EP2340318A1 - Copper-tin alloy, composite material and use thereof - Google Patents

Copper-tin alloy, composite material and use thereof

Info

Publication number
EP2340318A1
EP2340318A1 EP09744964A EP09744964A EP2340318A1 EP 2340318 A1 EP2340318 A1 EP 2340318A1 EP 09744964 A EP09744964 A EP 09744964A EP 09744964 A EP09744964 A EP 09744964A EP 2340318 A1 EP2340318 A1 EP 2340318A1
Authority
EP
European Patent Office
Prior art keywords
copper
alloy
tin
weight
tin alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09744964A
Other languages
German (de)
French (fr)
Other versions
EP2340318B1 (en
Inventor
Michael KÖHLER
Andreas Heide
Ralf Hojda
Udo Riepe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sundwiger Messingwerk GmbH and Co KG
Original Assignee
Sundwiger Messingwerk GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sundwiger Messingwerk GmbH and Co KG filed Critical Sundwiger Messingwerk GmbH and Co KG
Publication of EP2340318A1 publication Critical patent/EP2340318A1/en
Application granted granted Critical
Publication of EP2340318B1 publication Critical patent/EP2340318B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12715Next to Group IB metal-base component

Definitions

  • the invention relates to a copper-tin alloy, a composite material with such a copper-tin alloy and a use of the copper-tin alloy and the composite material.
  • the copper-tin alloy and the composite material comprising it are particularly suitable for connection elements in electrical engineering and in electronics.
  • the invention is particularly concerned with the problem of recyclability.
  • copper alloys based on Cu-Zn, Cu-Sn and Cu-Fe are widely used today for connecting elements in electrical engineering and in electronics.
  • copper alloys are used for lead frames and connectors.
  • Important criteria for the selection of materials are modulus of elasticity, yield strength, relaxation behavior and bendability.
  • the electrical conductivity and the corrosion resistance are important criteria for the reliable function of the components over the lifetime of the overall system. Often there is an overlap of property requirements, which in principle preclude each other, such as the combination a good conductivity with high corrosion resistance.
  • alloying elements in copper, such as nickel and chromium on the one hand improve the corrosion resistance, on the other hand they considerably reduce the conductivity.
  • Cu-Zn or brass alloys are solid solution hardening materials. They are binary alloys, which usually contain between 5 and 40 wt .-% of zinc. With increasing zinc content, tensile strength and hardness increase. The elongation reaches a maximum at 30% by weight of zinc. Higher strength and hardness values can only be achieved by cold forming.
  • the disadvantage of the Cu-Zn alloys lies in the relatively poor weldability, because the alloying element zinc has a relatively high vapor pressure. Pure zinc boiling at 1, 013 bar already at 907 0 C.
  • Cu-Zn alloys have a low elastic modulus of about 110 KN / mm 2 (Sl unit: GPa) on.
  • tinned brass bands can not be recycled well due to the tin included for corrosion protection reasons.
  • the relaxation behavior of Cu-Zn alloys is also pronounced, limiting the operating temperature.
  • Cu-Sn alloys ie tin bronzes
  • the Cu-Sn alloys are usually added some phosphorus, which is why these alloys are also referred to as phosphorus bronzes.
  • the properties of these alloys are determined primarily by the tin content, which is usually between 4 and 8 wt .-%.
  • the modulus of elasticity of phosphorus bronzes is between 115 and 120 kN / mm 2 (SI unit: GPa).
  • the bendability of tin bronzes is excellent. Rising Sn levels improve the flexibility for a given temper.
  • Cu-Sn alloys are used in the form of bands for stamped parts and connectors, if a good to very good spring characteristic, a good electrical cal and thermal resistance, low stress relaxation, good flexibility, good weldability and solderability are required. Even in tinned form, phosphorus bronzes are easy to recycle. Tin is already included in the alloy as such.
  • the low-alloyed copper materials include the Cu-Fe alloys.
  • the material property of pure copper e.g. the strength, the softening or relaxation behavior can be improved.
  • a CuFe2P alloy in the tempering stage FH is widely used for stamped grids in automotive engineering.
  • the sharp-edged bendability is still present.
  • the modulus of elasticity is about 125 KN / mm 2 (GPa) and thus the material has good spring properties.
  • the electrical conductivity is between 60% and 70% IACS (International Annealed Copper Standard: 100% IACS equals about 58 MS / m). A tinning of the material for corrosion protection reasons is well possible.
  • the electrical conductivity of a CuFe2P alloy is reduced by 25% upon reflow by a dissolving tin of about 1% by weight.
  • the tinned punching scrap which usually make up 50% to 70% of the material used in the manufacture of stamped laths, can not be returned directly to the melting process, but rather must be smelted and electrochemically separated. The return to the material cycle is therefore as a cathode. This process is very energy intensive and thus very expensive compared to the direct melting of the scraps.
  • the object of the invention is to specify an alloy and a composite material whose physical and technological properties are as close as possible to that of a CuFe2P alloy, which are laser-weldable as well as possible and can be readily recycled. Another task is a
  • the above object is achieved by a copper-tin alloy having the composition according to claim 1.
  • the copper-tin alloy comprises 0.2 to 0.8% by weight of tin (Sn), 0.1 to 0.6% by weight of nickel (Ni) and / or cobalt (Co), 0 to 0.05% by weight of zinc (Zn), 0 to 0.02% by weight of iron (Fe), 0.008 to 0.05% by weight of phosphorus (P) and the remainder copper (Cu).
  • the invention is based on the idea of specifying an alternative to the CuFe2P alloy, new alloy, which has comparable properties, but can be easily recycled even in tinned state. Pure Cu-Sn alloys, such as a CuSnO, 15 alloy, undoubtedly have the potential to be used as such an alternative.
  • the scrap of such an alloy can be fed directly to the recycling cycle.
  • the mechanical and technological properties correspond to those of a CuFe2P alloy relatively well. Significant weaknesses occur, however, in the softening behavior and the oxidation resistance.
  • a copper-tin alloy with a specific tuning of the alloying elements tin, nickel and / or cobalt and phosphorus has comparable mechanical and technological properties to a CuFe2P alloy as well as for the respective further processing and end use required property profile in the area of the softening behavior and the relaxation, ie the creep of the component under tension at elevated temperature achieved.
  • It is either Nickel or cobalt with the specified content. In this case, part of the nickel is preferably replaced by cobalt, in which case the sum of the two alloying elements together gives the stated proportion.
  • an alloy layer forms between the base material and the tin pad.
  • the aforementioned Cu-Sn alloy exhibits a property profile comparable to the CuFe 2 P alloy in the area of the softening behavior and the relaxation. This will be apparent from FIG. There, the relaxation is plotted in percent over the temperature in 0 C. The dashed line shows the course of the CuFe2P alloy and the solid line the course of the aforementioned new Cu-Sn alloy.
  • the experiments were for one Load time of 5,000 hours and an initial voltage of 65% Rp 0.2 performed.
  • the new Cu-Sn alloy is further distinguished by the direct traceability of tin-coated scrap from the individual stages of the value-added chain.
  • the tin-coated scrap can be returned directly to the smelting process, so that the recycling costs are significantly lower than smelting.
  • the smelting costs for example, can quickly reach the level of manufacturing costs with a scrap content of 70% and put into question the economic efficiency. For this reason, consideration of the metal values between a copper-iron alloy such as the CuFe2P alloy and the Cu-Sn alloy given here does not alter the fact that the alloy given is economically and ecologically (the additional use of electricity and acid for the electrolytic treatment of the scrap can be omitted) represents a useful alternative to tinned copper-iron alloys.
  • the stated copper-tin alloy contains a proportion of Sn between 0.3 and 0.7% by weight, in particular between 0.4 and 0.6% by weight
  • a further advantageous adaptation of the properties can be made if the proportion of Ni and / or Co in the copper-tin alloy between 0.2 and 0.55 wt .-%, in particular between 0.3 and 0.5 wt. -% lies.
  • the copper-tin alloy has 0.3 to 0.7 wt% Sn, 0.2 to 0.55 wt% Ni and / or Co, 0 to
  • the copper-tin alloy is further improved when it contains 0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight. % Zn, 0 to 0.01% by weight
  • a further advantageous precise adjustment of the properties of the copper-tin alloy can be carried out if there is a total of impurities and other admixtures of at most 0.3% by weight.
  • a copper-tin alloy containing 0.38 wt% Sn, 0.30 wt% Ni and / or Co, 0.003 wt% Zn 1 0.008 wt%. % Fe, 0.014 wt .-% P, and the remainder comprises Cu.
  • the new copper-tin alloy is very good laser weldable, since no volatile elements are included and the alloy is free of a second phase. In particular, the alloy does not exhibit NiP precipitates.
  • the alloy is ideally suited for a good laser-weldable composite material, which can be used in particular for stamped grid.
  • a base material of the aforementioned copper-tin alloy is provided with a tin layer or covered, which can be made in particular by the method of hot tinning.
  • a layer of pure or free tin on the base material of the specified copper-tin alloy.
  • the composite is characterized by a high relaxation resistance up to temperatures of 100 0 C. It has inside the core as the specified copper-tin alloy with a composition in accordance with the then-directed claims on.
  • the outer coating or tin cover ensures high corrosion resistance.
  • the thickness of the tin layer is preferably between 1 and 3 ⁇ m.
  • a transition layer between the base material and the tin layer is formed.
  • the tin layer is preferably applied in such a way that the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn.
  • the formation of the transition layer is in particular designed such that it has a thickness between 0.1 and 1 micron.
  • the alloy of the core transitions through the transition layer into a layer of pure tin. Via the formed transition or alloy layer, a good connection of the tin layer is achieved.
  • the overall result is a five-layer structure.
  • On one core of the specified copper-tin alloy as a base material sits on both sides of a layer of an intermetallic phase, consisting of CuNiCoSn with a thickness between 0.1 and 1, 0 microns.
  • the composite material is finally covered for corrosion protection reasons with a layer of free or pure tin, which has a thickness of 1, 0 to 3.0 microns.
  • the layer composite material has a total thickness of 0.2 to 1 mm, preferably up to 2 mm, particularly preferably up to 3 mm.
  • the electrical conductivity of the specified composite material corresponds to that of the previously used comparison material CuFe2P. Thermal conductivity and other technological values of the composite are also fully comparable.
  • Both the specified copper-tin alloy and the tinned composite material is excellent for tapes, foils, profiled strips, stampings or
  • Connector in particular for applications in electrical engineering or electronics suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Contacts (AREA)

Abstract

The invention relates to a copper-tin alloy, comprising 0.2 to 0.8 wt % Sn, 0.1 to 0.6 wt % Ni and / or Co, 0 to 0.05 wt % Zn, 0 to 0.2 wt % Fe, 0.008 to 0.05 wt % P and the remainder Cu. The invention furthermore relates to a corresponding composite material having a base material of such an alloy and to applicable uses thereof. The technological and physical properties are comparable to those of a CuFe2P alloy. However, the alloy according to the invention and a tinned composite material derived herefrom can be easily recycled.

Description

Kupfer-Zinn-Legierung, Verbundwerkstoff und Verwendung Copper-tin alloy, composite and use
Die Erfindung betrifft eine Kupfer-Zinn-Legierung, einen Verbundwerkstoff mit einer solchen Kupfer-Zinn-Legierung sowie eine Verwendung der Kupfer-Zinn- Legierung und des Verbundwerkstoffs. Die Kupfer-Zinn-Legierung und der diese umfassende Verbundwerkstoff eignet sich insbesondere für Verbindungselemen- te in der Elektrotechnik und in der Elektronik. Die Erfindung beschäftigt sich insbesondere mit dem Problem der Recyclingfähigkeit.The invention relates to a copper-tin alloy, a composite material with such a copper-tin alloy and a use of the copper-tin alloy and the composite material. The copper-tin alloy and the composite material comprising it are particularly suitable for connection elements in electrical engineering and in electronics. The invention is particularly concerned with the problem of recyclability.
Generell werden heute Kupferlegierungen auf Basis Cu-Zn, Cu-Sn und Cu-Fe in großem Umfang für Verbindungselemente in der Elektrotechnik und in der Elek- tronik eingesetzt. Insbesondere werden solche Kupferlegierungen für Stanzgitter und Steckverbinder verwendet. Wichtige Kriterien für die Werkstoffauswahl sind dabei Elastizitätsmodul, Streckgrenze, Relaxationsverhalten und Biegbarkeit. Neben einer ausreichenden mechanischen Festigkeit stellen die elektrische Leitfähigkeit und die Korrosionsbeständigkeit wichtige Kriterien für die sichere Funk- tion der Bauteile über die Lebensdauer des Gesamtsystems dar. Oftmals kommt es dabei zu einer Überschneidung von Eigenschaftsanforderungen, die sich im Grundsatz gegeneinander ausschließen, wie beispielsweise die Kombination einer guten Leitfähigkeit mit hoher Korrosionsbeständigkeit. Verbessern Legierungselemente im Kupfer, wie Nickel und Chrom, einerseits die Korrosionsbe- ständigkeit, so verringern sie andererseits die Leitfähigkeit erheblich.In general, copper alloys based on Cu-Zn, Cu-Sn and Cu-Fe are widely used today for connecting elements in electrical engineering and in electronics. In particular, such copper alloys are used for lead frames and connectors. Important criteria for the selection of materials are modulus of elasticity, yield strength, relaxation behavior and bendability. In addition to a sufficient mechanical strength, the electrical conductivity and the corrosion resistance are important criteria for the reliable function of the components over the lifetime of the overall system. Often there is an overlap of property requirements, which in principle preclude each other, such as the combination a good conductivity with high corrosion resistance. On the other hand, alloying elements in copper, such as nickel and chromium, on the one hand improve the corrosion resistance, on the other hand they considerably reduce the conductivity.
Zunehmend an Bedeutung gewinnt auch das Thema Schweißbarkeit, insbesondere das Laserschweißen, mit anderen metallischen Werkstoffen. Vor dem Hintergrund der exorbitanten Metallpreissteigerungen in den letzten Jahren wird ge- rade auch das Thema der Recyclingfähigkeit der verwendeten Legierungen immer wichtiger. Cu-Zn bzw. Messinglegierungen sind mischkristall-verfestigende Werkstoffe. Es sind binäre Legierungen, die in der Regel zwischen 5 und 40 Gew.-% an Zink enthalten. Mit steigendem Zinkgehalt nehmen Zugfestigkeit und Härte zu. Die Dehnung erreicht bei 30 Gew.-% Zink einen Höchstwert. Höhere Festigkeits- und Härtewerte sind nur durch Kaltumformung zu erzielen.The topic of weldability, in particular laser welding, with other metallic materials is also gaining in importance. Against the backdrop of the exorbitant increase in metal prices in recent years, the subject of recyclability of the alloys used is becoming more and more important. Cu-Zn or brass alloys are solid solution hardening materials. They are binary alloys, which usually contain between 5 and 40 wt .-% of zinc. With increasing zinc content, tensile strength and hardness increase. The elongation reaches a maximum at 30% by weight of zinc. Higher strength and hardness values can only be achieved by cold forming.
Für Steckverbinder in Form von Federbändern, beispielsweise aus einerFor connectors in the form of spring bands, for example, from a
CuZn 30- oder aus einer CuZn 37-Legierung, wird üblicherweise eine Vickershär- te von Hv = 150 verlangt. Zusätzlich muss die Einhaltung eines auf die Blechdi- cke s normierten Mindestbiegeradius r/s = 1 für eine 90°-Abkantung gegeben sein. Der Nachteil der Cu-Zn-Legierungen liegt allerdings in der relativ schlechten Schweißbarkeit, denn das Legierungselement Zink weist einen relativ hohen Dampfdruck auf. Reines Zink siedet bei 1 ,013 bar bereits bei 9070C. Ferner weisen Cu-Zn-Legierungen einen geringen Elastizitätsmodul von ca. 110 KN/mm2 (Sl-Einheit: GPa) auf. Darüber hinaus lassen sich aus Korrosionsschutzgründen verzinnte Messingbänder aufgrund des eingetragenen Zinns nicht gut recyceln. Auch das Relaxationsverhalten von Cu-Zn-Legierungen ist ausgeprägt, die Einsatztemperatur damit begrenzt.CuZn 30 or a CuZn 37 alloy, a Vickers hardness of Hv = 150 is usually required. In addition, compliance with a minimum bending radius r / s = 1 normalized to the sheet metal thickness must exist for a 90 ° rebate. The disadvantage of the Cu-Zn alloys, however, lies in the relatively poor weldability, because the alloying element zinc has a relatively high vapor pressure. Pure zinc boiling at 1, 013 bar already at 907 0 C. Further, Cu-Zn alloys have a low elastic modulus of about 110 KN / mm 2 (Sl unit: GPa) on. In addition, tinned brass bands can not be recycled well due to the tin included for corrosion protection reasons. The relaxation behavior of Cu-Zn alloys is also pronounced, limiting the operating temperature.
Cu-Sn-Legierungen, also Zinnbronzen, gehören zu den ältesten technisch verwertbaren Kupferlegierungen. Den Cu-Sn-Legierungen wird üblicherweise etwas Phosphor zugegeben, weshalb diese Legierungen auch als Phosphorbronzen bezeichnet werden. Die Eigenschaften dieser Legierungen werden vorrangig vom Zinngehalt bestimmt, der in der Regel zwischen 4 und 8 Gew.-% liegt. Der Elastizitätsmodul von Phosphorbronzen beträgt je nach Sn-Gehalt zwischen 115 und 120 kN/mm2 (Sl-Einheit: GPa). Die Biegbarkeit von Zinnbronzen ist hervorragend. Steigende Sn-Gehalte verbessern für einen gegebenen Temperzustand das Biegbarkeitsverhalten. Federbänder aus Phosphorbronze können ohne Probleme bis auf ein Härteniveau einer Vickershärte von Hv = 200 verfestigt werden und weisen noch eine Biegbarkeit von r/s = 1 bei einer Abkantung vonCu-Sn alloys, ie tin bronzes, are among the oldest technically usable copper alloys. The Cu-Sn alloys are usually added some phosphorus, which is why these alloys are also referred to as phosphorus bronzes. The properties of these alloys are determined primarily by the tin content, which is usually between 4 and 8 wt .-%. Depending on the Sn content, the modulus of elasticity of phosphorus bronzes is between 115 and 120 kN / mm 2 (SI unit: GPa). The bendability of tin bronzes is excellent. Rising Sn levels improve the flexibility for a given temper. Phosphor bronze tapes can be solidified to a hardness level of Hv = 200 Vickers hardness without problems, and still have a flexibility of r / s = 1 at a bend of
90° auf. Die Laserschweißbarkeit von Zinn- bzw. Phosphorbronzen ist gegeben, denn diese Legierungen weisen keine leicht flüchtigen Elemente (insbesondere Zink) und keine störenden zweiten Phasen auf. Das Relaxationsverhalten von Zinn- bzw. Phosphorbronzen ist besser als das von Messinglegierungen, wenn- gleich es nicht an das Niveau von aushärtbaren Kupferwerkstoffen heranreicht.90 ° up. The laser weldability of tin or phosphorus bronzes is given, because these alloys have no volatile elements (especially zinc) and no disturbing second phases. The relaxation behavior of tin or phosphorus bronzes is better than that of brass alloys, although it does not reach the level of thermosetting copper materials.
Cu-Sn-Legierungen werden in Form von Bändern für Stanzteile und Steckverbinder eingesetzt, wenn eine gute bis sehr gute Federeigenschaft, eine gute elektri- sche und thermische Belastbarkeit, eine geringe Spannungsrelaxation, eine gute Biegbarkeit, gute Schweißbarkeit und Lötbarkeit gefordert werden. Auch in verzinnter Form lassen sich Phosphorbronzen gut recyceln. Zinn ist bereits in der Legierung als solcher enthalten.Cu-Sn alloys are used in the form of bands for stamped parts and connectors, if a good to very good spring characteristic, a good electrical cal and thermal resistance, low stress relaxation, good flexibility, good weldability and solderability are required. Even in tinned form, phosphorus bronzes are easy to recycle. Tin is already included in the alloy as such.
Zu den niedrig legierten Kupferwerkstoffen gehören die Cu-Fe-Legierungen. Durch geringe Zusätze an Eisen und Phosphor kann die Werkstoffeigenschaft des reinen Kupfers, z.B. die Festigkeit, das Entfestigungs- oder Relaxationsverhalten, verbessert werden. Weit verbreitet für Stanzgitter in der Automobil- technik ist insbesondere eine CuFe2P-Legierung in der Temperstufe FH. DerThe low-alloyed copper materials include the Cu-Fe alloys. By small additions of iron and phosphorus, the material property of pure copper, e.g. the strength, the softening or relaxation behavior can be improved. In particular, a CuFe2P alloy in the tempering stage FH is widely used for stamped grids in automotive engineering. Of the
Werkstoff weist in dieser Temperstufe eine Zugfestigkeit von Rm = 420 bis 500 N/mm2 (Sl-Einheit: MPa) auf. Die Vickershärte liegt bei Hv = 130 bis 150. Die scharfkantige Biegbarkeit ist noch gegeben. Zu den Vorzügen der CuFe2P- Legierung gehört, dass der Elastizitätsmodul etwa 125 KN/mm2 (GPa) beträgt und somit das Material gute Federeigenschaften besitzt. Die elektrische Leitfähigkeit liegt zwischen 60% und 70% IACS (International Annealed Copper Standard: 100% IACS entsprechen etwa 58 MS/m). Eine Verzinnung des Werkstoffs aus Korrosionsschutzgründen ist gut möglich.Material has a tensile strength of Rm = 420 to 500 N / mm 2 (SI unit: MPa) in this tempering stage. The Vickers hardness is Hv = 130 to 150. The sharp-edged bendability is still present. Among the benefits of the CuFe2P alloy is that the modulus of elasticity is about 125 KN / mm 2 (GPa) and thus the material has good spring properties. The electrical conductivity is between 60% and 70% IACS (International Annealed Copper Standard: 100% IACS equals about 58 MS / m). A tinning of the material for corrosion protection reasons is well possible.
Zu den Nachteilen der CuFe2P-Legierung zählt, dass diese keinen homogenenAmong the disadvantages of the CuFe2P alloy is that these are not homogeneous
Werkstoff bildet, sondern Fe2P-Ausscheidungen aufweist. Insbesondere hierdurch wird ein Laserschweißen erschwert. Trifft der Laserstrahl beim Punktschweißen auf gröbere Fe2P-Ausscheidungen, so kann er abgelenkt werden, wodurch das Durchschweißergebnis unbefriedigend wird. Ein weiterer Nachteil liegt in der schlechten Recyclingfähigkeit von verzinnten Schrotten der CuFe2P-Material forms, but has Fe2P precipitates. In particular, this makes laser welding difficult. If the laser beam encounters coarser Fe2P precipitates during spot welding, it can be deflected, making the penetration result unsatisfactory. Another disadvantage is the poor recyclability of tinned scraps of CuFe2P-
Legierung. Die elektrische Leitfähigkeit einer CuFe2P-Legierung wird beim Aufschmelzen durch ein in Lösung gehendes Zinn von etwa 1 Gew.-% um 25% erniedrigt. Die verzinnten Stanzschrotte, die beim Herstellen von Stanzgittern üblicherweise 50% bis 70% des eingesetzten Materials ausmachen, können nicht in den Schmelzprozess direkt zurückgeführt werden, sondern müssen aufwändig verhüttet und elektrochemisch getrennt werden. Die Rückführung in den Werkstoffkreislauf erfolgt demnach als Kathode. Dieser Vorgang ist sehr energieintensiv und damit gegenüber dem direkten Einschmelzen der Schrotte sehr teuer.Alloy. The electrical conductivity of a CuFe2P alloy is reduced by 25% upon reflow by a dissolving tin of about 1% by weight. The tinned punching scrap, which usually make up 50% to 70% of the material used in the manufacture of stamped laths, can not be returned directly to the melting process, but rather must be smelted and electrochemically separated. The return to the material cycle is therefore as a cathode. This process is very energy intensive and thus very expensive compared to the direct melting of the scraps.
Aus Fig. 1 wird für eine CuFe2P-Legierung der geschilderte Einfluss eines Zinnanteils auf die elektrische Leitfähigkeit ersichtlich. Die elektrische Leitfähigkeit fällt bereits ab Gehalten oberhalb von 0,3 Gew.-% Zinn drastisch ab. Wird beispielsweise ein 0,4 mm dickes Band aus einer CuFe2P-Legierung aus Korrosi- onsschutzgründen beidseitig mit etwa 3 μm Zinn beschichtet, so würde beim direkten Recycling auf Basis dieser Schrotte eine mit rund 1 ,5 Gew.-% Zinn verunreinigte CuFe2P-Legierung entstehen. Neben drastischen Einbußen bei der elektrischen Leitfähigkeit hat dieser Zinn-Anteil auch eine starke negative Aus- Wirkung auf das Verfestigungsverhalten.From Fig. 1 for a CuFe2P alloy described the influence of a proportion of tin on the electrical conductivity. The electrical conductivity drops drastically even from levels above 0.3 wt .-% tin. If, for example, a 0.4 mm thick band of a CuFe2P alloy of corrosive For protection reasons, coated on both sides with about 3 microns of tin, so would in direct recycling based on this scrape with about 1, 5 wt .-% tin contaminated CuFe2P alloy arise. In addition to drastic losses in the electrical conductivity, this tin content also has a strong negative effect on the solidification behavior.
Aufgabe der Erfindung ist es, eine Legierung und einen Verbundwerkstoff anzugeben, welcher in seinen physikalischen und technologischen Eigenschaften möglichst dem einer CuFe2P-Legierung entspricht, möglichst gut laserschweiß- bar ist und gut recycelt werden kann. Eine weitere Aufgabe besteht darin, eineThe object of the invention is to specify an alloy and a composite material whose physical and technological properties are as close as possible to that of a CuFe2P alloy, which are laser-weldable as well as possible and can be readily recycled. Another task is a
Verwendung für eine solche Legierung und einen solchen Verbundwerkstoff anzugeben.Use for such an alloy and to specify such a composite material.
Hinsichtlich der Legierung wird die vorgenannte Aufgabe durch eine Kupfer-Zinn- Legierung mit der Zusammensetzung gemäß Anspruch 1 gelöst. Demnach um- fasst die Kupfer-Zinn-Legierung 0,2 bis 0,8 Gew.-% Zinn (Sn), 0,1 bis 0,6 Gew.- % Nickel (Ni) und/oder Kobalt (Co), 0 bis 0,05 Gew.-% Zink (Zn), 0 bis 0,02 Gew.-% Eisen (Fe), 0,008 bis 0,05 Gew.-% Phosphor(P) sowie ais Rest Kupfer (Cu).With regard to the alloy, the above object is achieved by a copper-tin alloy having the composition according to claim 1. Accordingly, the copper-tin alloy comprises 0.2 to 0.8% by weight of tin (Sn), 0.1 to 0.6% by weight of nickel (Ni) and / or cobalt (Co), 0 to 0.05% by weight of zinc (Zn), 0 to 0.02% by weight of iron (Fe), 0.008 to 0.05% by weight of phosphorus (P) and the remainder copper (Cu).
Die Erfindung geht dabei von der Überlegung aus, eine zur CuFe2P-Legierung alternative, neue Legierung anzugeben, die vergleichbare Eigenschaften aufweist, sich jedoch auch im verzinnten Zustand problemlos recyceln lässt. Reine Cu-Sn-Legierungen, wie beispielsweise eine CuSnO, 15-Legierung haben zweifel- los das Potenzial, als eine solche Alternative herangezogen werden zu können.The invention is based on the idea of specifying an alternative to the CuFe2P alloy, new alloy, which has comparable properties, but can be easily recycled even in tinned state. Pure Cu-Sn alloys, such as a CuSnO, 15 alloy, undoubtedly have the potential to be used as such an alternative.
Beschichtet mit Zinn können die Schrotte einer solchen Legierung dem Wertstoffkreislauf direkt zugeführt werden. Die mechanischen und technologischen Eigenschaften entsprechen dabei denen einer CuFe2P-Legierung relativ gut. Deutliche Schwächen treten allerdings beim Erweichungsverhalten und der ReIa- xationsbeständigkeit auf.Coated with tin, the scrap of such an alloy can be fed directly to the recycling cycle. The mechanical and technological properties correspond to those of a CuFe2P alloy relatively well. Significant weaknesses occur, however, in the softening behavior and the oxidation resistance.
Umfangreiche Untersuchungen haben nun ergeben, dass eine Kupfer-Zinn- Legierung mit einer gezielten Abstimmung der Legierungselemente Zinn, Nickel und/oder Kobalt sowie Phosphor sowohl zu einer CuFe2P-Legierung vergleich- bare mechanische und technologische Eigenschaften als auch das für die jeweilige Weiterverarbeitung und Endanwendung erforderliche Eigenschaftsprofil im Bereich des Erweichungsverhaltens und der Relaxation, d.h. dem Kriechen des Bauteils unter Spannung bei erhöhter Temperatur, erreicht. Dabei ist entweder Nickel oder Kobalt mit dem angegebenen Anteil enthalten. Bevorzugt ist hierbei ein Teil des Nickels durch Kobalt ersetzt, wobei dann die Summe beider Legierungselemente gemeinsam den angegebenen Anteil ergibt.Extensive investigations have now shown that a copper-tin alloy with a specific tuning of the alloying elements tin, nickel and / or cobalt and phosphorus has comparable mechanical and technological properties to a CuFe2P alloy as well as for the respective further processing and end use required property profile in the area of the softening behavior and the relaxation, ie the creep of the component under tension at elevated temperature achieved. It is either Nickel or cobalt with the specified content. In this case, part of the nickel is preferably replaced by cobalt, in which case the sum of the two alloying elements together gives the stated proportion.
Ein Vergleich der technologischen und physikalischen Eigenschaften der angegebenen Cu-Sn-Legierung mit einer CuFe2P-Legierung ergibt folgendes Bild:A comparison of the technological and physical properties of the given Cu-Sn alloy with a CuFe2P alloy gives the following picture:
Aus der Tabelle wird ersichtlich, dass die angegebene Cu-Sn-Legierung die an- gegebenen Anforderungen hinsichtlich der technologischen und physikalischenIt can be seen from the table that the given Cu-Sn alloy meets the specified requirements in terms of technological and physical properties
Eigenschaften erfüllt.Properties fulfilled.
Bei dem Einsatz der angegebenen Cu-Sn-Legierung in verzinnter Form bildet sich eine Legierungsschicht zwischen dem Grundwerkstoff und der Zinnauflage aus. Eine Anpassung der Fertigungsanlagen ist bei der Umstellung auf den neuen Werkstoff nicht erforderlich.When using the specified Cu-Sn alloy in tinned form, an alloy layer forms between the base material and the tin pad. An adaptation of the production facilities is not required when converting to the new material.
Die vorgenannte Cu-Sn-Legierung zeigt darüber hinaus im Bereich des Erweichungsverhaltens und der Relaxation ein zur CuFe2P-Legierung vergleichbares Eigenschaftsprofil. Dies wird aus Figur 2 ersichtlich. Dort ist die Relaxation in Prozent über der Temperatur in 0C aufgetragen. Dabei gibt die gestrichelte Linie den Verlauf der CuFe2P-Legierung und die durchgezogene Linie den Verlauf der vorgenannten neuen Cu-Sn-Legierung wieder. Die Versuche wurden für eine Belastungszeit von 5.000 Stunden und eine Anfangsspannung von 65 % Rp 0,2 durchgeführt.In addition, the aforementioned Cu-Sn alloy exhibits a property profile comparable to the CuFe 2 P alloy in the area of the softening behavior and the relaxation. This will be apparent from FIG. There, the relaxation is plotted in percent over the temperature in 0 C. The dashed line shows the course of the CuFe2P alloy and the solid line the course of the aforementioned new Cu-Sn alloy. The experiments were for one Load time of 5,000 hours and an initial voltage of 65% Rp 0.2 performed.
Die neue Cu-Sn-Legierung zeichnet sich weiter in besonderer Weise durch die direkte Rückführbarkeit verzinnter Schrotte aus den einzelnen Stufen der Wertschöpfungskette aus. Die verzinnten Schrotte können direkt in den Schmelzpro- zess zurückgeführt werden, so dass die Recyclingkosten gegenüber einer Verhüttung deutlich geringer ausfallen. Die Verhüttungskosten können beispielsweise bei einem Schrottanteil von 70 % schnell die Höhe der Fabrikationskosten erreichen und die Wirtschaftlichkeit in Frage stellen. Aus diesem Grund ändert auch eine Betrachtung der Metallwerte zwischen einer Kuper-Eisen-Legierung wie der CuFe2P- Legierung und der hier angegebenen Cu-Sn-Legierung nichts daran, dass die angegebene Legierung sowohl unter ökonomischen als auch ökologischen Gesichtspunkten (der zusätzliche Einsatz von Strom und Säure zur elektrolytischen Aufbereitung der Schrotte können entfallen) eine sinnvolle Alternative zu verzinnten Kupfer-Eisen-Legierungen darstellt.The new Cu-Sn alloy is further distinguished by the direct traceability of tin-coated scrap from the individual stages of the value-added chain. The tin-coated scrap can be returned directly to the smelting process, so that the recycling costs are significantly lower than smelting. The smelting costs, for example, can quickly reach the level of manufacturing costs with a scrap content of 70% and put into question the economic efficiency. For this reason, consideration of the metal values between a copper-iron alloy such as the CuFe2P alloy and the Cu-Sn alloy given here does not alter the fact that the alloy given is economically and ecologically (the additional use of electricity and acid for the electrolytic treatment of the scrap can be omitted) represents a useful alternative to tinned copper-iron alloys.
Hinsichtlich der geforderten Eigenschaften ist es vorteilhaft, wenn die angegebene Kupfer-Zinn-Legierung einen Anteil an Sn zwischen 0,3 und 0,7 Gew.-%, ins- besondere zwischen 0,4 und 0,6 Gew.-%, enthält. Eine weitere vorteilhafte Anpassung der Eigenschaften kann vorgenommen werden, wenn der Anteil an Ni und / oder Co in der Kupfer-Zinn-Legierung zwischen 0,2 und 0,55 Gew.-%, insbesondere zwischen 0,3 und 0,5 Gew.-% liegt.With regard to the required properties, it is advantageous if the stated copper-tin alloy contains a proportion of Sn between 0.3 and 0.7% by weight, in particular between 0.4 and 0.6% by weight , A further advantageous adaptation of the properties can be made if the proportion of Ni and / or Co in the copper-tin alloy between 0.2 and 0.55 wt .-%, in particular between 0.3 and 0.5 wt. -% lies.
Durch einen bevorzugten Anteil an Phosphor zwischen 0,008 und 0,03 Gew.-%, insbesondere zwischen 0,008 und 0,015 Gew. -%, kann die Festigkeit verbessert werden.By a preferred amount of phosphorus between 0.008 and 0.03 wt .-%, in particular between 0.008 and 0.015 wt -.%, The strength can be improved.
In einer bevorzugten Legierungszusammensetzung weist die Kupfer-Zinn- Legierung 0,3 bis 0,7 Gew.-% Sn, 0,2 bis 0,55 Gew.-% Ni und/oder Co, 0 bisIn a preferred alloy composition, the copper-tin alloy has 0.3 to 0.7 wt% Sn, 0.2 to 0.55 wt% Ni and / or Co, 0 to
0,04 Gew.-% Zn, 0 bis 0,015 Gew.-% Fe, 0,08 bis 0,03 Gew.-% P1 sowie als Rest Cu auf.0.04 wt .-% Zn, 0 to 0.015 wt .-% Fe, 0.08 to 0.03 wt .-% P 1 and the balance Cu on.
Weiter verbessert wird die Kupfer-Zinn-Legierung, wenn sie 0,4 bis 0,6 Gew.-% Sn, 0,3 bis 0,5 Gew.-% Ni und/oder Co, 0 bis 0,03 Gew.-% Zn, 0 bis 0,01 Gew.-The copper-tin alloy is further improved when it contains 0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight. % Zn, 0 to 0.01% by weight
% Fe, 0,008 bis 0,015 Gew.-% P, sowie als Rest Cu umfasst. Eine weitere vorteilhafte präzise Einstellung der Eigenschaften der Kupfer-Zinn- Legierung kann vorgenommen werden, wenn eine Summe aus Verunreinigungen und sonstigen Beimengungen von maximal 0,3 Gew.-% vorliegt.% Fe, 0.008 to 0.015 wt .-% P, and the remainder comprises Cu. A further advantageous precise adjustment of the properties of the copper-tin alloy can be carried out if there is a total of impurities and other admixtures of at most 0.3% by weight.
Als ein konkretes Ausführungsbeispiel mit hervorragenden Eigenschaften wird eine Kupfer-Zinn-Legierung genannt, die 0,38 Gew.-% Sn, 0,30 Gew.-% Ni und/oder Co, 0,003 Gew.-% Zn1 0,008 Gew.-% Fe, 0,014 Gew.-% P, sowie als Rest Cu umfasst.As a concrete embodiment having excellent properties, mention is made of a copper-tin alloy containing 0.38 wt% Sn, 0.30 wt% Ni and / or Co, 0.003 wt% Zn 1 0.008 wt%. % Fe, 0.014 wt .-% P, and the remainder comprises Cu.
Die neue Kupfer-Zinn-Legierung ist sehr gut laserschweißbar, da keine leicht flüchtigen Elemente enthalten sind und die Legierung frei von einer zweiten Phase ist. Insbesondere weist die Legierung keine NiP-Ausscheidungen aus.The new copper-tin alloy is very good laser weldable, since no volatile elements are included and the alloy is free of a second phase. In particular, the alloy does not exhibit NiP precipitates.
Die Legierung eignet sich hervorragend für einen gut laserschweißbaren Ver- bundwerkstoff, der insbesondere für Stanzgitter verwendet werden kann. SolcheThe alloy is ideally suited for a good laser-weldable composite material, which can be used in particular for stamped grid. Such
Stanzgitter werden heute beispielsweise in der Automobiltechnik für ABS- und ESP-Systeme eingesetzt. Dazu wird ein Grundwerkstoff aus der vorgenannten Kupfer-Zinn-Legierung mit einer Zinnschicht versehen bzw. abgedeckt, was insbesondere durch das Verfahren der Feuerverzinnung vorgenommen werden kann. Insofern befindet sich auf dem Grundwerkstoff aus der angegebenen Kupfer-Zinn-Legierung eine Schicht aus reinem oder freiem Zinn. Der Verbundwerkstoff zeichnet sich durch eine hohe Relaxationsbeständigkeit bis zu Temperaturen von 100 0C aus. Er weist im Inneren als Kern die angegebene Kupfer-Zinn- Legierung mit einer Zusammensetzung entsprechend der darauf gerichteten An- Sprüche auf. Durch die äußere Beschichtung bzw. Abdeckung aus Zinn ist eine hohe Korrosionsbeständigkeit gewährleistet. Bevorzugt beträgt die Dicke der Zinnschicht zwischen 1 und 3 μm.Punching grids are used today, for example, in automotive technology for ABS and ESP systems. For this purpose, a base material of the aforementioned copper-tin alloy is provided with a tin layer or covered, which can be made in particular by the method of hot tinning. In this respect, there is a layer of pure or free tin on the base material of the specified copper-tin alloy. The composite is characterized by a high relaxation resistance up to temperatures of 100 0 C. It has inside the core as the specified copper-tin alloy with a composition in accordance with the then-directed claims on. The outer coating or tin cover ensures high corrosion resistance. The thickness of the tin layer is preferably between 1 and 3 μm.
Beim Verzinnen der angegebenen Kupfer-Zinn-Legierung kommt es zur Bildung einer Übergangsschicht zwischen dem Grundwerkstoff und der Zinnschicht. Bevorzugt wird die Zinnschicht derart aufgebracht, dass die Übergangsschicht eine intermetallische Phase aus Cu, Ni und / oder Co sowie Sn umfasst. Die Ausbildung der Übergangsschicht wird insbesondere derart gestaltet, dass diese eine Dicke zwischen 0,1 und 1 μm aufweist. Insofern umfasst der Verbundwerkstoff im Inneren oder als Kern die angegebene Kupfer-Zinn-Legierung mit den entsprechenden Anteilen an Nickel und / oder Kobalt sowie Phosphor. Die Legierung des Kerns geht über die Übergangsschicht in eine Schicht aus reinem Zinn über. Über die ausgebildete Übergangs- bzw. Legierungsschicht wird eine gute Anbindung der Zinnschicht erzielt.When tinning the specified copper-tin alloy, a transition layer between the base material and the tin layer is formed. The tin layer is preferably applied in such a way that the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn. The formation of the transition layer is in particular designed such that it has a thickness between 0.1 and 1 micron. In this respect, the composite material in the interior or core of the specified copper-tin alloy with the corresponding proportions of nickel and / or cobalt and phosphorus. The alloy of the core transitions through the transition layer into a layer of pure tin. Via the formed transition or alloy layer, a good connection of the tin layer is achieved.
Betrachtet man einen dreidimensionalen Aufbau wie ein Stanzgitter aus dem Verbundwerkstoff, so ergibt sich insgesamt ein Fünf-Schichten-Aufbau. Auf einem Kern aus der angegebenen Kupfer-Zinn-Legierung als Grundwerkstoff sitzt beidseitig eine Schicht einer intermetallischen Phase, bestehend aus CuNiCoSn mit einer Dicke zwischen 0,1 und 1 ,0 μm. Der Verbundwerkstoff ist abschließend aus Korrosionsschutzgründen mit einer Schicht aus freiem bzw. reinem Zinn ab- gedeckt, die eine Dicke von 1 ,0 bis 3,0 μm aufweist. Der Schichtverbundwerkstoff weist insgesamt eine Gesamtdicke von 0,2 bis 1 mm, bevorzugt bis 2 mm, besonders bevorzugt bis 3 mm auf.Considering a three-dimensional structure like a stamped grid made of composite material, the overall result is a five-layer structure. On one core of the specified copper-tin alloy as a base material sits on both sides of a layer of an intermetallic phase, consisting of CuNiCoSn with a thickness between 0.1 and 1, 0 microns. The composite material is finally covered for corrosion protection reasons with a layer of free or pure tin, which has a thickness of 1, 0 to 3.0 microns. The layer composite material has a total thickness of 0.2 to 1 mm, preferably up to 2 mm, particularly preferably up to 3 mm.
Die elektrische Leitfähigkeit des angegebenen Verbundwerkstoffs entspricht dem des bisher eingesetzten Vergleichswerkstoffs CuFe2P. Wärmeleitfähigkeit und weitere technologische Werte des Verbundwerkstoffes sind ebenfalls voll vergleichbar.The electrical conductivity of the specified composite material corresponds to that of the previously used comparison material CuFe2P. Thermal conductivity and other technological values of the composite are also fully comparable.
Sowohl die angegebene Kupfer-Zinn-Legierung als auch der verzinnte Verbund- Werkstoff ist hervorragend für Bänder, Folien, profilierte Bänder, Stanzteile oderBoth the specified copper-tin alloy and the tinned composite material is excellent for tapes, foils, profiled strips, stampings or
Steckverbinder, insbesondere für Anwendungen in der Elektrotechnik oder der Elektronik, geeignet. Connector, in particular for applications in electrical engineering or electronics suitable.

Claims

Patentansprüche claims
1. Kupfer-Zinn-Legierung umfassend: 0,2 bis 0,8 Gew.-% Sn,1. copper-tin alloy comprising: 0.2 to 0.8% by weight of Sn,
0,1 bis 0,6 Gew.-% Ni und/oder Co, 0 bis 0,05 Gew.-% Zn, 0 bis 0,02 Gew.-% Fe,0.1 to 0.6% by weight of Ni and / or Co, 0 to 0.05% by weight of Zn, 0 to 0.02% by weight of Fe,
0,008 bis 0,05 Gew.-% P, sowie als Rest Cu.0.008 to 0.05 wt .-% P, and the balance Cu.
2. Kupfer-Zinn-Legierung nach Anspruch 1 , mit einem Anteil an Sn zwischen 0,3 und 0,7 Gew.-%, insbesondere zwischen 0,4 und 0,6 Gew.-%.2. copper-tin alloy according to claim 1, with a proportion of Sn between 0.3 and 0.7 wt .-%, in particular between 0.4 and 0.6 wt .-%.
3. Kupfer-Zinn-Legierung nach Anspruch 1 oder 2, mit einem Anteil an Ni und/oder Co zwischen 0,2 und 0,55 Gew.-%, ins- besondere zwischen 0,3 und 0,5 Gew.-%.3. copper-tin alloy according to claim 1 or 2, with a proportion of Ni and / or Co between 0.2 and 0.55 wt .-%, in particular between 0.3 and 0.5 wt .-% ,
4. Kupfer-Zinn-Legierung nach einem der vorhergehenden Ansprüche, mit einem Anteil an P zwischen 0,008 und 0,03 Gew.-%, insbesondere zwischen 0,008 und 0,015 Gew.-%.4. Copper-tin alloy according to one of the preceding claims, with a proportion of P between 0.008 and 0.03 wt .-%, in particular between 0.008 and 0.015 wt .-%.
5. Kupfer-Zinn-Legierung nach Anspruch 1 , umfassend:The copper-tin alloy of claim 1, comprising:
0,3 bis 0,7 Gew.-% Sn, 0,2 bis 0,55 Gew.-% Ni und/oder Co, 0 bis 0,04 Gew.-% Zn,0.3 to 0.7% by weight Sn, 0.2 to 0.55% by weight Ni and / or Co, 0 to 0.04% by weight Zn,
0 bis 0,015 Gew.-% Fe, 0,008 bis 0,03 Gew.-% P, sowie als Rest Cu. 0 to 0.015 wt .-% Fe, 0.008 to 0.03 wt .-% P, and the remainder Cu.
6. Kupfer-Zinn-Legierung nach Anspruch 5, umfassend:A copper-tin alloy according to claim 5, comprising:
0,4 bis 0,6 Gew.-% Sn, 0,3 bis 0,5 Gew.-% Ni und/oder Co, 0 bis 0,03 Gew.-% Zn,0.4 to 0.6% by weight Sn, 0.3 to 0.5% by weight Ni and / or Co, 0 to 0.03% by weight Zn,
0 bis 0,01 Gew.-% Fe, 0,008 bis 0,015 Gew. -% P1 sowie als Rest Cu.0 to 0.01 wt .-% Fe, 0.008 to 0.015 wt -.% P 1 and the balance Cu.
7. Kupfer-Zinn-Legierung nach einem der vorhergehenden Ansprüche, mit einer Summe aus Verunreinigungen und sonstigen Beimengungen von maximal 0,3 Gew.-%.7. copper-tin alloy according to any one of the preceding claims, with a total of impurities and other admixtures of at most 0.3 wt .-%.
8. Verbundwerkstoff mit einem Grundwerkstoff nach einem der vorherge- henden Ansprüche und einer darauf aufgebrachten Zinnschicht.8. Composite material with a base material according to one of the preceding claims and a tin layer applied thereto.
9. Verbundwerkstoff nach Anspruch 8, wobei die Zinnschicht eine Dicke zwischen zwischen 1 und 3 μm aufweist.9. The composite material of claim 8, wherein the tin layer has a thickness between 1 and 3 microns.
10. Verbundwerkstoff nach Anspruch 8 oder 9, mit einer Übergangsschicht zwischen dem Grundwerkstoff und der Zinnschicht, wobei die Übergangsschicht eine intermetallische Phase aus Cu, Ni und/oder Co sowie Sn umfasst.10. A composite material according to claim 8 or 9, comprising a transition layer between the base material and the tin layer, wherein the transition layer comprises an intermetallic phase of Cu, Ni and / or Co and Sn.
11. Verbundwerkstoff nach Anspruch 10, wobei die Übergangsschicht eine Dicke zwischen 0,1 und 1 μm aufweist.11. A composite according to claim 10, wherein the transition layer has a thickness between 0.1 and 1 micron.
12. Verwendung einer Kupfer-Zinn-Legierung nach einem der Ansprüche 1 bis 7 für Bänder, Drähte, Folien, profilierte Bänder, Stanzteile oder Steck- verbinder.12. Use of a copper-tin alloy according to one of claims 1 to 7 for strips, wires, foils, profiled strips, stamped parts or plug connectors.
13. Verwendung eines Verbundwerkstoffs nach einem der Ansprüche 8 bis 11 für Bänder, Drähte, Folien, profilierte Bänder, Stanzteile oder Steckverbinder. 13. Use of a composite material according to any one of claims 8 to 11 for tapes, wires, foils, profiled strips, stampings or connectors.
EP09744964.9A 2008-10-31 2009-10-27 Copper-tin alloy, composite material and use thereof Active EP2340318B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054183 2008-10-31
PCT/EP2009/007669 WO2010049118A1 (en) 2008-10-31 2009-10-27 Copper-tin alloy, composite material and use thereof

Publications (2)

Publication Number Publication Date
EP2340318A1 true EP2340318A1 (en) 2011-07-06
EP2340318B1 EP2340318B1 (en) 2017-02-15

Family

ID=41508956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09744964.9A Active EP2340318B1 (en) 2008-10-31 2009-10-27 Copper-tin alloy, composite material and use thereof

Country Status (9)

Country Link
US (1) US20110206941A1 (en)
EP (1) EP2340318B1 (en)
JP (1) JP2012506952A (en)
KR (1) KR20110079638A (en)
CN (1) CN102177265B (en)
BR (1) BRPI0921441A2 (en)
ES (1) ES2623604T3 (en)
RU (1) RU2482204C2 (en)
WO (1) WO2010049118A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2738900T3 (en) 2010-11-17 2020-01-27 Luvata Appleton Llc Alkaline collector anode
CN102176809A (en) * 2011-01-14 2011-09-07 中国科学院上海技术物理研究所 Debugger for SMD (Surface Mounted Device) resistor and capacitor on PCB (printed-circuit board)
CN102703748B (en) * 2012-07-06 2013-10-16 山东大学 Preparation method of nanometer porous copper tin alloy
RU2502817C1 (en) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Copper-base alloy
JP5773015B2 (en) 2013-05-24 2015-09-02 三菱マテリアル株式会社 Copper alloy wire
JP6113674B2 (en) 2014-02-13 2017-04-12 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
RU2587110C9 (en) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов COPPER ALLOY, TelO DOPED WITH TELLURIUM, FOR COLLECTORS OF ELECTRIC MACHINES
CN107034381B (en) * 2017-04-26 2019-03-19 江西理工大学 A kind of Cu-Ni-Co-Sn-P copper alloy and preparation method thereof
RU2709909C1 (en) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Low-alloyed copper alloy
CN116411202A (en) * 2021-12-29 2023-07-11 无锡市蓝格林金属材料科技有限公司 Copper-tin alloy wire and preparation method thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture
JPH0612796B2 (en) * 1984-06-04 1994-02-16 株式会社日立製作所 Semiconductor device
JPS6379929A (en) * 1987-08-26 1988-04-09 Nippon Telegr & Teleph Corp <Ntt> Copper-nickel-tin alloy for integrated circuit conductor and its production
US5322575A (en) * 1991-01-17 1994-06-21 Dowa Mining Co., Ltd. Process for production of copper base alloys and terminals using the same
JP3550233B2 (en) * 1995-10-09 2004-08-04 同和鉱業株式会社 Manufacturing method of high strength and high conductivity copper base alloy
JP3408929B2 (en) * 1996-07-11 2003-05-19 同和鉱業株式会社 Copper-based alloy and method for producing the same
US6254702B1 (en) * 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
US6679956B2 (en) * 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
JP4308931B2 (en) * 1997-11-04 2009-08-05 三菱伸銅株式会社 Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate
US6136104A (en) * 1998-07-08 2000-10-24 Kobe Steel, Ltd. Copper alloy for terminals and connectors and method for making same
RU2138573C1 (en) * 1998-12-24 1999-09-27 Мочалов Николай Алексеевич Copper-based alloy
DE10025106A1 (en) * 2000-05-20 2001-11-22 Stolberger Metallwerke Gmbh Electrically conductive metal tape and connectors from it
ATE414182T1 (en) * 2003-03-03 2008-11-15 Mitsubishi Shindo Kk HEAT RESISTANT COPPER ALLOY MATERIALS
EP1716732A2 (en) * 2004-01-21 2006-11-02 Enthone, Incorporated Tin-based coating of electronic component
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP4461269B2 (en) * 2004-09-15 2010-05-12 Dowaメタルテック株式会社 Copper alloy with improved conductivity and method for producing the same
JP4350049B2 (en) * 2005-02-07 2009-10-21 株式会社神戸製鋼所 Method for producing copper alloy sheet with excellent stress relaxation resistance
JP4959141B2 (en) * 2005-02-28 2012-06-20 Dowaホールディングス株式会社 High strength copper alloy
JP4887851B2 (en) * 2005-03-17 2012-02-29 Dowaメタルテック株式会社 Ni-Sn-P copper alloy
JP3871064B2 (en) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 Copper alloy plate for electrical connection parts
JP4756195B2 (en) * 2005-07-28 2011-08-24 Dowaメタルテック株式会社 Cu-Ni-Sn-P copper alloy
JP4439447B2 (en) * 2005-08-03 2010-03-24 株式会社神戸製鋼所 Manufacturing method of irregular cross-section copper alloy sheet
JP4984108B2 (en) * 2005-09-30 2012-07-25 Dowaメタルテック株式会社 Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP4680765B2 (en) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 Copper alloy with excellent stress relaxation resistance
RU2315124C2 (en) * 2006-01-10 2008-01-20 ОАО "Каменск-Уральский завод по обработке цветных металлов" Tin-and-zinc bronze for manufacture of wire
JP4845747B2 (en) * 2007-01-12 2011-12-28 株式会社神戸製鋼所 Copper alloy material with plating for fuse and manufacturing method thereof
KR101138569B1 (en) * 2007-12-21 2012-05-10 미쓰비시 신도 가부시키가이샤 High Strength and High Thermal Conductivity Copper Alloy Tube and Method for Producing The Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010049118A1 *

Also Published As

Publication number Publication date
KR20110079638A (en) 2011-07-07
CN102177265A (en) 2011-09-07
WO2010049118A1 (en) 2010-05-06
BRPI0921441A2 (en) 2016-01-05
CN102177265B (en) 2014-07-09
US20110206941A1 (en) 2011-08-25
JP2012506952A (en) 2012-03-22
ES2623604T3 (en) 2017-07-11
RU2482204C2 (en) 2013-05-20
RU2011121810A (en) 2012-12-10
EP2340318B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
EP2340318B1 (en) Copper-tin alloy, composite material and use thereof
DE60101026T2 (en) Copper alloy containing silver
DE3429393C2 (en)
DE10065735B4 (en) A method of making a copper alloy for a connector and copper alloy obtainable by the method
WO2016023790A2 (en) Composite material for a sliding bearing
EP1157820B1 (en) Metal strip with high electric conductibility and connector made from it
WO2013023717A2 (en) Copper alloy
EP1158618B1 (en) Metal strip with high electric conductibility and connector made from it
DE10138204B4 (en) Electric contact
DE3527341C1 (en) Copper-chromium-titanium-silicon alloy and use thereof
DE102014014239A1 (en) Electrical connection element
EP1698707B1 (en) Sliding bearing with a lead free copper based bearing metal layer containing tin and zinc
CH669211A5 (en) COPPER-CHROME-TITANIUM-SILICONE ALLOY AND THEIR USE.
DE3530736C2 (en)
DE102013007274A1 (en) Copper casting alloy for asynchronous machines
EP2906733B1 (en) Material for electric contact components
DE69814657T2 (en) COPPER BASED ALLOY, CHARACTERIZED BY DECAY CURING AND CURING IN SOLID CONDITION
EP1749897B1 (en) Process including annealing for producing water-bearing copper cast parts with lowered tendency of migration
DE102018208116A1 (en) Copper tape for making electrical contacts and method of making a copper tape and connectors
EP1288321B1 (en) Material for a metal strip
EP1292422A1 (en) Method for connecting shape-memory material and steel or copper material
EP2290114A1 (en) Water-guiding component
DE1483176A1 (en) Copper-zinc alloy
DE2333820C3 (en) Use of a copper-zinc-iron-cobalt alloy
DE1483176C (en) Copper zinc alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 867934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013650

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2623604

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013650

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 867934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201023

Year of fee payment: 12

Ref country code: NL

Payment date: 20201028

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201022

Year of fee payment: 12

Ref country code: ES

Payment date: 20201228

Year of fee payment: 12

Ref country code: FR

Payment date: 20201022

Year of fee payment: 12

Ref country code: IT

Payment date: 20201026

Year of fee payment: 12

Ref country code: CH

Payment date: 20201021

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201028

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013650

Country of ref document: DE

Owner name: SUNDWIGER MESSINGWERK GMBH, DE

Free format text: FORMER OWNER: SUNDWIGER MESSINGWERK GMBH & CO. KG, 58675 HEMER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 15