JP2007136467A - Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy - Google Patents

Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy Download PDF

Info

Publication number
JP2007136467A
JP2007136467A JP2005330118A JP2005330118A JP2007136467A JP 2007136467 A JP2007136467 A JP 2007136467A JP 2005330118 A JP2005330118 A JP 2005330118A JP 2005330118 A JP2005330118 A JP 2005330118A JP 2007136467 A JP2007136467 A JP 2007136467A
Authority
JP
Japan
Prior art keywords
copper alloy
mold
alloy ingot
producing
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005330118A
Other languages
Japanese (ja)
Inventor
Noriyuki Nomoto
詞之 野本
慶平 ▲冬▼
Kiyouhei Fuyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005330118A priority Critical patent/JP2007136467A/en
Publication of JP2007136467A publication Critical patent/JP2007136467A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheet-shaped cast ingot of a copper alloy in which dispenses with hot rolling treatment while attaining simplification, reduction of cost or the like in a production process and further obtaining higher strength; to provide a method for producing a copper alloy strip; and to provide a production device for a cast ingot of a copper alloy. <P>SOLUTION: Molten metal 1 is continuously teemed into a mold 15 in which the distance between the center of the hollow part and the inner wall (equivalent to the length of the short side in the cross-section of the hollow part/2) is ≤20 mm. This is continuously discharged from the inside of the mold 15, and is thereafter cooled by a water-cooled device 16 in such a manner that cooling velocity to 700°C is controlled to ≥10°C/sec, so as to obtain a Cu-Ni-Si based sheet-shaped cast ingot 2 of a copper alloy, and oxide scale is removed. The cast ingot is subjected to cold rolling at a draft of ≥50% for one or more times and age hardening treatment at 300 to 600°C for one or more times, so as to obtain the cast ingot 2, and, without performing heat treatment at a temperature higher than 600°C, a copper alloy strip is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅合金鋳塊と該銅合金鋳塊の製造方法、および銅合金条の製造方法、並びに銅合金鋳塊の製造装置に関し、特に、リードフレームやコネクタなどに代表される電気・電子部品材料などに好適な、薄板状の高強度銅合金鋳塊と該銅合金鋳塊の製造方法、および高強度銅合金条の製造方法、並びに薄板状の銅合金鋳塊の製造装置に関する。   TECHNICAL FIELD The present invention relates to a copper alloy ingot, a method for producing the copper alloy ingot, a method for producing a copper alloy strip, and an apparatus for producing a copper alloy ingot, and in particular, electric / electronic typified by lead frames and connectors. The present invention relates to a sheet-like high-strength copper alloy ingot, a method for producing the copper alloy ingot, a method for producing a high-strength copper alloy strip, and a device for producing a sheet-like copper alloy ingot, which are suitable for component materials.

リードフレームやコネクタなどの電気・電子機器用部品に使用される銅合金条には高い導電率と高い強度が要求されるが、これらの機器の高密度化の進展により、より高い強度が求められるようになっている。   Copper alloy strips used for parts for electrical and electronic equipment such as lead frames and connectors are required to have high electrical conductivity and high strength, but higher strength is required as the density of these equipment increases. It is like that.

引張強さ800MPa以上の高強度を有する銅合金としてはCu‐Be系合金があるが、有害なBeを含むため、早期の代替が望まれており、上記要求に応え得る合金としてCu−Ni−Si系合金に期待が寄せられている。   As a copper alloy having a high tensile strength of 800 MPa or more, there is a Cu-Be-based alloy. However, since it contains harmful Be, early replacement is desired. As an alloy that can meet the above requirements, Cu-Ni- There are expectations for Si-based alloys.

Cu−Ni−Si系合金は、一般にコルソン合金として広く知られており、Cuの母相中にNiSiを析出させることにより、比較的高い導電率、かつ高い強度が得られる。 A Cu—Ni—Si based alloy is generally known as a Corson alloy, and relatively high conductivity and high strength can be obtained by precipitating Ni 2 Si in a parent phase of Cu.

従来、Cu−Ni−Si系合金の工業的な製造方法としては、厚さ150mm以上の大型鋳塊を連続鋳造により鋳造後、熱間圧延、面削を実施し、更に冷間圧延、時効硬化処理を含む焼鈍を繰り返し、所定の特性を得るのが一般的であった。より高強度を得るためには、鋳造時に析出した粗大な析出物をCu母相中に固溶させ、その後、時効硬化処理を施す必要があり、熱間圧延終了温度を高く設定し急冷させる、若しくは冷間圧延後に溶体化処理と呼ばれる高温からの急冷熱処理を施す必要があった(例えば、特許文献1乃至特許文献3参照)。   Conventionally, as an industrial manufacturing method for Cu-Ni-Si alloys, a large ingot having a thickness of 150 mm or more is cast by continuous casting, followed by hot rolling and face cutting, and further cold rolling and age hardening. In general, annealing including treatment is repeated to obtain predetermined characteristics. In order to obtain higher strength, coarse precipitates precipitated during casting must be dissolved in the Cu matrix, and then age hardening treatment must be performed, and the hot rolling end temperature is set high and quenched. Alternatively, it is necessary to perform a quenching heat treatment from a high temperature called a solution treatment after cold rolling (see, for example, Patent Documents 1 to 3).

斯かる従来の製造方法では以下のような問題があった。第一に、Cu−Ni−Si系合金は、500〜700℃の温度域に脆化域があり、熱間圧延の加熱時若しくは熱間圧延時に粒界割れが起こり易いといった問題があった。第二に、Cu−Ni−Si系合金は、高温において結晶粒の粗大化が起こり易いために、冷間圧延後の溶体化処理においては上限温度が制約され、高強度を得るために900℃以上の温度で溶体化処理を施すと結晶粒の粗大化が起こるという問題があった。第三に、鋳造の冷却時に析出したNiとSiの化合物からなる粗大な析出物は、900℃以上の高温にて長時間、溶体化処理を施しても完全には固溶せず、最終製品に残存してしまうという問題があった。これらの粗大析出物は強度に寄与しないのみでなく、酸に不溶のために酸洗時にスマットと呼ばれる化合物となって残存する、導電性が低いために表面に露出した場合の電気めっき時にめっき不良を発生させ易い、曲げ加工時の割れの起点になり易い、といった問題があるため、存在しないことが望ましい。   Such a conventional manufacturing method has the following problems. First, the Cu—Ni—Si based alloy has an embrittlement region in the temperature range of 500 to 700 ° C., and there is a problem in that intergranular cracking is likely to occur during hot rolling or hot rolling. Second, since Cu—Ni—Si-based alloys are likely to be coarsened at high temperatures, the upper limit temperature is restricted in solution treatment after cold rolling, and 900 ° C. in order to obtain high strength. When the solution treatment is performed at the above temperature, there is a problem that the crystal grains become coarse. Thirdly, coarse precipitates composed of Ni and Si compounds deposited during casting cooling do not completely dissolve even when subjected to solution treatment at a high temperature of 900 ° C. or higher for a long time. There was a problem of remaining. These coarse precipitates not only contribute to strength, but also remain as a compound called smut during pickling because they are insoluble in acid, and poor plating during electroplating when exposed to the surface due to low conductivity It is desirable that it does not exist because there is a problem that it is easy to generate a crack and is a starting point of a crack at the time of bending.

このような問題を解決するものとして、熱間圧延や溶体化処理等の熱間プロセスを経ることなく、加工と時効硬化処理の組み合わせのみによってCu合金(最終製品)を得る方法が開示されている(特許文献4参照)。
特開平9−227971号公報 特開平10−152737号公報 特開平11−217639号公報 特開2004−307905号公報
As a solution to such a problem, a method of obtaining a Cu alloy (final product) by only a combination of processing and age hardening treatment without passing through a hot process such as hot rolling or solution treatment is disclosed. (See Patent Document 4).
JP-A-9-227971 JP-A-10-152737 Japanese Patent Laid-Open No. 11-217639 JP 2004-307905 A

しかしながら、特許文献4に記載の方法によれば、Mgの添加を必須としなければならず、また、Cu合金中に析出物および介在物のうち粒径が10μm以上のものの単位面積当たりの個数が合計で100個/mm以下存在しているため、品質や特性の点で改善の余地がある。 However, according to the method described in Patent Document 4, addition of Mg must be essential, and the number of precipitates and inclusions in the Cu alloy having a particle size of 10 μm or more per unit area is Since there are 100 pieces / mm 2 or less in total, there is room for improvement in terms of quality and characteristics.

従って、本発明の目的は、従来必要とされていた熱間圧延処理を不要とでき、製造工程の簡略化と低コスト化、および熱間圧延処理に付随する問題を撤廃できるとともに、より高強度を得ることができる薄板状の銅合金鋳塊と該銅合金鋳塊の製造方法、および銅合金条の製造方法、並びに薄板状の銅合金鋳塊の製造装置を提供することにある。   Therefore, the object of the present invention is to eliminate the hot rolling process that has been conventionally required, simplify the manufacturing process and reduce the cost, eliminate the problems associated with the hot rolling process, and increase the strength. The present invention provides a thin plate-like copper alloy ingot, a method for producing the copper alloy ingot, a method for producing a copper alloy strip, and a device for producing a thin plate-like copper alloy ingot.

本発明は、上記目的を達成するため、原材料を溶解した溶湯を鋳型内に連続的に注湯してこれを鋳型内から連続的に引き出した後、水冷装置により700℃までの冷却速度を10℃/sec以上にて冷却するCu−Ni−Si系の銅合金鋳塊の製造方法であって、前記鋳型は、前記溶湯が注湯される中空部を有しており、前記中空部の前記引き出し方向に垂直な断面における中空部中心と前記鋳型の内壁との距離(前記中空部断面における短辺/2の長さに相当)が20mm以下であることを特徽とする薄板状の銅合金鋳塊の製造方法を提供する。ここで、本発明における「薄板状」とは、銅合金鋳塊の厚さが40mm以下のものを指す。   In order to achieve the above object, the present invention continuously pours molten metal in which raw materials are melted into a mold, continuously draws it out of the mold, and then sets the cooling rate to 700 ° C. at 10 ° C. with a water cooling device. A method for producing a Cu-Ni-Si-based copper alloy ingot that is cooled at a temperature of at least ° C / sec, wherein the mold has a hollow portion into which the molten metal is poured, A thin plate-like copper alloy characterized in that the distance between the center of the hollow part in the cross section perpendicular to the drawing direction and the inner wall of the mold (corresponding to the length of the short side / 2 in the cross section of the hollow part) is 20 mm or less An ingot manufacturing method is provided. Here, the “thin plate shape” in the present invention refers to a copper alloy ingot having a thickness of 40 mm or less.

また、本発明は、上記目的を達成するため、上記の薄板状の銅合金鋳塊の製造方法にて製造された薄板状の銅合金鋳塊であって、冷却時に析出されたNiとSiの化合物のサイズが最大で200nm以下であることを特徽とする薄板状の銅合金鋳塊を提供する。   Further, in order to achieve the above object, the present invention is a thin copper alloy ingot produced by the above method for producing a thin copper alloy ingot, wherein Ni and Si precipitated during cooling A thin plate-like copper alloy ingot characterized by having a maximum compound size of 200 nm or less is provided.

また、本発明は、上記目的を達成するため、上記の薄板状の銅合金鋳塊の製造方法にて製造された薄板状の銅合金鋳塊の酸化スケールを除去し、圧下率50%以上の冷間圧延を1回以上および300℃以上600℃以下の温度での時効硬化処理を1回以上施し、かつ、前記銅合金鋳塊の製造後に600℃より高い温度での熱処理をしないことを特徴とする銅合金条の製造方法を提供する。   In addition, in order to achieve the above object, the present invention removes the oxide scale of the thin plate-like copper alloy ingot produced by the method for producing a thin plate-like copper alloy ingot, and the reduction rate is 50% or more. It is characterized in that cold rolling is carried out at least once and age hardening treatment at a temperature of 300 ° C. or more and 600 ° C. or less is performed once or more, and heat treatment at a temperature higher than 600 ° C. is not performed after the production of the copper alloy ingot. A method for producing a copper alloy strip is provided.

また、本発明は、上記目的を達成するため、原材料を溶解した溶湯が注湯される鋳型と、前記鋳型から引き出された前記溶湯を冷却する水冷装置とを備えた銅合金鋳塊の製造装置であって、前記鋳型は前記溶湯が注湯される中空部を有しており、前記中空部の前記引き出し方向に垂直な断面における中空部中心と前記鋳型の内壁との距離(前記中空部断面における短辺/2の長さに相当)が20mm以下であることを特徴とする薄板状の銅合金鋳塊の製造装置を提供する。   In order to achieve the above object, the present invention provides an apparatus for producing a copper alloy ingot comprising a mold in which a molten metal in which raw materials are melted is poured, and a water cooling device for cooling the molten metal drawn from the mold. The mold has a hollow portion into which the molten metal is poured, and the distance between the center of the hollow portion and the inner wall of the mold in the cross section perpendicular to the drawing direction of the hollow portion (the cross section of the hollow portion). (Equivalent to the length of the short side / 2) is 20 mm or less, and a manufacturing apparatus for a thin plate-shaped copper alloy ingot is provided.

本発明によれば、製造工程の簡略化と低コスト化ができるとともに、より高強度の薄板状銅合金鋳塊およびこれを用いた銅合金条が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to simplify a manufacturing process and cost reduction, a higher strength thin plate-shaped copper alloy ingot and a copper alloy strip using the same can be provided.

〔銅合金鋳塊の製造方法〕
図1は、本発明の実施の形態に係る鋳塊製造装置(溶解鋳造装置)の概略構成図である。図2は、図1の鋳塊製造装置に用いる鋳型の鋳造方向に垂直な断面の概念図である。図1に示される溶解鋳造装置10は、原料を溶解して溶湯1とする溶解炉11と、溶解炉11から移送樋12を介して溶湯1が注湯されるタンディッシュ13と、タンディッシュ13から溶湯1が注湯される鋳型15と、タンディッシュ13と鋳型15との間に介在された断熱材14と、鋳型15から引き出された溶湯1(鋳塊2)にシャワー17をあてて水冷させる水冷ジャケット16と、水冷された鋳塊2をガイドするピンチ・ロール18とから概略構成されている。
[Method for producing copper alloy ingot]
FIG. 1 is a schematic configuration diagram of an ingot manufacturing apparatus (melting casting apparatus) according to an embodiment of the present invention. FIG. 2 is a conceptual diagram of a cross section perpendicular to the casting direction of the mold used in the ingot manufacturing apparatus of FIG. A melting casting apparatus 10 shown in FIG. 1 includes a melting furnace 11 that melts a raw material to form a molten metal 1, a tundish 13 into which the molten metal 1 is poured from the melting furnace 11 through a transfer rod 12, and a tundish 13 A shower 17 is applied to the mold 15 into which the molten metal 1 is poured, the heat insulating material 14 interposed between the tundish 13 and the mold 15, and the molten metal 1 (ingot 2) drawn from the mold 15, and water-cooled. A water-cooling jacket 16 to be made and a pinch roll 18 for guiding the water-cooled ingot 2 are roughly constituted.

図1および図2を参照して、本実施の形態に係る銅合金鋳塊の製造方法を以下に説明する。   With reference to FIG. 1 and FIG. 2, the manufacturing method of the copper alloy ingot which concerns on this Embodiment is demonstrated below.

所定の成分に調整した溶湯1をタンディッシュ13に注湯し、タンディッシュ13の下方に(側面方向であってもよい)断熱材14(断熱部)を介して接続した中空部15Aを有する鋳型15に連続的に注湯する。このとき、図2に示すように、鋳型中空部15Aの中心15aと鋳型内壁15Bとの距離(鋳型中空部断面における短辺/2の長さに相当)は20mm以下とする。下限は特に限定されないが、3mm以上であることが望ましい。このとき、銅合金鋳塊は厚さ6mm以上40mm以下の薄板状となる。   A molten metal 1 adjusted to a predetermined component is poured into the tundish 13, and a mold having a hollow portion 15A connected to the lower portion of the tundish 13 (may be in the side surface direction) via a heat insulating material 14 (heat insulating portion). 15 is poured continuously. At this time, as shown in FIG. 2, the distance between the center 15a of the mold hollow portion 15A and the mold inner wall 15B (corresponding to the length of the short side / 2 in the mold hollow section) is 20 mm or less. Although a minimum is not specifically limited, It is desirable that it is 3 mm or more. At this time, the copper alloy ingot has a thin plate shape with a thickness of 6 mm to 40 mm.

更に、鋳型15内から下方に(側面方向であってもよい)連続的に引き出し、続くシャワー式の水冷ジャケット16(水冷装置)により鋳塊2を直接水冷する。このような装置で本合金を鋳造することにより、700℃までの冷却速度を10℃/sec以上とすることが可能である。更に、これにより鋳塊2の冷却時に析出するNiとSiの化合物のサイズは最大で200nm以下とすることができる。   Further, the ingot 2 is continuously drawn down from the inside of the mold 15 (which may be in the side direction), and the ingot 2 is directly water-cooled by a shower-type water-cooling jacket 16 (water-cooling device). By casting this alloy with such an apparatus, the cooling rate to 700 ° C. can be made 10 ° C./sec or more. Further, the maximum size of the Ni and Si compound that precipitates when the ingot 2 is cooled can be 200 nm or less.

鋳型中空部15Aの中心15aと鋳型内壁15Bとの距離を20mm以下としたのは、20mmより大きくすると700℃までの冷却速度を10℃/sec以上とすることが困難なためである。700℃までの冷却速度を10℃/sec未満とすると、200nmより粗大なNiとSiの化合物が析出してしまう。これより、700℃までの冷却速度は、10℃/sec以上である必要がある。その上限は特に限定されるものではないが、100℃/sec以下であることが望ましい。   The reason why the distance between the center 15a of the mold hollow portion 15A and the mold inner wall 15B is 20 mm or less is that when the distance is greater than 20 mm, it is difficult to set the cooling rate to 700 ° C. to 10 ° C./sec or more. If the cooling rate to 700 ° C. is less than 10 ° C./sec, a Ni and Si compound coarser than 200 nm is precipitated. Therefore, the cooling rate to 700 ° C. needs to be 10 ° C./sec or more. The upper limit is not particularly limited, but is desirably 100 ° C./sec or less.

鋳型15の材質は銅でもグラファイトでも良いが、これらは内部を直接的若しくは間接的に水冷するものとする。引き出す方向は鉛直方向でも水平方向でも良い。また、1つのタンディッシュ13からの引き出し本数は1本でも2本以上でも問題ないが、生産性を考慮して2本以上の引き出しが望ましい。   The material of the mold 15 may be copper or graphite, but these are water-cooled directly or indirectly inside. The pulling direction may be vertical or horizontal. Further, the number of drawers from one tundish 13 may be one or two or more, but two or more drawers are desirable in consideration of productivity.

〔圧延条材(銅合金条)の製造方法〕
得られた鋳塊2の酸化スケールを除去し、圧下率50%以上の冷間圧延を1回以上施し、300℃以上600℃以下の温度での時効硬化処理を1回以上施すことにより、圧延条材(銅合金条)を得る。
[Method of manufacturing rolled strip (copper alloy strip)]
The obtained ingot 2 is removed from the oxide scale, subjected to cold rolling at a reduction rate of 50% or more once and rolling at a temperature of 300 ° C. to 600 ° C. at least once. Obtain strip material (copper alloy strip).

高強度を得るための最適な条件は、鋳塊2の酸化スケールを除去後、圧下率50%以上の冷間圧延を施した後に、400〜500℃で1〜3時間の時効処理を施す。更に、圧下率50%以上の冷間圧延を施すことにより、強度の向上が可能である。更に、最終の冷間圧延前に、350〜450℃の温度で1時間以上の時効処理を施すことにより、導電率の向上が可能である。また、最終の冷間圧延後に、歪みを除去するために、300〜400℃の温度で1〜10分加熱しても良い。   Optimum conditions for obtaining high strength are that after removing the oxide scale of the ingot 2, cold rolling at a reduction rate of 50% or more is performed, and then an aging treatment is performed at 400 to 500 ° C. for 1 to 3 hours. Furthermore, the strength can be improved by performing cold rolling with a rolling reduction of 50% or more. Furthermore, the electrical conductivity can be improved by applying an aging treatment for 1 hour or more at a temperature of 350 to 450 ° C. before the final cold rolling. Moreover, after the final cold rolling, in order to remove distortion, you may heat at the temperature of 300-400 degreeC for 1 to 10 minutes.

時効処理前の圧下率が50%未満の場合、最高強度を得るために時効処理時間が長くなるとともに、時効処理後の強度が低めになる。圧下率の上限は特に限定されないが、95%以下が望ましい。時効処理温度は600℃より高いと析出物が粗大化し、強度が低くなる。また、300℃より低いと充分な析出量が得られない為に強度が低くなる。   When the rolling reduction before the aging treatment is less than 50%, the aging treatment time becomes longer to obtain the maximum strength, and the strength after the aging treatment becomes lower. The upper limit of the rolling reduction is not particularly limited, but is preferably 95% or less. When the aging treatment temperature is higher than 600 ° C., the precipitate becomes coarse and the strength is lowered. On the other hand, when the temperature is lower than 300 ° C., a sufficient amount of precipitation cannot be obtained, so that the strength is lowered.

(合金成分)
本実施の形態においてCu−Ni−Si系の銅合金鋳塊の合金成分は、Ni:1.0〜4.0質量%、Si:0.2〜1.0質量%とすることが望ましい。本合金では時効硬化処理によってCu中に金属間化合物であるNiSiを析出させて高強度を得るが、Niが1.0質量%未満、若しくはSiが0.2質量%未満では充分な強度を得ることが難しい。一方、Niが4.0質量%、若しくはSiが1.0質量%を超えると導電率の低下、加工性の悪化が顕著になる。特に、中間温度脆性が顕著になり、高温加熱時や熱間加工時の粒界割れが非常に起こり易くなる。また、Niが4.0質量%を超えると溶解時に溶湯中に吸収されるHの量が増大し、鋳塊中に固溶水素となって残存する。これらの水素は中間温度脆性の一因となり、冷間圧延後の焼鈍時に膨れ状の欠陥となりやすい。
(Alloy components)
In the present embodiment, the alloy components of the Cu—Ni—Si based copper alloy ingot are preferably Ni: 1.0 to 4.0 mass% and Si: 0.2 to 1.0 mass%. In this alloy, Ni 2 Si, which is an intermetallic compound, is precipitated in Cu by age hardening treatment to obtain high strength. However, if Ni is less than 1.0% by mass or Si is less than 0.2% by mass, sufficient strength is obtained. Difficult to get. On the other hand, when Ni exceeds 4.0% by mass or Si exceeds 1.0% by mass, the decrease in conductivity and the deterioration of workability become remarkable. In particular, the intermediate temperature brittleness becomes prominent, and intergranular cracking at the time of high-temperature heating or hot working is very likely to occur. On the other hand, if Ni exceeds 4.0% by mass, the amount of H absorbed in the molten metal at the time of melting increases and remains as a solute hydrogen in the ingot. These hydrogens contribute to brittleness at the intermediate temperature and are liable to become blistered defects during annealing after cold rolling.

また、NiとSiの混合比(質量比)は、金属間化合物であるNiSiの組成に近い方が効率よく強度と導電率を向上させることが可能と考えられることから、Ni:Si=4:1とすることが望ましい。 Further, since it is considered that the mixing ratio (mass ratio) of Ni and Si can improve the strength and conductivity more efficiently when the composition is closer to the composition of Ni 2 Si that is an intermetallic compound, Ni: Si = 4: 1 is desirable.

合金成分は上記成分が基本であるが、更に副成分としてP、Zn、Sn、Mg、Zr、Cr、Ti、Fe、Co、Mnのうち1種以上の成分を総量で3質量%未満含有しても本発明の効果は同様に得られるが、3質量%を超えると導電率の低下等の特性劣化が大きくなる。例えば、Pは、溶解時の脱酸剤としての効果とともに、若干の強度向上の効果がある。Znは、半田やめっきの耐熱剥離性を向上させる効果があるため、電気・電子部品用として使用する場合には添加することが望ましい。また、蒸気圧が高いために溶解時の雰囲気中の水蒸気分圧の低減効果がある。Snは、ばね性、曲げ加工性、耐応力緩和特性を向上させる効果があり、コネクタとして使用する場合には添加することが望ましい。Mgは、導電率を低下させずに強度を向上させる効果がある。また、Sは中間温度脆性を助長させる元素であるが、MgはSと化合物を生成して粒界のSを固定し、熱間加工性を向上させる効果がある。MnもSと化合物を生成して粒界のSを固定し、熱間加工性を向上させる効果がある。   The alloy component is basically the above component, but further contains one or more of P, Zn, Sn, Mg, Zr, Cr, Ti, Fe, Co, and Mn as subcomponents in a total amount of less than 3% by mass. However, the effects of the present invention can be obtained in the same manner. However, when the content exceeds 3% by mass, the deterioration of characteristics such as a decrease in electrical conductivity is increased. For example, P has an effect of slightly improving strength as well as an effect as a deoxidizer at the time of dissolution. Since Zn has an effect of improving the heat-resistant peelability of solder and plating, it is desirable to add it when used for electric / electronic parts. Further, since the vapor pressure is high, there is an effect of reducing the partial pressure of water vapor in the atmosphere at the time of dissolution. Sn has an effect of improving spring property, bending workability, and stress relaxation resistance, and is desirably added when used as a connector. Mg has the effect of improving the strength without reducing the electrical conductivity. Further, S is an element that promotes brittleness at intermediate temperature, but Mg has an effect of generating a compound with S to fix S at the grain boundary and improving hot workability. Mn also has the effect of generating a compound with S to fix S at the grain boundaries and improve hot workability.

〔実施の形態の効果〕
この実施の形態によれば、下記の効果を奏する。
(1)電気・電子部品材料などに好適に使用できる、高強度でかつ高導電率のコルソン合金を得ることができる。特に、同一の化学組成のコルソン合金において従来方法により製造されたものよりも高強度を得ることができる。
(2)冷却時に析出する最大析出物(NiとSiの化合物)のサイズが200nm以下である銅合金鋳塊が得られ、熱間圧延処理および溶体化処理を省略できるため、製造工程の簡略化と低コスト化ができるとともに、これらの処理に付随する問題を撤廃できる。
(3)鋳型中空部の中心と鋳型内壁との距離を20mm以下とした鋳型を備えた製造装置を使用したことにより、鋳塊の冷却速度を10℃/sec以上とすることが容易にできるため、冷却時のシャワー冷却水流量を減らし、かつ引き出し速度を速くすることができるので、製造効率の向上が可能となる。
(4)厚さ40mm以下の薄膜状の銅合金塊であるため、冷却速度を早くして析出物を小さくできるので品質が良好となり、また、歪エネルギを小さくできるので火膨れが生じにくい。さらに、加工しやすくなるので、熱間圧延でなく冷間圧延で加工することができる。
[Effect of the embodiment]
According to this embodiment, the following effects can be obtained.
(1) It is possible to obtain a Corson alloy having high strength and high conductivity that can be suitably used for electric / electronic component materials. In particular, it is possible to obtain higher strength than that produced by a conventional method in a Corson alloy having the same chemical composition.
(2) A copper alloy ingot having a maximum precipitate (Ni and Si compound) size of 200 nm or less deposited upon cooling is obtained, and the hot rolling treatment and solution treatment can be omitted, thus simplifying the manufacturing process. The cost can be reduced and the problems associated with these processes can be eliminated.
(3) By using a manufacturing apparatus equipped with a mold in which the distance between the center of the mold hollow portion and the mold inner wall is 20 mm or less, the cooling rate of the ingot can be easily set to 10 ° C./sec or more. Since the shower cooling water flow rate during cooling can be reduced and the drawing speed can be increased, the production efficiency can be improved.
(4) Since it is a thin-film copper alloy lump having a thickness of 40 mm or less, the cooling rate can be increased and the precipitate can be reduced, so that the quality is improved, and the strain energy can be reduced, so that blistering hardly occurs. Furthermore, since it becomes easy to process, it can process by cold rolling instead of hot rolling.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.

〔鋳塊の製造〕
(実施例、比較例)
図1に示す溶解鋳造装置10を用い、鋳型15の寸法を変化させて、Cu-2.5質量%Ni-0.5質量%Si‐0.03質量%P合金鋳塊を鋳造した(実施例:鋳塊No.1〜3、比較例:鋳塊No.4〜6)。鋳塊の冷却速度は、鋳塊の中で最も冷却速度が遅くなる中心における固相線温度から700℃までの平均冷却速度である。冷却速度は、鋳型内に熱電対を投入することにより測定した。また、鋳塊の析出物のサイズは、透過型電子顕微鏡(TEM)を用いて調査した。
[Manufacture of ingots]
(Examples and comparative examples)
Using the melting casting apparatus 10 shown in FIG. 1, the dimensions of the mold 15 were changed, and a Cu-2.5 mass% Ni-0.5 mass% Si-0.03 mass% P alloy ingot was cast (implementation) Example: ingot No. 1-3, comparative example: ingot No. 4-6). The cooling rate of the ingot is an average cooling rate from the solidus temperature at the center where the cooling rate is the slowest in the ingot to 700 ° C. The cooling rate was measured by putting a thermocouple into the mold. Further, the size of the ingot precipitate was examined using a transmission electron microscope (TEM).

(参考例)
従来の製造装置として、図3に示すコアレス中周波坩堝式溶解炉20と半連続式鋳造装置30からなる量産設備を用いて、Cu-2.5質量%Ni‐0.5質量%Si‐0.03質量%P合金鋳塊を鋳造し(鋳塊No.7〜8)、上記同様の調査を実施した。
(Reference example)
As a conventional manufacturing apparatus, using a mass production facility comprising a coreless medium frequency crucible melting furnace 20 and a semi-continuous casting apparatus 30 shown in FIG. 3, Cu-2.5 mass% Ni-0.5 mass% Si-0 0.03 mass% P alloy ingot was cast (ingot Nos. 7 to 8), and the same investigation as described above was performed.

鋳型の断面寸法と鋳塊の冷却速度および析出物の最大サイズとの関係を表1に示す。鋳型の断面寸法は、図2に示す鋳造方向に垂直な断面における縦辺(短辺)×横辺(長辺)の長さを示し、鋳型の長さは、鋳造方向の長さを示す。   Table 1 shows the relationship between the cross-sectional dimension of the mold, the cooling rate of the ingot, and the maximum size of the precipitate. The cross-sectional dimension of the mold indicates the length of the vertical side (short side) × the horizontal side (long side) in the cross section perpendicular to the casting direction shown in FIG. 2, and the length of the mold indicates the length in the casting direction.

実施例の鋳塊No.1〜3はいずれも鋳塊中心の冷却速度が10℃/sec以上であり、鋳塊の最大析出物サイズは200nm以下となった。図4(a)に鋳塊No.1の析出物のTEM像を示す。鋳塊No.1では、50nm以下の非常に微細な析出物が分散していた。また、ほとんどが線対称のコントラストを示す母相に整合した析出物であった。   In the ingots Nos. 1 to 3 of the examples, the cooling rate at the center of the ingot was 10 ° C./sec or more, and the maximum precipitate size of the ingot was 200 nm or less. In FIG. 1 shows a TEM image of 1 precipitate. Ingot No. In No. 1, very fine precipitates of 50 nm or less were dispersed. Most of the precipitates were matched to the matrix showing line-symmetric contrast.

一方、鋳型15の中空部15Aの中心15aから鋳型内壁15Bまでの距離(h)(=鋳型中空部15A断面における短辺の半分の長さ)が増加するに従い、鋳塊の冷却速度は減少し、hが20mm(鋳型中空部15A断面における短辺が40mm)を超え、hが25mm(鋳型中空部15A断面における短辺が50mm)以上となると(比較例の鋳塊No.4〜6)、シャワー冷却水流量(L/分)や引出速度(mm/分)といった鋳造条件を変えても鋳塊中心の冷却速度は10℃/secより遅くなった。鋳塊中心の冷却速度が10℃/secより遅くなった比較例の鋳塊No.4〜6ではいずれも、鋳塊の最大析出物サイズは200nmを超えた。   On the other hand, the cooling rate of the ingot decreases as the distance (h) from the center 15a of the hollow portion 15A of the mold 15 to the mold inner wall 15B (= half length of the short side in the cross section of the mold hollow portion 15A) increases. , H exceeds 20 mm (short side in the mold hollow part 15A cross section is 40 mm) and h is 25 mm (short side in the mold hollow part 15A cross section is 50 mm) or more (ingot Nos. 4 to 6 in the comparative example), Even if the casting conditions such as the shower cooling water flow rate (L / min) and the drawing speed (mm / min) were changed, the cooling rate at the center of the ingot became slower than 10 ° C./sec. In all of the ingot Nos. 4 to 6 of the comparative examples in which the cooling rate at the center of the ingot was slower than 10 ° C./sec, the maximum precipitate size of the ingot exceeded 200 nm.

また、参考例の鋳塊No.7〜8では鋳塊中心の冷却速度は5℃/sec以下であり、鋳塊の最大析出物サイズは1μm以上であった。図4の(b)に鋳塊No.7の析出物のTEM像を示す。鋳塊No.7では、500nm程度の球状析出物が非常に多く分散していた。EDS(エネルギー分散型X線分析装置)分析の結果、これらの析出物はNiSiであった。 In the ingots Nos. 7 to 8 of the reference examples, the cooling rate at the center of the ingot was 5 ° C./sec or less, and the maximum precipitate size of the ingot was 1 μm or more. The TEM image of the deposit of ingot No. 7 is shown in FIG. Ingot No. In No. 7, spherical precipitates of about 500 nm were very much dispersed. As a result of EDS (energy dispersive X-ray analyzer) analysis, these precipitates were Ni 2 Si.

〔圧延条材の製造〕
(実施例、比較例、参考例)
上記鋳塊No.1〜4、7を用いて、表2に示す工程および表3に示す溶体化処理温度にて厚さ0.1mmの条材を作製した。それぞれについて、引張強さ(MPa)、導電率(%IACS)、結晶粒の状態、熱圧割れ発生率(%)、膨れ欠陥発生率(%)を確認又は測定した結果を表3に示す。
[Manufacture of rolling strip]
(Examples, comparative examples, reference examples)
Using the ingots Nos. 1 to 4 and 7, strips having a thickness of 0.1 mm were produced at the steps shown in Table 2 and the solution treatment temperature shown in Table 3. Table 3 shows the results of confirming or measuring the tensile strength (MPa), electrical conductivity (% IACS), crystal grain state, hot-pressure cracking rate (%), and blistering rate (%).

実施例の圧延条材No.1〜3および比較例の圧延条材No.4は、鋳塊No.1〜4を使用して、熱間圧延、溶体化処理を必要としない製造工程Aで作製したが、いずれも結晶粒は微細で、膨れ欠陥の発生率も0%であった。   The rolling strip material Nos. 1 to 3 of the examples and the rolling strip material No. 4 of the comparative example are ingots Nos. 1 to 4 and in the manufacturing process A that does not require hot rolling and solution treatment. Although they were prepared, the crystal grains were all fine and the occurrence rate of blistering defects was 0%.

また、圧延条材No.1の引張強さは812MPaであり、No.2は794MPa、No.3は738MPa、No.4は、695MPaであった。これより、圧延条材の引張強さは、鋳塊の冷却速度(表1参照)に影響を受け、冷却速度が速いほど高い引張強さが得られたことが分かる。   Moreover, the tensile strength of rolling strip No. 1 was 812 MPa, No. 2 was 794 MPa, No. 3 was 738 MPa, and No. 4 was 695 MPa. From this, it can be seen that the tensile strength of the rolled strip is affected by the cooling rate of the ingot (see Table 1), and the higher the cooling rate, the higher the tensile strength.

一方、参考例の圧延条材No.5〜8は、鋳塊No.7を使用して、熱間圧延、溶体化処理を施す製造工程B(従来製法)で作製し、溶体化処理の温度を800〜1000℃で変化させた。参考例ではいずれも、熱間圧延で割れが約2%の割合で発生し、その後の時効処理での膨れ欠陥も約3%の割合で発生した。圧延条材の引張強さは、溶体化処理温度に大きく影響を受け、溶体化温度を上げることにより高い引張強さが得られたが、1000℃で溶体化処理をした場合でも引張強さは782MPaと実施例の圧延条材No.1に比較して低い値となった。また、900℃以上の溶体化処理では結晶粒の粗大化が見られた。   On the other hand, the rolling strips Nos. 5 to 8 of the reference examples are produced in the manufacturing process B (conventional manufacturing method) in which the ingot No. 7 is used to perform hot rolling and solution treatment, and the temperature of the solution treatment. Was changed at 800-1000 ° C. In all of the reference examples, cracks were generated at a rate of about 2% by hot rolling, and blistering defects in the subsequent aging treatment were also generated at a rate of about 3%. The tensile strength of the rolling strip was greatly affected by the solution treatment temperature, and a high tensile strength was obtained by raising the solution treatment temperature, but even when solution treatment was performed at 1000 ° C, the tensile strength was The value was 782 MPa, which was lower than that of the rolling strip material No. 1 of the example. Further, coarsening of crystal grains was observed in the solution treatment at 900 ° C. or higher.

本発明の実施の形態に係る鋳塊製造装置(溶解鋳造装置)の概略構成図である。It is a schematic block diagram of the ingot manufacturing apparatus (melting casting apparatus) which concerns on embodiment of this invention. 図1の鋳塊製造装置に用いる鋳型の鋳造方向に垂直な断面の概念図である。It is a conceptual diagram of a cross section perpendicular | vertical to the casting direction of the casting_mold | template used for the ingot manufacturing apparatus of FIG. 従来の鋳塊製造装置の概略構成図である。It is a schematic block diagram of the conventional ingot manufacturing apparatus. (a)は実施例のTEM写真の一例を示し、(b)は参考例のTEM写真の一例を示す。(A) shows an example of the TEM photograph of an Example, (b) shows an example of the TEM photograph of a reference example.

符号の説明Explanation of symbols

1 溶湯、2 鋳塊
10 溶解鋳造装置
11 溶解炉、12 移送樋、13 タンディッシュ、14 断熱材
15 鋳型、16 水冷ジャケット、17 シャワー、18 ピンチ・ロール
15A 鋳型中空部、15a 中空部中心、15B 鋳型内壁
20 コアレス中周波坩堝式溶解炉
30 半連続式鋳造装置
31 移送通路、32 タンディッシュ、33 ディストゥリビュータ
34 鋳型、35 シャワー、36 水槽
DESCRIPTION OF SYMBOLS 1 Molten metal 2 Ingot 10 Melting and casting apparatus 11 Melting furnace, 12 Transfer rod, 13 Tundish, 14 Thermal insulation material 15 Mold, 16 Water-cooling jacket, 17 Shower, 18 Pinch roll 15A Mold hollow part, 15a Center of hollow part, 15B Mold inner wall 20 Coreless medium frequency crucible melting furnace 30 Semi-continuous casting device 31 Transfer passage, 32 Tundish, 33 Distributor 34 Mold, 35 Shower, 36 Water tank

Claims (6)

原材料を溶解した溶湯を鋳型内に連続的に注湯してこれを鋳型内から連続的に引き出した後、水冷装置により700℃までの冷却速度を10℃/sec以上にて冷却するCu−Ni−Si系の銅合金鋳塊の製造方法であって、
前記鋳型は、前記溶湯が注湯される中空部を有しており、前記中空部の前記引き出し方向に垂直な断面における中空部中心と前記鋳型の内壁との距離(前記中空部断面における短辺/2の長さに相当)が20mm以下であることを特徴とする薄板状の銅合金鋳塊の製造方法。
Cu-Ni is prepared by continuously pouring molten metal in which raw materials are melted into a mold and continuously drawing it out of the mold, followed by cooling to 700 ° C. at a cooling rate of 10 ° C./sec or more by a water cooling device. A method for producing a Si-based copper alloy ingot,
The mold has a hollow portion into which the molten metal is poured, and the distance between the center of the hollow portion in the cross section perpendicular to the drawing direction of the hollow portion and the inner wall of the mold (the short side in the cross section of the hollow portion). (Equivalent to a length of / 2) is 20 mm or less.
前記Cu−Ni−Si系の銅合金鋳塊は、Ni:1.0〜4.0質量%、Si:0.2〜1.0質量%を含有し、残部がCuと不可避不純物よりなることを特徴とする請求項1に記載の薄板状の銅合金鋳塊の製造方法。   The said Cu-Ni-Si type copper alloy ingot contains Ni: 1.0-4.0 mass%, Si: 0.2-1.0 mass%, and the remainder consists of Cu and an unavoidable impurity. The manufacturing method of the thin plate-shaped copper alloy ingot of Claim 1 characterized by these. 前記Cu−Ni−Si系の銅合金鋳塊は、合金成分としてP、Zn、Sn、Mg、Zr、Cr、Ti、Fe、Co、Mnのうち1種以上の成分を総量で3質量%未満含有することを特徴とする請求項1又は請求項2に記載の薄板状の銅合金鋳塊の製造方法。   The Cu-Ni-Si-based copper alloy ingot is less than 3% by mass in total of one or more of P, Zn, Sn, Mg, Zr, Cr, Ti, Fe, Co, and Mn as alloy components. It contains, The manufacturing method of the thin plate-shaped copper alloy ingot of Claim 1 or Claim 2 characterized by the above-mentioned. 請求項1乃至請求項3のいずれか1項に記載の薄板状の銅合金鋳塊の製造方法にて製造された薄板状の銅合金鋳塊であって、冷却時に析出されたNiとSiの化合物のサイズが最大で200nm以下であることを特徴とする薄板状の銅合金鋳塊。   A thin copper alloy ingot produced by the method for producing a thin copper alloy ingot according to any one of claims 1 to 3, wherein Ni and Si precipitated during cooling A thin plate-shaped copper alloy ingot having a maximum compound size of 200 nm or less. 請求項1乃至請求項3のいずれか1項に記載の薄板状の銅合金鋳塊の製造方法にて製造された薄板状の銅合金鋳塊の酸化スケールを除去し、圧下率50%以上の冷間圧延を1回以上および300℃以上600℃以下の温度での時効硬化処理を1回以上施し、かつ、前記銅合金鋳塊の製造後に600℃より高い温度での熱処理をしないことを特徴とする銅合金条の製造方法。   The oxidation scale of the thin copper alloy ingot produced by the method for producing a thin copper alloy ingot according to any one of claims 1 to 3 is removed, and the rolling reduction is 50% or more. It is characterized in that cold rolling is carried out at least once and age hardening treatment at a temperature of 300 ° C. or more and 600 ° C. or less is performed once or more, and heat treatment at a temperature higher than 600 ° C. is not performed after the production of the copper alloy ingot. A method for producing a copper alloy strip. 原材料を溶解した溶湯が注湯される鋳型と、前記鋳型から引き出された前記溶湯を冷却する水冷装置とを備えた銅合金鋳塊の製造装置であって、前記鋳型は前記溶湯が注湯される中空部を有しており、前記中空部の前記引き出し方向に垂直な断面における中空部中心と前記鋳型の内壁との距離(前記中空部断面における短辺/2の長さに相当)が20mm以下であることを特徴とする薄板状の銅合金鋳塊の製造装置。   An apparatus for producing a copper alloy ingot, comprising: a mold into which molten metal in which raw materials are melted is poured; and a water cooling device for cooling the molten metal drawn from the mold, wherein the molten metal is poured into the mold. The distance between the center of the hollow part in the cross section perpendicular to the pulling direction of the hollow part and the inner wall of the mold (corresponding to the length of the short side / 2 in the cross section of the hollow part) is 20 mm. An apparatus for producing a thin plate-like copper alloy ingot characterized by:
JP2005330118A 2005-11-15 2005-11-15 Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy Pending JP2007136467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330118A JP2007136467A (en) 2005-11-15 2005-11-15 Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330118A JP2007136467A (en) 2005-11-15 2005-11-15 Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy

Publications (1)

Publication Number Publication Date
JP2007136467A true JP2007136467A (en) 2007-06-07

Family

ID=38199948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330118A Pending JP2007136467A (en) 2005-11-15 2005-11-15 Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy

Country Status (1)

Country Link
JP (1) JP2007136467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248333A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
WO2009041197A1 (en) * 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP2011005532A (en) * 2009-06-26 2011-01-13 Mitsubishi Materials Corp Casting apparatus
JP2014095107A (en) * 2012-11-07 2014-05-22 Fujikura Ltd Cu-Mg ALLOY BODY, MANUFACTURING METHOD OF Cu-Mg ALLOY BODY AND DRAWN WIRE MATERIAL

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248333A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
WO2008123436A1 (en) * 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-based copper alloy for electronic material, and method for production thereof
WO2009041197A1 (en) * 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
AU2008305239B2 (en) * 2007-09-28 2010-04-22 Jx Nippon Mining & Metals Corporation Cu-Ni-Si-Co-base copper alloy for electronic material and process for producing the copper alloy
US8444779B2 (en) 2007-09-28 2013-05-21 JX Nippon Mining & Metals Co., Ltd. Cu—Ni—Si—Co copper alloy for electronic materials and method for manufacturing same
JP2011005532A (en) * 2009-06-26 2011-01-13 Mitsubishi Materials Corp Casting apparatus
JP2014095107A (en) * 2012-11-07 2014-05-22 Fujikura Ltd Cu-Mg ALLOY BODY, MANUFACTURING METHOD OF Cu-Mg ALLOY BODY AND DRAWN WIRE MATERIAL

Similar Documents

Publication Publication Date Title
TWI571519B (en) Cu-ni-co-si based copper alloy sheet material and manufacturing method thereof
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP6758746B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP4904455B2 (en) Copper alloy and manufacturing method thereof
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
TWI429764B (en) Cu-Co-Si alloy for electronic materials
CN111575528A (en) Method for producing Zr-containing copper alloy material and copper alloy material produced thereby
JP2007136467A (en) Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP2012057242A (en) Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance
TWI593814B (en) Copper alloy with excellent heat resistance
JP3941308B2 (en) Copper alloy with excellent hot workability
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP4444143B2 (en) Copper alloy strip manufacturing method
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP3932759B2 (en) Copper alloy with excellent hot workability
JP2013117060A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL