EP2340318B1 - Copper-tin alloy, composite material and use thereof - Google Patents
Copper-tin alloy, composite material and use thereof Download PDFInfo
- Publication number
- EP2340318B1 EP2340318B1 EP09744964.9A EP09744964A EP2340318B1 EP 2340318 B1 EP2340318 B1 EP 2340318B1 EP 09744964 A EP09744964 A EP 09744964A EP 2340318 B1 EP2340318 B1 EP 2340318B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- tin
- copper
- alloy
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 title claims description 42
- 239000002131 composite material Substances 0.000 title claims description 20
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims 2
- 229910045601 alloy Inorganic materials 0.000 description 51
- 239000000956 alloy Substances 0.000 description 51
- 239000011135 tin Substances 0.000 description 35
- 229910052718 tin Inorganic materials 0.000 description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 229910052698 phosphorus Inorganic materials 0.000 description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 12
- 229910017755 Cu-Sn Inorganic materials 0.000 description 11
- 229910017927 Cu—Sn Inorganic materials 0.000 description 11
- 239000011574 phosphorus Substances 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 239000011701 zinc Substances 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910017518 Cu Zn Inorganic materials 0.000 description 5
- 229910017752 Cu-Zn Inorganic materials 0.000 description 5
- 229910017943 Cu—Zn Inorganic materials 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 229910001369 Brass Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 3
- 239000010951 brass Substances 0.000 description 3
- 238000004870 electrical engineering Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 229910002535 CuZn Inorganic materials 0.000 description 2
- 229910017827 Cu—Fe Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- -1 nickel and chromium Chemical compound 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12389—All metal or with adjacent metals having variation in thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12708—Sn-base component
- Y10T428/12715—Next to Group IB metal-base component
Definitions
- the invention relates to a copper-tin alloy, a composite material with such a copper-tin alloy and a use of the copper-tin alloy and the composite material.
- the copper-tin alloy and the comprehensive composite material is particularly suitable for fasteners in electrical engineering and electronics.
- the invention is particularly concerned with the problem of recyclability.
- copper alloys based on Cu-Zn, Cu-Sn and Cu-Fe are widely used today for connecting elements in electrical engineering and in electronics.
- copper alloys are used for lead frames and connectors.
- Important criteria for the selection of materials are modulus of elasticity, yield strength, relaxation behavior and bendability.
- the electrical conductivity and corrosion resistance are important criteria for the safe function of the components over the life of the entire system. Often there is an overlap of property requirements, which in principle preclude each other, such as the combination of a good Conductivity with high corrosion resistance.
- alloying elements in copper, such as nickel and chromium on the one hand improve the corrosion resistance, on the other hand, they considerably reduce the conductivity.
- Cu-Zn or brass alloys are solid solution hardening materials. They are binary alloys, which usually contain between 5 and 40 wt .-% of zinc. With increasing zinc content, tensile strength and hardness increase. The elongation reaches a maximum at 30% by weight of zinc. Higher strength and hardness values can only be achieved by cold forming.
- the disadvantage of the Cu-Zn alloys lies in the relatively poor weldability, because the alloying element zinc has a relatively high vapor pressure. Pure zinc already boils at 1.013 bar at 907 ° C.
- Cu-Zn alloys have a low elastic modulus of about 110 KN / mm 2 (SI unit: GPa).
- tinned brass bands can not be recycled well due to the tin included for corrosion protection reasons.
- the relaxation behavior of Cu-Zn alloys is also pronounced, limiting the operating temperature.
- Cu-Sn alloys ie tin bronzes
- the Cu-Sn alloys are usually added some phosphorus, which is why these alloys are also referred to as phosphorus bronzes.
- the properties of these alloys are determined primarily by the tin content, which is usually between 4 and 8 wt .-%.
- the modulus of elasticity of phosphorus bronzes is between 115 and 120 kN / mm 2 (SI unit: GPa).
- the bendability of tin bronzes is excellent. Rising Sn levels improve the flexibility for a given temper.
- the laser weldability of tin or phosphorus bronzes is given, because these alloys have no volatile elements (especially zinc) and no disturbing second phases.
- the relaxation behavior of tin or phosphorus bronzes is better than that of brass alloys, although it does not reach the level of hardenable copper materials.
- Cu-Sn alloys are used in the form of tapes for stampings and connectors, if a good to very good spring characteristic, a good electrical and thermal resilience, low stress relaxation, good bendability, good weldability and solderability are required. Even in tinned form, phosphorus bronzes are easy to recycle. Tin is already included in the alloy as such.
- the low-alloyed copper materials include the Cu-Fe alloys.
- the material properties of pure copper such as the strength, the softening or relaxation behavior can be improved.
- Widely used for stamped grids in automotive engineering is in particular a CuFe2P alloy in the heat setting FH.
- the sharp-edged bendability is still present.
- the modulus of elasticity is about 125 KN / mm 2 (GPa), and thus the material has good spring properties.
- the electrical conductivity is between 60% and 70% IACS (I nternational Annealed C opper S tandard: 100% IACS correspond approximately to 58 MS / m). A tinning of the material for corrosion protection reasons is well possible.
- One of the disadvantages of the CuFe2P alloy is that it does not form a homogeneous material but has Fe2P precipitates. In particular, this makes laser welding difficult. If the laser beam encounters coarser Fe2P precipitates during spot welding, it can be deflected, making the penetration result unsatisfactory.
- Another disadvantage is the poor recyclability of tin-plated scrap of CuFe2P alloy.
- the electrical conductivity of a CuFe2P alloy is reduced by 25% upon reflow by a dissolving tin of about 1% by weight.
- the tinned punching scrap which usually make up 50% to 70% of the material used in the manufacture of stamped laths, can not be returned directly to the melting process, but rather must be smelted and electrochemically separated. The return to the material cycle is therefore as a cathode. This process is very energy intensive and thus very expensive compared to the direct melting of the scraps.
- Fig. 1 For a CuFe2P alloy, the influence of a percentage of tin on the electrical conductivity is shown. The electrical conductivity drops drastically even from levels above 0.3 wt .-% tin. For example, a 0.4 mm thick band of a CuFe2P alloy for corrosion protection reasons Coated with about 3 ⁇ m tin on both sides, a CuFe2P alloy contaminated with about 1.5% by weight tin would result from direct recycling based on this scrap. In addition to drastic losses in the electrical conductivity, this tin content also has a strong negative effect on the solidification behavior.
- CuNiP alloys are known, which may optionally include Sn, Zn and Fe.
- the object of the invention is to provide an alloy and a composite material which corresponds as far as possible in its physical and technological properties of a CuFe2P alloy, as well as possible laser weldable and can be recycled well. Another object is to provide a use for such an alloy and composite material.
- the above object is achieved by a copper-tin alloy having the composition according to claim 1.
- the copper-tin alloy comprises 0.2 to 0.8 wt .-% tin (Sn), 0.3 to 0.5 wt .-% nickel (Ni) and / or cobalt (Co), 0 to 0 , 05 wt .-% zinc (Zn), 0 to 0.02 wt .-% iron (Fe), 0.008 to 0.05 wt .-% phosphorus (P) and the balance copper (Cu).
- the invention is based on the idea of specifying an alternative to the CuFe2P alloy, new alloy, which has comparable properties, but can be easily recycled even in tinned state.
- Pure Cu-Sn alloys such as a CuSn0.15 alloy, undoubtedly have the potential to be used as such an alternative. Coated with tin, the scrap of such an alloy can be fed directly to the recycling cycle.
- the mechanical and technological properties correspond to those of a CuFe2P alloy relatively well. Significant weaknesses, however, occur in the softening behavior and the relaxation resistance.
- the table shows that Cu-Sn alloys can meet the specified requirements in terms of technological and physical properties.
- an alloy layer is formed between the base material and the tin coating.
- the Cu-Sn alloy according to the invention exhibits a property profile which is comparable to the CuFe 2 P alloy in the area of the softening behavior and the relaxation.
- the Cu-Sn alloy according to the invention is further distinguished in a special way by the direct traceability of tin-plated scrap from the individual stages of the value-added chain.
- the tin-coated scrap can be returned directly to the smelting process, so that the recycling costs are significantly lower than smelting.
- the smelting costs for example, can quickly reach the level of manufacturing costs with a scrap content of 70% and put into question the economic efficiency.
- the stated copper-tin alloy contains a proportion of Sn between 0.3 and 0.7% by weight, in particular between 0.4 and 0.6% by weight the invention, the proportion of Ni and / or Co in the copper-tin alloy is between 0.3 and 0.5 wt .-%.
- the strength can be improved.
- the copper-tin alloy has 0.3 to 0.7 wt% Sn, 0.3 to 0.5 wt% Ni and / or Co, 0 to 0.04 wt%. Zn, 0 to 0.015 wt .-% Fe, 0.08 to 0.03 wt .-% P, and the balance Cu on.
- the copper-tin alloy is further improved when it contains 0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight. % Zn, 0 to 0.01 wt .-% Fe, 0.008 to 0.015 wt .-% P, and the remainder comprises Cu.
- a further advantageous precise adjustment of the properties of the copper-tin alloy can be carried out if there is a total of impurities and other admixtures of not more than 0.3% by weight.
- a copper-tin alloy containing 0.38 wt% Sn, 0.30 wt% Ni and / or Co, 0.003 wt% Zn, 0.008 wt%. % Fe, 0.014 wt .-% P, and the remainder comprises Cu.
- the copper-tin alloy according to the invention is very good laser weldable, since no volatile elements are contained and the alloy is free of a second phase. In particular, the alloy does not exhibit NiP precipitates.
- the alloy is ideal for a good laser weldable composite material, which can be used in particular for stamped grid.
- stamped grids are used today, for example in automotive technology for ABS and ESP systems.
- a base material of the aforementioned copper-tin alloy is provided with a tin layer or covered, which can be made in particular by the method of hot tinning.
- the composite material is characterized by a high relaxation resistance up to temperatures of 100 ° C.
- the specified copper-tin alloy with a composition according to the claims directed thereto.
- the outer coating or tin cover ensures high corrosion resistance.
- the thickness of the tin layer is preferably between 1 and 3 ⁇ m.
- a transition layer is formed between the base material and the tin layer.
- the tin layer is preferably applied in such a way that the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn.
- the formation of the transition layer is in particular designed such that it has a thickness between 0.1 and 1 micron.
- the alloy of the core transitions through the transition layer into a layer of pure tin. Via the formed transition or alloy layer, a good connection of the tin layer is achieved.
- the overall result is a five-layer structure.
- On one core of the specified copper-tin alloy as the base material sits on both sides of a layer of an intermetallic phase consisting of CuNiCoSn with a thickness between 0.1 and 1.0 microns.
- the composite material is finally covered for corrosion protection reasons with a layer of free or pure tin, which has a thickness of 1.0 to 3.0 microns.
- the layer composite material has a total thickness of 0.2 to 1 mm, preferably up to 2 mm, particularly preferably up to 3 mm.
- the electrical conductivity of the specified composite material corresponds to that of the previously used comparison material CuFe2P. Thermal conductivity and other technological values of the composite are also fully comparable.
- Both the copper-tin alloy according to the invention and the tinned composite material are outstandingly suitable for tapes, films, profiled strips, stampings or connectors, in particular for applications in electrical engineering or electronics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Electroplating Methods And Accessories (AREA)
- Non-Insulated Conductors (AREA)
- Contacts (AREA)
Description
Die Erfindung betrifft eine Kupfer-Zinn-Legierung, einen Verbundwerkstoff mit einer solchen Kupfer-Zinn-Legierung sowie eine Verwendung der Kupfer-Zinn-Legierung und des Verbundwerkstoffs. Die Kupfer-Zinn-Legierung und der diese umfassende Verbundwerkstoff eignet sich insbesondere für Verbindungselemente in der Elektrotechnik und in der Elektronik. Die Erfindung beschäftigt sich insbesondere mit dem Problem der Recyclingfähigkeit.The invention relates to a copper-tin alloy, a composite material with such a copper-tin alloy and a use of the copper-tin alloy and the composite material. The copper-tin alloy and the comprehensive composite material is particularly suitable for fasteners in electrical engineering and electronics. The invention is particularly concerned with the problem of recyclability.
Generell werden heute Kupferlegierungen auf Basis Cu-Zn, Cu-Sn und Cu-Fe in großem Umfang für Verbindungselemente in der Elektrotechnik und in der Elektronik eingesetzt. Insbesondere werden solche Kupferlegierungen für Stanzgitter und Steckverbinder verwendet. Wichtige Kriterien für die Werkstoffauswahl sind dabei Elastizitätsmodul, Streckgrenze, Relaxationsverhalten und Biegbarkeit. Neben einer ausreichenden mechanischen Festigkeit stellen die elektrische Leitfähigkeit und die Korrosionsbeständigkeit wichtige Kriterien für die sichere Funktion der Bauteile über die Lebensdauer des Gesamtsystems dar. Oftmals kommt es dabei zu einer Überschneidung von Eigenschaftsanforderungen, die sich im Grundsatz gegeneinander ausschließen, wie beispielsweise die Kombination einer guten Leitfähigkeit mit hoher Korrosionsbeständigkeit. Verbessern Legierungselemente im Kupfer, wie Nickel und Chrom, einerseits die Korrosionsbeständigkeit, so verringern sie andererseits die Leitfähigkeit erheblich.In general, copper alloys based on Cu-Zn, Cu-Sn and Cu-Fe are widely used today for connecting elements in electrical engineering and in electronics. In particular, such copper alloys are used for lead frames and connectors. Important criteria for the selection of materials are modulus of elasticity, yield strength, relaxation behavior and bendability. In addition to a sufficient mechanical strength, the electrical conductivity and corrosion resistance are important criteria for the safe function of the components over the life of the entire system. Often there is an overlap of property requirements, which in principle preclude each other, such as the combination of a good Conductivity with high corrosion resistance. On the one hand, alloying elements in copper, such as nickel and chromium, on the one hand improve the corrosion resistance, on the other hand, they considerably reduce the conductivity.
Zunehmend an Bedeutung gewinnt auch das Thema Schweißbarkeit, insbesondere das Laserschweißen, mit anderen metallischen Werkstoffen. Vor dem Hintergrund der exorbitanten Metallpreissteigerungen in den letzten Jahren wird gerade auch das Thema der Recyclingfähigkeit der verwendeten Legierungen immer wichtiger.The topic of weldability, in particular laser welding, with other metallic materials is also gaining in importance. Against the background of the exorbitant increases in metal prices in recent years, the issue of the recyclability of the alloys used is becoming increasingly important.
Cu-Zn bzw. Messinglegierungen sind mischkristall-verfestigende Werkstoffe. Es sind binäre Legierungen, die in der Regel zwischen 5 und 40 Gew.-% an Zink enthalten. Mit steigendem Zinkgehalt nehmen Zugfestigkeit und Härte zu. Die Dehnung erreicht bei 30 Gew.-% Zink einen Höchstwert. Höhere Festigkeits- und Härtewerte sind nur durch Kaltumformung zu erzielen.Cu-Zn or brass alloys are solid solution hardening materials. They are binary alloys, which usually contain between 5 and 40 wt .-% of zinc. With increasing zinc content, tensile strength and hardness increase. The elongation reaches a maximum at 30% by weight of zinc. Higher strength and hardness values can only be achieved by cold forming.
Für Steckverbinder in Form von Federbändern, beispielsweise aus einer CuZn 30- oder aus einer CuZn 37-Legierung, wird üblicherweise eine Vickershärte von Hv = 150 verlangt. Zusätzlich muss die Einhaltung eines auf die Blechdicke s normierten Mindestbiegeradius r/s = 1 für eine 90°-Abkantung gegeben sein. Der Nachteil der Cu-Zn-Legierungen liegt allerdings in der relativ schlechten Schweißbarkeit, denn das Legierungselement Zink weist einen relativ hohen Dampfdruck auf. Reines Zink siedet bei 1,013 bar bereits bei 907°C. Ferner weisen Cu-Zn-Legierungen einen geringen Elastizitätsmodul von ca. 110 KN/mm2 (SI-Einheit: GPa) auf. Darüber hinaus lassen sich aus Korrosionsschutzgründen verzinnte Messingbänder aufgrund des eingetragenen Zinns nicht gut recyceln. Auch das Relaxationsverhalten von Cu-Zn-Legierungen ist ausgeprägt, die Einsatztemperatur damit begrenzt.For connectors in the form of spring bands, for example, a CuZn 30 or a CuZn 37 alloy, a Vickers hardness of Hv = 150 is usually required. In addition, compliance with a minimum bending radius r / s = 1 normalized to the sheet thickness s for a 90 ° rebate must be ensured. The disadvantage of the Cu-Zn alloys, however, lies in the relatively poor weldability, because the alloying element zinc has a relatively high vapor pressure. Pure zinc already boils at 1.013 bar at 907 ° C. Furthermore, Cu-Zn alloys have a low elastic modulus of about 110 KN / mm 2 (SI unit: GPa). In addition, tinned brass bands can not be recycled well due to the tin included for corrosion protection reasons. The relaxation behavior of Cu-Zn alloys is also pronounced, limiting the operating temperature.
Cu-Sn-Legierungen, also Zinnbronzen, gehören zu den ältesten technisch verwertbaren Kupferlegierungen. Den Cu-Sn-Legierungen wird üblicherweise etwas Phosphor zugegeben, weshalb diese Legierungen auch als Phosphorbronzen bezeichnet werden. Die Eigenschaften dieser Legierungen werden vorrangig vom Zinngehalt bestimmt, der in der Regel zwischen 4 und 8 Gew.-% liegt. Der Elastizitätsmodul von Phosphorbronzen beträgt je nach Sn-Gehalt zwischen 115 und 120 kN/mm2 (SI-Einheit: GPa). Die Biegbarkeit von Zinnbronzen ist hervorragend. Steigende Sn-Gehalte verbessern für einen gegebenen Temperzustand das Biegbarkeitsverhalten. Federbänder aus Phosphorbronze können ohne Probleme bis auf ein Härteniveau einer Vickershärte von Hv = 200 verfestigt werden und weisen noch eine Biegbarkeit von r/s = 1 bei einer Abkantung von 90° auf. Die Laserschweißbarkeit von Zinn- bzw. Phosphorbronzen ist gegeben, denn diese Legierungen weisen keine leicht flüchtigen Elemente (insbesondere Zink) und keine störenden zweiten Phasen auf. Das Relaxationsverhalten von Zinn- bzw. Phosphorbronzen ist besser als das von Messinglegierungen, wenngleich es nicht an das Niveau von aushärtbaren Kupferwerkstoffen heranreicht.Cu-Sn alloys, ie tin bronzes, are among the oldest technically usable copper alloys. The Cu-Sn alloys are usually added some phosphorus, which is why these alloys are also referred to as phosphorus bronzes. The properties of these alloys are determined primarily by the tin content, which is usually between 4 and 8 wt .-%. Depending on the Sn content, the modulus of elasticity of phosphorus bronzes is between 115 and 120 kN / mm 2 (SI unit: GPa). The bendability of tin bronzes is excellent. Rising Sn levels improve the flexibility for a given temper. Phosphor bronze bronze tapes can be readily consolidated to a hardness level of Vickers hardness of Hv = 200 and still have a bendability of r / s = 1 with a 90 ° fold. The laser weldability of tin or phosphorus bronzes is given, because these alloys have no volatile elements (especially zinc) and no disturbing second phases. The relaxation behavior of tin or phosphorus bronzes is better than that of brass alloys, although it does not reach the level of hardenable copper materials.
Cu-Sn-Legierungen werden in Form von Bändern für Stanzteile und Steckverbinder eingesetzt, wenn eine gute bis sehr gute Federeigenschaft, eine gute elektrische und thermische Belastbarkeit, eine geringe Spannungsrelaxation, eine gute Biegbarkeit, gute Schweißbarkeit und Lötbarkeit gefordert werden. Auch in verzinnter Form lassen sich Phosphorbronzen gut recyceln. Zinn ist bereits in der Legierung als solcher enthalten.Cu-Sn alloys are used in the form of tapes for stampings and connectors, if a good to very good spring characteristic, a good electrical and thermal resilience, low stress relaxation, good bendability, good weldability and solderability are required. Even in tinned form, phosphorus bronzes are easy to recycle. Tin is already included in the alloy as such.
Zu den niedrig legierten Kupferwerkstoffen gehören die Cu-Fe-Legierungen. Durch geringe Zusätze an Eisen und Phosphor kann die Werkstoffeigenschaft des reinen Kupfers, z.B. die Festigkeit, das Entfestigungs- oder Relaxationsverhalten, verbessert werden. Weit verbreitet für Stanzgitter in der Automobiltechnik ist insbesondere eine CuFe2P-Legierung in der Temperstufe FH. Der Werkstoff weist in dieser Temperstufe eine Zugfestigkeit von Rm = 420 bis 500 N/mm2 (SI-Einheit: MPa) auf. Die Vickershärte liegt bei Hv = 130 bis 150. Die scharfkantige Biegbarkeit ist noch gegeben. Zu den Vorzügen der CuFe2P-Legierung gehört, dass der Elastizitätsmodul etwa 125 KN/mm2 (GPa) beträgt und somit das Material gute Federeigenschaften besitzt. Die elektrische Leitfähigkeit liegt zwischen 60% und 70% IACS (International Annealed Copper Standard: 100% IACS entsprechen etwa 58 MS/m). Eine Verzinnung des Werkstoffs aus Korrosionsschutzgründen ist gut möglich.The low-alloyed copper materials include the Cu-Fe alloys. By small additions of iron and phosphorus, the material properties of pure copper, such as the strength, the softening or relaxation behavior can be improved. Widely used for stamped grids in automotive engineering is in particular a CuFe2P alloy in the heat setting FH. The material has a tensile strength of Rm = 420 to 500 N / mm 2 (SI unit: MPa) in this heat treatment stage. The Vickers hardness is Hv = 130 to 150. The sharp-edged bendability is still present. Among the advantages of the CuFe2P alloy is that the modulus of elasticity is about 125 KN / mm 2 (GPa), and thus the material has good spring properties. The electrical conductivity is between 60% and 70% IACS (I nternational Annealed C opper S tandard: 100% IACS correspond approximately to 58 MS / m). A tinning of the material for corrosion protection reasons is well possible.
Zu den Nachteilen der CuFe2P-Legierung zählt, dass diese keinen homogenen Werkstoff bildet, sondern Fe2P-Ausscheidungen aufweist. Insbesondere hierdurch wird ein Laserschweißen erschwert. Trifft der Laserstrahl beim Punktschweißen auf gröbere Fe2P-Ausscheidungen, so kann er abgelenkt werden, wodurch das Durchschweißergebnis unbefriedigend wird. Ein weiterer Nachteil liegt in der schlechten Recyclingfähigkeit von verzinnten Schrotten der CuFe2P-Legierung. Die elektrische Leitfähigkeit einer CuFe2P-Legierung wird beim Aufschmelzen durch ein in Lösung gehendes Zinn von etwa 1 Gew.-% um 25% erniedrigt. Die verzinnten Stanzschrotte, die beim Herstellen von Stanzgittern üblicherweise 50% bis 70% des eingesetzten Materials ausmachen, können nicht in den Schmelzprozess direkt zurückgeführt werden, sondern müssen aufwändig verhüttet und elektrochemisch getrennt werden. Die Rückführung in den Werkstoffkreislauf erfolgt demnach als Kathode. Dieser Vorgang ist sehr energieintensiv und damit gegenüber dem direkten Einschmelzen der Schrotte sehr teuer.One of the disadvantages of the CuFe2P alloy is that it does not form a homogeneous material but has Fe2P precipitates. In particular, this makes laser welding difficult. If the laser beam encounters coarser Fe2P precipitates during spot welding, it can be deflected, making the penetration result unsatisfactory. Another disadvantage is the poor recyclability of tin-plated scrap of CuFe2P alloy. The electrical conductivity of a CuFe2P alloy is reduced by 25% upon reflow by a dissolving tin of about 1% by weight. The tinned punching scrap, which usually make up 50% to 70% of the material used in the manufacture of stamped laths, can not be returned directly to the melting process, but rather must be smelted and electrochemically separated. The return to the material cycle is therefore as a cathode. This process is very energy intensive and thus very expensive compared to the direct melting of the scraps.
Aus
Aus der
Aufgabe der Erfindung ist es, eine Legierung und einen Verbundwerkstoff anzugeben, welcher in seinen physikalischen und technologischen Eigenschaften möglichst dem einer CuFe2P-Legierung entspricht, möglichst gut laserschweißbar ist und gut recycelt werden kann. Eine weitere Aufgabe besteht darin, eine Verwendung für eine solche Legierung und einen solchen Verbundwerkstoff anzugeben.The object of the invention is to provide an alloy and a composite material which corresponds as far as possible in its physical and technological properties of a CuFe2P alloy, as well as possible laser weldable and can be recycled well. Another object is to provide a use for such an alloy and composite material.
Hinsichtlich der Legierung wird die vorgenannte Aufgabe durch eine Kupfer-Zinn-Legierung mit der Zusammensetzung gemäß Anspruch 1 gelöst. Demnach umfasst die Kupfer-Zinn-Legierung 0,2 bis 0,8 Gew.-% Zinn (Sn), 0,3 bis 0,5 Gew.-% Nickel (Ni) und/oder Kobalt (Co), 0 bis 0,05 Gew.-% Zink (Zn), 0 bis 0,02 Gew.-% Eisen (Fe), 0,008 bis 0,05 Gew.-% Phosphor(P) sowie als Rest Kupfer (Cu).With regard to the alloy, the above object is achieved by a copper-tin alloy having the composition according to
Die Erfindung geht dabei von der Überlegung aus, eine zur CuFe2P-Legierung alternative, neue Legierung anzugeben, die vergleichbare Eigenschaften aufweist, sich jedoch auch im verzinnten Zustand problemlos recyceln lässt. Reine Cu-Sn-Legierungen, wie beispielsweise eine CuSn0,15-Legierung haben zweifellos das Potenzial, als eine solche Alternative herangezogen werden zu können. Beschichtet mit Zinn können die Schrotte einer solchen Legierung dem Wertstoffkreislauf direkt zugeführt werden. Die mechanischen und technologischen Eigenschaften entsprechen dabei denen einer CuFe2P-Legierung relativ gut. Deutliche Schwächen treten allerdings beim Erweichungsverhalten und der Relaxationsbeständigkeit auf.The invention is based on the idea of specifying an alternative to the CuFe2P alloy, new alloy, which has comparable properties, but can be easily recycled even in tinned state. Pure Cu-Sn alloys, such as a CuSn0.15 alloy, undoubtedly have the potential to be used as such an alternative. Coated with tin, the scrap of such an alloy can be fed directly to the recycling cycle. The mechanical and technological properties correspond to those of a CuFe2P alloy relatively well. Significant weaknesses, however, occur in the softening behavior and the relaxation resistance.
Umfangreiche Untersuchungen haben nun ergeben, dass eine Kupfer-Zinn-Legierung mit einer gezielten Abstimmung der Legierungselemente Zinn, Nickel und/oder Kobalt sowie Phosphor sowohl zu einer CuFe2P-Legierung vergleichbare mechanische und technologische Eigenschaften als auch das für die jeweilige Weiterverarbeitung und Endanwendung erforderliche Eigenschaftsprofil im Bereich des Erweichungsverhaltens und der Relaxation, d.h. dem Kriechen des Bauteils unter Spannung bei erhöhter Temperatur, erreicht. Dabei ist entweder Nickel oder Kobalt mit dem angegebenen Anteil enthalten. Bevorzugt ist hierbei ein Teil des Nickels durch Kobalt ersetzt, wobei dann die Summe beider Legierungselemente gemeinsam den angegebenen Anteil ergibt.Extensive investigations have now shown that a copper-tin alloy with a specific coordination of the alloying elements tin, nickel and / or cobalt and phosphorus both to a CuFe2P alloy comparable mechanical and technological properties as that for the respective Further processing and end use required property profile in the area of the softening behavior and the relaxation, ie the creep of the component under tension at elevated temperature achieved. In this case, either nickel or cobalt is included with the specified proportion. In this case, part of the nickel is preferably replaced by cobalt, in which case the sum of the two alloying elements together gives the stated proportion.
Ein Vergleich der technologischen und physikalischen Eigenschaften einer Cu-Sn-Legierung mit einer CuFe2P-Legierung ergibt folgendes Bild:
Aus der Tabelle wird ersichtlich, dass Cu-Sn-Legierungen die angegebenen Anforderungen hinsichtlich der technologischen und physikalischen Eigenschaften erfüllen können.The table shows that Cu-Sn alloys can meet the specified requirements in terms of technological and physical properties.
Bei dem Einsatz der erfindungsgemäßen Cu-Sn-Legierung in verzinnter Form bildet sich eine Legierungsschicht zwischen dem Grundwerkstoff und der Zinnauflage aus. Eine Anpassung der Fertigungsanlagen ist bei der Umstellung auf den neuen Werkstoff nicht erforderlich.When using the Cu-Sn alloy according to the invention in tinned form, an alloy layer is formed between the base material and the tin coating. An adaptation of the production facilities is not required when converting to the new material.
Die erfindungsgemäße Cu-Sn-Legierung zeigt darüber hinaus im Bereich des Erweichungsverhaltens und der Relaxation ein zur CuFe2P-Legierung vergleichbares Eigenschaftsprofil.In addition, the Cu-Sn alloy according to the invention exhibits a property profile which is comparable to the CuFe 2 P alloy in the area of the softening behavior and the relaxation.
Die erfindungsgemäße Cu-Sn-Legierung zeichnet sich weiter in besonderer Weise durch die direkte Rückführbarkeit verzinnter Schrotte aus den einzelnen Stufen der Wertschöpfungskette aus. Die verzinnten Schrotte können direkt in den Schmelzprozess zurückgeführt werden, so dass die Recyclingkosten gegenüber einer Verhüttung deutlich geringer ausfallen. Die Verhüttungskosten können beispielsweise bei einem Schrottanteil von 70 % schnell die Höhe der Fabrikationskosten erreichen und die Wirtschaftlichkeit in Frage stellen. Aus diesem Grund ändert auch eine Betrachtung der Metallwerte zwischen einer Kuper-EisenLegierung wie der CuFe2P- Legierung und der hier angegebenen Cu-Sn-Legierung nichts daran, dass die angegebene Legierung sowohl unter ökonomischen als auch ökologischen Gesichtspunkten (der zusätzliche Einsatz von Strom und Säure zur elektrolytischen Aufbereitung der Schrotte können entfallen) eine sinnvolle Alternative zu verzinnten Kupfer-Eisen-Legierungen darstellt.The Cu-Sn alloy according to the invention is further distinguished in a special way by the direct traceability of tin-plated scrap from the individual stages of the value-added chain. The tin-coated scrap can be returned directly to the smelting process, so that the recycling costs are significantly lower than smelting. The smelting costs, for example, can quickly reach the level of manufacturing costs with a scrap content of 70% and put into question the economic efficiency. For this reason, even a consideration of the metal values between a copper-iron alloy such as the CuFe2P alloy and the Cu-Sn alloy given here does not change the fact that the stated alloy is economical and ecological (the additional use of electricity and acid for the electrolytic treatment of the scrap can be omitted) represents a reasonable alternative to tinned copper-iron alloys.
Hinsichtlich der geforderten Eigenschaften ist es vorteilhaft, wenn die angegebene Kupfer-Zinn-Legierung einen Anteil an Sn zwischen 0,3 und 0,7 Gew.-%, insbesondere zwischen 0,4 und 0,6 Gew.-%, enthält: Entsprechend der Erfindung liegt der Anteil an Ni und / oder Co in der Kupfer-Zinn-Legierung zwischen 0,3 und 0,5 Gew.-%.With regard to the required properties, it is advantageous if the stated copper-tin alloy contains a proportion of Sn between 0.3 and 0.7% by weight, in particular between 0.4 and 0.6% by weight the invention, the proportion of Ni and / or Co in the copper-tin alloy is between 0.3 and 0.5 wt .-%.
Durch einen bevorzugten Anteil an Phosphor zwischen 0,008 und 0,03 Gew.-%, insbesondere zwischen 0,008 und 0,015 Gew.-%, kann die Festigkeit verbessert werden.By a preferred amount of phosphorus between 0.008 and 0.03 wt .-%, in particular between 0.008 and 0.015 wt .-%, the strength can be improved.
In einer bevorzugten Legierungszusammensetzung weist die Kupfer-Zinn-Legierung 0,3 bis 0,7 Gew.-% Sn, 0,3 bis 0,5 Gew.-% Ni und/oder Co, 0 bis 0,04 Gew.-% Zn, 0 bis 0,015 Gew.-% Fe, 0,08 bis 0,03 Gew.-% P, sowie als Rest Cu auf.In a preferred alloy composition, the copper-tin alloy has 0.3 to 0.7 wt% Sn, 0.3 to 0.5 wt% Ni and / or Co, 0 to 0.04 wt%. Zn, 0 to 0.015 wt .-% Fe, 0.08 to 0.03 wt .-% P, and the balance Cu on.
Weiter verbessert wird die Kupfer-Zinn-Legierung, wenn sie 0,4 bis 0,6 Gew.-% Sn, 0,3 bis 0,5 Gew.-% Ni und/oder Co, 0 bis 0,03 Gew.-% Zn, 0 bis 0,01 Gew.-% Fe, 0,008 bis 0,015 Gew.-% P, sowie als Rest Cu umfasst.The copper-tin alloy is further improved when it contains 0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight. % Zn, 0 to 0.01 wt .-% Fe, 0.008 to 0.015 wt .-% P, and the remainder comprises Cu.
Eine weitere vorteilhafte präzise Einstellung der Eigenschaften der Kupfer-Zinn-Legierung kann vorgenommen werden, wenn eine Summe aus Verunreinigungen und sonstigen Beimengungen von maximal 0,3 Gew.-% vorliegt.A further advantageous precise adjustment of the properties of the copper-tin alloy can be carried out if there is a total of impurities and other admixtures of not more than 0.3% by weight.
Als ein konkretes Ausführungsbeispiel mit hervorragenden Eigenschaften wird eine Kupfer-Zinn-Legierung genannt, die 0,38 Gew.-% Sn, 0,30 Gew.-% Ni und/oder Co, 0,003 Gew.-% Zn, 0,008 Gew.-% Fe, 0,014 Gew.-% P, sowie als Rest Cu umfasst.As a concrete embodiment having excellent properties, mention is made of a copper-tin alloy containing 0.38 wt% Sn, 0.30 wt% Ni and / or Co, 0.003 wt% Zn, 0.008 wt%. % Fe, 0.014 wt .-% P, and the remainder comprises Cu.
Die erfindungsgemäße Kupfer-Zinn-Legierung ist sehr gut laserschweißbar, da keine leicht flüchtigen Elemente enthalten sind und die Legierung frei von einer zweiten Phase ist. Insbesondere weist die Legierung keine NiP-Ausscheidungen aus.The copper-tin alloy according to the invention is very good laser weldable, since no volatile elements are contained and the alloy is free of a second phase. In particular, the alloy does not exhibit NiP precipitates.
Die Legierung eignet sich hervorragend für einen gut laserschweißbaren Verbundwerkstoff, der insbesondere für Stanzgitter verwendet werden kann. Solche Stanzgitter werden heute beispielsweise in der Automobiltechnik für ABS- und ESP-Systeme eingesetzt. Dazu wird ein Grundwerkstoff aus der vorgenannten Kupfer-Zinn-Legierung mit einer Zinnschicht versehen bzw. abgedeckt, was insbesondere durch das Verfahren der Feuerverzinnung vorgenommen werden kann. Insofern befindet sich auf dem Grundwerkstoff aus der angegebenen Kupfer-Zinn-Legierung eine Schicht aus reinem oder freiem Zinn. Der Verbundwerkstoff zeichnet sich durch eine hohe Relaxationsbeständigkeit bis zu Temperaturen von 100 °C aus. Erweist im Inneren als Kern die angegebene Kupfer-Zinn-Legierung mit einer Zusammensetzung entsprechend der darauf gerichteten Ansprüche auf. Durch die äußere Beschichtung bzw. Abdeckung aus Zinn ist eine hohe Korrosionsbeständigkeit gewährleistet. Bevorzugt beträgt die Dicke der Zinnschicht zwischen 1 und 3 µm.The alloy is ideal for a good laser weldable composite material, which can be used in particular for stamped grid. Such stamped grids are used today, for example in automotive technology for ABS and ESP systems. For this purpose, a base material of the aforementioned copper-tin alloy is provided with a tin layer or covered, which can be made in particular by the method of hot tinning. In this respect, there is a layer of pure or free tin on the base material of the specified copper-tin alloy. The composite material is characterized by a high relaxation resistance up to temperatures of 100 ° C. Inside, as the core, the specified copper-tin alloy with a composition according to the claims directed thereto. The outer coating or tin cover ensures high corrosion resistance. The thickness of the tin layer is preferably between 1 and 3 μm.
Beim Verzinnen der erfindungsgemäßen Kupfer-Zinn-Legierung kommt es zur Bildung einer Übergangsschicht zwischen dem Grundwerkstoff und der Zinnschicht. Bevorzugt wird die Zinnschicht derart aufgebracht, dass die Übergangsschicht eine intermetallische Phase aus Cu, Ni und / oder Co sowie Sn umfasst. Die Ausbildung der Übergangsschicht wird insbesondere derart gestaltet, dass diese eine Dicke zwischen 0,1 und 1 µm aufweist. Insofern umfasst der Verbundwerkstoff im Inneren oder als Kern die angegebene Kupfer-Zinn-Legierung mit den entsprechenden Anteilen an Nickel und / oder Kobalt sowie Phosphor. Die Legierung des Kerns geht über die Übergangsschicht in eine Schicht aus reinem Zinn über. Über die ausgebildete Übergangs- bzw. Legierungsschicht wird eine gute Anbindung der Zinnschicht erzielt.When tinning the copper-tin alloy according to the invention, a transition layer is formed between the base material and the tin layer. The tin layer is preferably applied in such a way that the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn. The formation of the transition layer is in particular designed such that it has a thickness between 0.1 and 1 micron. In this respect, the composite material in the interior or core of the specified copper-tin alloy with the corresponding proportions of nickel and / or cobalt and phosphorus. The alloy of the core transitions through the transition layer into a layer of pure tin. Via the formed transition or alloy layer, a good connection of the tin layer is achieved.
Betrachtet man einen dreidimensionalen Aufbau wie ein Stanzgitter aus dem Verbundwerkstoff, so ergibt sich insgesamt ein Fünf-Schichten-Aufbau. Auf einem Kern aus der angegebenen Kupfer-Zinn-Legierung als Grundwerkstoff sitzt beidseitig eine Schicht einer intermetallischen Phase, bestehend aus CuNiCoSn mit einer Dicke zwischen 0,1 und 1,0 µm. Der Verbundwerkstoff ist abschließend aus Korrosionsschutzgründen mit einer Schicht aus freiem bzw. reinem Zinn abgedeckt, die eine Dicke von 1,0 bis 3,0 µm aufweist. Der Schichtverbundwerkstoff weist insgesamt eine Gesamtdicke von 0,2 bis 1 mm, bevorzugt bis 2 mm, besonders bevorzugt bis 3 mm auf.Considering a three-dimensional structure like a stamped grid made of composite material, the overall result is a five-layer structure. On one core of the specified copper-tin alloy as the base material sits on both sides of a layer of an intermetallic phase consisting of CuNiCoSn with a thickness between 0.1 and 1.0 microns. The composite material is finally covered for corrosion protection reasons with a layer of free or pure tin, which has a thickness of 1.0 to 3.0 microns. The layer composite material has a total thickness of 0.2 to 1 mm, preferably up to 2 mm, particularly preferably up to 3 mm.
Die elektrische Leitfähigkeit des angegebenen Verbundwerkstoffs entspricht dem des bisher eingesetzten Vergleichswerkstoffs CuFe2P. Wärmeleitfähigkeit und weitere technologische Werte des Verbundwerkstoffes sind ebenfalls voll vergleichbar.The electrical conductivity of the specified composite material corresponds to that of the previously used comparison material CuFe2P. Thermal conductivity and other technological values of the composite are also fully comparable.
Sowohl die erfindungsgemäße Kupfer-Zinn-Legierung als auch der verzinnte Verbundwerkstoff ist hervorragend für Bänder, Folien, profilierte Bänder, Stanzteile oder Steckverbinder, insbesondere für Anwendungen in der Elektrotechnik oder der Elektronik, geeignet.Both the copper-tin alloy according to the invention and the tinned composite material are outstandingly suitable for tapes, films, profiled strips, stampings or connectors, in particular for applications in electrical engineering or electronics.
Claims (12)
- Copper-tin alloy, comprising:0.2 to 0.8% by weight Sn,0.3 to 0.5% by weight Ni and/or Co,0 to 0.05% by weight Zn,0 to 0.02% by weight Fe,0.008 to 0.05% by weight P,and also Cu as remainder.
- Copper-tin alloy according to Claim 1,
having an Sn content of between 0.3 and 0.7% by weight, in particular of between 0.4 and 0.6% by weight. - Copper-tin alloy according to either of the preceding claims,
having a P content of between 0.008 and 0.03% by weight, in particular of between 0.008 and 0.015% by weight. - Copper-tin alloy according to Claim 1, comprising:0.3 to 0.7% by weight Sn,0.3 to 0.5% by weight Ni and/or Co,0 to 0.04% by weight Zn,0 to 0.015% by weight Fe,0.008 to 0.03% by weight P,and also Cu as remainder.
- Copper-tin alloy according to Claim 4, comprising:0.4 to 0.6% by weight Sn,0.3 to 0.5% by weight Ni and/or Co,0 to 0.03% by weight Zn,0 to 0.01% by weight Fe,0.008 to 0.015% by weight P,and also Cu as remainder.
- Copper-tin alloy according to one of the preceding claims,
in which the sum of impurities and other admixtures is at most 0.3% by weight. - Composite material having a base material according to one of the preceding claims and a layer of tin applied thereto.
- Composite material according to Claim 7,
wherein the layer of tin has a thickness of between between 1 and 3 µm. - Composite material according to Claim 7 or 8, having a transition layer between the base material and the layer of tin, wherein the transition layer comprises an intermetallic phase of Cu, Ni and/or Co and also Sn.
- Composite material according to Claim 9,
wherein the transition layer has a thickness of between 0.1 and 1 µm. - Use of a copper-tin alloy according to one of Claims 1 to 6 for strips, wires, foils, profiled strips, stamped parts or plug-in connectors.
- Use of a composite material according to one of Claims 7 to 10 for strips, wires, foils, profiled strips, stamped parts or plug-in connectors.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008054183 | 2008-10-31 | ||
PCT/EP2009/007669 WO2010049118A1 (en) | 2008-10-31 | 2009-10-27 | Copper-tin alloy, composite material and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2340318A1 EP2340318A1 (en) | 2011-07-06 |
EP2340318B1 true EP2340318B1 (en) | 2017-02-15 |
Family
ID=41508956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09744964.9A Active EP2340318B1 (en) | 2008-10-31 | 2009-10-27 | Copper-tin alloy, composite material and use thereof |
Country Status (9)
Country | Link |
---|---|
US (1) | US20110206941A1 (en) |
EP (1) | EP2340318B1 (en) |
JP (1) | JP2012506952A (en) |
KR (1) | KR20110079638A (en) |
CN (1) | CN102177265B (en) |
BR (1) | BRPI0921441A2 (en) |
ES (1) | ES2623604T3 (en) |
RU (1) | RU2482204C2 (en) |
WO (1) | WO2010049118A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2641292B1 (en) | 2010-11-17 | 2019-06-19 | Luvata Appleton LLC | Alkaline collector anode |
CN102176809A (en) * | 2011-01-14 | 2011-09-07 | 中国科学院上海技术物理研究所 | Debugger for SMD (Surface Mounted Device) resistor and capacitor on PCB (printed-circuit board) |
CN102703748B (en) * | 2012-07-06 | 2013-10-16 | 山东大学 | Preparation method of nanometer porous copper tin alloy |
RU2502817C1 (en) * | 2012-12-18 | 2013-12-27 | Юлия Алексеевна Щепочкина | Copper-base alloy |
JP5773015B2 (en) * | 2013-05-24 | 2015-09-02 | 三菱マテリアル株式会社 | Copper alloy wire |
JP6113674B2 (en) * | 2014-02-13 | 2017-04-12 | 株式会社神戸製鋼所 | Copper alloy strip with surface coating layer with excellent heat resistance |
RU2587110C9 (en) * | 2014-09-22 | 2016-08-10 | Дмитрий Андреевич Михайлов | COPPER ALLOY, TelO DOPED WITH TELLURIUM, FOR COLLECTORS OF ELECTRIC MACHINES |
CN107034381B (en) * | 2017-04-26 | 2019-03-19 | 江西理工大学 | A kind of Cu-Ni-Co-Sn-P copper alloy and preparation method thereof |
RU2709909C1 (en) * | 2018-11-26 | 2019-12-23 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Low-alloyed copper alloy |
CN116411202A (en) * | 2021-12-29 | 2023-07-11 | 无锡市蓝格林金属材料科技有限公司 | Copper-tin alloy wire and preparation method thereof |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727051A (en) * | 1980-07-25 | 1982-02-13 | Nippon Telegr & Teleph Corp <Ntt> | Copper nickel tin alloy for integrated circuit conductor and its manufacture |
JPH0612796B2 (en) * | 1984-06-04 | 1994-02-16 | 株式会社日立製作所 | Semiconductor device |
JPS6379929A (en) * | 1987-08-26 | 1988-04-09 | Nippon Telegr & Teleph Corp <Ntt> | Copper-nickel-tin alloy for integrated circuit conductor and its production |
US5322575A (en) * | 1991-01-17 | 1994-06-21 | Dowa Mining Co., Ltd. | Process for production of copper base alloys and terminals using the same |
JP3550233B2 (en) * | 1995-10-09 | 2004-08-04 | 同和鉱業株式会社 | Manufacturing method of high strength and high conductivity copper base alloy |
JP3408929B2 (en) * | 1996-07-11 | 2003-05-19 | 同和鉱業株式会社 | Copper-based alloy and method for producing the same |
US6254702B1 (en) * | 1997-02-18 | 2001-07-03 | Dowa Mining Co., Ltd. | Copper base alloys and terminals using the same |
US6679956B2 (en) * | 1997-09-16 | 2004-01-20 | Waterbury Rolling Mills, Inc. | Process for making copper-tin-zinc alloys |
JP4308931B2 (en) * | 1997-11-04 | 2009-08-05 | 三菱伸銅株式会社 | Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate |
US6136104A (en) * | 1998-07-08 | 2000-10-24 | Kobe Steel, Ltd. | Copper alloy for terminals and connectors and method for making same |
RU2138573C1 (en) * | 1998-12-24 | 1999-09-27 | Мочалов Николай Алексеевич | Copper-based alloy |
DE10025106A1 (en) * | 2000-05-20 | 2001-11-22 | Stolberger Metallwerke Gmbh | Electrically conductive metal tape and connectors from it |
CN1296500C (en) * | 2003-03-03 | 2007-01-24 | 三宝伸铜工业株式会社 | Heat-resisting copper alloy materials |
KR20070006747A (en) * | 2004-01-21 | 2007-01-11 | 엔쏜 인코포레이티드 | Preserving solderability and inhibiting whisker growth in tin surfaces of electronic components |
JP4660735B2 (en) * | 2004-07-01 | 2011-03-30 | Dowaメタルテック株式会社 | Method for producing copper-based alloy sheet |
JP4461269B2 (en) * | 2004-09-15 | 2010-05-12 | Dowaメタルテック株式会社 | Copper alloy with improved conductivity and method for producing the same |
JP4350049B2 (en) * | 2005-02-07 | 2009-10-21 | 株式会社神戸製鋼所 | Method for producing copper alloy sheet with excellent stress relaxation resistance |
JP4959141B2 (en) * | 2005-02-28 | 2012-06-20 | Dowaホールディングス株式会社 | High strength copper alloy |
JP4887851B2 (en) * | 2005-03-17 | 2012-02-29 | Dowaメタルテック株式会社 | Ni-Sn-P copper alloy |
JP3871064B2 (en) * | 2005-06-08 | 2007-01-24 | 株式会社神戸製鋼所 | Copper alloy plate for electrical connection parts |
JP4756195B2 (en) * | 2005-07-28 | 2011-08-24 | Dowaメタルテック株式会社 | Cu-Ni-Sn-P copper alloy |
JP4439447B2 (en) * | 2005-08-03 | 2010-03-24 | 株式会社神戸製鋼所 | Manufacturing method of irregular cross-section copper alloy sheet |
JP4984108B2 (en) * | 2005-09-30 | 2012-07-25 | Dowaメタルテック株式会社 | Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same |
JP4680765B2 (en) * | 2005-12-22 | 2011-05-11 | 株式会社神戸製鋼所 | Copper alloy with excellent stress relaxation resistance |
RU2315124C2 (en) * | 2006-01-10 | 2008-01-20 | ОАО "Каменск-Уральский завод по обработке цветных металлов" | Tin-and-zinc bronze for manufacture of wire |
JP4845747B2 (en) * | 2007-01-12 | 2011-12-28 | 株式会社神戸製鋼所 | Copper alloy material with plating for fuse and manufacturing method thereof |
JP5145331B2 (en) * | 2007-12-21 | 2013-02-13 | 三菱伸銅株式会社 | High strength and high thermal conductivity copper alloy tube and method for producing the same |
-
2009
- 2009-10-27 US US13/126,219 patent/US20110206941A1/en not_active Abandoned
- 2009-10-27 RU RU2011121810/02A patent/RU2482204C2/en not_active IP Right Cessation
- 2009-10-27 KR KR1020117007862A patent/KR20110079638A/en not_active Application Discontinuation
- 2009-10-27 WO PCT/EP2009/007669 patent/WO2010049118A1/en active Application Filing
- 2009-10-27 BR BRPI0921441A patent/BRPI0921441A2/en not_active Application Discontinuation
- 2009-10-27 JP JP2011533596A patent/JP2012506952A/en active Pending
- 2009-10-27 CN CN200980139788.1A patent/CN102177265B/en not_active Expired - Fee Related
- 2009-10-27 EP EP09744964.9A patent/EP2340318B1/en active Active
- 2009-10-27 ES ES09744964.9T patent/ES2623604T3/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR20110079638A (en) | 2011-07-07 |
EP2340318A1 (en) | 2011-07-06 |
WO2010049118A1 (en) | 2010-05-06 |
ES2623604T3 (en) | 2017-07-11 |
RU2011121810A (en) | 2012-12-10 |
CN102177265A (en) | 2011-09-07 |
CN102177265B (en) | 2014-07-09 |
JP2012506952A (en) | 2012-03-22 |
BRPI0921441A2 (en) | 2016-01-05 |
RU2482204C2 (en) | 2013-05-20 |
US20110206941A1 (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2340318B1 (en) | Copper-tin alloy, composite material and use thereof | |
DE3429393C2 (en) | ||
EP1850018B2 (en) | Strip-shaped composite material | |
DE60101026T2 (en) | Copper alloy containing silver | |
DE69327470T2 (en) | COPPER ALLOY WITH HIGH STRENGTH AND GOOD CONDUCTIVITY AND METHOD FOR THE PRODUCTION THEREOF | |
DE10065735B4 (en) | A method of making a copper alloy for a connector and copper alloy obtainable by the method | |
EP1883714B1 (en) | Slide bearing composite material, use and method of production | |
EP2985358B1 (en) | Friction bearing composite material | |
EP2333129A1 (en) | Sliding layer | |
EP1157820B1 (en) | Metal strip with high electric conductibility and connector made from it | |
EP2742161A2 (en) | Copper zinc alloy | |
DE102014014239A1 (en) | Electrical connection element | |
DE3527341C1 (en) | Copper-chromium-titanium-silicon alloy and use thereof | |
DE10138204B4 (en) | Electric contact | |
CH669211A5 (en) | COPPER-CHROME-TITANIUM-SILICONE ALLOY AND THEIR USE. | |
EP1698707B1 (en) | Sliding bearing with a lead free copper based bearing metal layer containing tin and zinc | |
DE3530736C2 (en) | ||
DE3908513A1 (en) | COPPER ALLOY MATERIAL FOR LINE FRAME OF SEMICONDUCTOR DEVICES | |
DE69814657T2 (en) | COPPER BASED ALLOY, CHARACTERIZED BY DECAY CURING AND CURING IN SOLID CONDITION | |
EP2906733B1 (en) | Material for electric contact components | |
DE2948916C2 (en) | Copper-tin alloy, process for their manufacture and use | |
DE102018208116A1 (en) | Copper tape for making electrical contacts and method of making a copper tape and connectors | |
EP1288321B1 (en) | Material for a metal strip | |
EP3087282B1 (en) | Multi-layer sliding bearing | |
EP1292422A1 (en) | Method for connecting shape-memory material and steel or copper material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 867934 Country of ref document: AT Kind code of ref document: T Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009013650 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2623604 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170515 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170516 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170515 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009013650 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171027 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 867934 Country of ref document: AT Kind code of ref document: T Effective date: 20171027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20201023 Year of fee payment: 12 Ref country code: NL Payment date: 20201028 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20201022 Year of fee payment: 12 Ref country code: ES Payment date: 20201228 Year of fee payment: 12 Ref country code: FR Payment date: 20201022 Year of fee payment: 12 Ref country code: IT Payment date: 20201026 Year of fee payment: 12 Ref country code: CH Payment date: 20201021 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20201028 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20211101 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211028 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502009013650 Country of ref document: DE Owner name: SUNDWIGER MESSINGWERK GMBH, DE Free format text: FORMER OWNER: SUNDWIGER MESSINGWERK GMBH & CO. KG, 58675 HEMER, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240321 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |