
参考例94は溶体化温度が低いので析出に寄与する元素の固溶が少なくなり、時効処理の際の析出密度が小さくなって応力緩和率が劣った。
As is clear from Table 4, Reference Examples 81 to 88 have excellent characteristics.
On the other hand, in Reference Examples 91 and 92, since the cooling rate was slow, the precipitates became coarse and the stress relaxation rate was inferior.
In Reference Example 93, since the solution temperature was low, the solid solution of the elements contributing to precipitation decreased, the precipitation density during aging treatment decreased, and the stress relaxation rate was inferior.
In Reference Example 94, since the solution temperature was low, the solid solution of the elements contributing to precipitation decreased, the precipitation density during aging treatment decreased, and the stress relaxation rate was inferior.

参考例95は溶体化時間が長いので結晶粒が粗大になり曲げ加工性が劣った。
参考例96は溶体化処理をしていないので再結晶しておらず、熱間圧延後の冷間加工率が90%以上であるため組織が繊維状であり、結晶粒径が測定できなかった。また析出に寄与する析出物も少ないため曲げ加工性、応力緩和率が劣った。
参考例97は溶体化処理後の冷間加工率が高いので曲げ加工性が劣った。
参考例98は時効温度が高いので、析出物が粗大となったため強度が劣った。
参考例99は時効温度が低いので、析出物の大きさが微小であるため強度が劣った。
参考例100は時効時間が長いので、析出物が粗大となったため強度が劣った。
In Reference Example 95, since the solution treatment time was long, the crystal grains became coarse and the bending workability was poor.
Reference Example 96 was not recrystallized because it was not solution-treated, and the cold work rate after hot rolling was 90% or more, so the structure was fibrous and the crystal grain size could not be measured. . Moreover, since there are few precipitates which contribute to precipitation, bending workability and the stress relaxation rate were inferior.
Since Reference Example 97 had a high cold working rate after solution treatment, bending workability was inferior.
Since Reference Example 98 had a high aging temperature, the precipitates became coarse and the strength was poor.
Since Reference Example 99 has a low aging temperature, the strength of the precipitate was inferior because the size of the precipitate was very small.
In Reference Example 100, since the aging time was long, the precipitates became coarse, so the strength was inferior.

1,2,3 試料
4 試料台
11 鉄線
12 ハンダ部
13 材料
1, 2, 3 Sample 4 Sample stand 11 Iron wire 12 Solder part 13 Material

Claims (3)

Niが1〜3mass%、Tiが0.2〜1.2mass%、SnとSiのいずれか一方または両方が0.02〜0.2mass%、Znが0.1〜1mass%、並びに残部がCuと不回避なる不純物からなり、Ni、Ti、およびSnからなる金属間化合物、Ni、Ti、およびSiからなる金属間化合物、またはNi、Ti、Sn、およびSiからなる金属間化合物を少なくとも1つ含有し、Ni、Ti、およびSnからなる金属間化合物、Ni、Ti、およびSiからなる金属間化合物、またはNi、Ti、Sn、およびSiからなる金属間化合物の平均粒径が5〜100nm、分布密度が1×1010〜1013個/mm2であり、母相の結晶粒径が4μm以上10μm以下であり、導電率が47.6%IACS以上であり、150℃で1000時間保持したときの応力緩和率が20%以下であることを特徴とする電気電子機器用銅合金材料。 Ni is 1 to 3 mass%, Ti is 0.2 to 1.2 mass%, one or both of Sn and Si is 0.02 to 0.2 mass%, Zn is 0.1 to 1 mass%, and the balance is Cu At least one intermetallic compound consisting of Ni, Ti and Sn, an intermetallic compound consisting of Ni, Ti and Si, or an intermetallic compound consisting of Ni, Ti, Sn and Si. Containing, an intermetallic compound composed of Ni, Ti, and Sn, an intermetallic compound composed of Ni, Ti, and Si, or an average particle diameter of an intermetallic compound composed of Ni, Ti, Sn, and Si is 5 to 100 nm, When the distribution density is 1 × 10 10 to 10 13 particles / mm 2 , the crystal grain size of the parent phase is 4 μm or more and 10 μm or less, the conductivity is 47.6% IACS or more, and it is kept at 150 ° C. for 1000 hours A copper alloy material for electrical and electronic equipment, characterized by a stress relaxation rate of 20% or less. 請求項1に記載の電気電子機器用銅合金材料を製造する方法であって、850℃以上で35秒以下の溶体化処理を行い、該溶体化処理の温度から50℃/sec以上の冷却速度で300℃まで冷却し、次いで圧延加工率が0%を超え50%以下で冷間圧延を行い、450〜600℃で5時間以内の時効処理を行うことを特徴とする電気電子機器用銅合金材料の製造方法。   The method for producing a copper alloy material for electrical and electronic equipment according to claim 1, wherein a solution treatment is performed at a temperature of 850 ° C or more and 35 seconds or less, and a cooling rate of 50 ° C / sec or more from the temperature of the solution treatment. The copper alloy for electric and electronic equipment is characterized by being cooled to 300 ° C. and then cold-rolled at a rolling rate exceeding 0% to 50% and aging treatment at 450 to 600 ° C. within 5 hours. Material manufacturing method. 請求項1に記載の電気電子機器用銅合金材料を製造する方法であって、850℃以上で35秒以下の溶体化処理を行い、該溶体化処理の温度から50℃/sec以上の冷却速度で300℃まで冷却し、次いで450〜600℃で5時間以内の時効処理を行うことを特徴とする電気電子機器用銅合金材料の製造方法。   The method for producing a copper alloy material for electrical and electronic equipment according to claim 1, wherein a solution treatment is performed at a temperature of 850 ° C or more and 35 seconds or less, and a cooling rate of 50 ° C / sec or more from the temperature of the solution treatment. A method for producing a copper alloy material for electrical and electronic equipment, comprising cooling to 300 ° C. and then performing an aging treatment at 450 to 600 ° C. within 5 hours.
JP2010058473A 2010-03-15 2010-03-15 Copper alloy material for electrical and electronic device, and method for producing the same Pending JP2010150669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058473A JP2010150669A (en) 2010-03-15 2010-03-15 Copper alloy material for electrical and electronic device, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058473A JP2010150669A (en) 2010-03-15 2010-03-15 Copper alloy material for electrical and electronic device, and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004165068A Division JP4646192B2 (en) 2004-06-02 2004-06-02 Copper alloy material for electrical and electronic equipment and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010150669A true JP2010150669A (en) 2010-07-08

Family

ID=42570052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058473A Pending JP2010150669A (en) 2010-03-15 2010-03-15 Copper alloy material for electrical and electronic device, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010150669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676053B1 (en) * 2014-02-05 2015-02-25 古河電気工業株式会社 Electrical contact material and manufacturing method thereof
CN112164486A (en) * 2020-09-24 2021-01-01 吉安易巴克电子科技有限公司 HDMI high-definition data line and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192836A (en) * 1987-02-05 1988-08-10 Furukawa Electric Co Ltd:The Lead material for ceramic package
JPS63192835A (en) * 1987-02-05 1988-08-10 Furukawa Electric Co Ltd:The Lead material for ceramic package
JPH0681090A (en) * 1992-08-31 1994-03-22 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy
JPH10310855A (en) * 1997-05-07 1998-11-24 Mitsubishi Shindoh Co Ltd Production of precipitation hardening type copper alloy bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192836A (en) * 1987-02-05 1988-08-10 Furukawa Electric Co Ltd:The Lead material for ceramic package
JPS63192835A (en) * 1987-02-05 1988-08-10 Furukawa Electric Co Ltd:The Lead material for ceramic package
JPH0681090A (en) * 1992-08-31 1994-03-22 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy
JPH10310855A (en) * 1997-05-07 1998-11-24 Mitsubishi Shindoh Co Ltd Production of precipitation hardening type copper alloy bar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676053B1 (en) * 2014-02-05 2015-02-25 古河電気工業株式会社 Electrical contact material and manufacturing method thereof
CN105940463A (en) * 2014-02-05 2016-09-14 古河电气工业株式会社 Electrical contact material and manufacturing method thereof
CN112164486A (en) * 2020-09-24 2021-01-01 吉安易巴克电子科技有限公司 HDMI high-definition data line and manufacturing method thereof
CN112164486B (en) * 2020-09-24 2022-05-27 吉安易巴克电子科技有限公司 HDMI high-definition data line and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
KR101570555B1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
KR101570556B1 (en) Method for Producing Copper Alloy Material for Electrical/Electronic Component
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
JP4959141B2 (en) High strength copper alloy
JP4785092B2 (en) Copper alloy sheet
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
TW201132768A (en) Cu-mg-p-based copper alloy bar and method for producing same
CN111996411B (en) High-strength high-conductivity copper alloy material and preparation method and application thereof
JP4646192B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
WO2005118896A1 (en) Copper alloy for electrical and electronic devices
JP2007169764A (en) Copper alloy
JP5682278B2 (en) Copper alloy for electronic and electrical equipment
JP4728704B2 (en) Copper alloy for electrical and electronic equipment
JP2010150669A (en) Copper alloy material for electrical and electronic device, and method for producing the same
JP4175920B2 (en) High strength copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TWI529255B (en) Cu-ni-si alloy and method of producing the alloy
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP7145683B2 (en) Flat cable and its manufacturing method
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Effective date: 20130115

Free format text: JAPANESE INTERMEDIATE CODE: A02