EP2340318B1 - Copper-tin alloy, composite material and use thereof - Google Patents

Copper-tin alloy, composite material and use thereof Download PDF

Info

Publication number
EP2340318B1
EP2340318B1 EP09744964.9A EP09744964A EP2340318B1 EP 2340318 B1 EP2340318 B1 EP 2340318B1 EP 09744964 A EP09744964 A EP 09744964A EP 2340318 B1 EP2340318 B1 EP 2340318B1
Authority
EP
European Patent Office
Prior art keywords
weight
tin
copper
alloy
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09744964.9A
Other languages
German (de)
French (fr)
Other versions
EP2340318A1 (en
Inventor
Michael KÖHLER
Andreas Heide
Ralf Hojda
Udo Riepe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sundwiger Messingwerk GmbH and Co KG
Original Assignee
Sundwiger Messingwerk GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sundwiger Messingwerk GmbH and Co KG filed Critical Sundwiger Messingwerk GmbH and Co KG
Publication of EP2340318A1 publication Critical patent/EP2340318A1/en
Application granted granted Critical
Publication of EP2340318B1 publication Critical patent/EP2340318B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12715Next to Group IB metal-base component

Definitions

  • the invention relates to a copper-tin alloy, a composite material with such a copper-tin alloy and a use of the copper-tin alloy and the composite material.
  • the copper-tin alloy and the comprehensive composite material is particularly suitable for fasteners in electrical engineering and electronics.
  • the invention is particularly concerned with the problem of recyclability.
  • copper alloys based on Cu-Zn, Cu-Sn and Cu-Fe are widely used today for connecting elements in electrical engineering and in electronics.
  • copper alloys are used for lead frames and connectors.
  • Important criteria for the selection of materials are modulus of elasticity, yield strength, relaxation behavior and bendability.
  • the electrical conductivity and corrosion resistance are important criteria for the safe function of the components over the life of the entire system. Often there is an overlap of property requirements, which in principle preclude each other, such as the combination of a good Conductivity with high corrosion resistance.
  • alloying elements in copper, such as nickel and chromium on the one hand improve the corrosion resistance, on the other hand, they considerably reduce the conductivity.
  • Cu-Zn or brass alloys are solid solution hardening materials. They are binary alloys, which usually contain between 5 and 40 wt .-% of zinc. With increasing zinc content, tensile strength and hardness increase. The elongation reaches a maximum at 30% by weight of zinc. Higher strength and hardness values can only be achieved by cold forming.
  • the disadvantage of the Cu-Zn alloys lies in the relatively poor weldability, because the alloying element zinc has a relatively high vapor pressure. Pure zinc already boils at 1.013 bar at 907 ° C.
  • Cu-Zn alloys have a low elastic modulus of about 110 KN / mm 2 (SI unit: GPa).
  • tinned brass bands can not be recycled well due to the tin included for corrosion protection reasons.
  • the relaxation behavior of Cu-Zn alloys is also pronounced, limiting the operating temperature.
  • Cu-Sn alloys ie tin bronzes
  • the Cu-Sn alloys are usually added some phosphorus, which is why these alloys are also referred to as phosphorus bronzes.
  • the properties of these alloys are determined primarily by the tin content, which is usually between 4 and 8 wt .-%.
  • the modulus of elasticity of phosphorus bronzes is between 115 and 120 kN / mm 2 (SI unit: GPa).
  • the bendability of tin bronzes is excellent. Rising Sn levels improve the flexibility for a given temper.
  • the laser weldability of tin or phosphorus bronzes is given, because these alloys have no volatile elements (especially zinc) and no disturbing second phases.
  • the relaxation behavior of tin or phosphorus bronzes is better than that of brass alloys, although it does not reach the level of hardenable copper materials.
  • Cu-Sn alloys are used in the form of tapes for stampings and connectors, if a good to very good spring characteristic, a good electrical and thermal resilience, low stress relaxation, good bendability, good weldability and solderability are required. Even in tinned form, phosphorus bronzes are easy to recycle. Tin is already included in the alloy as such.
  • the low-alloyed copper materials include the Cu-Fe alloys.
  • the material properties of pure copper such as the strength, the softening or relaxation behavior can be improved.
  • Widely used for stamped grids in automotive engineering is in particular a CuFe2P alloy in the heat setting FH.
  • the sharp-edged bendability is still present.
  • the modulus of elasticity is about 125 KN / mm 2 (GPa), and thus the material has good spring properties.
  • the electrical conductivity is between 60% and 70% IACS (I nternational Annealed C opper S tandard: 100% IACS correspond approximately to 58 MS / m). A tinning of the material for corrosion protection reasons is well possible.
  • One of the disadvantages of the CuFe2P alloy is that it does not form a homogeneous material but has Fe2P precipitates. In particular, this makes laser welding difficult. If the laser beam encounters coarser Fe2P precipitates during spot welding, it can be deflected, making the penetration result unsatisfactory.
  • Another disadvantage is the poor recyclability of tin-plated scrap of CuFe2P alloy.
  • the electrical conductivity of a CuFe2P alloy is reduced by 25% upon reflow by a dissolving tin of about 1% by weight.
  • the tinned punching scrap which usually make up 50% to 70% of the material used in the manufacture of stamped laths, can not be returned directly to the melting process, but rather must be smelted and electrochemically separated. The return to the material cycle is therefore as a cathode. This process is very energy intensive and thus very expensive compared to the direct melting of the scraps.
  • Fig. 1 For a CuFe2P alloy, the influence of a percentage of tin on the electrical conductivity is shown. The electrical conductivity drops drastically even from levels above 0.3 wt .-% tin. For example, a 0.4 mm thick band of a CuFe2P alloy for corrosion protection reasons Coated with about 3 ⁇ m tin on both sides, a CuFe2P alloy contaminated with about 1.5% by weight tin would result from direct recycling based on this scrap. In addition to drastic losses in the electrical conductivity, this tin content also has a strong negative effect on the solidification behavior.
  • CuNiP alloys are known, which may optionally include Sn, Zn and Fe.
  • the object of the invention is to provide an alloy and a composite material which corresponds as far as possible in its physical and technological properties of a CuFe2P alloy, as well as possible laser weldable and can be recycled well. Another object is to provide a use for such an alloy and composite material.
  • the above object is achieved by a copper-tin alloy having the composition according to claim 1.
  • the copper-tin alloy comprises 0.2 to 0.8 wt .-% tin (Sn), 0.3 to 0.5 wt .-% nickel (Ni) and / or cobalt (Co), 0 to 0 , 05 wt .-% zinc (Zn), 0 to 0.02 wt .-% iron (Fe), 0.008 to 0.05 wt .-% phosphorus (P) and the balance copper (Cu).
  • the invention is based on the idea of specifying an alternative to the CuFe2P alloy, new alloy, which has comparable properties, but can be easily recycled even in tinned state.
  • Pure Cu-Sn alloys such as a CuSn0.15 alloy, undoubtedly have the potential to be used as such an alternative. Coated with tin, the scrap of such an alloy can be fed directly to the recycling cycle.
  • the mechanical and technological properties correspond to those of a CuFe2P alloy relatively well. Significant weaknesses, however, occur in the softening behavior and the relaxation resistance.
  • the table shows that Cu-Sn alloys can meet the specified requirements in terms of technological and physical properties.
  • an alloy layer is formed between the base material and the tin coating.
  • the Cu-Sn alloy according to the invention exhibits a property profile which is comparable to the CuFe 2 P alloy in the area of the softening behavior and the relaxation.
  • the Cu-Sn alloy according to the invention is further distinguished in a special way by the direct traceability of tin-plated scrap from the individual stages of the value-added chain.
  • the tin-coated scrap can be returned directly to the smelting process, so that the recycling costs are significantly lower than smelting.
  • the smelting costs for example, can quickly reach the level of manufacturing costs with a scrap content of 70% and put into question the economic efficiency.
  • the stated copper-tin alloy contains a proportion of Sn between 0.3 and 0.7% by weight, in particular between 0.4 and 0.6% by weight the invention, the proportion of Ni and / or Co in the copper-tin alloy is between 0.3 and 0.5 wt .-%.
  • the strength can be improved.
  • the copper-tin alloy has 0.3 to 0.7 wt% Sn, 0.3 to 0.5 wt% Ni and / or Co, 0 to 0.04 wt%. Zn, 0 to 0.015 wt .-% Fe, 0.08 to 0.03 wt .-% P, and the balance Cu on.
  • the copper-tin alloy is further improved when it contains 0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight. % Zn, 0 to 0.01 wt .-% Fe, 0.008 to 0.015 wt .-% P, and the remainder comprises Cu.
  • a further advantageous precise adjustment of the properties of the copper-tin alloy can be carried out if there is a total of impurities and other admixtures of not more than 0.3% by weight.
  • a copper-tin alloy containing 0.38 wt% Sn, 0.30 wt% Ni and / or Co, 0.003 wt% Zn, 0.008 wt%. % Fe, 0.014 wt .-% P, and the remainder comprises Cu.
  • the copper-tin alloy according to the invention is very good laser weldable, since no volatile elements are contained and the alloy is free of a second phase. In particular, the alloy does not exhibit NiP precipitates.
  • the alloy is ideal for a good laser weldable composite material, which can be used in particular for stamped grid.
  • stamped grids are used today, for example in automotive technology for ABS and ESP systems.
  • a base material of the aforementioned copper-tin alloy is provided with a tin layer or covered, which can be made in particular by the method of hot tinning.
  • the composite material is characterized by a high relaxation resistance up to temperatures of 100 ° C.
  • the specified copper-tin alloy with a composition according to the claims directed thereto.
  • the outer coating or tin cover ensures high corrosion resistance.
  • the thickness of the tin layer is preferably between 1 and 3 ⁇ m.
  • a transition layer is formed between the base material and the tin layer.
  • the tin layer is preferably applied in such a way that the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn.
  • the formation of the transition layer is in particular designed such that it has a thickness between 0.1 and 1 micron.
  • the alloy of the core transitions through the transition layer into a layer of pure tin. Via the formed transition or alloy layer, a good connection of the tin layer is achieved.
  • the overall result is a five-layer structure.
  • On one core of the specified copper-tin alloy as the base material sits on both sides of a layer of an intermetallic phase consisting of CuNiCoSn with a thickness between 0.1 and 1.0 microns.
  • the composite material is finally covered for corrosion protection reasons with a layer of free or pure tin, which has a thickness of 1.0 to 3.0 microns.
  • the layer composite material has a total thickness of 0.2 to 1 mm, preferably up to 2 mm, particularly preferably up to 3 mm.
  • the electrical conductivity of the specified composite material corresponds to that of the previously used comparison material CuFe2P. Thermal conductivity and other technological values of the composite are also fully comparable.
  • Both the copper-tin alloy according to the invention and the tinned composite material are outstandingly suitable for tapes, films, profiled strips, stampings or connectors, in particular for applications in electrical engineering or electronics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Contacts (AREA)

Description

Die Erfindung betrifft eine Kupfer-Zinn-Legierung, einen Verbundwerkstoff mit einer solchen Kupfer-Zinn-Legierung sowie eine Verwendung der Kupfer-Zinn-Legierung und des Verbundwerkstoffs. Die Kupfer-Zinn-Legierung und der diese umfassende Verbundwerkstoff eignet sich insbesondere für Verbindungselemente in der Elektrotechnik und in der Elektronik. Die Erfindung beschäftigt sich insbesondere mit dem Problem der Recyclingfähigkeit.The invention relates to a copper-tin alloy, a composite material with such a copper-tin alloy and a use of the copper-tin alloy and the composite material. The copper-tin alloy and the comprehensive composite material is particularly suitable for fasteners in electrical engineering and electronics. The invention is particularly concerned with the problem of recyclability.

Generell werden heute Kupferlegierungen auf Basis Cu-Zn, Cu-Sn und Cu-Fe in großem Umfang für Verbindungselemente in der Elektrotechnik und in der Elektronik eingesetzt. Insbesondere werden solche Kupferlegierungen für Stanzgitter und Steckverbinder verwendet. Wichtige Kriterien für die Werkstoffauswahl sind dabei Elastizitätsmodul, Streckgrenze, Relaxationsverhalten und Biegbarkeit. Neben einer ausreichenden mechanischen Festigkeit stellen die elektrische Leitfähigkeit und die Korrosionsbeständigkeit wichtige Kriterien für die sichere Funktion der Bauteile über die Lebensdauer des Gesamtsystems dar. Oftmals kommt es dabei zu einer Überschneidung von Eigenschaftsanforderungen, die sich im Grundsatz gegeneinander ausschließen, wie beispielsweise die Kombination einer guten Leitfähigkeit mit hoher Korrosionsbeständigkeit. Verbessern Legierungselemente im Kupfer, wie Nickel und Chrom, einerseits die Korrosionsbeständigkeit, so verringern sie andererseits die Leitfähigkeit erheblich.In general, copper alloys based on Cu-Zn, Cu-Sn and Cu-Fe are widely used today for connecting elements in electrical engineering and in electronics. In particular, such copper alloys are used for lead frames and connectors. Important criteria for the selection of materials are modulus of elasticity, yield strength, relaxation behavior and bendability. In addition to a sufficient mechanical strength, the electrical conductivity and corrosion resistance are important criteria for the safe function of the components over the life of the entire system. Often there is an overlap of property requirements, which in principle preclude each other, such as the combination of a good Conductivity with high corrosion resistance. On the one hand, alloying elements in copper, such as nickel and chromium, on the one hand improve the corrosion resistance, on the other hand, they considerably reduce the conductivity.

Zunehmend an Bedeutung gewinnt auch das Thema Schweißbarkeit, insbesondere das Laserschweißen, mit anderen metallischen Werkstoffen. Vor dem Hintergrund der exorbitanten Metallpreissteigerungen in den letzten Jahren wird gerade auch das Thema der Recyclingfähigkeit der verwendeten Legierungen immer wichtiger.The topic of weldability, in particular laser welding, with other metallic materials is also gaining in importance. Against the background of the exorbitant increases in metal prices in recent years, the issue of the recyclability of the alloys used is becoming increasingly important.

Cu-Zn bzw. Messinglegierungen sind mischkristall-verfestigende Werkstoffe. Es sind binäre Legierungen, die in der Regel zwischen 5 und 40 Gew.-% an Zink enthalten. Mit steigendem Zinkgehalt nehmen Zugfestigkeit und Härte zu. Die Dehnung erreicht bei 30 Gew.-% Zink einen Höchstwert. Höhere Festigkeits- und Härtewerte sind nur durch Kaltumformung zu erzielen.Cu-Zn or brass alloys are solid solution hardening materials. They are binary alloys, which usually contain between 5 and 40 wt .-% of zinc. With increasing zinc content, tensile strength and hardness increase. The elongation reaches a maximum at 30% by weight of zinc. Higher strength and hardness values can only be achieved by cold forming.

Für Steckverbinder in Form von Federbändern, beispielsweise aus einer CuZn 30- oder aus einer CuZn 37-Legierung, wird üblicherweise eine Vickershärte von Hv = 150 verlangt. Zusätzlich muss die Einhaltung eines auf die Blechdicke s normierten Mindestbiegeradius r/s = 1 für eine 90°-Abkantung gegeben sein. Der Nachteil der Cu-Zn-Legierungen liegt allerdings in der relativ schlechten Schweißbarkeit, denn das Legierungselement Zink weist einen relativ hohen Dampfdruck auf. Reines Zink siedet bei 1,013 bar bereits bei 907°C. Ferner weisen Cu-Zn-Legierungen einen geringen Elastizitätsmodul von ca. 110 KN/mm2 (SI-Einheit: GPa) auf. Darüber hinaus lassen sich aus Korrosionsschutzgründen verzinnte Messingbänder aufgrund des eingetragenen Zinns nicht gut recyceln. Auch das Relaxationsverhalten von Cu-Zn-Legierungen ist ausgeprägt, die Einsatztemperatur damit begrenzt.For connectors in the form of spring bands, for example, a CuZn 30 or a CuZn 37 alloy, a Vickers hardness of Hv = 150 is usually required. In addition, compliance with a minimum bending radius r / s = 1 normalized to the sheet thickness s for a 90 ° rebate must be ensured. The disadvantage of the Cu-Zn alloys, however, lies in the relatively poor weldability, because the alloying element zinc has a relatively high vapor pressure. Pure zinc already boils at 1.013 bar at 907 ° C. Furthermore, Cu-Zn alloys have a low elastic modulus of about 110 KN / mm 2 (SI unit: GPa). In addition, tinned brass bands can not be recycled well due to the tin included for corrosion protection reasons. The relaxation behavior of Cu-Zn alloys is also pronounced, limiting the operating temperature.

Cu-Sn-Legierungen, also Zinnbronzen, gehören zu den ältesten technisch verwertbaren Kupferlegierungen. Den Cu-Sn-Legierungen wird üblicherweise etwas Phosphor zugegeben, weshalb diese Legierungen auch als Phosphorbronzen bezeichnet werden. Die Eigenschaften dieser Legierungen werden vorrangig vom Zinngehalt bestimmt, der in der Regel zwischen 4 und 8 Gew.-% liegt. Der Elastizitätsmodul von Phosphorbronzen beträgt je nach Sn-Gehalt zwischen 115 und 120 kN/mm2 (SI-Einheit: GPa). Die Biegbarkeit von Zinnbronzen ist hervorragend. Steigende Sn-Gehalte verbessern für einen gegebenen Temperzustand das Biegbarkeitsverhalten. Federbänder aus Phosphorbronze können ohne Probleme bis auf ein Härteniveau einer Vickershärte von Hv = 200 verfestigt werden und weisen noch eine Biegbarkeit von r/s = 1 bei einer Abkantung von 90° auf. Die Laserschweißbarkeit von Zinn- bzw. Phosphorbronzen ist gegeben, denn diese Legierungen weisen keine leicht flüchtigen Elemente (insbesondere Zink) und keine störenden zweiten Phasen auf. Das Relaxationsverhalten von Zinn- bzw. Phosphorbronzen ist besser als das von Messinglegierungen, wenngleich es nicht an das Niveau von aushärtbaren Kupferwerkstoffen heranreicht.Cu-Sn alloys, ie tin bronzes, are among the oldest technically usable copper alloys. The Cu-Sn alloys are usually added some phosphorus, which is why these alloys are also referred to as phosphorus bronzes. The properties of these alloys are determined primarily by the tin content, which is usually between 4 and 8 wt .-%. Depending on the Sn content, the modulus of elasticity of phosphorus bronzes is between 115 and 120 kN / mm 2 (SI unit: GPa). The bendability of tin bronzes is excellent. Rising Sn levels improve the flexibility for a given temper. Phosphor bronze bronze tapes can be readily consolidated to a hardness level of Vickers hardness of Hv = 200 and still have a bendability of r / s = 1 with a 90 ° fold. The laser weldability of tin or phosphorus bronzes is given, because these alloys have no volatile elements (especially zinc) and no disturbing second phases. The relaxation behavior of tin or phosphorus bronzes is better than that of brass alloys, although it does not reach the level of hardenable copper materials.

Cu-Sn-Legierungen werden in Form von Bändern für Stanzteile und Steckverbinder eingesetzt, wenn eine gute bis sehr gute Federeigenschaft, eine gute elektrische und thermische Belastbarkeit, eine geringe Spannungsrelaxation, eine gute Biegbarkeit, gute Schweißbarkeit und Lötbarkeit gefordert werden. Auch in verzinnter Form lassen sich Phosphorbronzen gut recyceln. Zinn ist bereits in der Legierung als solcher enthalten.Cu-Sn alloys are used in the form of tapes for stampings and connectors, if a good to very good spring characteristic, a good electrical and thermal resilience, low stress relaxation, good bendability, good weldability and solderability are required. Even in tinned form, phosphorus bronzes are easy to recycle. Tin is already included in the alloy as such.

Zu den niedrig legierten Kupferwerkstoffen gehören die Cu-Fe-Legierungen. Durch geringe Zusätze an Eisen und Phosphor kann die Werkstoffeigenschaft des reinen Kupfers, z.B. die Festigkeit, das Entfestigungs- oder Relaxationsverhalten, verbessert werden. Weit verbreitet für Stanzgitter in der Automobiltechnik ist insbesondere eine CuFe2P-Legierung in der Temperstufe FH. Der Werkstoff weist in dieser Temperstufe eine Zugfestigkeit von Rm = 420 bis 500 N/mm2 (SI-Einheit: MPa) auf. Die Vickershärte liegt bei Hv = 130 bis 150. Die scharfkantige Biegbarkeit ist noch gegeben. Zu den Vorzügen der CuFe2P-Legierung gehört, dass der Elastizitätsmodul etwa 125 KN/mm2 (GPa) beträgt und somit das Material gute Federeigenschaften besitzt. Die elektrische Leitfähigkeit liegt zwischen 60% und 70% IACS (International Annealed Copper Standard: 100% IACS entsprechen etwa 58 MS/m). Eine Verzinnung des Werkstoffs aus Korrosionsschutzgründen ist gut möglich.The low-alloyed copper materials include the Cu-Fe alloys. By small additions of iron and phosphorus, the material properties of pure copper, such as the strength, the softening or relaxation behavior can be improved. Widely used for stamped grids in automotive engineering is in particular a CuFe2P alloy in the heat setting FH. The material has a tensile strength of Rm = 420 to 500 N / mm 2 (SI unit: MPa) in this heat treatment stage. The Vickers hardness is Hv = 130 to 150. The sharp-edged bendability is still present. Among the advantages of the CuFe2P alloy is that the modulus of elasticity is about 125 KN / mm 2 (GPa), and thus the material has good spring properties. The electrical conductivity is between 60% and 70% IACS (I nternational Annealed C opper S tandard: 100% IACS correspond approximately to 58 MS / m). A tinning of the material for corrosion protection reasons is well possible.

Zu den Nachteilen der CuFe2P-Legierung zählt, dass diese keinen homogenen Werkstoff bildet, sondern Fe2P-Ausscheidungen aufweist. Insbesondere hierdurch wird ein Laserschweißen erschwert. Trifft der Laserstrahl beim Punktschweißen auf gröbere Fe2P-Ausscheidungen, so kann er abgelenkt werden, wodurch das Durchschweißergebnis unbefriedigend wird. Ein weiterer Nachteil liegt in der schlechten Recyclingfähigkeit von verzinnten Schrotten der CuFe2P-Legierung. Die elektrische Leitfähigkeit einer CuFe2P-Legierung wird beim Aufschmelzen durch ein in Lösung gehendes Zinn von etwa 1 Gew.-% um 25% erniedrigt. Die verzinnten Stanzschrotte, die beim Herstellen von Stanzgittern üblicherweise 50% bis 70% des eingesetzten Materials ausmachen, können nicht in den Schmelzprozess direkt zurückgeführt werden, sondern müssen aufwändig verhüttet und elektrochemisch getrennt werden. Die Rückführung in den Werkstoffkreislauf erfolgt demnach als Kathode. Dieser Vorgang ist sehr energieintensiv und damit gegenüber dem direkten Einschmelzen der Schrotte sehr teuer.One of the disadvantages of the CuFe2P alloy is that it does not form a homogeneous material but has Fe2P precipitates. In particular, this makes laser welding difficult. If the laser beam encounters coarser Fe2P precipitates during spot welding, it can be deflected, making the penetration result unsatisfactory. Another disadvantage is the poor recyclability of tin-plated scrap of CuFe2P alloy. The electrical conductivity of a CuFe2P alloy is reduced by 25% upon reflow by a dissolving tin of about 1% by weight. The tinned punching scrap, which usually make up 50% to 70% of the material used in the manufacture of stamped laths, can not be returned directly to the melting process, but rather must be smelted and electrochemically separated. The return to the material cycle is therefore as a cathode. This process is very energy intensive and thus very expensive compared to the direct melting of the scraps.

Aus Fig. 1 wird für eine CuFe2P-Legierung der geschilderte Einfluss eines Zinnanteils auf die elektrische Leitfähigkeit ersichtlich. Die elektrische Leitfähigkeit fällt bereits ab Gehalten oberhalb von 0,3 Gew.-% Zinn drastisch ab. Wird beispielsweise ein 0,4 mm dickes Band aus einer CuFe2P-Legierung aus Korrosionsschutzgründen beidseitig mit etwa 3 µm Zinn beschichtet, so würde beim direkten Recycling auf Basis dieser Schrotte eine mit rund 1,5 Gew.-% Zinn verunreinigte CuFe2P-Legierung entstehen. Neben drastischen Einbußen bei der elektrischen Leitfähigkeit hat dieser Zinn-Anteil auch eine starke negative Auswirkung auf das Verfestigungsverhalten.Out Fig. 1 For a CuFe2P alloy, the influence of a percentage of tin on the electrical conductivity is shown. The electrical conductivity drops drastically even from levels above 0.3 wt .-% tin. For example, a 0.4 mm thick band of a CuFe2P alloy for corrosion protection reasons Coated with about 3 μm tin on both sides, a CuFe2P alloy contaminated with about 1.5% by weight tin would result from direct recycling based on this scrap. In addition to drastic losses in the electrical conductivity, this tin content also has a strong negative effect on the solidification behavior.

Aus der JP 2007 039 735 A sind CuNiP-Legierungen bekannt, die optional Sn, Zn und Fe umfassen können.From the JP 2007 039 735 A CuNiP alloys are known, which may optionally include Sn, Zn and Fe.

Aufgabe der Erfindung ist es, eine Legierung und einen Verbundwerkstoff anzugeben, welcher in seinen physikalischen und technologischen Eigenschaften möglichst dem einer CuFe2P-Legierung entspricht, möglichst gut laserschweißbar ist und gut recycelt werden kann. Eine weitere Aufgabe besteht darin, eine Verwendung für eine solche Legierung und einen solchen Verbundwerkstoff anzugeben.The object of the invention is to provide an alloy and a composite material which corresponds as far as possible in its physical and technological properties of a CuFe2P alloy, as well as possible laser weldable and can be recycled well. Another object is to provide a use for such an alloy and composite material.

Hinsichtlich der Legierung wird die vorgenannte Aufgabe durch eine Kupfer-Zinn-Legierung mit der Zusammensetzung gemäß Anspruch 1 gelöst. Demnach umfasst die Kupfer-Zinn-Legierung 0,2 bis 0,8 Gew.-% Zinn (Sn), 0,3 bis 0,5 Gew.-% Nickel (Ni) und/oder Kobalt (Co), 0 bis 0,05 Gew.-% Zink (Zn), 0 bis 0,02 Gew.-% Eisen (Fe), 0,008 bis 0,05 Gew.-% Phosphor(P) sowie als Rest Kupfer (Cu).With regard to the alloy, the above object is achieved by a copper-tin alloy having the composition according to claim 1. Accordingly, the copper-tin alloy comprises 0.2 to 0.8 wt .-% tin (Sn), 0.3 to 0.5 wt .-% nickel (Ni) and / or cobalt (Co), 0 to 0 , 05 wt .-% zinc (Zn), 0 to 0.02 wt .-% iron (Fe), 0.008 to 0.05 wt .-% phosphorus (P) and the balance copper (Cu).

Die Erfindung geht dabei von der Überlegung aus, eine zur CuFe2P-Legierung alternative, neue Legierung anzugeben, die vergleichbare Eigenschaften aufweist, sich jedoch auch im verzinnten Zustand problemlos recyceln lässt. Reine Cu-Sn-Legierungen, wie beispielsweise eine CuSn0,15-Legierung haben zweifellos das Potenzial, als eine solche Alternative herangezogen werden zu können. Beschichtet mit Zinn können die Schrotte einer solchen Legierung dem Wertstoffkreislauf direkt zugeführt werden. Die mechanischen und technologischen Eigenschaften entsprechen dabei denen einer CuFe2P-Legierung relativ gut. Deutliche Schwächen treten allerdings beim Erweichungsverhalten und der Relaxationsbeständigkeit auf.The invention is based on the idea of specifying an alternative to the CuFe2P alloy, new alloy, which has comparable properties, but can be easily recycled even in tinned state. Pure Cu-Sn alloys, such as a CuSn0.15 alloy, undoubtedly have the potential to be used as such an alternative. Coated with tin, the scrap of such an alloy can be fed directly to the recycling cycle. The mechanical and technological properties correspond to those of a CuFe2P alloy relatively well. Significant weaknesses, however, occur in the softening behavior and the relaxation resistance.

Umfangreiche Untersuchungen haben nun ergeben, dass eine Kupfer-Zinn-Legierung mit einer gezielten Abstimmung der Legierungselemente Zinn, Nickel und/oder Kobalt sowie Phosphor sowohl zu einer CuFe2P-Legierung vergleichbare mechanische und technologische Eigenschaften als auch das für die jeweilige Weiterverarbeitung und Endanwendung erforderliche Eigenschaftsprofil im Bereich des Erweichungsverhaltens und der Relaxation, d.h. dem Kriechen des Bauteils unter Spannung bei erhöhter Temperatur, erreicht. Dabei ist entweder Nickel oder Kobalt mit dem angegebenen Anteil enthalten. Bevorzugt ist hierbei ein Teil des Nickels durch Kobalt ersetzt, wobei dann die Summe beider Legierungselemente gemeinsam den angegebenen Anteil ergibt.Extensive investigations have now shown that a copper-tin alloy with a specific coordination of the alloying elements tin, nickel and / or cobalt and phosphorus both to a CuFe2P alloy comparable mechanical and technological properties as that for the respective Further processing and end use required property profile in the area of the softening behavior and the relaxation, ie the creep of the component under tension at elevated temperature achieved. In this case, either nickel or cobalt is included with the specified proportion. In this case, part of the nickel is preferably replaced by cobalt, in which case the sum of the two alloying elements together gives the stated proportion.

Ein Vergleich der technologischen und physikalischen Eigenschaften einer Cu-Sn-Legierung mit einer CuFe2P-Legierung ergibt folgendes Bild: CuFe2P CuSnNiCoP Zugfestigkeit Rm [MPa] 450 438 - 440 Fließgrenze 0,2 % Rp 0,2 [MPa] 420 405 - 430 Bruchdehnung A50 [%] 9 4-5 Elastizitätsmodul [GPa] 123 126 Elektr. Leitfähigkeit [%IACS] 63 55 - 70 Thermische Leitfähigkeit [W/mK] 260 250 Mindestbiegeradius [r/s, 90°] 1 1 Wärmeausdehnungskoeffizient [Rt-100 °C] 17,7 x 10-6 17,7 x 10-6 Vickershärte [Hv] 145 130-134 Erweichungstemperatur [°C(1h)] 350 350 A comparison of the technological and physical properties of a Cu-Sn alloy with a CuFe2P alloy gives the following picture: CuFe2P CuSnNiCoP Tensile strength Rm [MPa] 450 438-440 Yield point 0.2% R p 0.2 [MPa] 420 405 - 430 Elongation at break A50 [%] 9 4-5 Young's modulus [GPa] 123 126 Conductivity [% IACS] 63 55 - 70 Thermal conductivity [W / mK] 260 250 Minimum bending radius [r / s, 90 °] 1 1 Thermal expansion coefficient [Rt-100 ° C] 17.7 x 10 -6 17.7 x 10 -6 Vickers hardness [Hv] 145 130-134 Softening temperature [° C (1h)] 350 350

Aus der Tabelle wird ersichtlich, dass Cu-Sn-Legierungen die angegebenen Anforderungen hinsichtlich der technologischen und physikalischen Eigenschaften erfüllen können.The table shows that Cu-Sn alloys can meet the specified requirements in terms of technological and physical properties.

Bei dem Einsatz der erfindungsgemäßen Cu-Sn-Legierung in verzinnter Form bildet sich eine Legierungsschicht zwischen dem Grundwerkstoff und der Zinnauflage aus. Eine Anpassung der Fertigungsanlagen ist bei der Umstellung auf den neuen Werkstoff nicht erforderlich.When using the Cu-Sn alloy according to the invention in tinned form, an alloy layer is formed between the base material and the tin coating. An adaptation of the production facilities is not required when converting to the new material.

Die erfindungsgemäße Cu-Sn-Legierung zeigt darüber hinaus im Bereich des Erweichungsverhaltens und der Relaxation ein zur CuFe2P-Legierung vergleichbares Eigenschaftsprofil.In addition, the Cu-Sn alloy according to the invention exhibits a property profile which is comparable to the CuFe 2 P alloy in the area of the softening behavior and the relaxation.

Die erfindungsgemäße Cu-Sn-Legierung zeichnet sich weiter in besonderer Weise durch die direkte Rückführbarkeit verzinnter Schrotte aus den einzelnen Stufen der Wertschöpfungskette aus. Die verzinnten Schrotte können direkt in den Schmelzprozess zurückgeführt werden, so dass die Recyclingkosten gegenüber einer Verhüttung deutlich geringer ausfallen. Die Verhüttungskosten können beispielsweise bei einem Schrottanteil von 70 % schnell die Höhe der Fabrikationskosten erreichen und die Wirtschaftlichkeit in Frage stellen. Aus diesem Grund ändert auch eine Betrachtung der Metallwerte zwischen einer Kuper-EisenLegierung wie der CuFe2P- Legierung und der hier angegebenen Cu-Sn-Legierung nichts daran, dass die angegebene Legierung sowohl unter ökonomischen als auch ökologischen Gesichtspunkten (der zusätzliche Einsatz von Strom und Säure zur elektrolytischen Aufbereitung der Schrotte können entfallen) eine sinnvolle Alternative zu verzinnten Kupfer-Eisen-Legierungen darstellt.The Cu-Sn alloy according to the invention is further distinguished in a special way by the direct traceability of tin-plated scrap from the individual stages of the value-added chain. The tin-coated scrap can be returned directly to the smelting process, so that the recycling costs are significantly lower than smelting. The smelting costs, for example, can quickly reach the level of manufacturing costs with a scrap content of 70% and put into question the economic efficiency. For this reason, even a consideration of the metal values between a copper-iron alloy such as the CuFe2P alloy and the Cu-Sn alloy given here does not change the fact that the stated alloy is economical and ecological (the additional use of electricity and acid for the electrolytic treatment of the scrap can be omitted) represents a reasonable alternative to tinned copper-iron alloys.

Hinsichtlich der geforderten Eigenschaften ist es vorteilhaft, wenn die angegebene Kupfer-Zinn-Legierung einen Anteil an Sn zwischen 0,3 und 0,7 Gew.-%, insbesondere zwischen 0,4 und 0,6 Gew.-%, enthält: Entsprechend der Erfindung liegt der Anteil an Ni und / oder Co in der Kupfer-Zinn-Legierung zwischen 0,3 und 0,5 Gew.-%.With regard to the required properties, it is advantageous if the stated copper-tin alloy contains a proportion of Sn between 0.3 and 0.7% by weight, in particular between 0.4 and 0.6% by weight the invention, the proportion of Ni and / or Co in the copper-tin alloy is between 0.3 and 0.5 wt .-%.

Durch einen bevorzugten Anteil an Phosphor zwischen 0,008 und 0,03 Gew.-%, insbesondere zwischen 0,008 und 0,015 Gew.-%, kann die Festigkeit verbessert werden.By a preferred amount of phosphorus between 0.008 and 0.03 wt .-%, in particular between 0.008 and 0.015 wt .-%, the strength can be improved.

In einer bevorzugten Legierungszusammensetzung weist die Kupfer-Zinn-Legierung 0,3 bis 0,7 Gew.-% Sn, 0,3 bis 0,5 Gew.-% Ni und/oder Co, 0 bis 0,04 Gew.-% Zn, 0 bis 0,015 Gew.-% Fe, 0,08 bis 0,03 Gew.-% P, sowie als Rest Cu auf.In a preferred alloy composition, the copper-tin alloy has 0.3 to 0.7 wt% Sn, 0.3 to 0.5 wt% Ni and / or Co, 0 to 0.04 wt%. Zn, 0 to 0.015 wt .-% Fe, 0.08 to 0.03 wt .-% P, and the balance Cu on.

Weiter verbessert wird die Kupfer-Zinn-Legierung, wenn sie 0,4 bis 0,6 Gew.-% Sn, 0,3 bis 0,5 Gew.-% Ni und/oder Co, 0 bis 0,03 Gew.-% Zn, 0 bis 0,01 Gew.-% Fe, 0,008 bis 0,015 Gew.-% P, sowie als Rest Cu umfasst.The copper-tin alloy is further improved when it contains 0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight. % Zn, 0 to 0.01 wt .-% Fe, 0.008 to 0.015 wt .-% P, and the remainder comprises Cu.

Eine weitere vorteilhafte präzise Einstellung der Eigenschaften der Kupfer-Zinn-Legierung kann vorgenommen werden, wenn eine Summe aus Verunreinigungen und sonstigen Beimengungen von maximal 0,3 Gew.-% vorliegt.A further advantageous precise adjustment of the properties of the copper-tin alloy can be carried out if there is a total of impurities and other admixtures of not more than 0.3% by weight.

Als ein konkretes Ausführungsbeispiel mit hervorragenden Eigenschaften wird eine Kupfer-Zinn-Legierung genannt, die 0,38 Gew.-% Sn, 0,30 Gew.-% Ni und/oder Co, 0,003 Gew.-% Zn, 0,008 Gew.-% Fe, 0,014 Gew.-% P, sowie als Rest Cu umfasst.As a concrete embodiment having excellent properties, mention is made of a copper-tin alloy containing 0.38 wt% Sn, 0.30 wt% Ni and / or Co, 0.003 wt% Zn, 0.008 wt%. % Fe, 0.014 wt .-% P, and the remainder comprises Cu.

Die erfindungsgemäße Kupfer-Zinn-Legierung ist sehr gut laserschweißbar, da keine leicht flüchtigen Elemente enthalten sind und die Legierung frei von einer zweiten Phase ist. Insbesondere weist die Legierung keine NiP-Ausscheidungen aus.The copper-tin alloy according to the invention is very good laser weldable, since no volatile elements are contained and the alloy is free of a second phase. In particular, the alloy does not exhibit NiP precipitates.

Die Legierung eignet sich hervorragend für einen gut laserschweißbaren Verbundwerkstoff, der insbesondere für Stanzgitter verwendet werden kann. Solche Stanzgitter werden heute beispielsweise in der Automobiltechnik für ABS- und ESP-Systeme eingesetzt. Dazu wird ein Grundwerkstoff aus der vorgenannten Kupfer-Zinn-Legierung mit einer Zinnschicht versehen bzw. abgedeckt, was insbesondere durch das Verfahren der Feuerverzinnung vorgenommen werden kann. Insofern befindet sich auf dem Grundwerkstoff aus der angegebenen Kupfer-Zinn-Legierung eine Schicht aus reinem oder freiem Zinn. Der Verbundwerkstoff zeichnet sich durch eine hohe Relaxationsbeständigkeit bis zu Temperaturen von 100 °C aus. Erweist im Inneren als Kern die angegebene Kupfer-Zinn-Legierung mit einer Zusammensetzung entsprechend der darauf gerichteten Ansprüche auf. Durch die äußere Beschichtung bzw. Abdeckung aus Zinn ist eine hohe Korrosionsbeständigkeit gewährleistet. Bevorzugt beträgt die Dicke der Zinnschicht zwischen 1 und 3 µm.The alloy is ideal for a good laser weldable composite material, which can be used in particular for stamped grid. Such stamped grids are used today, for example in automotive technology for ABS and ESP systems. For this purpose, a base material of the aforementioned copper-tin alloy is provided with a tin layer or covered, which can be made in particular by the method of hot tinning. In this respect, there is a layer of pure or free tin on the base material of the specified copper-tin alloy. The composite material is characterized by a high relaxation resistance up to temperatures of 100 ° C. Inside, as the core, the specified copper-tin alloy with a composition according to the claims directed thereto. The outer coating or tin cover ensures high corrosion resistance. The thickness of the tin layer is preferably between 1 and 3 μm.

Beim Verzinnen der erfindungsgemäßen Kupfer-Zinn-Legierung kommt es zur Bildung einer Übergangsschicht zwischen dem Grundwerkstoff und der Zinnschicht. Bevorzugt wird die Zinnschicht derart aufgebracht, dass die Übergangsschicht eine intermetallische Phase aus Cu, Ni und / oder Co sowie Sn umfasst. Die Ausbildung der Übergangsschicht wird insbesondere derart gestaltet, dass diese eine Dicke zwischen 0,1 und 1 µm aufweist. Insofern umfasst der Verbundwerkstoff im Inneren oder als Kern die angegebene Kupfer-Zinn-Legierung mit den entsprechenden Anteilen an Nickel und / oder Kobalt sowie Phosphor. Die Legierung des Kerns geht über die Übergangsschicht in eine Schicht aus reinem Zinn über. Über die ausgebildete Übergangs- bzw. Legierungsschicht wird eine gute Anbindung der Zinnschicht erzielt.When tinning the copper-tin alloy according to the invention, a transition layer is formed between the base material and the tin layer. The tin layer is preferably applied in such a way that the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn. The formation of the transition layer is in particular designed such that it has a thickness between 0.1 and 1 micron. In this respect, the composite material in the interior or core of the specified copper-tin alloy with the corresponding proportions of nickel and / or cobalt and phosphorus. The alloy of the core transitions through the transition layer into a layer of pure tin. Via the formed transition or alloy layer, a good connection of the tin layer is achieved.

Betrachtet man einen dreidimensionalen Aufbau wie ein Stanzgitter aus dem Verbundwerkstoff, so ergibt sich insgesamt ein Fünf-Schichten-Aufbau. Auf einem Kern aus der angegebenen Kupfer-Zinn-Legierung als Grundwerkstoff sitzt beidseitig eine Schicht einer intermetallischen Phase, bestehend aus CuNiCoSn mit einer Dicke zwischen 0,1 und 1,0 µm. Der Verbundwerkstoff ist abschließend aus Korrosionsschutzgründen mit einer Schicht aus freiem bzw. reinem Zinn abgedeckt, die eine Dicke von 1,0 bis 3,0 µm aufweist. Der Schichtverbundwerkstoff weist insgesamt eine Gesamtdicke von 0,2 bis 1 mm, bevorzugt bis 2 mm, besonders bevorzugt bis 3 mm auf.Considering a three-dimensional structure like a stamped grid made of composite material, the overall result is a five-layer structure. On one core of the specified copper-tin alloy as the base material sits on both sides of a layer of an intermetallic phase consisting of CuNiCoSn with a thickness between 0.1 and 1.0 microns. The composite material is finally covered for corrosion protection reasons with a layer of free or pure tin, which has a thickness of 1.0 to 3.0 microns. The layer composite material has a total thickness of 0.2 to 1 mm, preferably up to 2 mm, particularly preferably up to 3 mm.

Die elektrische Leitfähigkeit des angegebenen Verbundwerkstoffs entspricht dem des bisher eingesetzten Vergleichswerkstoffs CuFe2P. Wärmeleitfähigkeit und weitere technologische Werte des Verbundwerkstoffes sind ebenfalls voll vergleichbar.The electrical conductivity of the specified composite material corresponds to that of the previously used comparison material CuFe2P. Thermal conductivity and other technological values of the composite are also fully comparable.

Sowohl die erfindungsgemäße Kupfer-Zinn-Legierung als auch der verzinnte Verbundwerkstoff ist hervorragend für Bänder, Folien, profilierte Bänder, Stanzteile oder Steckverbinder, insbesondere für Anwendungen in der Elektrotechnik oder der Elektronik, geeignet.Both the copper-tin alloy according to the invention and the tinned composite material are outstandingly suitable for tapes, films, profiled strips, stampings or connectors, in particular for applications in electrical engineering or electronics.

Claims (12)

  1. Copper-tin alloy, comprising:
    0.2 to 0.8% by weight Sn,
    0.3 to 0.5% by weight Ni and/or Co,
    0 to 0.05% by weight Zn,
    0 to 0.02% by weight Fe,
    0.008 to 0.05% by weight P,
    and also Cu as remainder.
  2. Copper-tin alloy according to Claim 1,
    having an Sn content of between 0.3 and 0.7% by weight, in particular of between 0.4 and 0.6% by weight.
  3. Copper-tin alloy according to either of the preceding claims,
    having a P content of between 0.008 and 0.03% by weight, in particular of between 0.008 and 0.015% by weight.
  4. Copper-tin alloy according to Claim 1, comprising:
    0.3 to 0.7% by weight Sn,
    0.3 to 0.5% by weight Ni and/or Co,
    0 to 0.04% by weight Zn,
    0 to 0.015% by weight Fe,
    0.008 to 0.03% by weight P,
    and also Cu as remainder.
  5. Copper-tin alloy according to Claim 4, comprising:
    0.4 to 0.6% by weight Sn,
    0.3 to 0.5% by weight Ni and/or Co,
    0 to 0.03% by weight Zn,
    0 to 0.01% by weight Fe,
    0.008 to 0.015% by weight P,
    and also Cu as remainder.
  6. Copper-tin alloy according to one of the preceding claims,
    in which the sum of impurities and other admixtures is at most 0.3% by weight.
  7. Composite material having a base material according to one of the preceding claims and a layer of tin applied thereto.
  8. Composite material according to Claim 7,
    wherein the layer of tin has a thickness of between between 1 and 3 µm.
  9. Composite material according to Claim 7 or 8, having a transition layer between the base material and the layer of tin, wherein the transition layer comprises an intermetallic phase of Cu, Ni and/or Co and also Sn.
  10. Composite material according to Claim 9,
    wherein the transition layer has a thickness of between 0.1 and 1 µm.
  11. Use of a copper-tin alloy according to one of Claims 1 to 6 for strips, wires, foils, profiled strips, stamped parts or plug-in connectors.
  12. Use of a composite material according to one of Claims 7 to 10 for strips, wires, foils, profiled strips, stamped parts or plug-in connectors.
EP09744964.9A 2008-10-31 2009-10-27 Copper-tin alloy, composite material and use thereof Active EP2340318B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054183 2008-10-31
PCT/EP2009/007669 WO2010049118A1 (en) 2008-10-31 2009-10-27 Copper-tin alloy, composite material and use thereof

Publications (2)

Publication Number Publication Date
EP2340318A1 EP2340318A1 (en) 2011-07-06
EP2340318B1 true EP2340318B1 (en) 2017-02-15

Family

ID=41508956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09744964.9A Active EP2340318B1 (en) 2008-10-31 2009-10-27 Copper-tin alloy, composite material and use thereof

Country Status (9)

Country Link
US (1) US20110206941A1 (en)
EP (1) EP2340318B1 (en)
JP (1) JP2012506952A (en)
KR (1) KR20110079638A (en)
CN (1) CN102177265B (en)
BR (1) BRPI0921441A2 (en)
ES (1) ES2623604T3 (en)
RU (1) RU2482204C2 (en)
WO (1) WO2010049118A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641292B1 (en) 2010-11-17 2019-06-19 Luvata Appleton LLC Alkaline collector anode
CN102176809A (en) * 2011-01-14 2011-09-07 中国科学院上海技术物理研究所 Debugger for SMD (Surface Mounted Device) resistor and capacitor on PCB (printed-circuit board)
CN102703748B (en) * 2012-07-06 2013-10-16 山东大学 Preparation method of nanometer porous copper tin alloy
RU2502817C1 (en) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Copper-base alloy
JP5773015B2 (en) * 2013-05-24 2015-09-02 三菱マテリアル株式会社 Copper alloy wire
JP6113674B2 (en) * 2014-02-13 2017-04-12 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
RU2587110C9 (en) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов COPPER ALLOY, TelO DOPED WITH TELLURIUM, FOR COLLECTORS OF ELECTRIC MACHINES
CN107034381B (en) * 2017-04-26 2019-03-19 江西理工大学 A kind of Cu-Ni-Co-Sn-P copper alloy and preparation method thereof
RU2709909C1 (en) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Low-alloyed copper alloy
CN116411202A (en) * 2021-12-29 2023-07-11 无锡市蓝格林金属材料科技有限公司 Copper-tin alloy wire and preparation method thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture
JPH0612796B2 (en) * 1984-06-04 1994-02-16 株式会社日立製作所 Semiconductor device
JPS6379929A (en) * 1987-08-26 1988-04-09 Nippon Telegr & Teleph Corp <Ntt> Copper-nickel-tin alloy for integrated circuit conductor and its production
US5322575A (en) * 1991-01-17 1994-06-21 Dowa Mining Co., Ltd. Process for production of copper base alloys and terminals using the same
JP3550233B2 (en) * 1995-10-09 2004-08-04 同和鉱業株式会社 Manufacturing method of high strength and high conductivity copper base alloy
JP3408929B2 (en) * 1996-07-11 2003-05-19 同和鉱業株式会社 Copper-based alloy and method for producing the same
US6254702B1 (en) * 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
US6679956B2 (en) * 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
JP4308931B2 (en) * 1997-11-04 2009-08-05 三菱伸銅株式会社 Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate
US6136104A (en) * 1998-07-08 2000-10-24 Kobe Steel, Ltd. Copper alloy for terminals and connectors and method for making same
RU2138573C1 (en) * 1998-12-24 1999-09-27 Мочалов Николай Алексеевич Copper-based alloy
DE10025106A1 (en) * 2000-05-20 2001-11-22 Stolberger Metallwerke Gmbh Electrically conductive metal tape and connectors from it
CN1296500C (en) * 2003-03-03 2007-01-24 三宝伸铜工业株式会社 Heat-resisting copper alloy materials
KR20070006747A (en) * 2004-01-21 2007-01-11 엔쏜 인코포레이티드 Preserving solderability and inhibiting whisker growth in tin surfaces of electronic components
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP4461269B2 (en) * 2004-09-15 2010-05-12 Dowaメタルテック株式会社 Copper alloy with improved conductivity and method for producing the same
JP4350049B2 (en) * 2005-02-07 2009-10-21 株式会社神戸製鋼所 Method for producing copper alloy sheet with excellent stress relaxation resistance
JP4959141B2 (en) * 2005-02-28 2012-06-20 Dowaホールディングス株式会社 High strength copper alloy
JP4887851B2 (en) * 2005-03-17 2012-02-29 Dowaメタルテック株式会社 Ni-Sn-P copper alloy
JP3871064B2 (en) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 Copper alloy plate for electrical connection parts
JP4756195B2 (en) * 2005-07-28 2011-08-24 Dowaメタルテック株式会社 Cu-Ni-Sn-P copper alloy
JP4439447B2 (en) * 2005-08-03 2010-03-24 株式会社神戸製鋼所 Manufacturing method of irregular cross-section copper alloy sheet
JP4984108B2 (en) * 2005-09-30 2012-07-25 Dowaメタルテック株式会社 Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP4680765B2 (en) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 Copper alloy with excellent stress relaxation resistance
RU2315124C2 (en) * 2006-01-10 2008-01-20 ОАО "Каменск-Уральский завод по обработке цветных металлов" Tin-and-zinc bronze for manufacture of wire
JP4845747B2 (en) * 2007-01-12 2011-12-28 株式会社神戸製鋼所 Copper alloy material with plating for fuse and manufacturing method thereof
JP5145331B2 (en) * 2007-12-21 2013-02-13 三菱伸銅株式会社 High strength and high thermal conductivity copper alloy tube and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20110079638A (en) 2011-07-07
EP2340318A1 (en) 2011-07-06
WO2010049118A1 (en) 2010-05-06
ES2623604T3 (en) 2017-07-11
RU2011121810A (en) 2012-12-10
CN102177265A (en) 2011-09-07
CN102177265B (en) 2014-07-09
JP2012506952A (en) 2012-03-22
BRPI0921441A2 (en) 2016-01-05
RU2482204C2 (en) 2013-05-20
US20110206941A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
EP2340318B1 (en) Copper-tin alloy, composite material and use thereof
DE3429393C2 (en)
EP1850018B2 (en) Strip-shaped composite material
DE60101026T2 (en) Copper alloy containing silver
DE69327470T2 (en) COPPER ALLOY WITH HIGH STRENGTH AND GOOD CONDUCTIVITY AND METHOD FOR THE PRODUCTION THEREOF
DE10065735B4 (en) A method of making a copper alloy for a connector and copper alloy obtainable by the method
EP1883714B1 (en) Slide bearing composite material, use and method of production
EP2985358B1 (en) Friction bearing composite material
EP2333129A1 (en) Sliding layer
EP1157820B1 (en) Metal strip with high electric conductibility and connector made from it
EP2742161A2 (en) Copper zinc alloy
DE102014014239A1 (en) Electrical connection element
DE3527341C1 (en) Copper-chromium-titanium-silicon alloy and use thereof
DE10138204B4 (en) Electric contact
CH669211A5 (en) COPPER-CHROME-TITANIUM-SILICONE ALLOY AND THEIR USE.
EP1698707B1 (en) Sliding bearing with a lead free copper based bearing metal layer containing tin and zinc
DE3530736C2 (en)
DE3908513A1 (en) COPPER ALLOY MATERIAL FOR LINE FRAME OF SEMICONDUCTOR DEVICES
DE69814657T2 (en) COPPER BASED ALLOY, CHARACTERIZED BY DECAY CURING AND CURING IN SOLID CONDITION
EP2906733B1 (en) Material for electric contact components
DE2948916C2 (en) Copper-tin alloy, process for their manufacture and use
DE102018208116A1 (en) Copper tape for making electrical contacts and method of making a copper tape and connectors
EP1288321B1 (en) Material for a metal strip
EP3087282B1 (en) Multi-layer sliding bearing
EP1292422A1 (en) Method for connecting shape-memory material and steel or copper material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 867934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013650

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2623604

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013650

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 867934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201023

Year of fee payment: 12

Ref country code: NL

Payment date: 20201028

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201022

Year of fee payment: 12

Ref country code: ES

Payment date: 20201228

Year of fee payment: 12

Ref country code: FR

Payment date: 20201022

Year of fee payment: 12

Ref country code: IT

Payment date: 20201026

Year of fee payment: 12

Ref country code: CH

Payment date: 20201021

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201028

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013650

Country of ref document: DE

Owner name: SUNDWIGER MESSINGWERK GMBH, DE

Free format text: FORMER OWNER: SUNDWIGER MESSINGWERK GMBH & CO. KG, 58675 HEMER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027