JPH10310855A - Production of precipitation hardening type copper alloy bar - Google Patents

Production of precipitation hardening type copper alloy bar

Info

Publication number
JPH10310855A
JPH10310855A JP9117307A JP11730797A JPH10310855A JP H10310855 A JPH10310855 A JP H10310855A JP 9117307 A JP9117307 A JP 9117307A JP 11730797 A JP11730797 A JP 11730797A JP H10310855 A JPH10310855 A JP H10310855A
Authority
JP
Japan
Prior art keywords
strip
precipitation hardening
copper alloy
type copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9117307A
Other languages
Japanese (ja)
Other versions
JP3746873B2 (en
Inventor
Akira Saito
晃 斎藤
Kazunori Kikukawa
一徳 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP11730797A priority Critical patent/JP3746873B2/en
Publication of JPH10310855A publication Critical patent/JPH10310855A/en
Application granted granted Critical
Publication of JP3746873B2 publication Critical patent/JP3746873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an extremely thin precipitation-hardening type copper alloy bar having high strength. SOLUTION: This method has a solution treating stage in which, while a bar stock Ti with <=0.5 mm thickness composed of a precipitation hardening type copper alloy is run, this bar stock T1 is continuously subjected to rapid heating to the solid solution temp. of the precipitation hardening type copper alloy, and, successively, the rapidly heated bar stock is rapidly cooled and a precipitation hardening stage in which the rapidly cooled bar stock T2 heated and is subjected to precipitation hardening. The temp. rizing rate of the bar stock T1 from 300 deg.C in the rapid heating to the solid solution temp. is regulated to >=40 deg.C/sec, the holding time at >=600 deg.C is regulated to 1 to 60 sec, and the temp. dropping rate from the solid solution temp. to 300 deg.C in the rapid cooling is regulated to >=40 deg.C/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極薄で高い強度を
有する析出硬化型銅合金条の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin, high-strength precipitation hardening type copper alloy strip.

【0002】[0002]

【従来の技術】最近、電気製品や電子製品が様々な環境
下で使用されるようになるに伴い、電子部品、リードフ
レーム材、または端子コネクターの導電部品などの使用
条件も過酷化する傾向にあり、従来よりも薄くて強度が
高く、しかも高い導電性と熱伝導性を有し、かつバネ
性、滑り性、めっき性、および耐食性など用途に応じた
特性を併せ持つ金属材料が強く要望されている。
2. Description of the Related Art Recently, as electric and electronic products have been used in various environments, the use conditions of electronic parts, lead frame materials, and conductive parts of terminal connectors have tended to be severe. Yes, there is a strong demand for metal materials that are thinner and stronger than before, have high electrical and thermal conductivity, and also have properties according to applications such as spring properties, slip properties, plating properties, and corrosion resistance. I have.

【0003】このような要望に応え得る金属材料とし
て、本願出願人らは、析出硬化型銅合金に注目してい
る。析出硬化型銅合金とは、析出硬化元素を含有する銅
合金をいい、材料によって決まる固溶化温度まで加熱す
ることにより析出硬化元素を母相中に過飽和に固溶させ
た後、固溶度曲線より低い温度に一定時間保持すると、
飽和固溶体の結晶に金属間化合物の微粒子が析出し、こ
れにより析出硬化を図ることができるという特徴を有し
ている。例えば、代表的な0.1%Zr−Cu合金の場
合には、固溶化温度:940℃まで加熱してZrを過飽
和に固溶させた後、400〜500℃程度の温度に3時
間ほど保持することにより、ZrCuの微粒子が析出し
て強度が増加する。
As a metal material that can meet such a demand, the present applicants have paid attention to a precipitation hardening type copper alloy. Precipitation hardening type copper alloy is a copper alloy containing a precipitation hardening element.The solid solution curve is obtained by heating a solid solution temperature determined by the material to form a solid solution of the precipitation hardening element in a supersaturated state. By holding at a lower temperature for a certain time,
It is characterized in that fine particles of the intermetallic compound precipitate on the crystals of the saturated solid solution, whereby precipitation hardening can be achieved. For example, in the case of a typical 0.1% Zr—Cu alloy, the solution is heated to 940 ° C. to make Zr a supersaturated solid solution, and then maintained at a temperature of about 400 to 500 ° C. for about 3 hours. By doing so, fine particles of ZrCu are precipitated and the strength is increased.

【0004】[0004]

【発明が解決しようとする課題】この種の析出硬化型銅
合金は、極めて高い強度を有するため、薄板として様々
な用途が期待されているが、熱処理時に特殊な高温急速
加熱を要するうえ、硬度が高く加工が難しいため薄板を
得ることが難しく、仮に加工できても強度や品質が十分
に確保できないという問題があった。例えば、従来の析
出硬化型銅合金材の製造方法では、比較的厚い、例えば
2〜15mm程度の析出硬化型銅合金材に固溶化処理を
行った後、さらに圧延して製品の厚さとし、その後に析
出硬化処理を行っていたのであるが、製品が例えば0.
25mmといった極薄いものであると、固溶化処理後に
強度の熱間圧延を行う必要が生じ、析出硬化の効果が薄
れるという問題が見いだされた。
This kind of precipitation hardening type copper alloy has extremely high strength and is expected to be used for various purposes as a thin plate. Therefore, it is difficult to obtain a thin plate due to high processing efficiency, and there is a problem that even if processing can be performed, sufficient strength and quality cannot be ensured. For example, in a conventional method of manufacturing a precipitation hardening type copper alloy material, after performing a solution treatment on a relatively thick, for example, about 2 to 15 mm precipitation hardening type copper alloy material, further rolling to a product thickness, and then The product was subjected to a precipitation hardening process, but the product was, for example, 0.1%.
When the thickness is as thin as 25 mm, it is necessary to perform high-strength hot rolling after the solution treatment, and a problem has been found that the effect of precipitation hardening is reduced.

【0005】本発明は上記事情に鑑みてなされたもの
で、極薄で高い強度を有する析出硬化型銅合金条の製造
を可能にすることを課題としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to enable production of an ultrathin, high-strength precipitation hardening type copper alloy strip.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係る析出硬化型銅合金条の製造方法は、析
出硬化型銅合金からなる厚さ0.5mm以下の条材を走
行させつつ、この条材を前記析出硬化型銅合金の固溶化
温度以上に連続的に急速加熱し、続いて、前記急速加熱
された条材を急速冷却する溶体化処理工程と、前記急速
冷却された条材を加熱して析出硬化させる析出硬化処理
工程とを具備し、前記急速加熱における300℃から前
記固溶化温度までの前記条材の昇温速度は40℃/秒以
上であり、かつ、600℃以上での条材保持時間は1〜
60秒であり、前記急速冷却における前記固溶化温度か
ら300℃までの降温速度は40℃/秒以上であること
を特徴としている。
In order to solve the above-mentioned problems, a method of manufacturing a precipitation hardening type copper alloy strip according to the present invention is to run a strip hardening copper alloy strip having a thickness of 0.5 mm or less. While rapidly heating the strip material above the solution temperature of the precipitation hardening type copper alloy, and then rapidly cooling the rapidly heated strip material, A precipitation hardening step of heating and precipitating and hardening the strip, wherein the rate of temperature increase of the strip from 300 ° C. to the solution temperature in the rapid heating is 40 ° C./sec or more, and 600 The holding time of the strip above ℃ is 1 ~
60 seconds, and the rate of temperature decrease from the solution temperature to 300 ° C. in the rapid cooling is 40 ° C./sec or more.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る析出硬化型銅
合金条の製造方法の一実施形態を説明する。この実施形
態の方法では、まず、析出硬化型銅合金からなる厚さ
0.5mm以下の条材を圧延加工により製造する(圧延
工程)。次に、この条材を走行させつつ前記析出硬化型
銅合金の固溶化温度以上に連続的に急速加熱し、続い
て、急速加熱された条材を連続的に急速冷却して溶体化
処理を施す(溶体化処理工程)。さらに、溶体化処理が
施された条材を再度加熱して析出硬化させて析出硬化処
理を施す(析出硬化処理工程)。本発明が適用可能な析
出硬化型銅合金の種類は限定されないが、好ましい合金
組成の例を表1に挙げ、それぞれの固溶化温度も併記し
ておく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for producing a precipitation hardening type copper alloy strip according to the present invention will be described below. In the method of this embodiment, first, a strip material having a thickness of 0.5 mm or less made of a precipitation hardening type copper alloy is manufactured by rolling (rolling step). Next, while the strip is running, it is continuously and rapidly heated to a temperature equal to or higher than the solution temperature of the precipitation hardening type copper alloy, and then the rapidly heated strip is continuously and rapidly cooled to perform a solution treatment. (Solution treatment step). Further, the strip material subjected to the solution treatment is heated again to precipitate and harden, and subjected to a precipitation hardening treatment (precipitation hardening process). Although the type of precipitation hardening type copper alloy to which the present invention can be applied is not limited, examples of preferable alloy compositions are listed in Table 1, and the respective solution temperatures are also described.

【0008】[0008]

【表1】 [Table 1]

【0009】[圧延工程]まず圧延工程では、鋳造によ
り得られた析出硬化型銅合金材を熱間または/および冷
間圧延し、最終製品に近い厚さの条材とする。具体的に
は、この段階で肉厚0.5mm以下、より好ましくは
0.3mm以下、さらに好ましくは0.2mm以下に圧
延する。0.5mmより厚いと、次の溶体化処理工程に
おいて、条材の連続急速加熱および連続急速冷却が困難
になり、昇温中に結晶が成長して結晶組織が粗くなるお
それがある。同時に、圧延加工後の厚さは最終製品の厚
さの2倍以下であることが望ましい。溶体化処理を施す
条材の下限厚さは特に限定されないが、実用上は0.0
7mm程度であると考えられる。圧延条件は特に限定さ
れないが、一般には、800〜980℃程度で熱間圧
延、または冷間圧延することが好ましい。圧延後の条材
はリコイラなどに巻き取って次工程へ移送してもよい
し、連続的に次工程へ流してもよい。
[Rolling Step] First, in the rolling step, a precipitation hardening type copper alloy material obtained by casting is hot or / and cold rolled to obtain a strip having a thickness close to that of a final product. Specifically, at this stage, rolling is performed to a thickness of 0.5 mm or less, more preferably 0.3 mm or less, and still more preferably 0.2 mm or less. If the thickness is more than 0.5 mm, continuous rapid heating and continuous rapid cooling of the strip material in the next solution treatment step become difficult, and crystals may grow during the temperature rise and the crystal structure may become coarse. At the same time, the thickness after rolling is desirably not more than twice the thickness of the final product. The lower limit thickness of the strip subjected to the solution treatment is not particularly limited, but is practically 0.0
It is considered to be about 7 mm. Although the rolling conditions are not particularly limited, it is generally preferable to perform hot rolling or cold rolling at about 800 to 980 ° C. The rolled material after rolling may be wound on a recoiler or the like and transferred to the next step, or may be continuously flowed to the next step.

【0010】[溶体化処理工程]溶体化処理工程では、
前記条材を連続的に走行させつつ、連続加熱炉により条
材を析出硬化型銅合金の固溶化温度以上に急速加熱し、
析出硬化元素を母相中に過飽和に固溶させたうえ、連続
してこの条材を急速冷却し、固溶化した析出硬化元素が
析出しないようにする。
[Solution treatment step] In the solution treatment step,
While continuously running the strip, the strip is rapidly heated by a continuous heating furnace to the solution temperature of the precipitation hardening type copper alloy,
The precipitation hardening element is supersaturated in the mother phase and then rapidly cooled, so that the solution hardened precipitation hardening element is not deposited.

【0011】前記急速加熱は、300℃から固溶化温度
までの範囲での条材の昇温速度が40℃/秒以上、より
好ましくは60℃/秒以上、さらに好ましくは100℃
/秒以上になるように行う。40℃/秒未満では結晶成
長により組織が粗大化する問題が生じる。同様に、前記
急速冷却は、固溶化温度から300℃までの範囲での条
材の降温速度が40℃/秒以上、より好ましくは60℃
/秒以上、さらに好ましくは100℃/秒以上となるよ
うに行う。40℃/秒未満では組織が粗大化する傾向が
生じる。
In the rapid heating, the rate of temperature rise of the strip in the range from 300 ° C. to the solution temperature is 40 ° C./sec or more, more preferably 60 ° C./sec or more, and further preferably 100 ° C./sec.
/ Sec or more. If the temperature is lower than 40 ° C./sec, there is a problem that the structure becomes coarse due to crystal growth. Similarly, in the rapid cooling, the rate of temperature reduction of the strip in the range from the solution temperature to 300 ° C. is 40 ° C./sec or more, more preferably 60 ° C.
/ Sec or more, more preferably 100 ° C / sec or more. If it is lower than 40 ° C./sec, the structure tends to be coarse.

【0012】溶体化処理工程中における条材の600℃
以上での保持時間は1〜60秒であることが必要で、よ
り好ましくは1〜20秒である。1秒未満では十分に溶
体化させることが難しく、60秒より長いと結晶が成長
して結晶組織が粗くなるおそれがある。
600 ° C. of the strip during the solution treatment step
The above holding time needs to be 1 to 60 seconds, and more preferably 1 to 20 seconds. If it is shorter than 1 second, it is difficult to sufficiently form a solution. If it is longer than 60 seconds, crystals may grow and the crystal structure may be coarse.

【0013】図1は、固溶体処理工程に使用可能な溶体
化処理装置の一例を示している。ただし、本発明はこの
装置の使用のみに限定されるものではなく、他形式の連
続加熱炉も同様に使用可能である。溶体化処理装置1
は、圧延により製造された固溶化前の条材T1を、図示
しないアンコイラ等から水平に繰り出し、ガイドロール
2により上方へ進路変更して加熱室4内に導入する。加
熱室4への入口には、図示していないがシール手段が設
けられて、加熱室4が気密的に塞がれている。
FIG. 1 shows an example of a solution treatment apparatus that can be used in a solid solution treatment step. However, the invention is not limited to the use of this device only, and other types of continuous heating furnaces can be used as well. Solution treatment equipment 1
, A strip material T1 before solution treatment manufactured by rolling is horizontally fed out from an uncoiler (not shown) or the like, and the path is changed upward by a guide roll 2 and introduced into the heating chamber 4. Although not shown, a sealing means is provided at the entrance to the heating chamber 4, and the heating chamber 4 is hermetically closed.

【0014】加熱室4内には、加熱ロール6が軸線を水
平にして配置されており、この加熱ロール6は、図示し
ない駆動機構により条材T1の走行速度に合わせて回転
される。加熱室4には窒素やアルゴン等の不活性ガス、
水素や一酸化炭素等の還元性ガス、もしくはそれらの混
合ガスが供給され、不活性または還元性の雰囲気に保た
れている。
A heating roll 6 is arranged in the heating chamber 4 with its axis being horizontal. The heating roll 6 is rotated by a driving mechanism (not shown) in accordance with the running speed of the strip T1. In the heating chamber 4, an inert gas such as nitrogen or argon,
A reducing gas such as hydrogen or carbon monoxide, or a mixed gas thereof is supplied, and is kept in an inert or reducing atmosphere.

【0015】加熱ロール6の内部には電熱または燃焼熱
等による加熱手段が設けられ、この加熱手段によって、
加熱ロール6の外周面温度が析出硬化型銅合金T1の固
溶化温度以上の一定温度に加熱されている。加熱ロール
6を条材T1に当接させて加熱する方法によれば、通常
の加熱炉に比して伝熱効率が5倍以上もあり、通常の加
熱炉では困難なほどの急速加熱が可能であるだけでな
く、伝熱が条材T1の全域に亘って均等に行われるため
均一加熱が可能であり、さらに加熱中に条材T1にかか
る張力を正確に調整しやすい。このため、難加工材の薄
板を対象とする本発明の加熱手段として特に好適であ
る。加熱室4内にはまた、バーナーや高周波誘導加熱装
置等の補助加熱手段が設けられていてもよい。
A heating means such as electric heating or combustion heat is provided inside the heating roll 6.
The outer peripheral surface temperature of the heating roll 6 is heated to a certain temperature equal to or higher than the solution temperature of the precipitation hardening type copper alloy T1. According to the method in which the heating roll 6 is brought into contact with the strip material T1 and heated, the heat transfer efficiency is 5 times or more as compared with a normal heating furnace, and rapid heating that is difficult with a normal heating furnace is possible. Not only that, the heat transfer is performed evenly over the entire area of the strip T1, so that uniform heating is possible, and the tension applied to the strip T1 during heating is easily adjusted accurately. For this reason, it is particularly suitable as a heating means of the present invention for a thin plate of a difficult-to-process material. The heating chamber 4 may also be provided with auxiliary heating means such as a burner or a high-frequency induction heating device.

【0016】加熱ロール6の材質は限定されないが、一
般には、耐熱性に優れた金属から形成されていることが
望ましく、さらにその外周面は、条材T1と密着するよ
うに鏡面加工されていることが好ましい。加熱ロール6
の外径は本発明では限定されないが、加熱しやすさや、
処理すべき条材T1の厚さや走行速度を考慮して一般に
は50〜100cm程度、より好ましくは60〜90c
m程度に設定される。
Although the material of the heating roll 6 is not limited, it is generally desirable that the heating roll 6 is formed of a metal having excellent heat resistance, and the outer peripheral surface thereof is mirror-finished so as to be in close contact with the strip T1. Is preferred. Heating roll 6
The outer diameter of is not limited in the present invention, but easy to heat,
In consideration of the thickness and running speed of the strip T1 to be treated, it is generally about 50 to 100 cm, more preferably 60 to 90 c.
m.

【0017】加熱ロール6の回転速度は、限定はされな
いが、アンコイラ等からの条材T1の繰り出し速度より
も若干大きい速度に設定されていることが望ましく、具
体的には0.1〜10%程速くされているとよい。これ
は、加熱ロール6の外周に条材T1が当接し昇温してい
く過程で、条材T1が徐々に熱膨張し、加熱ロール6と
固溶化前の条材T1との間に弛みによる剥離が生じるお
それがあるからである。そのような剥離が生じると、加
熱ロール6から条材T1への熱伝導が阻害されて条材T
1の温度が不均一になるため、極力避けなければならな
い。
The rotation speed of the heating roll 6 is not limited, but is desirably set to a speed slightly higher than the feeding speed of the strip T1 from an uncoiler or the like, and specifically, 0.1 to 10%. Hopefully it will be faster. This is because the strip T1 gradually heat-expands in the process of contacting the strip T1 with the outer periphery of the heating roll 6 and increasing the temperature, and loosens between the heating roll 6 and the strip T1 before solid solution. This is because peeling may occur. When such peeling occurs, heat conduction from the heating roll 6 to the strip T1 is hindered, and the strip T
Since the temperature of (1) becomes non-uniform, it must be avoided as much as possible.

【0018】図示の例では、条材T1が加熱ロール6の
外周面に中心角180゜分だけ巻回され、条材T1の他
端は鉛直下方へ延ばされている。これにより、条材T1
は加熱ロール6と広い面積で密着し、直接的な熱伝導に
より加熱ロール6の外周面温度とほぼ等しくなるまで急
速に加熱されるから、ライン速度が速くても条材T1を
均一にかつ高い精度を以て加熱することができる。しか
も、このロール当接による加熱方法は、気相加熱方法よ
りも熱効率が数倍も高いため、加熱コストが安く済むだ
けでなく、加熱ロール6により加熱過程で条材T1にか
かる張力を均一に調整することができるので、薄い条材
T1を変形させることなく高温に均一加熱することが可
能である。したがって、特に700℃以上の固溶化温度
まで急速加熱する本発明には、ロール当接による加熱方
法が適している。
In the illustrated example, the strip T1 is wound around the outer peripheral surface of the heating roll 6 by a central angle of 180 °, and the other end of the strip T1 extends vertically downward. Thereby, the strip T1
Adheres over a large area to the heating roll 6 and is rapidly heated by direct heat conduction until the temperature becomes substantially equal to the outer peripheral surface temperature of the heating roll 6, so that the strip material T1 is uniformly and high even at a high line speed. Heating can be performed with precision. In addition, the heating method using the roll abutment has several times higher thermal efficiency than the vapor-phase heating method, so that not only the heating cost is reduced, but also the tension applied to the strip T1 in the heating process by the heating roll 6 is made uniform. Since the adjustment can be performed, the thin strip T1 can be uniformly heated to a high temperature without being deformed. Therefore, the heating method by roll contact is particularly suitable for the present invention in which the solution is rapidly heated to a solution temperature of 700 ° C. or higher.

【0019】加熱室4の下方には冷却室10が付設さ
れ、条材T1はこの冷却室10を通されている。冷却室
10内には、条材T1の表裏面のそれぞれに対向して多
数の冷却ノズル12が配列され、図示しない供給機構か
ら送られた冷却水または冷却ガス等の冷却媒体が、これ
ら冷却ノズル12から条材T1に吹き付けられる。この
構成によれば、いったん固溶化温度以上に加熱された条
材T1を急冷することができ、結晶成長が防止できるの
で、固溶化済み条材T2中の結晶粒径を十分に微細化
(例えば5〜15μm)することが可能である。
A cooling chamber 10 is provided below the heating chamber 4, and the strip T 1 passes through the cooling chamber 10. A large number of cooling nozzles 12 are arranged in the cooling chamber 10 so as to face each of the front and back surfaces of the strip T1, and a cooling medium such as cooling water or a cooling gas sent from a supply mechanism (not shown) is supplied to the cooling nozzles. 12 is sprayed on the strip T1. According to this configuration, the strip T1 once heated to the solution temperature or higher can be rapidly cooled and crystal growth can be prevented, so that the crystal grain size in the solidified strip T2 is sufficiently reduced (for example, 5 to 15 μm).

【0020】冷却室10の下端の開口部10Aは冷却水
槽14内に配置され、冷却水槽14に循環供給されてい
る冷却液に浸漬されて、気密的に塞がれている。これに
より加熱室4および冷却室10内が不活性雰囲気または
還元性雰囲気に維持されている。冷却液中には冷却ロー
ル16が浸漬され、冷却液で十分に冷却された後に、固
溶化済み条材T2が冷却ロール16により上方へ送り出
される。送り出された固溶化済み条材T2は、図示しな
い酸洗い装置、水洗装置、および乾燥装置等を経て、リ
コイラでコイル状に巻き取られる。
An opening 10A at the lower end of the cooling chamber 10 is disposed in a cooling water tank 14, immersed in a cooling liquid circulated and supplied to the cooling water tank 14, and is airtightly closed. Thereby, the inside of the heating chamber 4 and the cooling chamber 10 is maintained in an inert atmosphere or a reducing atmosphere. After the cooling roll 16 is immersed in the cooling liquid and sufficiently cooled by the cooling liquid, the solution-dissolved strip T2 is sent upward by the cooling roll 16. The solution-dissolved strip T2 sent out is wound into a coil by a recoiler via an unillustrated pickling device, water washing device, drying device and the like.

【0021】冷却水槽14中の冷却液には、通常の水を
使用することもできるが、より好ましくは遊離酸素抑制
剤の水溶液が使用される。遊離酸素抑制剤は、水中の酸
素を除去するための薬剤であり、一例としてヒドラジン
が挙げられる。遊離酸素抑制剤の濃度は5〜30wt%
程度でよい。遊離酸素抑制剤を添加することにより、固
溶化済み条材T2の表面の酸化を効果的に抑制すること
が可能である。
As the cooling liquid in the cooling water tank 14, ordinary water can be used, but more preferably, an aqueous solution of a free oxygen inhibitor is used. The free oxygen inhibitor is an agent for removing oxygen in water, and hydrazine is an example. The concentration of the free oxygen inhibitor is 5 to 30 wt%
Degree is fine. By adding the free oxygen inhibitor, it is possible to effectively suppress the oxidation of the surface of the solution-dissolved strip T2.

【0022】図2は溶体化処理装置1の変形例を示し、
この溶体化処理装置1は、加熱室4内に第1加熱ロール
6Aおよび第2加熱ロール6Bを平行に配置し、条材T
1を第1加熱ロール6Aの下側および第2加熱ロール6
Bの上側に巻いたことを特徴としている。他の構成は図
1の装置と同様である。
FIG. 2 shows a modification of the solution treatment apparatus 1.
In the solution treatment apparatus 1, a first heating roll 6A and a second heating roll 6B are arranged in a heating chamber 4 in parallel, and a strip T
1 is the lower side of the first heating roll 6A and the second heating roll 6
It is characterized by being wound above B. Other configurations are the same as those of the apparatus shown in FIG.

【0023】このような図2の溶体化処理装置1によれ
ば、第1加熱ロール6Aで条材T1を予備加熱した後、
第2加熱ロール6Bで本加熱することができる。この場
合、第1加熱ロール6Aと第2加熱ロール6Bの外周面
温度は同一であっても異なっていてもよい。例えば、第
1加熱ロール6Aの温度を固溶化温度より低い温度に設
定しておく一方、第2加熱ロール6Bの温度を固溶化温
度より高く設定しておくことが可能である。このような
方法によれば、条材T1とロール6A,6Bとの合計当
接面積を広く確保することが可能であるから、条材T1
の走行速度を大きくした場合にも十分均一に加熱するこ
とが可能である。条材T1の厚さが比較的大きい場合に
も、均一加熱が容易であるという利点も有する。
According to the solution treatment apparatus 1 of FIG. 2, after preheating the strip T1 with the first heating roll 6A,
The main heating can be performed by the second heating roll 6B. In this case, the outer peripheral surface temperatures of the first heating roll 6A and the second heating roll 6B may be the same or different. For example, while the temperature of the first heating roll 6A is set to a temperature lower than the solution temperature, the temperature of the second heating roll 6B can be set to be higher than the solution temperature. According to such a method, it is possible to secure a large total contact area between the strip T1 and the rolls 6A and 6B.
Even when the running speed of is increased, it is possible to heat sufficiently uniformly. Even when the thickness of the strip T1 is relatively large, there is an advantage that uniform heating is easy.

【0024】図2の装置において、第1ロール6Aで条
材T1を固溶化温度以上に加熱する一方、第2ロール6
Bにより予備冷却することも可能である。この場合、第
2ロール6Bの内部には冷却水等の冷却媒体を循環供給
してもよい。冷却ロール6Bを加熱ロールに隣接して配
置することにより、溶体化処理が完了した条材T1をよ
り速やかに冷却できる利点がある。
In the apparatus shown in FIG. 2, the strip material T1 is heated by the first roll 6A to the solution temperature or higher while the second roll 6A is heated.
Precooling with B is also possible. In this case, a cooling medium such as cooling water may be circulated and supplied inside the second roll 6B. By arranging the cooling roll 6B adjacent to the heating roll, there is an advantage that the strip T1 on which the solution treatment has been completed can be cooled more quickly.

【0025】[溶体化処理後の圧延工程]溶体化処理が
完了した条材T2に対して、析出硬化処理の前もしくは
後に圧延加工してもよい。実際には、少なくともいずれ
かの時点で適度な圧延を行ったほうが固溶化済み条材の
応力を解放できるので好ましい。析出硬化処理の前に圧
延を行う場合には圧延率が4〜90%、より好ましくは
20〜60%の冷間圧延であると好ましく、析出硬化処
理の後に圧延を行う場合には圧延率が5〜60%、より
好ましくは30〜50%の冷間圧延であると好ましい。
いずれの場合にも、圧延率が前記下限値未満では応力を
解放することができず、割れ限界値が相対的に低下す
る。一方、圧延率が前記上限値より大では、圧延後の条
材に方向性が生じて割れやすくなる。
[Rolling Step After Solution Treatment] The strip material T2 after the solution treatment may be rolled before or after the precipitation hardening treatment. Actually, it is preferable to perform appropriate rolling at least at any point, since the stress of the solution-solution strip can be released. When rolling is performed before the precipitation hardening treatment, the rolling reduction is preferably 4 to 90%, more preferably 20 to 60%, and when the rolling is performed after the precipitation hardening treatment, the rolling reduction is The cold rolling is preferably 5 to 60%, more preferably 30 to 50%.
In any case, when the rolling reduction is less than the lower limit, the stress cannot be released, and the crack limit value relatively decreases. On the other hand, when the rolling ratio is larger than the upper limit, the strip material after rolling has directionality and is easily cracked.

【0026】[析出硬化処理工程]固溶化済み条材T2
は次に、析出硬化処理工程に供される。この工程では、
固溶化済み条材T2を固溶度曲線より低い温度に一定時
間保持し、飽和固溶体の結晶に金属間化合物の微粒子を
析出させ、これにより析出硬化を図ることを目的として
いる。
[Precipitation-hardening treatment step] The solid-solution strip material T2
Is then subjected to a precipitation hardening step. In this step,
It is an object of the present invention to hold the solution-treated strip material T2 at a temperature lower than the solid solubility curve for a certain period of time to precipitate fine particles of the intermetallic compound on the crystals of the saturated solid solution, thereby achieving precipitation hardening.

【0027】析出硬化処理は、固溶化済み条材T2を2
50〜600℃、より好ましくは300〜600℃に加
熱することにより行い、加熱時間は0.1〜10時間、
より好ましくは0.5〜5時間とされる。
In the precipitation hardening treatment, the solution-treated strip T2 is
The heating is performed by heating to 50 to 600 ° C, more preferably 300 to 600 ° C, and the heating time is 0.1 to 10 hours.
More preferably, it is set to 0.5 to 5 hours.

【0028】図3は、析出硬化工程に好適な加熱装置
(焼鈍炉)の一例を示している。この焼鈍炉20は、い
わゆるベル型焼鈍炉であり、一般的な連続焼鈍炉に比べ
て加熱温度を高精度に制御できる特徴を有している。た
だし、一般的な連続焼鈍炉やその他の加熱炉を用いて
も、本発明における析出硬化工程は実施可能である。
FIG. 3 shows an example of a heating device (annealing furnace) suitable for the precipitation hardening step. The annealing furnace 20 is a so-called bell-type annealing furnace, and has a feature that the heating temperature can be controlled with higher precision than a general continuous annealing furnace. However, the precipitation hardening step in the present invention can be performed even by using a general continuous annealing furnace or another heating furnace.

【0029】コイル状に巻回された固溶化済み条材T2
は同軸状に複数個積層され、気密的な金属製の内容器2
2に収容されて、内容器22の内部は窒素やアルゴン等
の不活性ガスまたは水素や一酸化炭素等の還元性ガスで
満たされている。そのなかでも特に、水素ガスを用いる
ことが好ましい。熱伝導性が良好である上に、比重が軽
いために循環用の消費電力を削減できるからである。内
容器22の下部には循環用ファン28が設けられ、この
循環用ファン28により、図中矢印の通りにガスが循環
される。内容器22はさらに外容器24に収容されてお
り、この外容器24内には内容器22を外側から加熱す
るためのバーナー26等の加熱手段が多数設けられてい
る。これらバーナー26で内容器22を加熱すると、内
容器22の内部のガスが加熱され、循環用ファン28に
よる循環につれて固溶化済み条材T2が均一に加熱され
る。
[0029] A solution-solubilized strip T2 wound in a coil shape
Are coaxially stacked and are airtight metal inner containers 2
2, the inside of the inner container 22 is filled with an inert gas such as nitrogen or argon or a reducing gas such as hydrogen or carbon monoxide. Among them, it is particularly preferable to use hydrogen gas. This is because the thermal conductivity is good and the specific gravity is light, so that the power consumption for circulation can be reduced. A circulation fan 28 is provided below the inner container 22, and the circulation fan 28 circulates gas as shown by the arrow in the figure. The inner container 22 is further housed in an outer container 24, in which a number of heating means such as a burner 26 for heating the inner container 22 from the outside are provided. When the inner container 22 is heated by the burners 26, the gas inside the inner container 22 is heated, and the solution-solidified strip T2 is uniformly heated as the gas is circulated by the circulation fan 28.

【0030】以上のような焼鈍炉20を用いて、前述の
条件で析出硬化処理を行うことにより、飽和固溶体の結
晶に金属間化合物の微粒子を析出させ、これにより析出
硬化を図ることが可能である。析出硬化処理が完了した
ら、外容器24および内容器22を開けて条材T2を取
り出し、必要に応じて前述の圧延を施し製品とする。
By performing the precipitation hardening treatment under the above-described conditions using the above-described annealing furnace 20, fine particles of the intermetallic compound are precipitated on the crystals of the saturated solid solution, whereby the precipitation hardening can be achieved. is there. When the precipitation hardening process is completed, the outer container 24 and the inner container 22 are opened, the strip T2 is taken out, and if necessary, the aforementioned rolling is performed to obtain a product.

【0031】上記のような析出硬化型銅合金条の製造方
法によれば、製品の最終肉厚に近い厚さまで圧延を施し
て析出硬化型銅合金条T1を製造した後、この薄い条材
T1を固溶化温度まで急激に加熱し、さらにそれを急冷
するため、最終製品の状態においても析出硬化状態が良
好に保たれ、析出硬化型銅合金本来の高強度が得られ
る。
According to the method for producing a precipitation hardening type copper alloy strip as described above, after rolling to a thickness close to the final thickness of the product to produce a precipitation hardening type copper alloy strip T1, the thin strip material T1 Is rapidly heated to a solution temperature and rapidly cooled, so that the precipitation hardening state is well maintained even in the final product state, and the original high strength of the precipitation hardening type copper alloy is obtained.

【0032】特にこの実施形態では、固溶化温度以上の
温度に加熱された加熱ロール6を条材T1に当接させ、
熱伝導により条材T1を加熱する構成であるから、条材
T1の薄さと相まって、条材T1を均一に、かつ加熱ロ
ール6の外周面温度を正確に反映した温度まで加熱する
ことができる。よって、析出硬化状態を正確に制御する
ことが可能であるし、ライン速度の高速化も図れる。さ
らに、条材T1を加熱ロール6で支持した状態で加熱す
るため、条材T1に波打ち状等の変形が生じにくく、薄
い状態で加熱するにも拘わらず、最終製品の形状精度が
高められる。
In particular, in this embodiment, the heating roll 6 heated to a temperature equal to or higher than the solution temperature is brought into contact with the strip T1,
Since the configuration is such that the strip T1 is heated by heat conduction, the strip T1 can be uniformly heated to a temperature that accurately reflects the outer peripheral surface temperature of the heating roll 6 in combination with the thinness of the strip T1. Therefore, the precipitation hardening state can be accurately controlled, and the line speed can be increased. Furthermore, since the strip T1 is heated while being supported by the heating roll 6, the strip T1 is unlikely to be deformed in a wavy shape or the like, and the shape accuracy of the final product is improved despite heating in a thin state.

【0033】また、固溶化温度まで加熱された条材T1
に対し、すぐに冷却ノズル12から冷却水等を吹きかけ
て冷却するので、条材T1の薄さと相まって、条材T1
を急激に冷却することが可能である。したがって、冷却
中の結晶成長を抑制することが可能であり、結晶粒径の
粗大化が防止できる。この点からも、析出硬化型銅合金
本来の高強度が得られる。さらに、加熱ロール6により
伝導加熱する構成であるから、バーナーを多数配置した
構成に比して装置全体を小型化することができ、省スペ
ース化が図れ、不活性ガス等のランニングコストも低減
できる。
The strip T1 heated to the solution temperature
On the other hand, since cooling is performed by spraying cooling water or the like from the cooling nozzle 12 immediately, the thickness of the strip T1
Can be rapidly cooled. Therefore, crystal growth during cooling can be suppressed, and coarsening of the crystal grain size can be prevented. Also from this point, the original high strength of the precipitation hardening type copper alloy can be obtained. Further, since the configuration is such that conduction heating is performed by the heating roll 6, the entire apparatus can be reduced in size as compared with a configuration in which a plurality of burners are arranged, space can be saved, and running costs of inert gas and the like can be reduced. .

【0034】[0034]

【実施例】次に、本発明の実施例を挙げて効果を実証す
る。以下の組成(全てwt%)を有する3種類の析出硬
化型銅合金A〜Cを用い、本発明に係る実施例の方法お
よび3種の比較例の方法によりそれぞれ析出硬化型銅合
金条を製造し、特性を比較した。
EXAMPLES Next, the effects will be demonstrated with reference to examples of the present invention. Using three types of precipitation hardening type copper alloys A to C having the following compositions (all wt%), a precipitation hardening type copper alloy strip is manufactured by the method of the example according to the present invention and the method of three types of comparative examples, respectively. And compared the characteristics.

【0035】合金A(固溶化温度750℃): 2.5%Ni−0.65%Si−0.05%Mg−残部
Cu 合金B(固溶化温度750℃): 2.0%Ni−0.5%Si−0.5%Sn−残部Cu 合金C(固溶化温度850℃): 0.02%Si−0.3%Cr−0.1%Zr−0.1
%Mg−残部Cu
Alloy A (solution temperature: 750 ° C.): 2.5% Ni—0.65% Si—0.05% Mg—balance Cu Alloy B (solution temperature: 750 ° C.): 2.0% Ni-0 0.5% Si-0.5% Sn-balance Cu alloy C (solid solution temperature 850 ° C): 0.02% Si-0.3% Cr-0.1% Zr-0.1
% Mg-balance Cu

【0036】[実施例]合金A〜Cを用いてそれぞれ厚
さ150mm×幅540mmの鋳造塊を作成した。この
鋳造塊を900〜960℃×2時間の条件で均質化した
後、熱間圧延により溶体化処理を図りつつ厚さ11mm
とし、冷却水を用いて冷却した。得られた板材の表面を
面削した後、冷間圧延と固溶化温度未満の焼鈍を繰り返
し、厚さ0.2mm×幅200mmの条材を作成した。
[Examples] Cast ingots each having a thickness of 150 mm and a width of 540 mm were prepared using alloys A to C. After homogenizing the cast ingot at 900 to 960 ° C. for 2 hours, a thickness of 11 mm was obtained while performing a solution treatment by hot rolling.
And cooled using cooling water. After the surface of the obtained sheet material was chamfered, cold rolling and annealing below the solution temperature were repeated to prepare a strip material having a thickness of 0.2 mm and a width of 200 mm.

【0037】次に、図1の装置を用いて、これら条材を
それぞれの固溶化温度まで急速加熱し、さらに冷却水で
急冷して溶体化処理した。その際の300℃から固溶化
温度までの昇温速度は約150℃/秒、固溶化温度から
300℃までの降温速度は約150℃/秒とした。溶体
化処理中の条材走行速度は全て20m/minとした。
加熱ロール6としては、外径が750mmの金属製バー
ナー内蔵型ロールを使用した。
Next, using the apparatus shown in FIG. 1, these strips were rapidly heated to their respective solution temperatures, and further quenched with cooling water for solution treatment. At that time, the rate of temperature rise from 300 ° C. to the solution temperature was about 150 ° C./sec, and the rate of temperature decrease from the solution temperature to 300 ° C. was about 150 ° C./sec. The running speed of the strip during the solution treatment was all 20 m / min.
As the heating roll 6, a roll with a built-in metal burner having an outer diameter of 750 mm was used.

【0038】溶体化処理後の条材を圧延率20%で冷間
圧延して厚さ0.16mmにし、コイル状に巻き取っ
た。巻き取ったコイルを図3に示すようなベル型焼鈍炉
20に収容し、450℃×3時間の条件で析出硬化処理
を施した。
The strip after solution treatment was cold-rolled at a rolling reduction of 20% to a thickness of 0.16 mm and wound into a coil. The wound coil was housed in a bell-type annealing furnace 20 as shown in FIG. 3 and subjected to a precipitation hardening treatment at 450 ° C. for 3 hours.

【0039】[比較例1]合金A〜Cを用いてそれぞれ
厚さ150mm×幅540mmの鋳造塊を作成した。こ
の鋳造塊を900〜960℃×2時間の条件で均質化し
た後、熱間圧延により溶体化処理を図りつつ厚さ11m
mとし、冷却水を用いて冷却した。得られた板材の表面
を面削した後、冷間圧延と固溶化温度未満の焼鈍を繰り
返し、厚さ0.16mm×幅200mmの条材を作成し
た。
Comparative Example 1 Cast ingots each having a thickness of 150 mm and a width of 540 mm were prepared using alloys A to C. After homogenizing the cast ingot at 900 to 960 ° C. for 2 hours, the thickness is 11 m while performing a solution treatment by hot rolling.
m and cooled with cooling water. After the surface of the obtained plate material was chamfered, cold rolling and annealing below the solution temperature were repeated to prepare a strip material having a thickness of 0.16 mm and a width of 200 mm.

【0040】[比較例2]合金A〜Cを用いてそれぞれ
厚さ150mm×幅540mmの鋳造塊を作成した。こ
の鋳造塊を900〜960℃×2時間の条件で均質化し
た後、熱間圧延により厚さ11mmとし、冷却水を用い
て冷却した。得られた板材の表面を面削した後、冷間圧
延と固溶化温度未満の焼鈍を繰り返し、厚さ1.0mm
の条材を作成し、コイル状に巻き取った。このコイルを
焼鈍炉内において不活性ガス雰囲気下でそれぞれの固溶
化温度まで加熱し、加熱後のコイルを不活性ガスにより
冷却した。この場合、300℃から固溶化温度までの昇
温速度は約0.2℃/秒、固溶化温度から300℃まで
の降温速度は約0.1℃/秒になる。この条材に冷間圧
延を施して厚さ0.16mm×幅200mmの条材を作
成し、この条材をコイル状に巻き取った後に、ベル型焼
鈍炉20に収容し、450℃×3時間の条件で析出硬化
処理を施した。
Comparative Example 2 Cast ingots each having a thickness of 150 mm and a width of 540 mm were prepared using alloys A to C. After homogenizing the cast ingot at 900 to 960 ° C. for 2 hours, it was hot-rolled to a thickness of 11 mm and cooled using cooling water. After chamfering the surface of the obtained sheet material, cold rolling and annealing below the solution temperature were repeated to a thickness of 1.0 mm.
Was prepared and wound into a coil. The coils were heated to respective solution temperatures in an annealing furnace under an inert gas atmosphere, and the heated coils were cooled by the inert gas. In this case, the rate of temperature rise from 300 ° C. to the solution temperature is about 0.2 ° C./sec, and the rate of temperature decrease from the solution temperature to 300 ° C. is about 0.1 ° C./sec. This strip is subjected to cold rolling to prepare a strip having a thickness of 0.16 mm and a width of 200 mm. After winding the strip in a coil shape, the strip is placed in a bell-type annealing furnace 20 and heated at 450 ° C. × 3. The precipitation hardening treatment was performed under the condition of time.

【0041】[比較例3]合金A〜Cを用いてそれぞれ
厚さ150mm×幅540mmの鋳造塊を作成した。こ
の鋳造塊を900〜960℃×2時間の条件で均質化し
た後、熱間圧延により厚さ11mmとし、冷却水を用い
て冷却した。得られた板材の表面を面削した後、冷間圧
延と固溶化温度未満の焼鈍を繰り返し、厚さ1.0mm
の条材を作成し、この条材を走行させつつ連続焼鈍炉を
通してそれぞれの固溶化温度まで加熱し、続いて冷却水
により条材を連続的に急冷した。この場合、300℃か
ら固溶化温度までの昇温速度は約15℃/秒、固溶化温
度から300℃までの降温速度は約15℃/秒になる。
その後、この条材に冷間圧延を施して厚さ0.16mm
とし、コイル状に巻き取った後にベル型焼鈍炉20に収
容し、450℃×3時間の条件で析出硬化処理を行っ
た。
Comparative Example 3 Casting ingots each having a thickness of 150 mm and a width of 540 mm were prepared using the alloys A to C. After homogenizing the cast ingot at 900 to 960 ° C. for 2 hours, it was hot-rolled to a thickness of 11 mm and cooled using cooling water. After chamfering the surface of the obtained sheet material, cold rolling and annealing below the solution temperature were repeated to a thickness of 1.0 mm.
Were prepared, heated to the respective solution temperatures through a continuous annealing furnace while running the strip, and then continuously quenched with cooling water. In this case, the rate of temperature rise from 300 ° C. to the solution temperature is about 15 ° C./sec, and the rate of temperature decrease from the solution temperature to 300 ° C. is about 15 ° C./sec.
Thereafter, the strip is cold-rolled to a thickness of 0.16 mm.
After winding in a coil shape, it was placed in a bell-type annealing furnace 20 and subjected to a precipitation hardening treatment at 450 ° C. × 3 hours.

【0042】[試験方法]各方法で得られた各3種の析
出硬化型銅合金条に対し、電気伝導度測定、引っ張り強
度測定、伸び率測定、結晶粒径測定、W曲げ試験、およ
びめっき性の検査をそれぞれ行った。
[Test Method] The three types of precipitation hardening type copper alloy strips obtained by each method were subjected to electric conductivity measurement, tensile strength measurement, elongation measurement, crystal grain size measurement, W bending test, and plating. Sex tests were performed respectively.

【0043】W曲げ試験は、10mm×60mmの試験
片を各合金条から切り出し、各試験片を90゜曲げた場
合に、曲げ部の外側面に肌荒れが生じなかった最小内側
半径(R)を、試験片の肉厚(T)で除した値(R/
T)によって評価した。すなわち、R/T値が小さいほ
ど、曲げ性に優れていることになる。
In the W bending test, a 10 mm × 60 mm test piece was cut out from each alloy strip, and when each test piece was bent by 90 °, the minimum inner radius (R) at which the outer surface of the bent portion did not have rough skin was determined. , The value divided by the thickness (T) of the test piece (R /
T). That is, the smaller the R / T value, the better the bendability.

【0044】また、めっき性は、条材から切り出した試
験片に2μmの厚さで銀を電気めっきした後、これを6
50℃で5分間加熱した場合にめっき表面に生じた膨れ
の発生密度(個/100mm2)で評価し、0個/10
0mm2のものを「◎」、1個/100mm2のものを
「○」、2個/100mm2のものを「△」、3個以上
/100mm2のものを「×」として評価した。合金A
の結果を表2に、合金Bの結果を表3に、合金Cの結果
を表4にそれぞれ示す。
The plating properties were as follows: a test piece cut from a strip was electroplated with silver to a thickness of 2 μm, and this
Evaluation was made based on the density of blisters generated on the plating surface when heated at 50 ° C. for 5 minutes (pieces / 100 mm 2 ).
Those of 0mm 2 "◎", those of one / 100mm 2 "○", those of two / 100mm 2 "△", was evaluated those of three or more / 100mm 2 as "×". Alloy A
Are shown in Table 2, the result of Alloy B is shown in Table 3, and the result of Alloy C is shown in Table 4.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】表2〜4から明らかなように、いずれの合
金においても、実施例の方法によって得られた条材は、
比較例1〜3の方法で得られた条材より、めっき性、曲
げ性、および引張強度が優れていた。また、電気伝導度
や伸び率においても遜色がなく、結晶粒径も小さかっ
た。
As is apparent from Tables 2 to 4, in any of the alloys, the strip obtained by the method of the embodiment is as follows.
Plating properties, bending properties, and tensile strength were superior to the strips obtained by the methods of Comparative Examples 1 to 3. In addition, there was no inferiority in electric conductivity and elongation, and the crystal grain size was small.

【0049】[0049]

【発明の効果】以上説明したように、本発明に係る析出
硬化型銅合金条の製造方法によれば、製品の最終肉厚に
近い薄い条材を固溶化温度まで加熱し、さらにそれを急
冷するため、最終製品の状態においても析出硬化状態が
良好に保たれ、析出硬化型銅合金本来の高強度が得られ
る。
As described above, according to the method of manufacturing a precipitation hardening type copper alloy strip according to the present invention, a thin strip near the final thickness of a product is heated to a solution temperature, and further quenched. Therefore, the precipitation hardening state is favorably maintained even in the state of the final product, and the original high strength of the precipitation hardening type copper alloy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る析出硬化型銅合金条の製造方法
に使用される溶体化処理装置の一例を示す概略図であ
る。
FIG. 1 is a schematic view showing an example of a solution treatment apparatus used in a method for producing a precipitation hardening type copper alloy strip according to the present invention.

【図2】 溶体化処理装置の変形例を示す概略図であ
る。
FIG. 2 is a schematic view showing a modified example of the solution treatment apparatus.

【図3】 本発明の方法に使用される析出硬化処理装置
の一例を示す概略図である。
FIG. 3 is a schematic view showing an example of a precipitation hardening apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 溶体化処理装置 4 加熱室 6 加熱ロール 6A 第1加熱ロール 6B 第2加熱ロール 10 冷却室 12 冷却ノズル 16 冷却ロール T1 条材 T2 溶体化処理済み条材 DESCRIPTION OF SYMBOLS 1 Solution treatment apparatus 4 Heating chamber 6 Heating roll 6A 1st heating roll 6B 2nd heating roll 10 Cooling chamber 12 Cooling nozzle 16 Cooling roll T1 strip T2 Solution-processed strip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630A 684 684A 685 685Z 691 691A 691B 691C 692 692Z 694 694A ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 630 C22F 1/00 630A 684 684A 685 685Z 691 691A 691B 691C 692 692Z 694 694A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 析出硬化型銅合金からなる厚さ0.5m
m以下の条材を走行させつつ、この条材を前記析出硬化
型銅合金の固溶化温度以上に連続的に急速加熱し、続い
て、前記急速加熱された条材を急速冷却する溶体化処理
工程と、前記急速冷却された条材を加熱して析出硬化さ
せる析出硬化処理工程とを具備し、前記急速加熱におけ
る300℃から前記固溶化温度までの前記条材の昇温速
度は40℃/秒以上であり、かつ、600℃以上での保
持時間は1〜60秒であり、前記急速冷却における前記
固溶化温度から300℃までの降温速度は40℃/秒以
上であることを特徴とする析出硬化型銅合金条の製造方
法。
1. A thickness of 0.5 m made of a precipitation hardening type copper alloy
m, while rapidly moving the strip material to a temperature equal to or higher than the solution temperature of the precipitation hardening type copper alloy, and then rapidly cooling the rapidly heated strip material. And a precipitation hardening step of heating the rapidly cooled strip to precipitate and harden the strip, wherein the rate of temperature increase of the strip from 300 ° C. to the solution temperature in the rapid heating is 40 ° C. / And the holding time at 600 ° C. or more is 1 to 60 seconds, and the cooling rate from the solution temperature to 300 ° C. in the rapid cooling is 40 ° C./sec or more. Manufacturing method of precipitation hardening type copper alloy strip.
【請求項2】 前記急速冷却された条材を4〜90%の
圧延率で圧延する圧延工程をさらに具備し、この圧延工
程の後に、前記析出硬化処理工程を行うことを特徴とす
る請求項1記載の析出硬化型銅合金条の製造方法。
2. The method according to claim 1, further comprising: a rolling step of rolling the rapidly cooled strip at a rolling rate of 4 to 90%, wherein the precipitation hardening step is performed after the rolling step. 2. The method for producing a precipitation hardening type copper alloy strip according to item 1.
【請求項3】 前記析出硬化処理工程を経た条材を5〜
60%の圧延率で圧延する圧延工程をさらに具備するこ
とを特徴とする請求項1または2に記載の析出硬化型銅
合金条の製造方法。
3. The strip material that has undergone the precipitation hardening treatment step is prepared as follows.
The method for producing a precipitation hardening type copper alloy strip according to claim 1 or 2, further comprising a rolling step of rolling at a rolling rate of 60%.
【請求項4】 前記溶体化処理工程の前に、析出硬化型
銅合金材を圧延して厚さ0.5mm以下の前記条材を得
る圧延工程をさらに具備することを特徴とする請求項1
〜3のいずれかに記載の析出硬化型銅合金条の製造方
法。
4. The method according to claim 1, further comprising, before the solution treatment step, a rolling step of rolling the precipitation hardening type copper alloy material to obtain the strip material having a thickness of 0.5 mm or less.
4. The method for producing a precipitation hardening type copper alloy strip according to any one of items 1 to 3.
【請求項5】 前記析出硬化処理工程では、溶体化処理
済みの条材を250〜600℃に0.1〜10時間保持
することを特徴とする請求項1〜4のいずれかに記載の
析出硬化型銅合金条の製造方法。
5. The precipitation according to claim 1, wherein, in the precipitation hardening step, the solution-treated strip is kept at 250 to 600 ° C. for 0.1 to 10 hours. Manufacturing method of hardening type copper alloy strip.
JP11730797A 1997-05-07 1997-05-07 Method for producing precipitation hardening type copper alloy strip Expired - Lifetime JP3746873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11730797A JP3746873B2 (en) 1997-05-07 1997-05-07 Method for producing precipitation hardening type copper alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11730797A JP3746873B2 (en) 1997-05-07 1997-05-07 Method for producing precipitation hardening type copper alloy strip

Publications (2)

Publication Number Publication Date
JPH10310855A true JPH10310855A (en) 1998-11-24
JP3746873B2 JP3746873B2 (en) 2006-02-15

Family

ID=14708517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11730797A Expired - Lifetime JP3746873B2 (en) 1997-05-07 1997-05-07 Method for producing precipitation hardening type copper alloy strip

Country Status (1)

Country Link
JP (1) JP3746873B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724310B1 (en) 2005-11-17 2007-06-04 주식회사 동화 티.씨이.에이 Heat Treatment method of precipitation hardened copper alloy tube or tube for mass production
WO2008029855A1 (en) * 2006-09-05 2008-03-13 The Furukawa Electric Co., Ltd. Method for manufacturing wire rod, apparatus for manufacturing wire rod, and copper alloy wire
JP2010150669A (en) * 2010-03-15 2010-07-08 Furukawa Electric Co Ltd:The Copper alloy material for electrical and electronic device, and method for producing the same
JP2011089173A (en) * 2009-10-22 2011-05-06 Ngk Insulators Ltd Production device for precipitation hardening type alloy thin strip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105715A (en) * 1973-02-14 1974-10-07
JPS5716133A (en) * 1980-07-03 1982-01-27 Nippon Steel Corp Continuous annealer for thin steel strip
JPS5776133A (en) * 1980-10-30 1982-05-13 Nippon Steel Corp Heating of thin metal sheet by contact conduction between metals and device therefor
JPH0559505A (en) * 1991-08-30 1993-03-09 Kobe Steel Ltd Manufacture of high strength copper alloy less in anisotropy
JPH05171378A (en) * 1991-12-16 1993-07-09 Mitsubishi Electric Corp Manufacture of copper alloy strip for electronic equipment
JPH0681090A (en) * 1992-08-31 1994-03-22 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105715A (en) * 1973-02-14 1974-10-07
JPS5716133A (en) * 1980-07-03 1982-01-27 Nippon Steel Corp Continuous annealer for thin steel strip
JPS5776133A (en) * 1980-10-30 1982-05-13 Nippon Steel Corp Heating of thin metal sheet by contact conduction between metals and device therefor
JPH0559505A (en) * 1991-08-30 1993-03-09 Kobe Steel Ltd Manufacture of high strength copper alloy less in anisotropy
JPH05171378A (en) * 1991-12-16 1993-07-09 Mitsubishi Electric Corp Manufacture of copper alloy strip for electronic equipment
JPH0681090A (en) * 1992-08-31 1994-03-22 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724310B1 (en) 2005-11-17 2007-06-04 주식회사 동화 티.씨이.에이 Heat Treatment method of precipitation hardened copper alloy tube or tube for mass production
WO2008029855A1 (en) * 2006-09-05 2008-03-13 The Furukawa Electric Co., Ltd. Method for manufacturing wire rod, apparatus for manufacturing wire rod, and copper alloy wire
JP2008088549A (en) * 2006-09-05 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing wire rod and copper alloy wire
US8815028B2 (en) 2006-09-05 2014-08-26 The Furukawa Electric Co., Ltd Method for manufacturing wire, apparatus for manufacturing wire, and copper alloy wire
JP2011089173A (en) * 2009-10-22 2011-05-06 Ngk Insulators Ltd Production device for precipitation hardening type alloy thin strip
US8636858B2 (en) 2009-10-22 2014-01-28 Ngk Insulators, Ltd. Production equipment and production method for precipitation hardened alloy strip
JP2010150669A (en) * 2010-03-15 2010-07-08 Furukawa Electric Co Ltd:The Copper alloy material for electrical and electronic device, and method for producing the same

Also Published As

Publication number Publication date
JP3746873B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
EP2641983A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME
TW200536946A (en) Method for producing Al-Mg-Si alloy excellent in bake-hardenability and hemmability
CN102844452A (en) Cu-si-co alloy for electronic materials, and method for producing same
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
TW201807210A (en) Al-mg-Si-based alloy material, Al-Mg-Si-based alloy plate, and method for manufacturing Al-Mg-Si-based alloy plate
JP6774196B2 (en) Al-Mg-Si based alloy material
JP5439610B2 (en) High strength, high conductivity copper alloy and method for producing the same
JP5225645B2 (en) Titanium copper for precision press working and manufacturing method thereof
JPS6132386B2 (en)
JPH10310855A (en) Production of precipitation hardening type copper alloy bar
US4066475A (en) Method of producing a continuously processed copper rod
JP7262947B2 (en) Al-Mg-Si alloy plate
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPS62130268A (en) Production of hot dip zinc coated mild steel sheet for working subjected to alloying treatment
US20220205074A1 (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP3843021B2 (en) Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability
JP3557953B2 (en) Aluminum alloy sheet for precision machining and method of manufacturing the same
JP4337199B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
EP4265349A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing electromagnetic steel sheet
JP3180812B2 (en) Method for producing Al-Fe alloy foil
JPH03285053A (en) Production of copper alloy for electronic equipment
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JP4329065B2 (en) Method for producing Ti-containing copper alloy sheet or strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term