JP4349631B2 - Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts - Google Patents

Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts Download PDF

Info

Publication number
JP4349631B2
JP4349631B2 JP2005078335A JP2005078335A JP4349631B2 JP 4349631 B2 JP4349631 B2 JP 4349631B2 JP 2005078335 A JP2005078335 A JP 2005078335A JP 2005078335 A JP2005078335 A JP 2005078335A JP 4349631 B2 JP4349631 B2 JP 4349631B2
Authority
JP
Japan
Prior art keywords
strength
solution treatment
fine wire
treatment
alloy fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005078335A
Other languages
Japanese (ja)
Other versions
JP2006225753A (en
Inventor
貴裕 川上
茂樹 清峰
央 河本
Original Assignee
清峰金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清峰金属工業株式会社 filed Critical 清峰金属工業株式会社
Priority to JP2005078335A priority Critical patent/JP4349631B2/en
Publication of JP2006225753A publication Critical patent/JP2006225753A/en
Application granted granted Critical
Publication of JP4349631B2 publication Critical patent/JP4349631B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、近年における電機、電子機器のマイクロ化に伴い、その分野で新たに需要が起こりつつある、強度、延性及び導電性に従来よりも優れた電子機器部品用Cu−Ni−Si系コルソン合金細線の製造方法に関するものである。   The present invention relates to Cu-Ni-Si-based corson for electronic device parts, which is more demanding in strength, ductility, and conductivity than ever before, as demand for electric devices and electronic devices in recent years is increasing. The present invention relates to a method for producing a fine alloy wire.

従来、Cu−Ni−Si系コルソン合金は、リ−ドフレ−ム、端子、コネクタ−等の電機、電子部品に使用されているが殆ど条板の形で製造販売され使用されている。ところで、近年の需要と技術発達の方向として、電機、電子機器の軽量短小化のニ−ズに伴い、使用される部品も小型化が進んでいる。而してそれに使用する銅合金には高い強度と高い加工性に要求される延性及び高い導電性が要求されている。コルソン合金は溶体化処理後、析出処理が行われている。即ち、析出処理によりNi−Si化合物を析出させて、強度、延性及び導電性を向上させている。またこの技術を電子機器のマイクロ化に伴い細線の形で使用しようとする動きが活発化している。   Conventionally, Cu—Ni—Si-based Corson alloys have been used in electrical equipment and electronic parts such as lead frames, terminals, connectors, etc., but are mostly manufactured and sold in the form of strips. By the way, with recent demands and the direction of technological development, with the need for lighter and shorter electric machines and electronic devices, parts used are also becoming smaller. Thus, the copper alloy used in the alloy is required to have high ductility and high electrical conductivity required for high strength and high workability. The Corson alloy is subjected to a precipitation treatment after a solution treatment. That is, the Ni—Si compound is precipitated by the precipitation treatment to improve the strength, ductility and conductivity. In addition, the movement to use this technology in the form of fine lines has become active along with the miniaturization of electronic devices.

これに関連した従来技術には次のようなものが存在している。
1番目の従来技術は、特開平6−60772のような圧電接続用電線導体に関する高い強度、電気導電性に加え高い延性を有する複数本の撚り線を提供することを目的とする。
しかして、その解決手段としては、1.5〜4.5%のNi,0.3〜1.0%のSi残部がCu及び不可避的不純物からなる複数の素線を導体断面積が0.03〜0.3mm2
となるように撚り合わせ、引張強度45〜90kgf/mm2、破壊時の伸び率8〜20%、導電率50%IACS以上であるような構成である。
Related arts related to this are as follows.
The first prior art aims to provide a plurality of stranded wires having high ductility in addition to high strength and electrical conductivity relating to a piezoelectric connecting wire conductor as disclosed in JP-A-6-60772.
Therefore, as a means for solving this problem, a conductor cross-sectional area of a plurality of strands in which 1.5 to 4.5% Ni, 0.3 to 1.0% Si balance is made of Cu and unavoidable impurities is set to 0. 03-0.3mm 2
The tensile strength is 45 to 90 kgf / mm 2 , the elongation at break is 8 to 20%, and the conductivity is 50% IACS or more.

2番目の従来技術は、特開2002−356728のようなもので、銅および銅合金条板とその製造方法であり、強度、加工性のバランスに優れた銅または銅合金条板を得ることを課題目的とするものである。而してその解決手段は、最終冷間圧延における加工度ηを下記式で表す場合に、η≧3なる圧延加工を施すことで上記最終冷間圧延後に粒径1μm以下の微細な結晶粒を持ち、引張試験により2%以上の伸びを示すことを特徴とする銅および銅合金条板とする構成であった。
記:加工式;η=ln(T0 /T1) ,T0 :圧延前板厚,T1 :圧延後板厚
The second prior art is as disclosed in Japanese Patent Application Laid-Open No. 2002-356728, which is a copper and copper alloy strip and a method for producing the same, and obtaining a copper or copper alloy strip excellent in balance between strength and workability. It is intended for the purpose. Thus, the solution means that when the degree of work η in the final cold rolling is expressed by the following formula, a fine crystal grain having a grain size of 1 μm or less is obtained after the final cold rolling by performing a rolling process of η ≧ 3. The copper and copper alloy strips were characterized by having a tensile test and an elongation of 2% or more.
Note: processing formula; η = ln (T0 / T1), T0: thickness before rolling, T1: thickness after rolling

特開平6−60772号公報;特願平4−212716Japanese Patent Application Laid-Open No. 6-60772; Japanese Patent Application No. 4-221716 特開2002−356728号公報;特願2002−40670JP 2002-356728 A; Japanese Patent Application 2002-40670

しかしながら、前記従来技術の特開平6−60772号公報の技術は複数本の撚り線を製造する方法であって、本発明の目的とする細い銅合金線を製造する方法ではない。また、特開平2002−356728号公報の技術は条板を製造する方法であって本発明の目的とする細い銅合金線を製造する方法ではない。上記各従来技術の特性は次の通りである。特開平6−60772号公報の技術は溶体化処理を950℃で行って加工度99%以上の伸線を行い、次いで析出処理を420〜500℃で2時間以上と長時間行っている。更に強度向上の目的でコルソン合金にAgを添加して析出処理後96%の最終冷間加工を行って、更に450℃で析出処理を行っている。結晶粒度についての記載は見当たらない。
特開2002−356728は溶体化処理後、強度が高くなる温度で析出処理を行って、その後、加工度95%で最終圧延を行なっているが、延性が充分でない。
However, the technique disclosed in Japanese Patent Application Laid-Open No. 6-60772 is a method for producing a plurality of stranded wires, and is not a method for producing a thin copper alloy wire as an object of the present invention. Moreover, the technique of Unexamined-Japanese-Patent No. 2002-356728 is a method of manufacturing a strip, and is not the method of manufacturing the thin copper alloy wire made into the objective of this invention. The characteristics of each of the above prior arts are as follows. In the technique disclosed in Japanese Patent Laid-Open No. 6-60772, a solution treatment is performed at 950 ° C. to perform drawing with a workability of 99% or more, and then a precipitation treatment is performed at 420 to 500 ° C. for 2 hours or longer. Further, for the purpose of improving the strength, Ag is added to the Corson alloy, and after the precipitation treatment, 96% of the final cold work is performed, and the precipitation treatment is further performed at 450 ° C. There is no description about the crystal grain size.
Japanese Patent Application Laid-Open No. 2002-356728 performs precipitation treatment at a temperature at which strength is increased after solution treatment, and then performs final rolling at a workability of 95%, but the ductility is not sufficient.

このように、電子機器部品用の銅合金の機械特性にとって、高い強度と良好な加工性、すなわち延性を有することが望まれる。ところが、強度と延性は相反する関係にあり、加工硬化による強度上昇をうる為に圧延加工を行なうと、延性が低下するため、圧延のままでは良好な加工性は得られない。析出処理時に結晶粒径が小さくなるようにコントロ−ルして、強度と延性を保っているのが、従来の一般であった。しかし2〜3μm以下の結晶粒度のものは得られないのが現状あった。   Thus, it is desired that the mechanical properties of the copper alloy for electronic device parts have high strength and good workability, that is, ductility. However, strength and ductility are in a contradictory relationship. When rolling is performed in order to increase the strength due to work hardening, ductility is reduced, and good workability cannot be obtained as it is. Conventionally, the strength and ductility are maintained by controlling the crystal grain size to be small during the precipitation treatment. However, the present situation is that a crystal grain size of 2 to 3 μm or less cannot be obtained.

しかし、この方法において、結晶粒度を微細化するために析出温度を低くしていくと、析出を充分に進行させ、良好な強度と延性、導電性を得るには、長時間の加熱を必要とするか、特殊な加熱をするとか、いずれも効率が悪かった。一方、高温で析出処理を行なうと、加熱時間は短縮されるが、析出結晶物が粗大化するとともに、再結晶が進み、強度が低下するという問題があった。したがって、実際には溶体化処理後加工度10〜80%の圧延加工を行って、強度を上げて、その後、導電率が高くなる温度で析出処理を行っている。このままでは、強度レベルが低下するので、ある程度の圧延加工で強度を回復させ、歪み取り焼鈍で強度、延性、更に導電率のバランスを満たしているのが、従来の実情であある。また、他の方法は溶体化処理後導電率が高くなる温度で析出処理を行って、その後80%以上の加工度で圧延を行って、強度を回復させて、その後歪取り焼鈍で延性を回復させているのが、従来の実状である。   However, in this method, if the precipitation temperature is lowered in order to refine the crystal grain size, it takes a long time to heat the precipitation sufficiently and to obtain good strength, ductility and conductivity. Either special heating or special heating was inefficient. On the other hand, when the precipitation treatment is performed at a high temperature, the heating time is shortened, but there is a problem that the precipitated crystal is coarsened and recrystallization proceeds and the strength is lowered. Therefore, in practice, a rolling process with a workability of 10 to 80% after the solution treatment is performed to increase the strength, and then the precipitation process is performed at a temperature at which the conductivity is increased. Since the strength level is lowered as it is, the conventional situation is that the strength is recovered by a certain degree of rolling, and the balance of strength, ductility, and conductivity is satisfied by strain relief annealing. Another method is to perform precipitation treatment at a temperature at which the conductivity increases after solution treatment, and then roll at a workability of 80% or more to restore strength, and then recover ductility by strain relief annealing. What is being made is the conventional situation.

また、最近の従来技術として、950℃と高い温度で溶体化処理を行い、99%以上の加工度で伸線を行って、500℃と高い温度で2時間と長い時間析出処理を行って、高い延性と高い導電率を得ることができるが、強度低下が大きいので、複数本の撚り線にすることにより強度を得る方法が提案されている。また、他の方法では950℃と高い温度で溶体化処理後、強度の高くなる温度で析出処理を行って、加工度を95%以上加えた最終圧延工程で動的再結晶化により、微細結晶を形成させる提案がなされているが、6%以上の伸び率を有する延性はやはり歪取り焼鈍で回復させなければならないし、そのときに起こる強度低下については記載されていないという問題点がある。
本発明は上記従来の諸問題点を解決し、電気、電子部品の小型化のため、細線の品質向上と製造方法の大幅改良をその目的課題とする。
Moreover, as a recent prior art, solution treatment is performed at a high temperature of 950 ° C., wire drawing is performed at a workability of 99% or more, and precipitation treatment is performed at a high temperature of 500 ° C. for 2 hours, Although high ductility and high electrical conductivity can be obtained, but the strength is greatly reduced, a method of obtaining strength by using a plurality of stranded wires has been proposed. In another method, after a solution treatment at a temperature as high as 950 ° C., a precipitation treatment is performed at a temperature at which the strength is increased, and a dynamic recrystallization is performed in a final rolling step with a workability of 95% or more to obtain fine crystals. However, there is a problem that the ductility having an elongation of 6% or more must be recovered by strain relief annealing, and the strength reduction occurring at that time is not described.
The object of the present invention is to solve the above-mentioned conventional problems and to improve the quality of fine wires and to greatly improve the manufacturing method in order to reduce the size of electric and electronic parts.

本発明者等は、上記問題点を解決するため、鋭意研究を重ねた結果、加工度を99%以上とするために、該細線合金の新規の組成を前記請求項1のように創出し、該組成の鋳塊の状態で溶体化した後、99%以上、更に99.99%以上の冷間伸線するとNi、Siが更にCu金属の中を拡散して、固溶した状態で動的再結晶化が起こり結晶粒がサブミクロンと超微細化して高い強度が発現すること,更に中間析出処理を行った後、99%以上の加工度で最終的に冷間伸線加工を行えば、Ni−Si化合物が析出した状態で、動的再結晶化が起こり、結晶粒がサブミクロンと超微細化して、最終析出処理を行っても、
Ni−Si化合物のピン止効果で、結晶粒度の成長が起こらないことを確認し本発明に至っつた。しかして、従来より低い温度で溶体化処理し、冷間加工を行い、必要ならば中間析出処理を行い、最終的に加工度を99%以上にして冷間伸線加工した後、250〜500℃の温度で、従来より短い時間で析出処理を行うことにより、高い強度、延性且つ高い導電率を持つ超微細結晶粒となり、バランスの取れたCu−Ni−Si−Mn系コルソン合金細線が製造しうるようになった。
In order to solve the above-mentioned problems, the present inventors have conducted extensive research, and as a result, in order to achieve a workability of 99% or more, a novel composition of the fine wire alloy is created as in the above-mentioned claim 1, After solution forming in the state of the ingot of this composition, when cold drawing of 99% or more, and further 99.99% or more, Ni and Si are further diffused in the Cu metal and dynamically dissolved. If recrystallization occurs and crystal grains become ultrafine to submicron and high strength is expressed, and after intermediate precipitation treatment is performed, if cold drawing is finally performed at a workability of 99% or more, In the state where the Ni-Si compound is precipitated, dynamic recrystallization occurs, the crystal grains become ultrafine as submicron, and the final precipitation treatment is performed.
The pinning effect of the Ni—Si compound confirmed that no growth of crystal grain size occurred, and the present invention was achieved. Thus, solution treatment is performed at a lower temperature than before, cold working is performed, intermediate precipitation treatment is performed if necessary, and finally cold drawing is performed with a workability of 99% or more, and then 250 to 500 Precipitation treatment at a temperature of ℃ for a shorter time than before makes ultrafine crystal grains with high strength, ductility and high conductivity, and a balanced Cu-Ni-Si-Mn Corson alloy fine wire is produced. It became possible.

ここに、本発明にいう細線の丸線の場合は断面径が0.2mm以下の素線、角線の場合は断面径が0.4mm以下の素線である。また、本発明にいう加工度とは次式に示す3つの式で示される加工可能の度合いをいう。
加工度1=(溶体化処理時の断面積−最終析出処理時の断面積)/溶体化処理時の断面積加工度2=(中間析出処理時断面積−最終析出処理時の断面積)/中間析処理時の断面積加工度3=(溶体化処理時の断面積−中間析出処理時の断面積)/溶体化処理時の断面積(加工度1,2は99%以上でなければならない。加工度1,2,3の鋳塊で溶体化処理を行う場合、柱状晶単相の場合溶体化処理を省くことができる。)
Here, in the case of the thin round wire referred to in the present invention, it is a strand having a sectional diameter of 0.2 mm or less, and in the case of a square wire, it is a strand having a sectional diameter of 0.4 mm or less. Further, the degree of processing referred to in the present invention refers to the degree of workability indicated by the following three expressions.
Degree of processing 1 = (Cross sectional area during solution treatment−Cross sectional area during final precipitation process) / Cross sectional area during solution treatment 2 = (Cross sectional area during intermediate precipitation process−Cross sectional area during final precipitation process) / Degree of cross-sectional area processing during intermediate treatment 3 = (Cross-sectional area during solution treatment-Cross-sectional area during intermediate precipitation process) / Cross-sectional area during solution treatment (Degree of processing 1, 2 must be 99% or more) When solution treatment is performed on ingots with a processing degree of 1, 2, and 3, solution treatment can be omitted in the case of a columnar crystal single phase.)

本発明で使用するコルソン合金の組成は、Niを1.0〜4.0wt%,Siを0.2〜1.4wt%,Mnを0.05〜0.5wt%,Znを1.0wt%以下含有し残部がCu及び不可避的不純物からなる。上記合金に副成分としてMg,Sn,Fe,Ti,P,Zr及びAgの1種以上を0.005〜2wt%添加しても良い。
また、本発明のコルソン合金は高周波溶解炉で木炭被覆下に大気溶解した後、横型連続鋳造機で13〜40mmφのビレットに鋳造される。
The composition of the Corson alloy used in the present invention is as follows: Ni: 1.0 to 4.0 wt%, Si: 0.2 to 1.4 wt%, Mn: 0.05 to 0.5 wt%, Zn: 1.0 wt% The following is contained, and the balance is made of Cu and inevitable impurities. You may add 0.005 to 2 wt% of one or more of Mg, Sn, Fe, Ti, P, Zr and Ag as subcomponents to the alloy.
The Corson alloy of the present invention is melted in the atmosphere under a charcoal coating in a high-frequency melting furnace, and then cast into a billet of 13 to 40 mmφ by a horizontal continuous casting machine.

鋳造した鋳塊のマクロ組織を観察すると、柱状晶、等軸晶、チル晶からなる。表面にあるチル晶は機械的、化学的に取り除けるが、等軸晶は中心部にあるので取り除くことは出来ない。全部が柱状結晶である場合、即ち、柱状晶単相組織の場合は、特に加工度99%以上の冷間伸線加工を行う場合は溶体化処理を行った組織と同程度のNi,SiのCuへの固溶度が得られることがX線マイクロアナライザ分析、及び導電率測定の結果判明した。従って、この場合は溶体化処理は不要である。しかし、鋳塊には、柱状晶だけではなく、等軸晶もあるので、冷間加工を加えるか、冷間加工を加えない場合も、溶体化処理を行って、Ni、SiをCuに充分固溶させなければならない。この場合の溶体化処理温度は700〜950℃で行う。950℃以上で行うと強度が落ちる。700℃より低い温度では長い時間がかかる。溶体化処理は大気中で行うことできる。溶体化処理後水中で急冷することができる。表面に付着したスケ−ルは化学的に取り除くことができる。   When the macrostructure of the cast ingot is observed, it consists of columnar crystals, equiaxed crystals, and chill crystals. The chill crystals on the surface can be removed mechanically and chemically, but the equiaxed crystals cannot be removed because they are in the center. In the case where all are columnar crystals, that is, in the case of a columnar crystal single phase structure, in particular, when performing cold wire drawing with a workability of 99% or more, Ni and Si of the same degree as the structure subjected to solution treatment are used. As a result of X-ray microanalyzer analysis and conductivity measurement, solid solubility in Cu was obtained. Therefore, in this case, no solution treatment is necessary. However, ingots have not only columnar crystals but also equiaxed crystals. Therefore, even when cold working or cold working is not applied, solution treatment is performed and Ni and Si are sufficient for Cu. Must be dissolved. In this case, the solution treatment temperature is 700 to 950 ° C. If it is performed at 950 ° C. or higher, the strength decreases. It takes a long time at temperatures lower than 700 ° C. The solution treatment can be performed in the atmosphere. After solution treatment, it can be rapidly cooled in water. The scale attached to the surface can be removed chemically.

溶体化処理の後、加工度1を99%以上好ましくは、99、99%の冷間伸線加工を加えた後、400〜500℃の温度で30〜150分の最終析出処理を行うと強度、延性、導電性が高くなる。溶体化処理の後加工度3を99%以上で冷間伸線した後、中間析出処理を行う。その後、加工度2の99%以上の冷間伸線加工を行って最終析出焼鈍を行うと更に強度が向上する。このときの中間析出処理条件は400〜500℃で30〜150分である。最終析出焼鈍条件は250〜500℃で5〜150分である。500℃を超えると導電率、伸び率は高くなるが強度の低下が大きい。400℃以下で、Ni−Si化合物のピン止効果で結晶粒成長速度が小さくなり、結晶粒度が1μm以下となり、強度の低下が小さい。冷間伸線加工は複数の伸線機で行われる。途中、表面のスケ−ルを化学的に取り除くのはかまわない。   After the solution treatment, the degree of workability 1 is 99% or more, preferably 99, 99% cold wire drawing is applied, and then the final precipitation treatment is performed at a temperature of 400 to 500 ° C. for 30 to 150 minutes. , Ductility and conductivity are increased. After the solution treatment, after cold-drawing at a work degree 3 of 99% or more, intermediate precipitation treatment is performed. Then, when the cold drawing of 99% or more of the degree of work 2 is performed and the final precipitation annealing is performed, the strength is further improved. The intermediate precipitation treatment conditions at this time are 400 to 500 ° C. and 30 to 150 minutes. The final precipitation annealing conditions are 250 to 500 ° C. and 5 to 150 minutes. If the temperature exceeds 500 ° C., the conductivity and elongation increase, but the strength decreases greatly. At 400 ° C. or less, the crystal grain growth rate is reduced by the pinning effect of the Ni—Si compound, the crystal grain size is 1 μm or less, and the decrease in strength is small. Cold wire drawing is performed by a plurality of wire drawing machines. During the process, the surface scale may be chemically removed.

以上詳細に説明したように、本発明により、従来製造不可能であった、強度も強く、而も延性も良好で且つ導電性にも優れ、バランスの取れたコルソン合金細線を安価に作ることが出来、電機、電子機器の接点材料の性能を大幅に向上させることができる。   As described above in detail, according to the present invention, it is possible to inexpensively produce a balanced Corson alloy fine wire that has been impossible to manufacture in the past, has high strength, good ductility, excellent electrical conductivity, and balance. The performance of contact materials for electrical and electronic equipment can be greatly improved.

本発明の実施の最良の形態としては、前記請求項1又は2の組成のコルソン合金細線の製造方法において、前記請求項3の柱状晶単相の鋳塊段階で溶体化処理を省いて行うのが最良である。その理由は工程短縮が出来て、最終的に超微細な結晶粒度のものが得られ、高い強度、延性、導電性の良好な細線が得られるからである。   As the best mode for carrying out the present invention, in the method for producing a Corson alloy fine wire having the composition of claim 1 or 2, the solution treatment is omitted at the ingot stage of the columnar crystal single phase of claim 3. Is the best. The reason is that the process can be shortened, and finally an ultrafine crystal grain size can be obtained, and a fine wire having high strength, ductility and good conductivity can be obtained.

次に、本発明の効果を実証しつつ、実施例について具体的に説明する。
表1にwt%で示される組成のCu−Ni−Si−Mn系コルソン合金を高周波溶解炉により木炭被覆下で大気溶解した後、連続鋳造機で鋳造し34mmφと18mmφのビレツトに鋳造した。鋳塊1の成分値はNi2.0wt%,Si0.40wt%,Mn 0.14
wt%(柱状晶単相)、また鋳塊2の成分値は、Niが2.0wt%,Siが0.45wt%,Mnが0.21wt%,Znが0.1wt%で、残部がCuと不可避的不純物から成り、結晶状態は等軸晶共相(柱状結晶と等軸晶の結晶が同時に存在する状態の相)である。
次に、鋳塊3の成分値は、Niが3.8wt%、Siが0.8wt%、Mnが0.14wt%、Znが0.05wt%で残部がCuと不可避的不純物から成り、結晶状態は等軸晶共相であった。鋳塊のマクロ組織を調べた後、そのまま又は冷間圧延加工後溶体化処理を大気中で行い水中に急冷した。次いで、スケ−ルを酸洗いで落とした。冷間伸線加工を行った後析出処理を行って強度と導電率を測定した結果を表1に示した。
表1の内容に関連して説明を加える。該金属組織内結晶が単相のとき溶体化処理を省略しても、850℃以下の温度で溶体化処理した場合と同様加工率が99%以下では動的再結晶が起こらないので、結晶の微細化が起こらない。そのため強度が高くならない。しかし加工度が99%以上あれば強度が700N/mm2 以上となり、更に99.99%以上では850N/mm2 と急激に高くなる。しかし導電率はNi,Si,Mnが固溶した時の低い同程度の値を示していることから、固溶した状態で動的再結晶が起こっていることを示している。
Next, examples will be specifically described while demonstrating the effects of the present invention.
A Cu—Ni—Si—Mn Corson alloy having the composition shown in wt% in Table 1 was melted in the atmosphere under a charcoal coating by a high-frequency melting furnace, and then cast by a continuous casting machine into 34 mmφ and 18 mmφ billets. Ingot 1 has component values of Ni 2.0 wt%, Si 0.40 wt%, Mn 0.14
The component values of the ingot 2 are as follows: Ni is 2.0 wt%, Si is 0.45 wt%, Mn is 0.21 wt%, Zn is 0.1 wt%, and the balance is Cu. The crystal state is an equiaxed crystal phase (a phase in which a columnar crystal and an equiaxed crystal exist simultaneously).
Next, the component values of the ingot 3 are as follows: Ni is 3.8 wt%, Si is 0.8 wt%, Mn is 0.14 wt%, Zn is 0.05 wt%, and the balance is Cu and inevitable impurities. The state was equiaxed crystal phase. After examining the macrostructure of the ingot, the solution treatment was performed in the air as it was or after cold rolling and rapidly cooled in water. The scale was then removed by pickling. Table 1 shows the results of measuring the strength and conductivity by performing the precipitation treatment after the cold wire drawing.
A description will be added in relation to the contents of Table 1. Even if the solution treatment is omitted when the crystal in the metal structure is a single phase, dynamic recrystallization does not occur at a processing rate of 99% or less as in the case of solution treatment at a temperature of 850 ° C. or less. Miniaturization does not occur. Therefore, the strength does not increase. However, if the degree of processing is 99% or more, the strength is 700 N / mm 2 or more, and if it is 99.99% or more, the strength is rapidly increased to 850 N / mm 2 . However, the conductivity shows a low and similar value when Ni, Si, and Mn are dissolved, indicating that dynamic recrystallization occurs in the solid solution.

Figure 0004349631
Figure 0004349631

実施例1で得られた試料を最終析出処理した時の条件と特性値の関係を表2に示した。   Table 2 shows the relationship between the conditions and the characteristic values when the sample obtained in Example 1 was subjected to the final precipitation treatment.

Figure 0004349631
Figure 0004349631

表2について説明する。加工度1が99%以上になると400〜500℃で析出処理を行うと強度は低下してくるが導電率、伸び率も6%に近づく。加工度1が99.99%以上になると475℃と高くなっても強度低下が小さい。特に溶体化処理温度が950℃と高くなると導電率、伸び率は高くなるが強度が低下する。Ni−Si化合物のピン止め効果はなく、結晶粒の成長の速度が大きく、1〜2μmとなっているからである。   Table 2 will be described. When the degree of work 1 is 99% or more, when the precipitation treatment is performed at 400 to 500 ° C., the strength decreases, but the conductivity and the elongation rate approach 6%. When the degree of work 1 is 99.99% or more, the strength reduction is small even if it is as high as 475 ° C. In particular, when the solution treatment temperature is as high as 950 ° C., the conductivity and the elongation are increased, but the strength is decreased. This is because there is no pinning effect of the Ni—Si compound, and the growth rate of crystal grains is high, being 1 to 2 μm.

実施例1の鋳塊ビレットを溶体化処理を省略した条件、750℃x3時間で溶体化処理を行った後水中で急冷した条件の2種類の条件で行った後、加工度3の冷間伸線加工を行い、中間析出処理を行った。加工条件と特性値の関係を表3に示した。   The ingot billet of Example 1 was subjected to two conditions: a condition in which the solution treatment was omitted, and a condition in which the solution treatment was performed at 750 ° C. × 3 hours and then rapidly cooled in water. Wire processing was performed and intermediate precipitation treatment was performed. Table 3 shows the relationship between processing conditions and characteristic values.

Figure 0004349631
Figure 0004349631

表3について説明する。加工度99%以上で伸線したものを400〜500℃で析出処理したものは、高い導電率を示したが、強度は低下した。特に溶体化温度950℃で行ったものは高い導電率を示したが強度は低かった。結晶粒の成長速度が大きいためである。   Table 3 will be described. What was drawn at a processing degree of 99% or more and subjected to precipitation treatment at 400 to 500 ° C. showed high conductivity, but the strength decreased. In particular, what was carried out at a solution temperature of 950 ° C. showed high conductivity but low strength. This is because the growth rate of crystal grains is high.

実施例3で得られた試料を99%以上の加工度2で最終冷間伸線加工後最終析出処理したときの条件と特性値の関係を表4に示した。
表4について説明する。加工度2の99%以上の最終伸線加工を行った後、300〜400℃の最終析出処理を行うと強度はわずかに低下してくるが、導電率は向上している。
高い強度、伸び、導電率を維持している。最終析出処理でNi−Si化合物のピン止効果により結晶粒度の成長が起きていないことと、0.2〜0.4μmの超微細結晶粒が生じていることに起因している。375℃以上の最終析出温度では導電率が50%以上と高くなるが強度低下が増加する。更に、450℃になると52%と高い導電率を示すが、強度が大幅に低下し452N/mm2 となる。
Table 4 shows the relationship between the conditions and the characteristic values when the sample obtained in Example 3 was subjected to final precipitation after the final cold drawing at a workability of 2 of 99% or more.
Table 4 will be described. After the final wire drawing of 99% or more of the degree of work 2 is performed, the final precipitation treatment at 300 to 400 ° C. results in a slight decrease in strength, but the conductivity is improved.
Maintains high strength, elongation and electrical conductivity. This is because the crystal grain size does not grow due to the pinning effect of the Ni—Si compound in the final precipitation treatment and ultrafine crystal grains of 0.2 to 0.4 μm are generated. At a final deposition temperature of 375 ° C. or higher, the conductivity increases to 50% or higher, but the strength decreases. Further, when the temperature reaches 450 ° C., the conductivity is as high as 52%, but the strength is greatly reduced to 452 N / mm 2 .

Figure 0004349631
Figure 0004349631

上記製作により得られた丸線から各種の試験片を採取して材料試験を行い、結晶粒度、強度、伸び率、導電率について測定した。結晶粒度は電子顕微鏡で分析した。強度、伸び率についてはJIS2242に規定された引張試験に従って行った。導電率は四端子法を用いて導電率を測定して求めた。   Various test pieces were collected from the round wire obtained by the above fabrication and subjected to material tests, and the crystal grain size, strength, elongation, and conductivity were measured. The crystal grain size was analyzed with an electron microscope. The strength and elongation were measured according to the tensile test specified in JIS2242. The conductivity was determined by measuring the conductivity using the four probe method.

電機、電子機器産業において、製品の軽量短小化は世界的傾向である。電子機器の超小型化のためには、機器内の結線に用いる導線は細く強度が大でなければならない。そこで細い導線に使用する銅合金の強度を大にするため、材料組織内の結晶粒を微細にすると、、延伸性が低下するから従来強度が大で延伸性が良好なコルソン系細線は存在しなかった。そこで本発明では、上記詳細に開示した通り、強度が大で、導電率が高く、延伸性が良好なる画期的な新コルソン系細線を創始開発し、これをこの分野の産業界に提供せんとするものである。従って、本発明の産業上利用可能性が極めて大であることは明らかである。   In the electrical and electronic equipment industries, the reduction of product weight and weight is a global trend. In order to reduce the size of electronic devices, the wires used to connect the devices must be thin and strong. Therefore, in order to increase the strength of the copper alloy used for thin conductors, if the crystal grains in the material structure are made finer, the drawability decreases, so there is a conventional Corson type fine wire with high strength and good drawability. There wasn't. Therefore, in the present invention, as disclosed in detail above, an innovative new Corson-type fine wire that has high strength, high electrical conductivity, and good stretchability was originally developed and provided to the industry in this field. It is what. Therefore, it is clear that the industrial applicability of the present invention is extremely large.

Claims (3)

Niを1.0〜4.8mass%,Siを0.2〜1.4mass%,Mnを0.05〜0.5mass%,Znを1.0以下mass%含有し、残部がCuと不可避的不純物とからなる均質な組成の銅合金を、柱状晶単相組織の場合には溶体化処理を行わず、等軸晶を含む組織の場合には700〜950℃で溶体化処理を行った後、冷間加工を加え最終的に加工度99%以上で冷間伸線加工を行い、次いで250〜500℃の温度において5〜150分の時間で析出処理を行い該金属組織内結晶粒度を2μm以下とすることを特徴とする電機、電子機器部品用コルソン合金細線の製造方法。 Ni: 1.0 to 4.8 mass %, Si: 0.2 to 1.4 mass %, Mn: 0.05 to 0.5 mass %, Zn: 1.0 or less mass %, with the balance being Cu In the case of a columnar crystal single-phase structure, the solution is not subjected to solution treatment, and in the case of a structure containing equiaxed crystals, solution treatment is performed at 700 to 950 ° C. Then, cold working is performed and finally cold drawing is performed at a workability of 99% or more, and then a precipitation treatment is performed at a temperature of 250 to 500 ° C. for 5 to 150 minutes. The manufacturing method of the Corson alloy fine wire for electrical machinery and electronic equipment components characterized by making a particle size into 2 micrometers or less. 前記コルソン合金細線の製造方法は、溶体化処理工程と冷間伸線加工工程の中間に中間析出処理工程を挿入経由して、該金属組織内結晶粒度を1μm以下とするものである請求項1に記載の電機、電子機器部品用コルソン合金細線の製造方法。   2. The method for producing a Corson alloy fine wire is one in which an intermediate precipitation treatment step is inserted between a solution treatment step and a cold wire drawing step so that the crystal grain size in the metal structure is 1 μm or less. The manufacturing method of the Corson alloy fine wire for electrical machinery and electronic equipment components as described in 2 .. 前記溶体化処理は前記組成の銅合金の鋳塊の状態で行うものである請求項1又は2に記載の電機、電子機器部品用コルソン合金細線の製造方法。   The method for producing a Corson alloy fine wire for electric and electronic device parts according to claim 1 or 2, wherein the solution treatment is performed in a state of an ingot of a copper alloy having the above composition.
JP2005078335A 2005-01-18 2005-03-18 Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts Expired - Fee Related JP4349631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078335A JP4349631B2 (en) 2005-01-18 2005-03-18 Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005010001 2005-01-18
JP2005078335A JP4349631B2 (en) 2005-01-18 2005-03-18 Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts

Publications (2)

Publication Number Publication Date
JP2006225753A JP2006225753A (en) 2006-08-31
JP4349631B2 true JP4349631B2 (en) 2009-10-21

Family

ID=36987370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078335A Expired - Fee Related JP4349631B2 (en) 2005-01-18 2005-03-18 Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts

Country Status (1)

Country Link
JP (1) JP4349631B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306591B2 (en) * 2005-12-07 2013-10-02 古河電気工業株式会社 Wire conductor for wiring, wire for wiring, and manufacturing method thereof
WO2020209026A1 (en) * 2019-04-10 2020-10-15 昭和電線ケーブルシステム株式会社 Cu-(ni,co)-si alloy wire, insulated wire, method for producing cu-(ni,co)-si alloy wire, and method for producing insulated wire

Also Published As

Publication number Publication date
JP2006225753A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
KR20120130344A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
TWI516617B (en) Cu-Si-Co based copper alloy for electronic materials and its manufacturing method
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
KR20130109161A (en) Cu-ni-si-co copper alloy for electron material and method for producing same
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP2009242932A (en) Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
KR20130089656A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP4175920B2 (en) High strength copper alloy
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2011017073A (en) Copper alloy material
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2013117060A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070423

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees