WO2002053790A1 - High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same - Google Patents

High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same Download PDF

Info

Publication number
WO2002053790A1
WO2002053790A1 PCT/JP2001/011483 JP0111483W WO02053790A1 WO 2002053790 A1 WO2002053790 A1 WO 2002053790A1 JP 0111483 W JP0111483 W JP 0111483W WO 02053790 A1 WO02053790 A1 WO 02053790A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
grain size
less
strength
cold rolling
Prior art date
Application number
PCT/JP2001/011483
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Fukamachi
Masato Shigyo
Original Assignee
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Priority to KR10-2003-7007183A priority Critical patent/KR100535737B1/en
Priority to JP2002554288A priority patent/JP4177104B2/en
Publication of WO2002053790A1 publication Critical patent/WO2002053790A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a high-strength copper alloy excellent in bending workability, particularly high-strength phosphor bronze used for electronic components such as terminals and connectors, and a method for producing the same, and to a terminal-to-connector using them. .
  • Phosphor bronze strips such as C5210 and C 5191 (according to JISH 3110 and JISH 3130 ') and copper alloy materials such as C 2600 (according to JISH 3100) have excellent workability and mechanical strength, and are therefore electronic components. Widely used in terminal-connector applications.
  • high-strength copper alloys such as beryllium copper and titanium copper, and Corson alloy (Cu-Ni-Si) -based and chromium copper-based (Cu-Cr) , Cu—Cr—Zr, Cu—Cr—Sn).
  • these high-strength copper alloys which are relatively new as copper alloys for electronic components, do not yet have general versatility, so they are not suitable for market supply and demand and distribution. For example, there is a problem that it is not widely used in a market where priority is placed on standard. Also, these high-strength copper alloys are not preferable because they are more expensive than conventional copper alloys such as phosphor bronze.
  • an object of the present invention is to develop a technology that combines high strength and bending workability of a solid solution strengthened copper alloy, particularly a versatile phosphor bronze.
  • solid-solution strengthened copper alloys especially general-purpose phosphor bronze
  • grain boundary strengthening and dislocation strengthening that is, heat treatment and rolling
  • grain boundaries cannot be revealed in the final product.
  • various deformation bands such as a shear band and a micro band appear. Due to these deformation zones, the grain boundaries formed by recrystallization before cold working become discontinuous, and their cross sections are etched and observed with an optical microscope. The crystal structure becomes unclear even if it is observed.
  • the present inventors adjusted the cold rolling and annealing conditions of phosphor bronze and investigated the correlation between the characteristic values after final rolling, and found that the combined effect of grain boundary strengthening and dislocation strengthening was We succeeded in obtaining stable improvements.
  • the present invention provides a high strength copper alloy with excellent bendability, which can be defined by the following properties:
  • the average crystal grain size (mG S) after the bending is 5 ⁇ or less and the standard deviation (a GS) of the average crystal grain size is 1 Z 3 X m GS or less.
  • Copper alloy is Sn: l ⁇ l lma ss o / o , P: 0.03 ⁇ 0.35ma ss%, and Fe, Ni, Mg, Si, Zn, Cr , Ti, Zr, Nb, Al, Ag , Be, Ca, Y, Mn, and one or more of In: Phosphor bronze consisting of 0.05 to 2.0 mass% in total, with the balance being Cu and unavoidable impurities.
  • Copper alloy is Sn: l ⁇ l lma ss o / o , P: 0.03 ⁇ 0.35ma ss%, and Fe, Ni, Mg ⁇ Si, Zn, Cr, TiZr , Nb, Al, Ag, Be, Ca, Y, Mn, and one or more of In: 0.05 to 2.
  • the present invention also provides a method for producing a high-strength copper alloy having excellent bending workability based on the following conditions:
  • mGS average grain size
  • aGS standard deviation of the grain size
  • TS is the tensile strength after the final cold rolling with a work ratio of X (%).
  • the cold-rolled material (MP a), tensile strength TS a (MP a) is TS a rather TS.
  • the above methods (6) to (8) can be applied as the above-mentioned methods (1) to (5) for producing a copper alloy.
  • the present invention further provides a method for producing a high-strength copper alloy having excellent bending workability based on the following conditions:
  • the present invention also provides
  • the invention of claim 1 is directed to a copper alloy having a strength characteristic in which a difference between a tensile strength and a 0.2% proof stress is within 8 OMPa, wherein the copper alloy has an average crystallinity after an annealing test at 425 ° C for 10,000 seconds. It defines that the particle size (mGS) is 5 ⁇ or less, and the standard deviation ( ff GS) of the crystal particle size is 1/3 mGS or less.
  • the crystal grain size is measured by a cutting method according to JISH0501. Specifically, the number of crystal grains completely cut by a line segment of a predetermined length is counted, and the average value of the cut lengths is used as the crystal grain size.
  • the standard deviation which is an index of the variation, is It is not the standard deviation but the standard deviation of the grain size.
  • the copper alloy of the present invention is basically cold rolled at a workability of 45% or more, and finally annealed to have an average grain size (mGS) of 3 ⁇ or less and a standard deviation (GS) of the grain size of 2 / m or less, followed by final cold rolling at a work ratio of 10 to 45% or the average grain size (mGS) is 2 ⁇ or less and the standard deviation ( ⁇ GS) of the grain size is 1 ⁇ m
  • the product was manufactured by performing the following cold rolling at a working ratio of 20 to 70%. As mentioned above, if grain boundary strengthening and dislocation strengthening, ie, heat treatment and rolling, are used to increase the strength, grain boundaries cannot be revealed in the final product.
  • the present invention relates to a copper alloy having a strength characteristic in which the difference between the tensile strength and the 0.2% proof stress is within 8 OMPa, the average crystal grain size when annealed at 425 ° C for 10,000 seconds.
  • An object of the present invention is to provide a copper alloy having excellent bendability due to crystal grain characteristics having an (mGS) of 5 / xm or less and a standard deviation ( ff GS) of its crystal grain size of 1 / 3mGS or less.
  • the difference between the tensile strength and 0.2% proof stress decreases as the degree of cold working increases, but at the same time, ductility decreases and bending occurs. Cracking easily occurs during processing.
  • the present invention has found that by adjusting the final annealing conditions before the final rolling and the cold working conditions before the final rolling, the reduction of the total 14 can be reduced.
  • the difference between the tensile strength and the 0.2% proof stress is within 80 MPa. A remarkable effect can be expected in a high-strength copper alloy having the following characteristics.
  • the average crystal grain size is maintained at 5 jum or less.
  • the product is produced by setting the average grain size (mGS) to 2 ⁇ m or less and the standard deviation GS) of the crystal grain size to 1 ⁇ m or less, and then performing final cold rolling at a workability of 20 to 70%.
  • the copper alloy of the present invention has an ultrafine crystal structure in which a grain boundary cannot appear in the final product, but such a fine crystal structure is subjected to calcination at 425 ° C for 10,000 seconds.
  • it has the unique property that crystals do not grow and the average grain size is maintained at 5 ⁇ or less, and by using this property, it is distinguished from other copper alloys to define the copper alloy of the present invention. You can do it.
  • This product of copper alloys has low ductility reduction due to final cold working, and has both high strength and excellent bending workability when the products are manufactured.
  • the average crystal grain size after annealing at 425 ° C. for 1.0000 seconds is 3 ⁇ m or less, the relationship between tensile strength and bending workability is further improved.
  • the production method must be strictly controlled to achieve a uniform microstructure.
  • the allowable range of the variation must be less than l / 3mGS, expressed as the standard deviation of the crystal grain size. This is because when the standard deviation ((JGS)) exceeds 1/3 mGS, the effect of improving bending workability is small.
  • the present invention limits the copper alloy to phosphor bronze, which has a high tensile strength.
  • phosphor bronze to which tin is added as a solid solution strengthening element has a work hardening characteristic that differs depending on the tin concentration.
  • the range in which the present invention is particularly effective as a high-strength material is considered.
  • the tensile strength is shown as TS Sn (MPa)> 500 + 15 XSn (tin mass% concentration).
  • the copper alloy is limited to phosphor bronze, and the average grain size (mGS: ⁇ ) after annealing at 425 ° C. for 1000 seconds and the tin concentration (S n: ma ss%) are determined.
  • the relationship is mG S ⁇ 2.7 X exp (0.04 3 6 XS n)
  • the crystal grains so as to satisfy (0.043 6 X Sn).
  • This standard covers the processing conditions, properties (strength and bending workability) and 425 ° CX 10000 for phosphor bronze containing 1 to 11%, especially 2% to 10% tin.
  • This is an empirical formula that correlates the crystal grain size after heat treatment for a second. If the mGS is above the specified value, the effect of grain refinement is low, and high strength cannot be achieved unless the degree of rolling is increased, and the ductility of the high-strength material is greatly reduced. The performance is not improved.
  • the relationship between crystal grain size and strength (proof stress) is a force mainly due to the effect of grain refinement described by the generally known formula of Ha11-P etch After recrystallization. It has been found that the subsequent work hardening ability itself is increased by the crystal grain size.
  • this feature enables high strength to be achieved by low work rolling.
  • the lower limit is not specified, if the average crystal grain size (mGS) after final annealing is reduced to less than 0.4 ⁇ , the ductility reduced by cold rolling before final annealing cannot be fully recovered. Since the final cold rolling further reduces ductility, desirably, mGS should be 0.4 / zm or more. preferable.
  • the present invention relates to the above identified copper alloys, especially phosphor bronze, for the Fe, Ni, Mg, Si and Zn groups and for the Cr, Ti, Zr, Nb, Al, Ag, Be , Ca, Y, Mn, and In are added in a total of 0.05 to 2. Omass%.
  • the addition of trace amounts of Fe, Ni, Mg, and Si to the copper alloy is phosphor bronze means that these elements and P, etc., form intermetallic compounds and disperse in the matrix.
  • the present invention is to improve the characteristics of the bronze manufactured mainly by grain boundary strengthening and solid solution strengthening.
  • intermetallic compounds such as Fe-P are precipitated and dispersed in these combinations, the strength of the alloy itself is enhanced by the precipitation strengthening function, and the effect of pinning the crystal grain boundaries by residual particles of precipitates or crystallized substances This makes it difficult for crystal grains to grow and facilitates grain refinement.
  • 0.05 ma s s% is necessary, and if it exceeds 2. O mas s s%, it is harmful rather than electrical conductivity.
  • Zn is an element that suppresses the thermal delamination of tin and solder when added to a copper alloy.
  • Zn is added at about 0.5 ss% or more, its effect is exhibited, but when it exceeds 0.5 ss%, The improvement effect saturates and the electrical conductivity decreases.
  • Fe, Ni, Mg, Si, and Zn are additive elements that enhance the strength of phosphor bronze or improve the heat-peelability of tin and soldering, and it is recommended to add them.
  • the amount of addition is determined in consideration of bending workability and electrical conductivity, and the total amount is 0.05 to 2. Omass%. The reason is that if the total amount is less than 0.05 mass ° / o, the strength does not improve, and there is no effect of improving the heat-peeling resistance of the plating, and if it exceeds 2.0 mass%, the bending workability deteriorates and the electrical conductivity Is also reduced.
  • the decrease in electrical conductivity is particularly significant for low-tin high-conductivity phosphor bronze with a tin concentration of about 1 to 4 mass%.
  • Zn may be set to 0.1 to 0.5mass%. desirable.
  • These elements are elements that strengthen the copper alloy by solid solution strengthening and precipitation strengthening, and, as in the case of Fe, Ni, Mg, Si, and Zn, do not deteriorate the bending workability, and the total amount is 1. Addition of Omass% or less enables higher strength.
  • the present invention in the invention of claim 4, further defines the distribution of precipitates and crystals of the alloy element.
  • the particles that actually contribute to the nucleation of crystal grains and the pinning effect of grain boundaries in grain refinement include those with smaller diameters, but are observed at the level of a scanning electron microscope.
  • an excellent crystal grain refinement effect is observed in the state of the cross-sectional structure of the particle distribution described above. In other words, the substitute properties of grain refinement and Then, the distribution of the precipitates and crystals is specified.
  • the present invention relates to a method for producing a high-strength copper alloy having excellent bending workability. More specifically, in copper alloys manufactured by repeating cold rolling and annealing, the final cold rolling, the final annealing before that, and the excellent bending workability that defines the previous cold rolling process It relates to a method for producing a high-strength copper alloy '.
  • These inventions also basically aim at the effect of crystal grain refinement after final annealing and before final rolling.
  • T The material thickness before cold rolling.
  • X (t 0-1 ) t, where t is the material thickness after cold rolling.
  • X 100 (%) Defined degree of cold rolling before final annealing X is set to 45% or more.If it is less than 45%, even after adjusting the heat treatment conditions for final annealing, after final annealing, This is a force that makes it difficult for the crystal grain size to be reduced.
  • the crystal grain size is not normally distributed, but if the average crystal grain size (mGS) is 3 / ⁇ and its standard deviation (aGS) is 2 / zm, It means that 99% or more of the crystal grain size is less than mGS + 3 ⁇ GS, that is, 9 ⁇ or less.
  • crystal grains having a diameter of 8 ⁇ m or more are mixed in the recrystallized structure, and for that purpose, the standard deviation of the crystal grain diameter is desirably 1.5 ⁇ m or less.
  • the effect of the degree of cold rolling before final annealing on the recrystallized structure after final annealing is such that as the degree of work is increased, the grain size of the recrystallized structure after annealing tends to decrease, but at the same time, nucleation and subsequent Secondary recrystallization behavior greatly varies, and the particles tend to be mixed.
  • the tendency is strong in a copper alloy having a pure copper type recrystallized structure having a high copper concentration.
  • 30m ass ° /.
  • brass containing Zn or phosphor bronze containing 411 3% or more of 311 as described above recrystallized grains after relatively strong working are easily sized.
  • the standard deviation of the crystal grain size is preferably 2; ⁇ or less, but the average crystal grain size is 2 ⁇ m or less, and the standard deviation is 1 ⁇ m or less. If the variation in crystal grain size is reduced, the workability of final cold rolling is further increased due to the effect of uniform and fine grain size, and even if it is set to 20 to 70%, bending workability is not deteriorated. A high strength copper alloy is obtained.
  • the present invention is to perform strain relief annealing after final rolling on the above-mentioned copper alloy, and to specify the amount of decrease in tensile strength in the strain relief annealing. . (MP a), the tensile strength after stress relief annealing as TS a (MP a), TS a rather TS. X (the final cold rolling work ratio (%)).
  • Phosphor bronze, nickel silver, etc. may be subjected to strain relief annealing. Unlike recrystallization annealing performed before final rolling, strain relief annealing is intended to restore ductility (workability) after cold working and to improve spring properties, for example.
  • strain relief annealing is intended to restore ductility (workability) after cold working and to improve spring properties, for example.
  • phosphor bronze for springs C5 210: commonly used in JISH 310).
  • the copper alloy according to the present invention has higher strength and superior bending workability even after strain relief annealing than alloys manufactured by conventional techniques.
  • this material is subjected to strain relief annealing, and subjected to strain relief annealing to less than 67 OMPa. Can be obtained.
  • claims 6 to 8 are applicable to the production method of high-strength copper alloys, particularly, phosphor bronze described in claims 1 to 5. The description is as described above.
  • Hinaaki provides a high-strength copper alloy excellent in bending workability and a method of manufacturing the same for solid-solution strengthened copper alloys, particularly phosphor bronze-based copper alloys, and has a small and excellent bending property. Applicable to terminals-connectors that require high strength and high strength.
  • Example 1 (Example relating to the inventions according to claims 1 to 3)
  • Phosphor bronze with the composition shown in Table 1 was coated with charcoal in the air, dissolved, An agglomerate with a size of mm w X 4 Omm 1 X 15 Omm 1 was prepared.
  • the lump was homogenized and annealed at 700 in a 75% N 2 + 25% H 2 atmosphere at 700 for 1 hour, and the tin segregation layer on the surface was polished with a grinder and removed.
  • cold rolling and recrystallization annealing are repeated a plurality of times as necessary, and in particular, the cold rolling degree before the final annealing, the final recrystallization annealing, and the final cold rolling degree are adjusted.
  • a plate having a thickness of mm was obtained.
  • Table 1 shows the characteristics.
  • Tensile strength (TS: MPa) and 0.2% resistance (YS: MPa) were determined by taking a 13B test piece (JISZ 2201) in parallel with the rolling direction and performing a tensile test (JISZ 2241). .
  • the crystal grain size is calculated by the cutting method (JISH 0501), by counting the number of crystal grains completely cut by a line segment of a predetermined length, taking the average of the cut lengths as the crystal grain size, and the standard deviation of the crystal grain size ( aGS) is the standard deviation of the grain size. That is, the cross-sectional structure in the direction perpendicular to the rolling direction was magnified 4000 times with a scanning electron microscope image (SEM image), and the number of intersections between the line and the grain boundary was 50 in the line segment with a length of 50. Is the crystal grain size, and the average of each grain size obtained by measuring 10 line segments is the average grain size (mGS) in this application, and the standard deviation of each grain size is The standard deviation (crGS) in this application was used.
  • Table 1 shows Inventive Example 18 and Comparative Examples I to 4 which are conventional materials, and Examples A to E in which the parameters were further changed for the purpose of explaining the effect of the present invention (ratio: comparative example, small: book) (Indicating invention)) is shown separately for convenience.
  • Comparative examples 14 are examples of conventional materials, and when these examples and the present invention examples I to D were subjected to fefeT, they had the same composition and the same strength, but the present invention examples 1 to 4 and D It can be seen that r zt is small and the bending force tri property is improved.
  • Example D of the present invention is an example in which TS-YS is large in the scope of claim 1. (This is an example for the purpose of clarifying the definition of S-YS ⁇ 80. Indicates that the bending workability has been improved.)
  • Inventive Examples 5 to 8 are examples in which the crystal grain size is further reduced in Inventive Examples 1 to 4, but according to the tin concentration in accordance with mGS, 2.7 XeXp (0.0436 XSn). By adjusting the crystal grain size, the strength is improved, the shear force and rZt are equal or smaller, and the bending process is good.
  • Comparative Example B is an example in which mGS and ff GS satisfy claim 1, but TS-YS does not satisfy claim 1. Although the crystal grains after annealing are fine, the strength is low due to the large TS-YS, and the strength and bending workability are the same as those of conventional material C, and no improvement is observed.
  • Comparative Example C is an example for the purpose of comparison with Comparative Example B.
  • Comparative example E is an example for the purpose of comparison with inventive example D.
  • test piece was prepared in the same manner as in Example 1 with a composition to which iron, nickel, and the like were added based on the component of phosphor bronze.
  • the recrystallization sintering was adjusted while adjusting the crystal grains and observing the coarse precipitates, the residual state of the crystallized substances, and the growth of the precipitates.
  • the precipitates and crystals were analyzed for the number of particles in a cross section with a diameter of 0.1 ⁇ m or more using an energy dispersive analyzer of a field emission scanning electron microscope (FESEM) and observed.Table 2 shows the results. is there. From the comparison with the present invention C u- S n-P-based alloy Table 1, C u- S n - by the addition of other elements to P-based alloy trace, CxGS decreases, the further the crystal grain size It can be seen that the miniaturization can be stably performed, and further, by dispersing the particles composed of these elements, the strength is further improved and the bendability is excellent.
  • FESEM field emission scanning electron microscope
  • 'Comparative Example H is an example in which the sum of the sub-components exceeds 2.Omass%, and has poor bending workability.
  • Example 3 Examples of Verification of Inventions According to Claims 6, 7, 9, and 10.
  • the compositions of Examples 17 to 20 of the present invention correspond to Tables 1 to 4 in Example 1.
  • Comparative Examples 5 to 8 are examples of conventional materials.
  • Examples A to F ratio: comparative example, present: present the present invention in which the parameters are further changed for the purpose of explaining the effect of the present surprise are separately classified for convenience.
  • the test method was in accordance with Example 1. Table 3 shows the results.
  • Comparative Example 58 is an example of a conventional material, in which the degree of cold rolling before final annealing and the average crystal grain size in final annealing deviate from the present invention, but Examples 17 to 20 of the present invention are comparative examples.
  • Example 58 Higher strength, lower r / t and better bending workability than the conventional material of Example 8.
  • the present invention Example A the crystal grain size after recrystallization annealing of the present invention Example ⁇ 9 2. And 6, but satisfy the claim 6 is an example not satisfying the claim 7, the crystal grain size fine Example ⁇ Nine is slightly stronger.
  • Example B of the present invention is an example in which the final cold work degree satisfies claim 6 but does not satisfy claim 7, and the workability is low, that is, the strength is low V, and the bending workability is good.
  • Comparative Example D is an example in which the workability of rolling and mGS satisfy claims 6 and 7, but the temperature history during recrystallization firing is poor and ⁇ GS is not satisfied. Is bad.
  • Comparative Example ⁇ is an example in which the final cold rolling degree is low, but the strength is almost the same as that of the conventional material of Comparative Example F, and since the strength is low, no improvement effect is recognized.
  • Comparative example F is a conventional material example as described above (TS is about the same as ⁇ and rZt is the same).
  • 21 to 28 of the examples of the present invention correspond to the above examples of the present invention No. 2, 3, 4, 7, 8, 15, 16, and 20, respectively, as described above, and comparative examples (conventional materials).
  • Nos. 9 to 12 correspond to Comparative Examples Nos. 3, 4, 7, and 8 described above.
  • Comparative Examples A and B are for the purpose of showing a case where TS lowered by strain relief annealing is small, and correspond to Examples 16 and 20 of the present invention.
  • test pieces were subjected to strain relief annealing under various final cold rolling reduction conditions to evaluate their properties.
  • the amount of decrease in tensile strength (TS) due to strain relief annealing is also shown.
  • Invention Example No. 21 is a material having a tin concentration of 6.2 mass%, a tensile strength ( TS ) of 570 MPa, and a bending or raw ( r / t) of 0.
  • Inventive Examples Nos. 22, 24, 26, Comparative Examples Nos. 9 and 11, which are conventional materials, are tin-rich / gears of 8.0 to 8.2 mass%.
  • is (TS) is 6 5 2 ⁇ 7 6 0MP a
  • bending workability ⁇ chi / t) is 0 to 2.0
  • Comparative example The tensile strength (TS) was 650 ⁇ 6981 ⁇ ? & And the r / t force was 1.5 ⁇ 2.5, indicating that the present invention has high strength and good bending workability.
  • inventive examples Nos. 23, 25, 27, and 28 and the comparative examples No. 10 and 12 are materials having a tin concentration of 10.0 to 10.2 mass%, but the tensile strength (TS) of the inventive examples was Whereas, while the bending workability (r / t) is 1.5 to 3.0, the tensile strength (TS) force is 06 to 762 MPa and the r / t force is S3. 0 indicates that the present invention has high strength and good bending workability.
  • the material of the present invention subjected to the strain relief annealing can clearly achieve higher strength and improved bending workability than the conventional material of the comparative example. In other words, if the strength is the same, the bendability is significantly improved, and if the bendability is the same, the strength is greatly increased.
  • the copper alloy particularly the phosphor bronze alloy
  • the copper alloy can be strengthened without deteriorating the bending workability, and the characteristics required for the copper alloy for terminals and connectors for electronic components can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

A high strength copper alloy excellent in bendability which has been finally cold rolled, has a difference between a tensile strength and a 0.2% proof stress of 80 Mpa or less, and has been subjected to such a control of structure that it exhibits a mean grain size (mGS) of 5 νm after the anneal at 425°C for 10,000 sec and a standard deviation of said mean grain size (σGS) of 1/3 X mGS or less; a method for producing the copper alloy which comprises subjecting a copper alloy to a cold rolling at a working ratio of 45 % or more, subjecting the resultant product to a final annealing to provide an alloy having a mean grain size (mGS) of 3νm and a standard deviation of said mean grain size (σGS) of 2 νm or less, and then subjecting the annealed product to a final cold rolling at a working ratio of 10 to 45 %. The above copper ally has been found as a result of an investigation for providing a high strength material having excellent bendability in a general copper alloy, particularly phosphor bronze, which involves adjusting the conditions for the cold rolling and annealing of phosphor bronze, searching the relationship between various properties after final rolling and has lead to stable accomplishment of the improvement of the properties which is considered to be due to the combined effect of grain boundary reinforcement and dislocation reinforcement.

Description

明 細 書 曲げ加工性に優れた高強度銅合金及ぴその製造方法及び それを用いた端子 ·コネクタ  Description High-strength copper alloy with excellent bending workability, method for producing the same, and terminals and connectors using the same
(発明の属する技術分野) (Technical field to which the invention belongs)
本発明は、 端子 ·コネクタ等の電子部品用に用いられる曲げ加工性に優れた高 強度銅合金、 特には高強度りん青銅、 及びその製造方法、 並びにそれらを用いた 端子■コネクタに関するものである。  The present invention relates to a high-strength copper alloy excellent in bending workability, particularly high-strength phosphor bronze used for electronic components such as terminals and connectors, and a method for producing the same, and to a terminal-to-connector using them. .
(従来の技術) (Conventional technology)
C5210、 C 5191 (J I S H 31 10、 J I S H 3130'によ る) などのりん青銅条あるいは C 2600 (J I S H 3100による) 等の 銅合金材は、 優れた加工性と機械的強度を有するため、 電子部品用として端子- コネクタなどの用途で広く用いられている。  Phosphor bronze strips such as C5210 and C 5191 (according to JISH 3110 and JISH 3130 ') and copper alloy materials such as C 2600 (according to JISH 3100) have excellent workability and mechanical strength, and are therefore electronic components. Widely used in terminal-connector applications.
近年は電子部品の軽薄 ·短小化の進展が従前にもまして著しく、 これに対応し て、 電子部品用の銅合金条にも、 薄い厚さの材料が要求されている。 しカゝし、 材 料が薄くなつた場合、 コネクタの接圧等を維持するため、 材料自体の強度が高い ことが必要とされる。 一方、 電子部品の小型化のためには、 小さなスペースでそ の機能を果たすために、 曲げ加工も小さな曲げ半径で施され、 高い曲げ加工性が 要求される。 従って、 高強度で且つ曲げ加工性が良好であるという、 相矛盾した 特性が材料に要求されている。  In recent years, the progress of lighter, thinner and shorter electronic components has been more remarkable than before, and accordingly, copper alloy strips for electronic components have been required to have a thinner material. However, when the material becomes thin, the strength of the material itself is required to maintain the contact pressure of the connector. On the other hand, in order to miniaturize electronic components, in order to fulfill its function in a small space, bending is performed with a small bending radius, and high bending workability is required. Therefore, contradictory properties such as high strength and good bending workability are required for the material.
これに伴い、 ベリリウム銅、 チタン銅等の高強度型銅合金、 また、 導電†生が要 求される部位では、 コルソン合金 (Cu—N i—S i) 系、 クロム銅系 (Cu— Cr、 Cu— C r— Z r、 Cu— Cr— Sn等) の合金が使用されている。 しかしながら、 電子部品用銅合金として比較的新しい、 これら高強度型の銅合 金は、 それらが未だ汎用性を有しないことから、 市場での需給、 流通に関する制 限があり、 例えばグ口一パルスタンダード重視の市場では広く使用され難いとい う問題がある。 また、 これら高強度銅合金は、 価格がりん青銅等の従来型銅合金 より高価である点でも好ましくはな 、。 Along with this, high-strength copper alloys such as beryllium copper and titanium copper, and Corson alloy (Cu-Ni-Si) -based and chromium copper-based (Cu-Cr) , Cu—Cr—Zr, Cu—Cr—Sn). However, these high-strength copper alloys, which are relatively new as copper alloys for electronic components, do not yet have general versatility, so they are not suitable for market supply and demand and distribution. For example, there is a problem that it is not widely used in a market where priority is placed on standard. Also, these high-strength copper alloys are not preferable because they are more expensive than conventional copper alloys such as phosphor bronze.
これらの観点から、 従来銅合金のなかでも比較的高い機械的強度を有するとい われてきた黄銅、 りん青銅といった一般的な銅合金について、 強度や加工性のさ らなる改良が求められるようになった。 加工性としては、 とりわけ曲げ加工性が 良好であることが要求される。 これは、 携帯電話、 デジタルカメラ、 ビデオカメ ラ等の高密度実装化の進展に伴い、 電子部品の端子'コネクタ、 リードフレーム 等の金属部材も過酷な曲げ成形が行われるからである。  From these viewpoints, general copper alloys such as brass and phosphor bronze, which have been said to have relatively high mechanical strength among conventional copper alloys, require further improvements in strength and workability. Was. As for workability, good bendability is particularly required. This is because with the progress of high-density packaging of mobile phones, digital cameras, video cameras, etc., severe bending of metal parts such as terminals, connectors, and lead frames of electronic components is also performed.
一般に、 金属の強度を高めるには、 固溶強化 > 析出強化、 粒界強化、 転位強化 などの方法の糸且み合わせによる方法が試みられている。 成分組成範囲が規格化さ れているりん青銅は、 固溶強化型銅合金であり、 更にその強度を改善するために 、 粒界強化と転位強化の観点から冷間圧延、 焼鈍等の調質により高強度化が図ら れてはいるものの、 近年の急速な電子部品の軽薄■短小化の進展のニーズに遅れ を取っているのが現状である。  Generally, in order to increase the strength of a metal, a method such as solid solution strengthening> precipitation strengthening, grain boundary strengthening, dislocation strengthening, and the like, which are combined with each other, have been attempted. Phosphor bronze, whose component composition range is standardized, is a solid solution strengthened copper alloy. In order to further improve its strength, tempering such as cold rolling and annealing is performed from the viewpoint of grain boundary strengthening and dislocation strengthening. Although it is intended to achieve higher strength, the current situation is that it has lagged the recent demand for rapid progress in making electronic components lighter, thinner and shorter.
(発明が解決しようとする課題) (Problems to be solved by the invention)
こうした現状をふまえて、 本発明の課題は、 固溶強化型銅合金、 特に汎用性の あるりん青銅について、 高い強度と曲げ加工性とを兼備させる技術を開発するこ とにある。  In view of such a current situation, an object of the present invention is to develop a technology that combines high strength and bending workability of a solid solution strengthened copper alloy, particularly a versatile phosphor bronze.
(課題を解決するための手段) (Means for solving the problem)
固溶強化型銅合金、 特に汎用性のあるりん青銅を粒界強化および転位強化、 す なわち熱処理と圧延加工により高強度化すると、 最終製品では結晶粒界を現出す ることができない。 すなわち、 冷間加工により金属条を変形させると、 その進展 に伴い、 結晶粒内部での局部的変形の差異が顕著になり、 せん断帯、 マイクロバ ンド等の各種の変形帯が現れる。 これらの変形帯によって、 冷間加工前に再結晶 で形成された粒界は不連続的になり、 その断面をエッチングして光学顕微鏡で観 察しても結晶組織は不明瞭なものとなる。 冷間加工度が 20%程度でも、 透過型 電子顕微鏡像で組織を観察すると、 冷間加工前の再結晶粒界の一部が残存してい ることが観察されるが、 既にセル組織で覆われており、 正確に結晶粒径を特定す ることはできない。 このことが、 冷間圧延材の特性改善を行うことの大きな障害 であった。 If solid-solution strengthened copper alloys, especially general-purpose phosphor bronze, are strengthened by grain boundary strengthening and dislocation strengthening, that is, heat treatment and rolling, grain boundaries cannot be revealed in the final product. In other words, when the metal strip is deformed by cold working, the difference in local deformation inside the crystal grain becomes remarkable with the progress, and various deformation bands such as a shear band and a micro band appear. Due to these deformation zones, the grain boundaries formed by recrystallization before cold working become discontinuous, and their cross sections are etched and observed with an optical microscope. The crystal structure becomes unclear even if it is observed. Even when the degree of cold working is about 20%, when observing the structure with a transmission electron microscope image, it is observed that a part of the recrystallized grain boundary before cold working remains, but it is already covered with the cell structure. Therefore, the crystal grain size cannot be specified accurately. This was a major obstacle to improving the properties of cold rolled materials.
本発明者らは、 りん青銅の冷間圧延 '焼鈍条件を調整し、 最終圧延後における 各特性値間の相関を調査することにより、 粒界強化と転位強化とによる複合効果 と推定される特性の改善を安定的に得ることに成功した。 本発明は、 次のような 特性により定義されうる、 曲げ加工性に優れた高強度銅合金を提供する:  The present inventors adjusted the cold rolling and annealing conditions of phosphor bronze and investigated the correlation between the characteristic values after final rolling, and found that the combined effect of grain boundary strengthening and dislocation strengthening was We succeeded in obtaining stable improvements. The present invention provides a high strength copper alloy with excellent bendability, which can be defined by the following properties:
(1) 引張強さと 0. 2%耐力との差が 8 OMP a以内である、 最終冷間圧延 された銅合金であって、 該銅合金が 4 2 5°Cで 1 00 0 0秒間焼鈍した後の平均 結晶粒径 (mG S) が 5 μιη以下且つ該平均結晶粒径の標準偏差 (a G S) が 1 Z 3 X m G S以下である特性を有することを特徴とする曲げ加工性に優れた高強 度銅合金、  (1) A final cold-rolled copper alloy in which the difference between the tensile strength and the 0.2% proof stress is within 8 OMPa, the copper alloy being annealed at 425 ° C for 100 000 seconds. The average crystal grain size (mG S) after the bending is 5 μιη or less and the standard deviation (a GS) of the average crystal grain size is 1 Z 3 X m GS or less. Excellent high-strength copper alloy,
(2) S n : l〜: L lma s s %、 P : 0. 0 3〜0. 3 5m a s s 0/o、 残部 Cuおよび不可避的不純物よりなり、 T SSn (MP a) で表記される引張強さが 、 T SSn > 5 0 0+ 1 5 X S n (S n:錫濃度 (ma s s %) ) である銅合金で あって、 該銅合金が 4 2 5°Cで 1 0 000秒間焼鈍した後の平均結晶粒径 (mG S) が 5 /X m以下且つ該平均結晶粒径の標準偏差 (a G S) が lZ3 XmGS以 下である特性を有することを特徴とする (1) に記載の曲げ加工性に優れた高強 度銅合金、 (2) Sn: l ~: L lma ss%, P: 0.03 ~ 0.35mass 0 / o, composed of the balance Cu and unavoidable impurities, and represented by TS Sn (MPa) A copper alloy having a strength of TS Sn > 500 + 15 XSn ( Sn : tin concentration (mass%)), and the copper alloy is annealed at 425 ° C for 100 000 seconds. (1) characterized in that the average crystal grain size (mG S) after the process is 5 / Xm or less and the standard deviation (a GS) of the average crystal grain size is 1Z3 XmGS or less. High-strength copper alloy with excellent bending workability
(3) S n : l〜: L lma s s %、 P : 0. 0 3〜0. 3 5ma s s %、 残部 C uおよび不可避的不純物よりなり、 42 5 °Cで 1 0 000秒間焼鈍した後の平 均結晶粒径 (mGS (μτϊΐ) ) が mGSく 2. 7 X e x p (0. 043 6 X S n (3) Sn: l ~: L lma ss%, P: 0.03 ~ 0.35ma ss%, consisting of residual Cu and unavoidable impurities, after annealing at 425 ° C for 100 000 seconds The average grain size (mGS (μτϊΐ)) of mGS is less than mGS.2.7 X exp (0.043 6 XS n
(S n :錫濃度 (ma s s %) ) であることを特徴とする (1) 乃至 (2) に記 載の曲げ加工性に優れた高強度銅合金、 (Sn: tin concentration (mass%)), characterized in that it is a high-strength copper alloy excellent in bending workability according to (1) or (2),
(4) 銅合金が S n : l〜l lma s s o/o、 P : 0. 0 3〜0. 3 5ma s s %、 及ぴ F e、 N i、 Mg、 S i、 Z n、 C r、 T i、 Z r、 Nb、 A l、 Ag 、 B e、 Ca、 Y、 Mn、 及ぴ I nの一種若しくは 2種以上:合計で 0. 05〜 2. 0 m a s s %、 残部 C uおよび不可避的不純物からなるりん青銅であること を特徴とする (1) 乃至 (3) に記載の曲げ加工性に優れた高強度銅合金、 (4) Copper alloy is Sn: l ~ l lma ss o / o , P: 0.03 ~ 0.35ma ss%, and Fe, Ni, Mg, Si, Zn, Cr , Ti, Zr, Nb, Al, Ag , Be, Ca, Y, Mn, and one or more of In: Phosphor bronze consisting of 0.05 to 2.0 mass% in total, with the balance being Cu and unavoidable impurities. A high-strength copper alloy excellent in bending workability according to (1) to (3),
( 5 ) 銅合金が Sn : l〜l lma s so/o、 P : 0. 03〜0. 35ma s s %、 及ぴ F e、 N i、 Mgヽ S i、 Zn、 Cr、 T i Z r、 Nb、 Al、 Ag 、 B e、 C a、 Y、 Mn、 及ぴ I nの一種若しくは 2種以上:合計で 0. 05〜 2. Oma s s%、 残部 C uおよび不可避的不純物からなるりん青銅であり、 力 つ合金元素の析出物または晶出物を主成分とする 0. 1 μ m以上の径の粒子が圧 延方向に対し平行に切断した断面で 100個/ mm2以上存在することを特徴と する (1) 乃至 (3) に記載の曲げ加工性に優れた高強度銅合金。 (5) Copper alloy is Sn: l ~ l lma ss o / o , P: 0.03 ~ 0.35ma ss%, and Fe, Ni, Mg ヽ Si, Zn, Cr, TiZr , Nb, Al, Ag, Be, Ca, Y, Mn, and one or more of In: 0.05 to 2. Oma ss% in total, the balance Cu and phosphorus consisting of unavoidable impurities a bronze, present in a section 0. 1 mu m or more in the diameter of the particles composed mainly of precipitates or crystallized substances forces one alloy element taken parallel to relative rolling direction 100 / mm 2 or more A high-strength copper alloy excellent in bending workability according to any one of (1) to (3), characterized in that:
本発明はまた、 次の条件に基づく曲げ加工性に優れた高強度銅合金の製造方法 を提供する:  The present invention also provides a method for producing a high-strength copper alloy having excellent bending workability based on the following conditions:
(6) 加工度 45%以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS) を 3 m以下そして該結晶粒径の標準偏差 (aGS) を 2 m以下とし、 続いて 加工度 10〜 45 %の最終冷間圧延を施すことを特徴とする曲げ加工性に優れた 高強度銅合金の製造方法、  (6) After cold rolling at a workability of 45% or more, final annealing is performed to reduce the average grain size (mGS) to 3 m or less and the standard deviation (aGS) of the crystal grain size to 2 m or less. A method for producing a high-strength copper alloy with excellent bending workability, characterized by subjecting to final cold rolling of 10 to 45%,
(7) 加工度 45%以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS) を 2 m以下そして該結晶粒径の標準偏差 (aGS) を 以下とし、 続いて 加工度 20〜70%の最終冷間圧延を施すことを特徴とする曲げ加工性に優れた 高強度銅合金の製造方法、  (7) After cold rolling at a working ratio of 45% or more, final annealing is performed to reduce the average grain size (mGS) to 2 m or less and the standard deviation of the grain size (aGS) to the following values. A method for producing a high-strength copper alloy with excellent bending workability, characterized by performing a final cold rolling of 70%.
(8) 加工度 X (%) の最終冷間圧延を施した引張強さが TS。 (MP a) の 冷間圧延材を、 引張強さ TSa (MP a) が TSaく TS。一 Xとなるまで歪取焼 鈍を施すことを特徴とする (6) 乃至 (7) に記載の曲げ加工性に優れた高強度 銅合金の製造方法。 (8) TS is the tensile strength after the final cold rolling with a work ratio of X (%). The cold-rolled material (MP a), tensile strength TS a (MP a) is TS a rather TS. (1) The method for producing a high-strength copper alloy excellent in bending workability according to (6) to (7), wherein the strain relief annealing is performed until the value becomes X.
上記方法 (6) 〜 (8) は、 上記. (1) 乃至 (5) の銅合金の製造方法として 適用することができる。 本発明は更に、 次の条件に基づく曲げ加工性に優れた高 強度銅合金の製造方法を提供する :  The above methods (6) to (8) can be applied as the above-mentioned methods (1) to (5) for producing a copper alloy. The present invention further provides a method for producing a high-strength copper alloy having excellent bending workability based on the following conditions:
(9) 加工度 45%以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS) を 3 μπι以下そして該結晶粒径の標準偏差 (aGS) を 2μπι以下とし、 続いて 加工度 10〜45%の最終冷間圧延を施すことを特徴とする (1) 乃至 (5) に 記載の曲げ加工性に優れた高強度銅合金の製造方法、 (9) After cold rolling at a workability of 45% or more, final annealing and average grain size (mGS) (3) or less and the standard deviation (aGS) of the crystal grain size is 2 μπι or less, followed by final cold rolling at a workability of 10 to 45%. A method for producing a high-strength copper alloy with excellent bending workability,
(10) 加工度 45%以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS ) を 2 μ m以下そして該結晶粒径の標準偏差 ( σ G S ) を 1 μ m以下とし、 続い て加工度 20〜 70%の最終冷間圧延を施すことを特徴とする (1) 乃至 (5) に記載の曲げ加工性に優れた高強度銅合金の製造方法、 .  (10) After cold rolling at a workability of 45% or more, final annealing is performed to reduce the average grain size (mGS) to 2 μm or less and the standard deviation (σ GS) of the grain size to 1 μm or less. The method for producing a high-strength copper alloy excellent in bending workability according to any one of (1) to (5), wherein final cold rolling is performed at a workability of 20 to 70%.
(1 1) (9) 乃至 (10) と関連して、 加工度 X (%) の最終冷間圧延を施 した引張強さが TS。 (MP a) の冷間圧延材を引張強さ TSa (MP a) が TS a<T S0— Xとなるまで歪琅焼鈍を施すことを特徴とする (1) 乃至 (5) に記 載の曲げ加工性に優れた高強度銅合金の製造方法。 (11) In connection with (9) to (10), the tensile strength after final cold rolling with a workability of X (%) is TS. (MP a) cold tensile strength rolled material TS a (MP a) of TS a <TS 0 - until X is characterized by applying strain琅焼blunt (1) to serial mounting (5) For producing high-strength copper alloys with excellent bending workability.
本発明はまた、 用途として、  The present invention also provides
(1 2) (1) 乃至 (5) の曲げ加工性に優れた高強度銅合金を用いた端子 - コネクタを提供する。  (1 2) A terminal-connector using a high-strength copper alloy excellent in bending workability according to (1) to (5).
(発明の実施の形態) (Embodiment of the invention)
以下に本発明を構成する各要素の限定理由について、 請求項の発明毎 (本発明 ともいう) に説明する。  Hereinafter, the reasons for limiting each element constituting the present invention will be described for each claimed invention (also referred to as the present invention).
(請求項 1の曲げ加工性に優れた高強度銅合金の発明) (Invention of a high-strength copper alloy excellent in bending workability according to claim 1)
請求項 1の発明は、 引張強さと 0. 2%耐力との差が 8 OMP a以内である強 度特性の銅合金において、 該銅合金が 425°Cで 10000秒間焼鈍試験後の平 均結晶粒径 (mGS) が 5μπι以下、 その結晶粒径の標準偏差 (ff GS) が 1/ 3 mG S以下となる特性を有することを規定する。 The invention of claim 1 is directed to a copper alloy having a strength characteristic in which a difference between a tensile strength and a 0.2% proof stress is within 8 OMPa, wherein the copper alloy has an average crystallinity after an annealing test at 425 ° C for 10,000 seconds. It defines that the particle size (mGS) is 5μπι or less, and the standard deviation ( ff GS) of the crystal particle size is 1/3 mGS or less.
なお、 本発明において、 結晶粒径の測定は、 J I S H 0501に準じた切 断法により行う。 具体的には、 所定長さの線分により完全に切られる結晶粒数を 数え、 その切断長さの平均値を結晶粒径とした、 そのばらつきの指標である標準 偏差は、 切断長さの標準偏差ではなく、 その結晶粒径の標準偏差である。 本発明の銅合金は、 基本的に、 加工度 45%以上で冷間圧延後、 最終焼鈍して 平均結晶粒径 (mGS) を 3 ιη以下そして該結晶粒径の標準偏差 ( GS) を 2/ m以下とし、 続いて加工度 10〜45%の最終冷間圧延を施すことによって あるいは平均結晶粒径 (mGS) を 2 πι以下そして該結晶粒径の標準偏差 (σ GS) を 1 μ m以下とし、 続いて加工度 20〜 70 %の最終冷間圧延を施すこと によって製品化されたものである。 既に述べたように、 粒界強化および転位強化 、 すなわち熱処理と圧延加工により高強度化すると、 最終製品では結晶粒界を現 出することができない。 すなわち、 冷間加工により金属条を変形させると、 その 進展に伴い、 結晶粒内部での局部的変形の差異が顕著になり、 せん断帯、 マイク 口バンド等の各種の変形帯が現れる。 これらの変形帯によって、 冷間加工前に再 結晶で形成された粒界は不連続的になり、 その断面をェツチングして光学顕微鏡 で観察しても結晶組織は不明瞭なものとなる。 冷間加工度が 20%程度でも、 透 過型電子顕微鏡像で組織を観察すると、 冷間加工前の再結晶粒界の一部が残存し ていることが観察されるが、 既にセル組織で覆われており、 正確に結晶粒径を特 定することはできない。 すなわち、 結晶粒径の正確な定量化が極めて困難であつ た。 In the present invention, the crystal grain size is measured by a cutting method according to JISH0501. Specifically, the number of crystal grains completely cut by a line segment of a predetermined length is counted, and the average value of the cut lengths is used as the crystal grain size.The standard deviation, which is an index of the variation, is It is not the standard deviation but the standard deviation of the grain size. The copper alloy of the present invention is basically cold rolled at a workability of 45% or more, and finally annealed to have an average grain size (mGS) of 3 ιη or less and a standard deviation (GS) of the grain size of 2 / m or less, followed by final cold rolling at a work ratio of 10 to 45% or the average grain size (mGS) is 2πι or less and the standard deviation (σ GS) of the grain size is 1 μm The product was manufactured by performing the following cold rolling at a working ratio of 20 to 70%. As mentioned above, if grain boundary strengthening and dislocation strengthening, ie, heat treatment and rolling, are used to increase the strength, grain boundaries cannot be revealed in the final product. In other words, when the metal strip is deformed by cold working, the difference in local deformation inside the crystal grains becomes remarkable with the progress, and various deformation bands such as a shear band and a microphone opening band appear. Due to these deformation bands, the grain boundaries formed by recrystallization before cold working become discontinuous, and the crystal structure becomes unclear even when the cross section is etched and observed with an optical microscope. Even when the degree of cold working is about 20%, when observing the structure with a transmission electron microscope image, it is observed that a part of the recrystallized grain boundary before cold working remains, but it has already been observed in the cell structure. It is covered and the crystal grain size cannot be determined accurately. That is, it was extremely difficult to accurately quantify the crystal grain size.
本発明では、 冷間加工後の再結晶挙動が曲げ加工性と強度とを共に備える銅合 金の特性と相関があることを見出した。 この相関は、 材料の特定に有効である。 即ち、 本発明は、 引張強さと 0. 2%耐力との差が 8 OMP a以内である強度特 性の銅合金において、 425 °Cにて 10000秒間焼鈍したときの平均結晶粒径 In the present invention, it has been found that the recrystallization behavior after cold working is correlated with the properties of copper alloy having both bending workability and strength. This correlation is useful for material identification. That is, the present invention relates to a copper alloy having a strength characteristic in which the difference between the tensile strength and the 0.2% proof stress is within 8 OMPa, the average crystal grain size when annealed at 425 ° C for 10,000 seconds.
(mGS) が 5 /xm以下、 かつその結晶粒径の標準偏差 (ff GS) が l/3mG S以下となる結晶粒特性による優れた曲げ加工性を兼備する銅合金を提供するも のである。 An object of the present invention is to provide a copper alloy having excellent bendability due to crystal grain characteristics having an (mGS) of 5 / xm or less and a standard deviation ( ff GS) of its crystal grain size of 1 / 3mGS or less.
一般的に焼鈍後、 冷間加工を行う際、 冷間加工度を増加させていくと、 引張強 さと 0. 2%耐力との差は減少していくが、 それと共に延性が低下し、 曲げ加工 で割れが発生し易くなる。 ところが、 本発明は、 最終圧延前の最終焼鈍条件とそ の前の冷間加工条件を調整することにより、 その延 14の低下が少なくしうること を見出した。 この特个生は、 引張強さと 0. 2%耐力との差が 80 MP a以内であ る特性を有する高強度銅合金において顕著な効果が期待できる。 Generally, when performing cold working after annealing, the difference between the tensile strength and 0.2% proof stress decreases as the degree of cold working increases, but at the same time, ductility decreases and bending occurs. Cracking easily occurs during processing. However, the present invention has found that by adjusting the final annealing conditions before the final rolling and the cold working conditions before the final rolling, the reduction of the total 14 can be reduced. The difference between the tensile strength and the 0.2% proof stress is within 80 MPa. A remarkable effect can be expected in a high-strength copper alloy having the following characteristics.
本発明銅合金は、 従来の銅合金では結晶粒径が大きく成長してしまう条件であ る 425°CX 10000秒間の条件で焼鈍を行っても、 平均結晶粒径が 5 jum以 下に維持されるというユニークな特性によっても定義される。 最終焼鈍して平均 結晶粒径 (mGS) を 3 μπι以下そして該結晶粒径の標準偏差 (び GS) を 2/ m以下とし、 続いて加工度 10~45%の最終冷間圧延を施すまたは平均結晶粒 径 (mGS) を 2 μ m以下そして該結晶粒径の標準偏差 GS) を 1 μ m以下 とし、 続いて加工度 20〜 70 %の最終冷間圧延を施すことことによって製品化 された本発明銅合金は最終製品では結晶粒界を現出することができない超微細な 結晶組織を有するものであるが、 こうした 微細結晶組織は 425°CX 1000 0秒間の条件で焼鲍を行っても、 結晶が成長せず、 平均結晶粒径が 5 μιη以下に 維持されるというユニークな特性を有し、 この特性を利用することで他の銅合金 と識別して本発明銅合金を定義することができるのである。  Even if the copper alloy of the present invention is annealed at 425 ° C for 10,000 seconds, which is a condition under which the conventional copper alloy grows with a large crystal grain size, the average crystal grain size is maintained at 5 jum or less. Is also defined by the unique property of After final annealing, reduce the average grain size (mGS) to 3 μπι or less and the standard deviation of the grain size (and GS) to 2 / m or less, and then perform final cold rolling at a workability of 10 to 45% or The product is produced by setting the average grain size (mGS) to 2 μm or less and the standard deviation GS) of the crystal grain size to 1 μm or less, and then performing final cold rolling at a workability of 20 to 70%. In addition, the copper alloy of the present invention has an ultrafine crystal structure in which a grain boundary cannot appear in the final product, but such a fine crystal structure is subjected to calcination at 425 ° C for 10,000 seconds. However, it has the unique property that crystals do not grow and the average grain size is maintained at 5 μιη or less, and by using this property, it is distinguished from other copper alloys to define the copper alloy of the present invention. You can do it.
本努明銅合金の製品は、 その製品を製造する際に、 最終冷間加工による延性の 低下が少なく、 高強度で優れた曲げ加工性を兼備する。  This product of copper alloys has low ductility reduction due to final cold working, and has both high strength and excellent bending workability when the products are manufactured.
更に望ましくは 425°CX 1.0000秒間焼鈍後の平均結晶粒径が 3 μ m以下 であれば、 一層引張強さと曲げ加工性との関係が改善される。  More preferably, if the average crystal grain size after annealing at 425 ° C. for 1.0000 seconds is 3 μm or less, the relationship between tensile strength and bending workability is further improved.
し力 し、 平均結晶粒径 (mGS) が 5 im以下であっても結晶粒径がばらつい ていては、 その効果は低い。 後述するが、 製造方法を厳密に制御し、 均一な微細 組織としなければならない。 そのばらつきの許容範囲は、 結晶粒径の標準偏差で 表して、 l/3mGS以下でなければならない。 これは、 標準偏差 ((J G S) が 1/3 mGSを超えると、 曲げ加工性の改善効果が小さいためである。  However, even if the average grain size (mGS) is 5 im or less, the effect is low if the grain size varies. As will be described later, the production method must be strictly controlled to achieve a uniform microstructure. The allowable range of the variation must be less than l / 3mGS, expressed as the standard deviation of the crystal grain size. This is because when the standard deviation ((JGS)) exceeds 1/3 mGS, the effect of improving bending workability is small.
(請求項 2の曲げ加工性に優れた高強度銅合金の発明) (Invention of a high-strength copper alloy excellent in bending workability according to claim 2)
本発明は、 銅合金を高い引張強さを有するりん青銅に限定するものである。 銅合金のなかでも特に、 錫を固溶強化元素として添加したりん青銅は、 加工硬 化特性が錫濃度により異なることから、 りん青銅の場合について、 本発明が特に 高強度材として有効な範囲を、 錫濃度と引張強さとの間の、 実験的に得られた関 係として、 The present invention limits the copper alloy to phosphor bronze, which has a high tensile strength. Of the copper alloys, phosphor bronze to which tin is added as a solid solution strengthening element has a work hardening characteristic that differs depending on the tin concentration.Therefore, in the case of phosphor bronze, the range in which the present invention is particularly effective as a high-strength material is considered. The experimentally determined relationship between tin concentration and tensile strength As a clerk,
引張強さ T SSn (MP a) > 5 0 0+ 1 5 X S n (錫 m a s s %濃度) において示したものである。 この関係を満たす程、 請求項 1に記載の構成要素が 効力を一層発揮する。 すなわち冷間加工度が低い場合は延性の低下も少なく、 結 晶粒径を制御しなくても、 良好な曲げ加工性を有し、 最終焼鈍以前の製造条件の 影響が少なくなるからである。 The tensile strength is shown as TS Sn (MPa)> 500 + 15 XSn (tin mass% concentration). The more satisfying this relationship, the more effective the components described in claim 1 will be. That is, when the degree of cold working is low, the ductility decreases little, and even if the crystal grain size is not controlled, good bending workability is obtained, and the influence of manufacturing conditions before final annealing is reduced.
(請求項 3の曲げ加工性に優れた高強度銅合金の発明) (Invention of a high-strength copper alloy excellent in bending workability according to claim 3)
本発明は、 同様に銅合金をりん青銅に限定し、 4 2 5°CX 1 0 0 00秒間焼鈍 後の平均結晶粒径 (mGS : μχη) と錫濃度 (S n : ma s s %) との関係を mG S < 2. 7 X e x p (0. 04 3 6 X S n)  In the present invention, similarly, the copper alloy is limited to phosphor bronze, and the average grain size (mGS: μχη) after annealing at 425 ° C. for 1000 seconds and the tin concentration (S n: ma ss%) are determined. The relationship is mG S <2.7 X exp (0.04 3 6 XS n)
と規定するものである。 りん青銅の場合、 再結晶粒の粒成長挙動はりん青銅固有 の傾向を示す。 即ち、 最終焼鈍での平均再結晶粒径が、 mGSく 2. 7 X e X p It is specified. In the case of phosphor bronze, the grain growth behavior of recrystallized grains shows a tendency peculiar to phosphor bronze. That is, the average recrystallized grain size in the final annealing is mGS
(0. 043 6 X S n) であるように 結晶粒を調整することが好ましい。 本規 定は、 1〜 1 1 %、 特には 2 %〜 1 0 %までの錫を含有するりん青銅において、 加工条件、 特性 (強度と曲げ加工性) および 42 5°CX 1 0 0 0 0秒間熱処理後 の結晶粒径について相関をとり、 経験的に求めた式である。 mG Sが上記の規定 以上であると、 結晶粒微細化の効果が低く、 圧延加工度を上げないと高強度化で きなくなり、 高強度化された材料での延性の低下が大きく、 曲げ加工性が改善さ れない。 It is preferable to adjust the crystal grains so as to satisfy (0.043 6 X Sn). This standard covers the processing conditions, properties (strength and bending workability) and 425 ° CX 10000 for phosphor bronze containing 1 to 11%, especially 2% to 10% tin. This is an empirical formula that correlates the crystal grain size after heat treatment for a second. If the mGS is above the specified value, the effect of grain refinement is low, and high strength cannot be achieved unless the degree of rolling is increased, and the ductility of the high-strength material is greatly reduced. The performance is not improved.
基本的には、 結晶粒径と強度 (耐力) との関係について、 一般に知られている Ha 1 1 -P e t c hの式で記載される結晶粒微細化の効果が主となる力 再結 晶後の結晶粒径によって、 その後の加工硬化能自体も上昇することを見出した。  Basically, the relationship between crystal grain size and strength (proof stress) is a force mainly due to the effect of grain refinement described by the generally known formula of Ha11-P etch After recrystallization. It has been found that the subsequent work hardening ability itself is increased by the crystal grain size.
りん青銅の実用を考慮した場合は、 この特徴により、 低加工度圧延での高強度 化を図ることができるのである。 なお、 下限については特に定めないが、 最終焼 鈍後の平均結晶粒径 (mGS) を 0. 4 μηι未満にまで下げると、 最終焼鈍前の 冷間圧延により低下した延性が十分回復せず、 最終の冷間圧延により延性の低下 が更に進むようになるから、 望ましくは、 mG Sは 0. 4 /zm以上であることが 好ましい。 In consideration of the practical use of phosphor bronze, this feature enables high strength to be achieved by low work rolling. Although the lower limit is not specified, if the average crystal grain size (mGS) after final annealing is reduced to less than 0.4 μηι, the ductility reduced by cold rolling before final annealing cannot be fully recovered. Since the final cold rolling further reduces ductility, desirably, mGS should be 0.4 / zm or more. preferable.
(請求項 4の曲げ加工性に優れた高強度銅合金の発明) (Invention of high-strength copper alloy excellent in bending workability of claim 4)
本発明は、 上記で特定された銅合金、 とりわけりん青銅に対し、 F e、 N i、 Mg、 S i、 および Zn群並びに C r、 T i、 Z r、 Nb、 Al、 Ag、 B e、 Ca、 Y、 Mn、 および I n群の一種若しくは 2種以上を合計で 0. 05〜2. Oma s s%添加するものである。  The present invention relates to the above identified copper alloys, especially phosphor bronze, for the Fe, Ni, Mg, Si and Zn groups and for the Cr, Ti, Zr, Nb, Al, Ag, Be , Ca, Y, Mn, and In are added in a total of 0.05 to 2. Omass%.
まず、 F e、 N i、 Mg、 S i、 Z nの添加について説明する。  First, the addition of Fe, Ni, Mg, Si, and Zn will be described.
銅合金がりん青銅であって、 これに、 F e、 N i、 Mg、 S iを微量添加する ことは、 これらの元素と P等が金属間化合物を形成し、 マトリクス中に分散し、 請求項 1から 3までの発明において、 主に粒界強化と固溶強化により製造したり ん青銅について、 その特性を改善するものである。 これらの組み合わせで例えば F e— P等の金属間化合物を析出分散させると、 合金自体の析出強化機能による 高強度化と共に、 析出物ないしは晶出物の残留粒子により、 結晶粒界のピン止め 効果があり、 結晶粒が成長しにくくなり、 結晶粒微細化を行いやすくする。 その 目的のためには 0. 05ma s s%が必要であり、 2. Oma s s %を超えると 電気伝導度等の面からかえって有害である。  The addition of trace amounts of Fe, Ni, Mg, and Si to the copper alloy is phosphor bronze means that these elements and P, etc., form intermetallic compounds and disperse in the matrix. In the inventions of the items 1 to 3, the present invention is to improve the characteristics of the bronze manufactured mainly by grain boundary strengthening and solid solution strengthening. When intermetallic compounds such as Fe-P are precipitated and dispersed in these combinations, the strength of the alloy itself is enhanced by the precipitation strengthening function, and the effect of pinning the crystal grain boundaries by residual particles of precipitates or crystallized substances This makes it difficult for crystal grains to grow and facilitates grain refinement. For that purpose, 0.05 ma s s% is necessary, and if it exceeds 2. O mas s s%, it is harmful rather than electrical conductivity.
また、 Znは銅合金に添加すると、 錫、 はんだめつきの熱剥離を抑制する元素 であり、 特に 0. lma s s%程度以上添加するとその効果を発揮するが、 0. 5ma s s%を超えると改善効果が飽和し、 電気伝導度が低下する。  In addition, Zn is an element that suppresses the thermal delamination of tin and solder when added to a copper alloy.Especially, when Zn is added at about 0.5 ss% or more, its effect is exhibited, but when it exceeds 0.5 ss%, The improvement effect saturates and the electrical conductivity decreases.
以上の通り、 F e、 N i、 Mg、 S i、 Znは、 りん青銅の高強度化、 或いは 錫、 はんだめつきの耐熱剥離性を向上させる添加元素であり、 添加することが推 奨される。 その添加量は、 曲げ加工性、 電気伝導度を考慮して決められ、 総量で 0. 05〜 2. Oma s s%とする。 その理由は総量が 0. 05 m a s s °/o未満 では強度が向上せず、 めっきの耐熱剥離性改善の効果がなく、 2. 0 m a s s % を超えると、 曲げ加工性が劣化し、 電気伝導度も低下するためである。 電気伝導 度の低下は、 錫濃度が l〜4ma s s %程度の低錫高導電りん青銅にて特に影響 が大きい。 但し、 Znは上記の理由で、 0. 1〜0. 5ma s s%とすることが 望ましい。 As described above, Fe, Ni, Mg, Si, and Zn are additive elements that enhance the strength of phosphor bronze or improve the heat-peelability of tin and soldering, and it is recommended to add them. You. The amount of addition is determined in consideration of bending workability and electrical conductivity, and the total amount is 0.05 to 2. Omass%. The reason is that if the total amount is less than 0.05 mass ° / o, the strength does not improve, and there is no effect of improving the heat-peeling resistance of the plating, and if it exceeds 2.0 mass%, the bending workability deteriorates and the electrical conductivity Is also reduced. The decrease in electrical conductivity is particularly significant for low-tin high-conductivity phosphor bronze with a tin concentration of about 1 to 4 mass%. However, for the above-mentioned reason, Zn may be set to 0.1 to 0.5mass%. desirable.
次に上記以外の元素 C r、 T i、 Z r、 Nb、 A l、 Ag、 B e、 Ca、 Y、 Mn、 I nの添カ卩について説明する。  Next, a description will be given of the addition of other elements Cr, Ti, Zr, Nb, Al, Ag, Be, Ca, Y, Mn, and In.
これらの元素は、 銅合金を固溶強化、 析出強化により高強度化する元素であり 、 上記の F e、 N i、 Mg、 S i、 Znと同様に曲げ加工性を劣化させない程度 、 総量で 1. Oma s s%以下添加することによって、 更に高強度化を可能とす る。  These elements are elements that strengthen the copper alloy by solid solution strengthening and precipitation strengthening, and, as in the case of Fe, Ni, Mg, Si, and Zn, do not deteriorate the bending workability, and the total amount is 1. Addition of Omass% or less enables higher strength.
以上、 F e、 N i、 Mg、 S i、 Zn、 そして、 C r、 T i、 Z r、 Nb、 A 1、 Ag、 B e、 C a、 Y、 Mn、 及ぴ I nの一種若しくは 2種以上を合計で 0 . 05〜2. Oma s s °/0添加することにより、 強度'を向上させるものである。 なお、 上記列挙した添加元素は、 経済的観点からも使用可能な代表的元素を挙 げたものであって、 これら以外の元素であっても、 銅合金の導電性等の特性を劣 化させずに主として固溶強化を行う元素を副成分として含む銅合金も本発明の範 囲内に属するものである。 F e, Ni, Mg, Si, Zn, and one of Cr, Ti, Zr, Nb, A1, Ag, Be, Ca, Y, Mn, and In By adding two or more kinds in a total of 0.05 to 2. Omass ° / 0 , the strength is improved. The above-listed additional elements are representative elements that can be used from an economical point of view, and even if they are other elements, they do not degrade the properties such as conductivity of the copper alloy. In addition, a copper alloy mainly containing, as an auxiliary component, an element that strengthens solid solution also belongs to the scope of the present invention.
(請求項 5の曲げ加工性に優れた高強度銅合金の発明) (Invention of a high-strength copper alloy excellent in bending workability according to claim 5)
本発明は、 請求項 4の発明において、 更に合金元素の析出物、 晶出物の分布を 規定するものである。  The present invention, in the invention of claim 4, further defines the distribution of precipitates and crystals of the alloy element.
これは、 上記の結晶粒を微細化する目的で、 りん青銅に固有の最適な状態を見 出したものである。 すなわち、 りん青銅の粒界エネルギー等と密接に関係すると 推定されるが、 0. 1 μιη以上 10 μπι以下の径の粒子が、 断面観察で 100個 /mm2以上であると、 結晶粒微細化の効果が顕著である。 粒子は粗大析出物乃 至は晶出物であるが、 その析出物、 晶出物の成分組成によらず、 結晶粒微細化効 果が認められる。 This is to find the optimum state specific to phosphor bronze for the purpose of refining the above crystal grains. That is, it is estimated to be closely related to the phosphorus grain boundary energy, etc. bronze, 0. 1 μιη least 10 Myupaiiota less diameter of the particles is, if it is 100 / mm 2 or more in cross-section observation, the grain refining The effect is remarkable. The particles are coarse precipitates and are crystallized, but the effect of grain refinement is recognized regardless of the component composition of the precipitates and crystals.
なお、 結晶粒微細化において、 結晶粒の核発生および粒界のピン止め効果に実 際に寄与する粒子には、 さらに小径のものものが含まれると考えられるが、 走査 型電子顕微鏡レベルで観察する限りでは上記した粒子分布の断面組織の状態にお いて、 優れた結晶粒微細化効果が観察される。 即ち、 結晶粒微細化の代用特性と して、 その析出物、 晶出物の分布を規定したものである。 It is thought that the particles that actually contribute to the nucleation of crystal grains and the pinning effect of grain boundaries in grain refinement include those with smaller diameters, but are observed at the level of a scanning electron microscope. As far as possible, an excellent crystal grain refinement effect is observed in the state of the cross-sectional structure of the particle distribution described above. In other words, the substitute properties of grain refinement and Then, the distribution of the precipitates and crystals is specified.
(請求項 6の曲げ加工性に優れた高強度銅合金の製造方法の発明) (Invention of a method for producing a high-strength copper alloy excellent in bending workability according to claim 6)
本発明は、 曲げ加工性に優れた高強度銅合金の製造方法に関するものである。 より具体的には、 冷間圧延と焼鈍を繰返して製造する銅合金において、 最終の冷 間圧延、 その前の最終焼鈍、.さらにその前の冷間圧延工程を規定した曲げ加工性 に優れた高強度銅合金の製造方法に関するものである'。  The present invention relates to a method for producing a high-strength copper alloy having excellent bending workability. More specifically, in copper alloys manufactured by repeating cold rolling and annealing, the final cold rolling, the final annealing before that, and the excellent bending workability that defines the previous cold rolling process It relates to a method for producing a high-strength copper alloy '.
これらの発明も基本的には、 最終焼鈍後最終圧延前の結晶粒微細化による効果 を狙ったものである。 冷間圧延前の材料厚さを t。とし、 冷間圧延後の材料厚さ を tとし x= (t0- 1) t。X 100 (%) 定義される最終焼鈍前の冷間圧 延の加工度 Xを 45 %以上としたのは、 45 %未満であると、 最終焼鈍の熱処理 条件を調整しても、 最終焼鈍後の結晶粒径が微細化しにくい力 らである。 These inventions also basically aim at the effect of crystal grain refinement after final annealing and before final rolling. T The material thickness before cold rolling. X = (t 0-1 ) t, where t is the material thickness after cold rolling. X 100 (%) Defined degree of cold rolling before final annealing X is set to 45% or more.If it is less than 45%, even after adjusting the heat treatment conditions for final annealing, after final annealing, This is a force that makes it difficult for the crystal grain size to be reduced.
また、 焼鈍後の平均結晶粒径を 3 πι以下とし、 かつその粒径のばらつきであ る標準偏差を 2 μ m以下としたのは、 焼鈍時の加熱温度プロフィルを厳密に制御 して、 均一微細結晶粒組織とする必要があるからである。  The reason why the average crystal grain size after annealing was 3 πι or less and the standard deviation, which is the variation of the grain size, was 2 μm or less was that the heating temperature profile during annealing was strictly controlled and uniform. This is because it is necessary to have a fine crystal grain structure.
ここで、 微細な再結晶粒について、 厳密には結晶粒径は正規分布していないが 、 平均結晶粒径 (mGS) が 3 /χΐη、 その標準偏差 (aGS) が 2 /z mの場合、 個々の結晶粒径の 99%以上が mGS+3 σ GS, すなわち 9 μιη以下であるこ とをいう。  Here, for fine recrystallized grains, strictly speaking, the crystal grain size is not normally distributed, but if the average crystal grain size (mGS) is 3 / χΐη and its standard deviation (aGS) is 2 / zm, It means that 99% or more of the crystal grain size is less than mGS + 3σGS, that is, 9 μιη or less.
さらに、 再結晶組織中に 8 μ m以上の径の結晶粒が混在することは好ましくな い場合が多く、 そのためには結晶粒径の標準偏差が 1. 5 μ m以下であることが 望ましい。  Furthermore, it is often undesirable that crystal grains having a diameter of 8 μm or more are mixed in the recrystallized structure, and for that purpose, the standard deviation of the crystal grain diameter is desirably 1.5 μm or less.
最終焼鈍後の再結晶組織へ及ぼす最終焼鈍前の冷間圧延加工度の影響は、 加工 度を大きくする程、 焼鈍後の再結晶組織の粒径は小さくなり易いが、 同時に核発 生やその後の 2次再結晶挙動が大きくばらついて混粒になり易くなる。  The effect of the degree of cold rolling before final annealing on the recrystallized structure after final annealing is such that as the degree of work is increased, the grain size of the recrystallized structure after annealing tends to decrease, but at the same time, nucleation and subsequent Secondary recrystallization behavior greatly varies, and the particles tend to be mixed.
特に、 銅濃度が高い純銅型再結晶組織を有する銅合金ではその傾向が強い。 逆に 30m a s s ° /。以上の Z nを含む黄銅や、 4m a s 3 %以上の311を含む りん青銅等では、 比較的強加工後の再結晶粒が整粒化し易い。 これらを考慮して、 合金系毎に焼鈍条件、 即ち、 温度、 時間、 及び温度プロフ ィールを最適化して、 上記再結晶組織にする必要がある。 In particular, the tendency is strong in a copper alloy having a pure copper type recrystallized structure having a high copper concentration. Conversely, 30m ass ° /. With brass containing Zn or phosphor bronze containing 411 3% or more of 311 as described above, recrystallized grains after relatively strong working are easily sized. In consideration of these, it is necessary to optimize the annealing conditions, that is, the temperature, time, and temperature profile for each alloy system, to obtain the recrystallized structure.
平均結晶粒径を 3 μ m以下、 及ぴその標準偏差 2 μ. m以下のいずれかの規定を 外れると、 最終冷間圧延での高い加工硬化能は得られない。  If the average crystal grain size is out of the specified range of 3 μm or less and its standard deviation of 2 μm or less, high work hardening ability in final cold rolling cannot be obtained.
平均結晶粒径を 3 μ m以下、 及びその標準偏差 2 m以下の状態で加工度 1 0 ~ 4 5 %の最終冷間加工を行うと、 高強度で曲げ加工性の優れた銅合金となる。  Final cold working with a workability of 10 to 45% with an average crystal grain size of 3 μm or less and a standard deviation of 2 m or less results in a copper alloy with high strength and excellent bending workability. .
1 0 %未満の加工度では、 最終焼鈍後の平均結晶粒径が 1 O /z m程度とする従 来の銅合金でも、 良好な曲げ加工性を有し、 結晶粒微細化の効果が小さい。 他方 、 4 5 %を超えた加工度では、 曲げカ卩ェ性が低下し、 曲げ加工されるコンタクト 等の金属部材としての使用範囲が狭められることになる。  At a work ratio of less than 10%, even a conventional copper alloy having an average crystal grain size after final annealing of about 1 O / zm has good bending workability and a small effect of grain refinement. On the other hand, when the working ratio exceeds 45%, the bending property is reduced, and the range of use as a metal member such as a contact to be bent is narrowed.
(請求項 7の曲げ加工性に優れた高強度銅合金の製造方法の発明) (Invention of a method for producing a high-strength copper alloy excellent in bending workability according to claim 7)
本発明においては、 結晶粒径の標準偏差は 2 ;χ πι以下が好ましいとしたが、 平 均結晶粒径が 2 μ m以下、 標準偏差が 1 μ m以下、 即ち請求項 6の発明において 更に結晶粒径のばらつきを小さくすると、 結晶粒径の均一微細化の効果により、 最終冷間圧延の加工度を更に増加させ、 2 0 ~ 7 0 %としても、 曲げ加工性を劣 化させずに、 高強度銅合金が得られる。  In the present invention, the standard deviation of the crystal grain size is preferably 2; χπι or less, but the average crystal grain size is 2 μm or less, and the standard deviation is 1 μm or less. If the variation in crystal grain size is reduced, the workability of final cold rolling is further increased due to the effect of uniform and fine grain size, and even if it is set to 20 to 70%, bending workability is not deteriorated. A high strength copper alloy is obtained.
(請求項 8の曲げ加工性に優れた高強度銅合金の製造方法の発明) (Invention of a method for producing a high-strength copper alloy excellent in bending workability according to claim 8)
本発明は、 上記の銅合金において、 最終圧延後歪取焼鈍を行い、 その歪取焼鈍 における引張強さの低下量を規定するもので、 その規定は、 歪取焼鈍前の引張強 さを T S。 (M P a ) 、 歪取焼鈍後の引張強さを T S a (M P a ) として、 T S a く T S。一 X (最終冷間圧延の加工度 (%) ) というものである。 The present invention is to perform strain relief annealing after final rolling on the above-mentioned copper alloy, and to specify the amount of decrease in tensile strength in the strain relief annealing. . (MP a), the tensile strength after stress relief annealing as TS a (MP a), TS a rather TS. X (the final cold rolling work ratio (%)).
りん青銅、 洋白等は歪取焼鈍が施されることがある。 歪取焼鈍は、 最終圧延前 に施す再結晶焼鈍とは異なり、 冷間加工後に延性 (加工性) を回復させ、 併せて ばね性等を向上させる目的で、 例えば、 ばね用りん青銅 (C 5 2 1 0 : J I S H 3 1 3 0 ) 等に、 一般的に行われている。  Phosphor bronze, nickel silver, etc. may be subjected to strain relief annealing. Unlike recrystallization annealing performed before final rolling, strain relief annealing is intended to restore ductility (workability) after cold working and to improve spring properties, for example. For example, phosphor bronze for springs (C5 210: commonly used in JISH 310).
この歪取焼鈍は、 最終圧延後にテンションアニーリングライン等により、 必要 に応じて施すことができる。 This strain relief annealing is necessary after the final rolling by tension annealing line etc. Can be applied according to
本発明に係る銅合金は、 歪取焼鈍後においても、 従来技術で製造した合金より 高強度で曲げ加工性が優れている。  The copper alloy according to the present invention has higher strength and superior bending workability even after strain relief annealing than alloys manufactured by conventional techniques.
さらに、 特に結晶粒径の小さな焼鈍材を冷間圧延する場合、 延性の低下を少し でも少なくするためには、 最終加工度に応じた歪取焼鈍を行うことが有効である Furthermore, it is effective to perform strain relief annealing according to the final working degree in order to minimize the decrease in ductility, especially when cold rolling annealed material with a small crystal grain size.
。 特に曲げ加工性を改善するには、 最終冷間圧延加工度を X%とし、 引張強さ ( TS。 : MP a) の冷間圧延材について、 歪取焼鈍後の引張強さ TSa (MP a) が TSa<TS。一 Xとなる条件にて歪取焼鈍を行う。 例えば、 最終加工度 30 % で 700MP aまで加工硬化した冷間圧延材の場合、 この材料を歪取焼鈍して、 67 OMP a未満となるまで歪取焼鈍を施すと、 曲げ加工性が良い材料を得るこ とができる。 . Especially bending improve workability, the final cold rolling degree and X%, tensile strength: for cold rolled material (TS. MP a), tensile after stress relief annealing strength TS a (MP a) is TS a <TS. Perform strain relief annealing under the condition of (1) X. For example, in the case of a cold-rolled material that has been hardened to 700 MPa at a final working ratio of 30%, this material is subjected to strain relief annealing, and subjected to strain relief annealing to less than 67 OMPa. Can be obtained.
(請求項 9、 10、 11の、 曲げ加工性に優れた請求項 1乃至 5に記載の高強 度銅合金の製造方法の発明) (Inventions of the method for producing a high-strength copper alloy according to claims 1 to 5, which are excellent in bending workability in claims 9, 10, and 11)
上記請求項 6〜 8の製造方法は、 請求項 1乃至 5に記載の高強度銅合金特にり ん青銅の製造方法に適用可能である。 説明は先に準じる。  The production methods of claims 6 to 8 are applicable to the production method of high-strength copper alloys, particularly, phosphor bronze described in claims 1 to 5. The description is as described above.
(請求項 12の端子 'コネクタの発明) (Claim 12 Terminal 'connector invention)
以上、 本菜明は、 固溶強化型銅合金、 特にはりん青銅系銅合金について、 曲げ 加工性に優れた高強度銅合金及びその製造方法を提供するものであり、 小型で優 れた曲げ力 ΙΟ^生、 高強度が要求される端子 -コネクタに適用される。  As described above, Hinaaki provides a high-strength copper alloy excellent in bending workability and a method of manufacturing the same for solid-solution strengthened copper alloys, particularly phosphor bronze-based copper alloys, and has a small and excellent bending property. Applicable to terminals-connectors that require high strength and high strength.
また、 端子'コネクタのコンタクトに加工前、 又は加工後にめっき処理されて も強度、 曲げ加工性は殆ど劣化せず、 本発明の効果は発揮される。  Further, even if plating is applied to the contact of the terminal and the connector before or after the processing, the strength and bending workability are hardly deteriorated, and the effect of the present invention is exhibited.
(実施例) (Example)
次に本発明の実施の効果について各種りん青銅を例に説明する。  Next, the effects of the present invention will be described with reference to various phosphor bronze examples.
(1) 実施例 1 (請求項 1〜3に係る発明に関する例)  (1) Example 1 (Example relating to the inventions according to claims 1 to 3)
表 1に示した組成のりん青銅を大気中にて木炭被覆し溶解後、 铸造し、 100 mmw X 4 Omm1 X 15 Omm1の寸?去の鍚塊を作製した。 Phosphor bronze with the composition shown in Table 1 was coated with charcoal in the air, dissolved, An agglomerate with a size of mm w X 4 Omm 1 X 15 Omm 1 was prepared.
この鑲塊を 75 %N2 + 25 %H2雰囲気中にて 700でで 1時間均質化焼鈍し た後、 表面の錫偏析層をグラインダーで研摩し、 除去した。 The lump was homogenized and annealed at 700 in a 75% N 2 + 25% H 2 atmosphere at 700 for 1 hour, and the tin segregation layer on the surface was polished with a grinder and removed.
その後冷間圧延と再結晶焼鈍を必要に応じて複数回繰り返して、 特に最終焼鈍 前の冷間圧延加工度、 最終の再結晶焼鈍、 及び最終冷間圧延加工度を調整して、 0. 2 mm厚さの板を得た。  Thereafter, cold rolling and recrystallization annealing are repeated a plurality of times as necessary, and in particular, the cold rolling degree before the final annealing, the final recrystallization annealing, and the final cold rolling degree are adjusted. A plate having a thickness of mm was obtained.
その特性を表 1に示す。  Table 1 shows the characteristics.
(試験方法) (Test method)
引張強さ (TS : MP a) 、 0. 2%耐カ (YS : MP a) は 13 B号試験片 (J I S Z 2201) を圧延方向と並行に採取し、 引張試験 ( J I S Z 2241) により求めた。  Tensile strength (TS: MPa) and 0.2% resistance (YS: MPa) were determined by taking a 13B test piece (JISZ 2201) in parallel with the rolling direction and performing a tensile test (JISZ 2241). .
結晶粒径は、 切断法 (J I S H 0501) により、 所定長さの線分により 完全に切られる結晶粒数を数え、 その切断長さの平均値を結晶粒径とし、 結晶粒 径の標準偏差 (aGS) は、 その結晶粒径の標準偏差である。 すなわち、 圧延方 向に直角方向の断面組織を走査型電子顕微鏡像 (SEM像) により、 4000倍 に拡大し、 50 の長さの線分において、 線と粒界との交点の数で線分を割つ た値を結晶粒径とし、 10本の線分について測定して得られた各々の結晶粒径の 平均を本願における平均結晶粒径 (mGS) 、 各々の結晶粒径の標準偏差を本願 における標準偏差 (crGS) とした。  The crystal grain size is calculated by the cutting method (JISH 0501), by counting the number of crystal grains completely cut by a line segment of a predetermined length, taking the average of the cut lengths as the crystal grain size, and the standard deviation of the crystal grain size ( aGS) is the standard deviation of the grain size. That is, the cross-sectional structure in the direction perpendicular to the rolling direction was magnified 4000 times with a scanning electron microscope image (SEM image), and the number of intersections between the line and the grain boundary was 50 in the line segment with a length of 50. Is the crystal grain size, and the average of each grain size obtained by measuring 10 line segments is the average grain size (mGS) in this application, and the standard deviation of each grain size is The standard deviation (crGS) in this application was used.
曲げ加工 '14 ( r Z t ) は、 10 mmw X 100 mm1の寸法の試験片を圧延方向 と直角に採取し、 W曲げ試験 (J I S H 3110) を各種曲げ半径で行い、 日本伸銅協会技術標準 J BTA T 307 : 1999による評価基準 Cランク以 上の良好な外観が得られる、 割れ、 肌荒れの発生しない最小の曲げ半径比 (r ( 曲げ半径) /t (試験片厚さ) ) を求めた (評価基準はランク A: しわ無し、 ラ ンク B: しわ小、 ランク C: しわ大、 ランク D:割れ小、 ランク E:割れ大と 5 ランクに分けられており、 ランク A、 B、 Cとして評価されるものを云う) 。 な お、 W曲げ試験の曲げ軸は圧延方向と平行方向である。 榔 For bending '14 (rZt), a test piece with dimensions of 10 mm w x 100 mm 1 was sampled at right angles to the rolling direction, and a W bending test (JISH 3110) was performed at various bending radii. The minimum bending radius ratio (r (bending radius) / t (specimen thickness)) that can provide a good appearance with a rating of C rank or higher and that does not cause cracks or rough skin, based on the technical standard J BTA T 307: 1999. Determined (Evaluation criteria are rank A: no wrinkle, rank B: wrinkle small, rank C: large wrinkle, rank D: small crack, rank E: large crack and 5 ranks. Rank A, B, Which is evaluated as C). The bending axis in the W bending test is parallel to the rolling direction. Roto
Figure imgf000017_0001
表 1において、 本発明例 1 8と従来材である比較例丄〜4を示すと共に、 本 発明の効果を説明する目的でパラメータを更に変更した例 AE (比 .比較例、 小:本発明を表示する) を便宜上別に分類して示した。
Figure imgf000017_0001
Table 1 shows Inventive Example 18 and Comparative Examples I to 4 which are conventional materials, and Examples A to E in which the parameters were further changed for the purpose of explaining the effect of the present invention (ratio: comparative example, small: book) (Indicating invention)) is shown separately for convenience.
比較例 1 4は従来材の例であるが、 これらの例と、 本発明例丄〜 Dをレ feTると、 同一組成で、 同等の強度であるが、 本発明例 1〜4Dでは rzt が小さく、 曲げ力 tri性が向上していることがわかる。 本発明例 Dは、 TS— YSが請求項 1の範囲で大きい例である (丁 S— YS≤ 80の定義を明確にする目的の例であり、 比較例 Eと比較すると、 同程度の強度 で曲げ加工性が改善されていることがわかる) 。 Comparative examples 14 are examples of conventional materials, and when these examples and the present invention examples I to D were subjected to fefeT, they had the same composition and the same strength, but the present invention examples 1 to 4 and D It can be seen that r zt is small and the bending force tri property is improved. Example D of the present invention is an example in which TS-YS is large in the scope of claim 1. (This is an example for the purpose of clarifying the definition of S-YS≤80. Indicates that the bending workability has been improved.)
本発明例 5 ~ 8は、 本発明例 1〜 4においてさらに結晶粒径を微細にした例で あるが、 mGSく 2. 7 X e X p (0. 0436 X S n) に従って、 錫濃度に応 じ、 結晶粒径を調整することにより、 強度が向上し、 し力も rZtも同等若しく は小さく、 曲げ加工' 14も良好であることがわかる。  Inventive Examples 5 to 8 are examples in which the crystal grain size is further reduced in Inventive Examples 1 to 4, but according to the tin concentration in accordance with mGS, 2.7 XeXp (0.0436 XSn). By adjusting the crystal grain size, the strength is improved, the shear force and rZt are equal or smaller, and the bending process is good.
また、 比較例 Aは、 mGSは請求項 1を満たすが、 び03が請求項1を満たさ ないため、 発明例 2に比べて曲げ加工性が悪い。  In Comparative Example A, the mGS satisfies Claim 1, but 03 does not satisfy Claim 1. Therefore, the bending workability is lower than that of Invention Example 2.
比較例 Bは、 mGS、 ffGSについては請求項 1を満たすが、 TS— YSが請 求項 1を満こさない例である。 焼鈍後の結晶粒は微細であるが、 T S— Y Sが大 きいために、 強度が低く、 従来材 Cと強度及び曲げ加工'性は同等であり、 改善が 認、められない。 Comparative Example B is an example in which mGS and ff GS satisfy claim 1, but TS-YS does not satisfy claim 1. Although the crystal grains after annealing are fine, the strength is low due to the large TS-YS, and the strength and bending workability are the same as those of conventional material C, and no improvement is observed.
比較例 Cは、 比較例 Bとの比較目的の例である。  Comparative Example C is an example for the purpose of comparison with Comparative Example B.
比較例 Eは、 本発明例 Dとの比較目的の例である。  Comparative example E is an example for the purpose of comparison with inventive example D.
(2) 実施例 2 (請求項 4、 5に係る発明についての検証例)  (2) Example 2 (Example of verification of the invention according to claims 4 and 5)
りん青銅の成分をベースとして、 鉄、 ニッケル等を添加した組成で、 実施例 1 と同様な方法にて試験片を作成した。  A test piece was prepared in the same manner as in Example 1 with a composition to which iron, nickel, and the like were added based on the component of phosphor bronze.
伹し、 添加元素の種類により構成される化合物の析出物、 晶出物の分散状態は 鎳塊の均質化焼鈍条件で調整した。  Meanwhile, the dispersion state of the precipitates and crystallized substances of the compound composed of the types of the added elements was adjusted under the conditions of the homogenization annealing of the lump.
また、 再結晶焼鲍は結晶粒の調整とともに、 粗大な析出物、 晶出物の残留状態 および析出物の成長を観察しながら、 調整した。  The recrystallization sintering was adjusted while adjusting the crystal grains and observing the coarse precipitates, the residual state of the crystallized substances, and the growth of the precipitates.
析出物、 晶出物について、 0. 1 μ m以上の径の断面の粒子数は、 電解放出型 走査電子顕微鏡 (FESEM) のエネルギー分散型分析装置にて分析、 観察した 表 2はその結果である。
Figure imgf000019_0001
表 1の本発明 C u— S n— P系合金との比較から、 C u— S n— P系合金に他 の元素を微量添加することにより、 cxGSが小さくなり、 更なる結晶粒径の微細 化が安定して可能となり、 さらにそれらの元素により構成する粒子を分散させる ことにより、 一層強度が向上し、 しかも曲げ加工性が優れていることがわかる。
The precipitates and crystals were analyzed for the number of particles in a cross section with a diameter of 0.1 μm or more using an energy dispersive analyzer of a field emission scanning electron microscope (FESEM) and observed.Table 2 shows the results. is there.
Figure imgf000019_0001
From the comparison with the present invention C u- S n-P-based alloy Table 1, C u- S n - by the addition of other elements to P-based alloy trace, CxGS decreases, the further the crystal grain size It can be seen that the miniaturization can be stably performed, and further, by dispersing the particles composed of these elements, the strength is further improved and the bendability is excellent.
r T i Z r Nb Al Ag B e Ca Y Mn、 及ぴ I nを含 む合金についても同様の効果が確認された。 それらの例を表 2に A〜Hとして併 せて示した (本:本発明、 比:比較例を表示する) 。 r T i Z r Nb Al A g B e Ca Y Mn, and In A similar effect was also confirmed for the alloys having a small thickness. These examples are also shown in Table 2 as A to H (book: present invention, ratio: comparative example).
' 比較例 Hは副成分の合計が 2 . O m a s s %を超える例であり、 曲げ加工性が 悪い。  'Comparative Example H is an example in which the sum of the sub-components exceeds 2.Omass%, and has poor bending workability.
( 3 ) 実施例 3 (請求項 6、 7および 9、 1 0に係る発明についての検証例) 本発明例 1 7〜 2 0の組成は実施例 1における表 1の 1〜 4に対応する。 比較 例 5〜 8は従来材の例である。 本突明の効果を説明する目的でパラメータを更に 変更した例 A〜F (比:比較例、 本:本発明を表示する) を便宜上別に分類して 示した。 試験方法は実施例 1に準じた。 表 3はその結果である。 (3) Example 3 (Examples of Verification of Inventions According to Claims 6, 7, 9, and 10) The compositions of Examples 17 to 20 of the present invention correspond to Tables 1 to 4 in Example 1. Comparative Examples 5 to 8 are examples of conventional materials. Examples A to F (ratio: comparative example, present: present the present invention) in which the parameters are further changed for the purpose of explaining the effect of the present surprise are separately classified for convenience. The test method was in accordance with Example 1. Table 3 shows the results.
O O
Figure imgf000021_0001
比較例 5 8は従来材の例で、 最終焼鈍前の冷間圧延加工度、 最終焼鈍での平 均結晶粒径が本発明から外れる例であるが、 本 明例 1 7〜20は、 比較例 5 8の従来材に比べて、 強度が高く、 r/tが低 曲げ加工性も良好である。 本発明例 Aは、 本発明例丄 9における再結晶焼鈍後の結晶粒径を 2. 6とし、 請求項 6を満たすが、 請求項 7を満たさない例であるが、 結晶粒径が微細な例丄 9の方が若干強度が高い。
Figure imgf000021_0001
Comparative Example 58 is an example of a conventional material, in which the degree of cold rolling before final annealing and the average crystal grain size in final annealing deviate from the present invention, but Examples 17 to 20 of the present invention are comparative examples. Example 58 Higher strength, lower r / t and better bending workability than the conventional material of Example 8. The present invention Example A, the crystal grain size after recrystallization annealing of the present invention Example丄9 2. And 6, but satisfy the claim 6 is an example not satisfying the claim 7, the crystal grain size fine Example 丄 Nine is slightly stronger.
本発明例 Bは、 最終冷間加工度が請求項 6を満たすが請求項 7を満たさない、 加工度が低 、例であり、 強度が低 V、分、 曲げ加工性は良好である。  Example B of the present invention is an example in which the final cold work degree satisfies claim 6 but does not satisfy claim 7, and the workability is low, that is, the strength is low V, and the bending workability is good.
比較例 Cは、 再結晶前の冷間圧延加工度が低いため、 再結晶焼鈍にて mGSを 小さくしたが、 微細で均一な組織は得られず、 バラツキ (aGS) が大きくなつ てしまい、 その結果本発明例 Aに比べて曲げ加工性が悪い。  In Comparative Example C, the cold rolling workability before recrystallization was low, so the mGS was reduced by recrystallization annealing.However, a fine and uniform structure was not obtained, and the variation (aGS) increased. As a result, the bending workability is poor as compared with Example A of the present invention.
比較例 Dは、 圧延の加工度及ぴ mGSは請求項 6、 7を満たすが、 再結晶焼雜 時の温度履歴が悪く、 σ G Sを満たさなかつた例であり、 Cと同様に曲げ加工性 が悪い。  Comparative Example D is an example in which the workability of rolling and mGS satisfy claims 6 and 7, but the temperature history during recrystallization firing is poor and σ GS is not satisfied. Is bad.
比較例 Εは、 最終冷間圧延加工度が低い例であるが、 比較例 Fの従来材と強度 が同程度であり、 強度が低いため、 改善の効果が認められない。  Comparative Example Ε is an example in which the final cold rolling degree is low, but the strength is almost the same as that of the conventional material of Comparative Example F, and since the strength is low, no improvement effect is recognized.
比較例 Fは、 上記の通り、 従来材例である (Εと同程度の TSで、 rZtが同 じ) 。  Comparative example F is a conventional material example as described above (TS is about the same as Ε and rZt is the same).
(4) 実施例 4 (請求項 8、 11の歪取焼鈍の効果についての調査)  (4) Example 4 (Study on the effect of strain relief annealing in claims 8 and 11)
表 4において、 本発明例の 21〜 28は、 併記したとおり、 前述の本発明例 N o. 2、 3、 4、 7、 8、 15、 16、 20に対応し、 比較例 (従来材) の 9〜 12は、 前述の比較例 No. 3、 4、 7、 8に相当する。 比較例 A、 Bは、 歪取 焼鈍により低下した TSが小さい事例を示す目的のものであり、 本発明例 16、 20に対応する。  In Table 4, 21 to 28 of the examples of the present invention correspond to the above examples of the present invention No. 2, 3, 4, 7, 8, 15, 16, and 20, respectively, as described above, and comparative examples (conventional materials). Nos. 9 to 12 correspond to Comparative Examples Nos. 3, 4, 7, and 8 described above. Comparative Examples A and B are for the purpose of showing a case where TS lowered by strain relief annealing is small, and correspond to Examples 16 and 20 of the present invention.
これらの試験片を各種最終冷間圧延加工度条件にて歪取焼鈍を行 ヽ特性の評価 を行った。 歪取焼鈍による引張強さ (TS) の低下量を併せて表示した。 These test pieces were subjected to strain relief annealing under various final cold rolling reduction conditions to evaluate their properties. The amount of decrease in tensile strength (TS) due to strain relief annealing is also shown.
Dimension
Figure imgf000023_0001
本発明例 No. 2 1は、 錫濃度 6. 2ma s s %の材料であり、 引張強さ (T S) が 5 70MP a、 曲げ加工や生 (r/t) が 0である。
Figure imgf000023_0001
Invention Example No. 21 is a material having a tin concentration of 6.2 mass%, a tensile strength ( TS ) of 570 MPa, and a bending or raw ( r / t) of 0.
本発明例 N o. 22、 24、 2 6、 従来材である比較例 No. 9、 1 1は錫濃 /戈 8. 0〜8. 2ma s s %の材料であるが本発明例の引張強さ (T S)6 5 2〜7 6 0MP a、 曲げ加工性 { χ / t ) が 02. 0であるのに対し、 比較例 は、 引張強さ (TS) が650~6981^? &、 r/t力 1. 5〜2. 5と本発 明が高強度で曲げ加ェ性も良好であることがわかる。 Inventive Examples Nos. 22, 24, 26, Comparative Examples Nos. 9 and 11, which are conventional materials, are tin-rich / gears of 8.0 to 8.2 mass%. is (TS) is 6 5 2~7 6 0MP a, while bending workability {chi / t) is 0 to 2.0, Comparative example The tensile strength (TS) was 650 ~ 6981 ^? & And the r / t force was 1.5 ~ 2.5, indicating that the present invention has high strength and good bending workability.
また、 本発明例 No. 23、 25、 27、 28、 比較例 N o . 10、 12は錫 濃度 10. 0~10. 2ma s s%の材料であるが本発明例の引張強さ (TS) が 748〜849MPa、 曲げ加工性 (r/t) が 1. 5〜3. 0であるのに対 し、 比較例は、 引張強さ (TS) 力 06〜762MP a、 r/t力 S3. 0であ り同様に本発明が高強度で曲げ加工性も良好であることがわかる。  In addition, the inventive examples Nos. 23, 25, 27, and 28 and the comparative examples No. 10 and 12 are materials having a tin concentration of 10.0 to 10.2 mass%, but the tensile strength (TS) of the inventive examples was Whereas, while the bending workability (r / t) is 1.5 to 3.0, the tensile strength (TS) force is 06 to 762 MPa and the r / t force is S3. 0 indicates that the present invention has high strength and good bending workability.
比較例 A、 Bは、 引張強さ (TS) が 841〜886MP aであるが、 歪取焼 鈍により低下した TSが小さいため、 曲げ加工性 (r/t) が 3. 0〜3. 5と 余り改善されない。  In Comparative Examples A and B, the tensile strength (TS) is 841 to 886 MPa, but since the TS reduced by strain relief annealing is small, the bending workability (r / t) is 3.0 to 3.5. And not much improved.
以上、 歪取焼鈍を施した本発明材は、 比較例の従来材より、 明確に高強度化、 曲げ加工性の改善を図ることができる。 すなわち同程度の強度なら、 曲げ加工性 が著しく改善され、 同程度の曲げ加工性なら大幅な強度アップが得られる。  As described above, the material of the present invention subjected to the strain relief annealing can clearly achieve higher strength and improved bending workability than the conventional material of the comparative example. In other words, if the strength is the same, the bendability is significantly improved, and if the bendability is the same, the strength is greatly increased.
(発明の効果) (The invention's effect)
本発明例は、 曲げ加工性を損なわずに、 銅合金、 特にりん青銅系合金の高強度 化が図れ、 電子部品用の端子,コネクタ用として、 銅合金に要求されていた特性 改善が図れた。  According to the present invention example, the copper alloy, particularly the phosphor bronze alloy, can be strengthened without deteriorating the bending workability, and the characteristics required for the copper alloy for terminals and connectors for electronic components can be improved. .
また、 高錫りん青銅 (Cu— 10ma s s Sn— P: CDA52400) にお いては、 従来曲げ加工性が悪かったため参入できなかった、 ベリリウム銅等の独 占市場である、 高強度銅合金の分野へも進出が可能となつた。  Also, in the high-tin phosphor bronze (Cu-10mass Sn-P: CDA52400) field of high-strength copper alloy, which is an exclusive market for beryllium copper and other materials that could not be entered because of its poor bending workability. It is now possible to enter the market.

Claims

請 求 の 範 囲 The scope of the claims
1. 引張強さと 0. 2%耐力との差が 8 OMP a以内である、 最終冷間圧延 された銅合金であって、 該銅合金が 425°Cで 10000秒間焼鈍した後の平均 結晶粒径 (mGS) が 5 μ m以下且つ該平均結晶粒径の標準偏差 (aGS) が 1 /3XmGS以下である特性を有することを特徴とする曲げ加工性に優れた高強 度銅合金。 1. A final cold-rolled copper alloy in which the difference between the tensile strength and the 0.2% proof stress is within 8 OMPa, and the average grain size of the copper alloy after annealing at 425 ° C for 10,000 seconds. A high-strength copper alloy excellent in bending workability, characterized in that the diameter (mGS) is 5 μm or less and the standard deviation (aGS) of the average crystal grain size is 1 / 3XmGS or less.
2. Sn : l〜: L lma s s%、 P : 0. 03〜0. 35ma s s%、 残部 Cuおよび不可避的不純物よりなり、 TSSn (MP a) で表記される引張強さが 、 TSSn>500+ 15 XSn (S n:錫濃度 (ma s s %) ) である銅合金で あって、 該銅合金が 425°Cで 10000秒間焼鈍した後の平均結晶粒径 (mG S) が 5 EQ以下且つ該平均結晶粒径の標準偏差 ( GS) が l/3XmGS以 下である特性を有することを特徴とする請求項 1【こ記載の曲げ加工性に優れた高 強度銅合金。 2. Sn: l ~: L lma ss%, P: 0.03 ~ 0.35mass%, the balance consists of Cu and unavoidable impurities, and the tensile strength expressed by TS Sn (MPa) is TS Sn > 500+ 15 XSn (Sn: tin concentration (ma ss%)) copper alloy with an average crystal grain size (mG S) of 5 EQ after annealing for 10,000 seconds at 425 ° C. 2. The high-strength copper alloy excellent in bending workability according to claim 1, characterized in that the standard deviation (GS) of the average crystal grain size is 1 / 3XmGS or less.
3. Sn : l〜: L lma s s%、 P: 0. 03〜0. 35ma s s%、 残部 C uおよぴ不可避的不純物よりなり、 425 °Cで 10000秒間焼鈍した後の平 均結晶粒径 (mG S (μ m) ) が mG S< 2. 7 X e x p (0. 0436 X S n 3. Sn: l ~: L lma ss%, P: 0.03 ~ 0.35mass%, the balance consisting of Cu and unavoidable impurities, average grain size after annealing at 425 ° C for 10,000 seconds The diameter (mG S (μm)) is mG S <2.7 X exp (0.0436 XS n
(S n :錫濃度 (ma s s %) ) であることを特徴とする請求項 1乃至 2に記载 の曲げ加ェ性に優れた高強度銅合金。 (Sn: tin concentration (mass%)). The high-strength copper alloy according to claim 1, wherein the high-strength copper alloy has excellent bending properties.
4. 銅合金が Sn : l〜l lma s s%、 P : 0. 03〜0. 35ma s s %、 及び F e、 N i、 Mg、 S i、 Zn、 C r、 T i、 Z r、 Nb、 A l、 Ag 、 B e, C a、 Y、 Mn、 及ぴ I nの一種若しくは 2種以上:合計で 0. 05〜 2. 0 m a s s %、 残部 C uおよび不可避的不純物からなるりん青銅であること を特徴とする請求項 1乃至 3に記載の曲げ加工性に優れた高強度銅合金。  4. Copper alloy is Sn: l ~ l lma ss%, P: 0.03 ~ 0.35ma ss%, and Fe, Ni, Mg, Si, Zn, Cr, Ti, Zr, Nb , Al, Ag, Be, Ca, Y, Mn, and one or more of In: phosphoric bronze consisting of 0.05 to 2.0 mass% in total, balance of Cu and unavoidable impurities The high-strength copper alloy excellent in bending workability according to any one of claims 1 to 3, characterized in that:
5. 銅合金が Sn : l〜l lma s s%、 P: 0. 03〜0. 35ma s s %、 及ぴ F e、 N i、 Mg、 S i、 Zn、 C r、 T i、 Z r、 Nb、 Al、 Ag 、 B e、 C a、 Y、 Mn、 及ぴ I nの一種若しくは 2種以上:合計で 0. 05〜 2. Oma s s % 残部 C uおよび不可避的不純物からなるりん青銅であり、 か つ合金元素の析出物または晶出物を主成分とする 0. 1 m以上の径の粒子が圧 延方向に対し平行に切断した断面で 100個/ ram2以上存在することを特徴と する請求項 1乃至 3に記載の曲げ加工性に優れた高強度銅合金。 5. Copper alloy is Sn: l ~ l lma ss%, P: 0.03 ~ 0.35ma ss%, and Fe, Ni, Mg, Si, Zn, Cr, Ti, Zr, One or more of Nb, Al, Ag, Be, Ca, Y, Mn, and In: 0.05 to 2. Oma ss% in total Phosphor bronze consisting of residual Cu and unavoidable impurities Yes, or The particles are characterized in that at least 100 particles / ram 2 are present in a cross section cut in parallel to the rolling direction, with particles having a diameter of 0.1 m or more, which are mainly composed of precipitates or crystallized elements of alloying elements. Item 4. A high-strength copper alloy excellent in bending workability according to items 1 to 3.
6. 加工度 45 %以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS) を 3 μ m以下そして該結晶粒径の標準偏差 GS) を 2 /zm以下とし、 続いて 加工度 10〜45%の最終冷間圧延を施すことを特徴とする曲げカ卩ェ性に優れた 高強度銅合金の製造方法。  6. After cold rolling at a working ratio of 45% or more, final annealing is performed to reduce the average grain size (mGS) to 3 μm or less and the standard deviation GS of the grain size to 2 / zm or less. A method for producing a high-strength copper alloy having excellent bending properties, comprising subjecting a final cold rolling to 10 to 45%.
7. 加工度 45 %以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS) を 2 /zm以下そして該結晶粒径の標準偏差 GS) を Ι μπι以下とし、 続いて 加工度 20-70 %の最終冷間圧延を施すことを特徴とする曲げ加工性に優れた 高強度銅合金の製造方法。  7. After cold rolling at a working ratio of 45% or more, final annealing is performed to reduce the average grain size (mGS) to 2 / zm or less and the standard deviation GS of the grain size to Ιμπι or less, A method for producing a high-strength copper alloy with excellent bending workability, characterized by performing a final cold rolling of -70%.
8. 加工度 X (%) の最終冷間圧延を施した引張強さが TS。 (MP a) の 冷間圧延材を、 引張強さ TSa (MP a) が TSa<TS。一 Xとなるまで歪取焼 鈍を施すことを特徴とする請求項 6乃至 7に記載の曲げ加工性に優れた高強度銅 合金の製造方法。 8. TS is the tensile strength after final cold rolling with a work ratio of X (%). The cold-rolled material (MP a), tensile strength TS a (MP a) is TS a <TS. 8. The method for producing a high-strength copper alloy excellent in bending workability according to claim 6, wherein a strain relief annealing is performed until the value reaches X.
9. 加工度 45%以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS) を 3 m以下そして該結晶粒径の標準偏差 ( σ G S) を 2 μ πι以下とし、 続いて 加工度 10〜45%の最終冷間圧延を施すことを特徴とする請求項 1乃至 5に記 載の曲げ加ェ性に優れた高強度銅合金の製造方法。  9. After cold rolling at a working ratio of 45% or more, final annealing is performed to reduce the average grain size (mGS) to 3 m or less and the standard deviation (σ GS) of the grain size to 2 μππ or less. 6. The method for producing a high-strength copper alloy excellent in bending workability according to claim 1, wherein final cold rolling is performed at a degree of 10 to 45%.
10. 加工度 45%以上で冷間圧延後、 最終焼鈍して平均結晶粒径 (mGS ) を 2 以下そして該結晶粒径の標準偏差 (aGS) を 以下とし、 続い て加工度 20〜 70%の最終冷間圧延を施すことを特徴とする請求項 1乃至 5に 記載の曲げ加工性に優れた高強度銅合金の製造方法。 .  10. After cold rolling at a workability of 45% or more, final annealing is performed to reduce the average crystal grain size (mGS) to 2 or less and the standard deviation of the crystal grain size (aGS) to a value below. 6. The method for producing a high-strength copper alloy excellent in bending workability according to claim 1, wherein the final cold rolling is performed. .
11. 加工度 45%以上で冷間圧延後、 最終焼鈍して (ィ) 平均結晶粒径 ( mGS) を 3 μπι以下そして該結晶粒径の標準偏差 (aGS) を 2 χπι以下とし 、 続いて加工度 10〜45%の最終冷間圧延を施すか、 (口) 平均結晶粒径 (m GS) を 2 μπι以下そして該結晶粒径の標準偏差 GS) を 以下とし、 続いて加工度 20~ 70%の最終冷間圧延を施し、 その後、 加工度 X (%) の最 終冷間圧延を施した引張強さが TS。 (MP a) の冷間圧延材を、 引張強さ TSa (MP a) が TSa<TS0— Xとなるまで歪取焼鈍を施すことを特徴とする請求 項 1乃至 5に記載の曲げ加工性に優れた高強度銅合金の製造方法。 11. After cold rolling at a workability of 45% or more, final annealing is performed. (A) The average grain size (mGS) is set to 3 μπι or less and the standard deviation (aGS) of the crystal grain size is set to 2 μπι or less. Perform final cold rolling at a working ratio of 10 to 45%, or (mouth) the average grain size (m GS) to 2 μπι or less and the standard deviation GS of the grain size to the following. 70% final cold rolling is performed, and then the maximum The tensile strength after final cold rolling is TS. The cold rolled material (MP a), tensile strength TS a (MP a) is TS a <TS 0 - according to claims 1 to 5, characterized by applying stress relief annealing until the X bending A method for producing high-strength copper alloys with excellent workability.
12. 請求項 1乃至 5の曲げ加工性に優れた高強度銅合金を用いた端子 ·コ ネクタ。  12. A terminal / connector using a high-strength copper alloy excellent in bending workability according to claim 1 to 5.
PCT/JP2001/011483 2000-12-28 2001-12-26 High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same WO2002053790A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2003-7007183A KR100535737B1 (en) 2000-12-28 2001-12-26 High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
JP2002554288A JP4177104B2 (en) 2000-12-28 2001-12-26 High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-400837 2000-12-18
JP2000400837 2000-12-28

Publications (1)

Publication Number Publication Date
WO2002053790A1 true WO2002053790A1 (en) 2002-07-11

Family

ID=18865354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011483 WO2002053790A1 (en) 2000-12-28 2001-12-26 High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same

Country Status (6)

Country Link
US (2) US20030188814A1 (en)
JP (1) JP4177104B2 (en)
KR (1) KR100535737B1 (en)
CN (1) CN1250756C (en)
TW (1) TW526272B (en)
WO (1) WO2002053790A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093233A1 (en) * 2005-03-02 2006-09-08 The Furukawa Electric Co., Ltd. Copper alloy and method for production thereof
JP2006274445A (en) * 2005-03-02 2006-10-12 Furukawa Electric Co Ltd:The Copper alloy and method for production thereof
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
WO2010071220A1 (en) 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070009788A1 (en) * 2005-07-11 2007-01-11 Indik Auraham A Battery interface for mobile device
CN101580922B (en) * 2009-06-21 2010-11-24 宁波市鄞州锡青铜带制品有限公司 Method for producing tin phosphorus bronze band by direct cold cogging
CN104137191A (en) * 2011-12-28 2014-11-05 矢崎总业株式会社 Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
CN102982975A (en) * 2012-12-04 2013-03-20 江苏亚威变压器有限公司 Low-consumption loss transformer
CN103509966B (en) * 2013-10-18 2015-09-09 苏州天兼新材料科技有限公司 A kind of alloy material and manufacture method thereof being applicable to aerospace field
US20150115442A1 (en) * 2013-10-31 2015-04-30 Infineon Technologies Ag Redistribution layer and method of forming a redistribution layer
CN104793718A (en) * 2015-05-11 2015-07-22 赵欣颖 Computer cooling fin beneficial to heat dissipation
CN105845967A (en) * 2016-04-05 2016-08-10 洛阳月星新能源科技有限公司 Radiating type lithium ion battery module
CN105936982A (en) * 2016-06-13 2016-09-14 芜湖卓越线束系统有限公司 High-conductivity alloy material for wire harness terminal and preparation method thereof
CN106191725B (en) * 2016-06-24 2018-01-26 河南江河机械有限责任公司 High-intensity high-conductivity copper alloy nanometer phase precipitation technique method
CN107604202B (en) * 2017-09-18 2020-01-21 宁波兴业盛泰集团有限公司 High-performance phosphor bronze strip and preparation method thereof
JP6648088B2 (en) * 2017-10-19 2020-02-14 Jx金属株式会社 Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
CN107604203A (en) * 2017-11-16 2018-01-19 宁波兴业盛泰集团有限公司 The tin bronze alloys and its solid solution craft of a kind of high-strength high-elasticity
CN107699730A (en) * 2017-11-16 2018-02-16 宁波兴业盛泰集团有限公司 A kind of corrosion resistant high-strength tin copper-phosphorus alloy and its forming technology
CN107904436A (en) * 2017-12-13 2018-04-13 浙江灿根智能科技有限公司 For manufacturing the copper alloy and preparation method of quick punching machine guide sleeve
CN113981266B (en) * 2021-10-25 2022-11-25 鑫谷和金属(无锡)有限公司 High-performance phosphor bronze strip and production process thereof
CN114032416A (en) * 2021-11-18 2022-02-11 浙江惟精新材料股份有限公司 Ultrahigh-strength tin-phosphor bronze and preparation method thereof
CN114875270B (en) * 2022-05-11 2023-04-11 宁波金田铜业(集团)股份有限公司 Tin-phosphor bronze alloy and preparation method thereof
CN116287851B (en) * 2022-09-09 2024-05-14 中铝科学技术研究院有限公司 Tin phosphor bronze strip, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279824A (en) * 1992-03-30 1993-10-26 Mitsubishi Shindoh Co Ltd Copper alloy bar scarcely causing wear to stamping die
JPH07331363A (en) * 1994-06-01 1995-12-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy
EP0769563A1 (en) * 1995-10-20 1997-04-23 Olin Corporation Iron modified phosphor-bronze
JP2000256814A (en) * 1999-03-03 2000-09-19 Sumitomo Metal Mining Co Ltd Manufacture of copper-based alloy bar for terminal
JP2000273561A (en) * 1999-03-24 2000-10-03 Sumitomo Metal Mining Co Ltd Copper base alloy for terminal and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930894A (en) * 1974-02-25 1976-01-06 Olin Corporation Method of preparing copper base alloys
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279824A (en) * 1992-03-30 1993-10-26 Mitsubishi Shindoh Co Ltd Copper alloy bar scarcely causing wear to stamping die
JPH07331363A (en) * 1994-06-01 1995-12-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy
EP0769563A1 (en) * 1995-10-20 1997-04-23 Olin Corporation Iron modified phosphor-bronze
JP2000256814A (en) * 1999-03-03 2000-09-19 Sumitomo Metal Mining Co Ltd Manufacture of copper-based alloy bar for terminal
JP2000273561A (en) * 1999-03-24 2000-10-03 Sumitomo Metal Mining Co Ltd Copper base alloy for terminal and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093233A1 (en) * 2005-03-02 2006-09-08 The Furukawa Electric Co., Ltd. Copper alloy and method for production thereof
JP2006274445A (en) * 2005-03-02 2006-10-12 Furukawa Electric Co Ltd:The Copper alloy and method for production thereof
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
JP2008266783A (en) * 2007-03-26 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy for electrical/electronic device and method for manufacturing the same
WO2010071220A1 (en) 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same

Also Published As

Publication number Publication date
CN1250756C (en) 2006-04-12
US20030188814A1 (en) 2003-10-09
US20080210353A1 (en) 2008-09-04
JPWO2002053790A1 (en) 2004-05-13
KR20030057561A (en) 2003-07-04
CN1476486A (en) 2004-02-18
KR100535737B1 (en) 2005-12-09
JP4177104B2 (en) 2008-11-05
TW526272B (en) 2003-04-01

Similar Documents

Publication Publication Date Title
WO2002053790A1 (en) High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
CN101535511B (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
KR101667812B1 (en) Copper alloy plate and method for producing same
CN106460099B (en) Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
JP5306591B2 (en) Wire conductor for wiring, wire for wiring, and manufacturing method thereof
KR102196590B1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
CN103502489B (en) The manufacture method of electronic electric equipment copper alloy, electronic electric equipment copper alloy thin plate, electronic electric equipment copper alloy, electronic electric equipment conducting element and terminal
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
US10704129B2 (en) Cu—Ni—Si based rolled copper alloy and production method thereof
JP2014095150A (en) Copper alloy containing cobalt, nickel and silicon
KR100861152B1 (en) Copper alloy
WO2005116282A1 (en) Copper alloy
TW201233818A (en) Copper alloy for electronic and/or electrical device, copper alloy thin plate, and conductive member
KR20060073490A (en) Copper alloy having bendability and stress relaxation property
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP3977376B2 (en) Copper alloy
JP5243744B2 (en) Connector terminal
JP3717321B2 (en) Copper alloy for semiconductor lead frames
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
KR101875806B1 (en) Method for manufacturing copper-titanium-based copper alloy material for automobile and electronic parts and copper alloy material therefrom
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
EP2374907B1 (en) Copper alloy sheet for electrical/electronic components, and method for producing same
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 554288

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10380291

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018195121

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037007183

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037007183

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020037007183

Country of ref document: KR