TW200900515A - Cu-Ni-Si-Co-based copper alloy for electronic material, and method for production thereof - Google Patents
Cu-Ni-Si-Co-based copper alloy for electronic material, and method for production thereof Download PDFInfo
- Publication number
- TW200900515A TW200900515A TW097108444A TW97108444A TW200900515A TW 200900515 A TW200900515 A TW 200900515A TW 097108444 A TW097108444 A TW 097108444A TW 97108444 A TW97108444 A TW 97108444A TW 200900515 A TW200900515 A TW 200900515A
- Authority
- TW
- Taiwan
- Prior art keywords
- copper alloy
- cooling
- mass
- water
- alloy
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/02—Single bars, rods, wires, or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
200900515 九、發明說明: 【發明所屬之技術領域】 本發明闕於一種析出硬化 ^ , 匕型銅合金,尤其是關於—锸 適用於各種電子機器零件 0於種 令仟之Cu-N卜S卜Co系銅合金。200900515 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a precipitation hardening type, a bismuth type copper alloy, and more particularly to a Cu 锸 锸 锸 各种 各种 各种 各种 各种 Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Co-based copper alloy.
【先前技術J 對於連接器、開闕、繼電器 :::子機器零件所使用之電子材料:銅::,: = 強度及高導電'…導熱性)作為基本it未: 年來,電子零件之古疮拉杜 十付/·生。近 仵之间度積集化及小型化、薄 與此相應,對電子m哭嘹μ 寻土匕迅速發展, 奵电子機器'零件所使用 漸漸提高。 D 4的要求程度亦 從高強度及高導電性 把山£ 田曰、s ± 之觀點,析出硬化型銅合全夕估 用置逐漸增加,而代替 。金之使 強化型銅合金,來黄銅等所代表之固溶 合金,係藉由對:固二里材料用鋼合金。析出硬化型銅 理’使微細之析出物:勻了二飽和固溶體進行時效處 少銅中的固溶元素量:【α金的強度提兩’同時減 '、重提尚導電性。因此,可彳旱Λ 彈性性能等機械性了侍到強度、 析出硬化型銅=且=、論[Prior Art J for connectors, openings, relays::: Electronic materials used for sub-machine parts: copper::,: = strength and high conductivity '...thermal conductivity) as basic it is not: Years, the history of electronic parts Sore Ladu ten pay / live. The accumulation and miniaturization between the near and the 、, and the thinness of this, the rapid development of the electronic m crying, the use of parts of the electronic machine gradually increased. The degree of demand for D 4 is also gradually increased from the viewpoint of high strength and high electrical conductivity, and the precipitation of the hardened copper alloy is gradually increased instead of . The gold-enhanced copper alloy, which is a solid solution alloy represented by brass, is a steel alloy for solid two-dimensional materials. Precipitation-hardening copper theory' causes fine precipitates: uniformity of two saturated solid solutions for aging. The amount of solid solution elements in copper is less: [the strength of alpha gold is increased by two while reducing ', and the conductivity is re-expressed. Therefore, it can be used for mechanical properties such as elastic properties, precipitation hardening copper = and =,
Cu’i-Si系銅合金 ::%之為卡遜系合金的 工性之m 係兼具有較南導電性、強度及彎曲加 鋼合金,在業界中, 之合金的豆中之— 建勃進订開發 金屬間化i物粒子析t銅合金,係藉由使微細之Ni-Si系 的提升。 斤出於銅基地中’以謀求強度與導電率 200900515 為了更進-步提升卡遜合金 外之入金成八 u 知生添加Ni及Si以 …^ 1除會對特性造成不良影 組織的最佳化,析出粒 曰之成刀一 例如,P 4 P 取住化羊各種技術正開發t。 已知有猎由添加Co,來提升特性。 於日本特開平u_22264i ^ ^ r . 跣A報(專利文獻1 )中, S己載有Co會與Ni同樣,盥 产,c Γ / ,、 形成化&物而提升機械強 二 _ 1糸當經時效處理後時,機械強度、導電性僅 較Cu-Ni-Si系人厶從π tL 守电Γ玍值 …摆「 金獲仔些許提升,因此若成本上允許的 MCu-C〇_Si 系或 CU-Ni-C〇-Si 系皆可。 在日本特表2005-532477號公報(專利文獻2)中, 則:己載有-種鍛造銅合金,其係由以重量計,鎳:ι%〜 # 0.5〜2.0〇/〇、石夕:(^。/❶叫5%、剩餘部分之銅及 可避免之雜質所構成’鎳與鈷的合計含量& η%〜 4.3%’(Ni+CG)/Si比為2:1〜7:1,該锻造銅合金, 具有超過4〇%IACS之導電性。錄由於會與石夕結合,限制 拉子成長且《升抗軟化,J·生,故認為會形纟有助力時效硬化 夕化物。钻含里若少於〇. 5 % ,則含有钻之石夕化物第2相 的析出將會不充分。並且,組合〇.5%之最小鈷含量與〇5〇/〇 之取小矽含量時,固溶後之合金的粒徑係保持在2〇微米 以下。記載有當鈷含量超過2.5。/❶時,過剩的第2相粒子將 會析出,導致加工性的降低,以及會使銅合金具有不好的 鐵磁特性。 於國際公開第2006/101 172號小冊子(專利文獻3) 中’記載有含有Co之Cu-Ni-Si系合金的強度會在某組成 200900515 條件下獲得大幅地提升。具體而言,記載有一種電子材料 用銅合金’係含有Ni:約0·5〜約25質量%、c〇:約0.5 〜約2.5質量%及si: '約〇3〇〜約12質量%,剩餘部分則 由CU及不可避免之雜質所構成,該合金組成中之妬與c〇 的合計質量相對Si的質量濃度比(〔Ni+CQ〕/Si比^ H〔Ni+C〇〕/Si$約5,該合金組成中之Ni與c〇的 貝里浪度比(Ni/Co比)為約ο」$ Ni/Co $約2。 且,記载有於固溶處理時,若故意提高加熱後的冷呷 速度’則更可有效提升Cu_Ni_Si系銅合金之強度,故:冷 部速度為每秒約抓以上來加以冷卻,係較為有效。7 亦已知較佳為控制銅基地中的粗大夹雜物。 在日本特開2〇〇1-49369號公報(專利文獻4)中,纪 載有在進行完系合金之成分調整後, 由 使其含有 Mg、Zn、Sn、Fe、Tl、Zr、Cr、A1、p、M^^Cu'i-Si copper alloy::% is the m-type of the Cassson alloy, and has a more southerous conductivity, strength and bending plus steel alloy, in the industry, the alloy of the bean - Boeing has developed an intermetallic ionized material to precipitate a copper alloy by raising the fine Ni-Si system. Jin out of the copper base 'to seek strength and conductivity 200900515 In order to advance the step-by-step increase of the Carson alloy into the gold into the eight u know the addition of Ni and Si to ... ^ 1 in addition to the characteristics of the poor shadow organization optimization For example, P 4 P is used to develop various technologies for developing sheep. It is known that hunting is done by adding Co to improve the characteristics. In Japanese Unexamined U.S. Patent No. 2 (Patent Document 1), S has a Co-loaded Co, which is the same as Ni, and produces C, /, and forms a chemical & When subjected to aging treatment, the mechanical strength and electrical conductivity are only slightly higher than that of the Cu-Ni-Si man-made 厶 from π tL 守 ... ... 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金 金In the case of the above-mentioned Japanese Patent Publication No. 2005-532477 (Patent Document 2), there is a type of forged copper alloy which is made of nickel by weight. :ι%~ # 0.5~2.0〇/〇, 石夕: (^./❶ 5%, the remaining part of the copper and avoidable impurities constitute 'the total content of nickel and cobalt & η%~ 4.3%' The (Ni+CG)/Si ratio is 2:1 to 7:1, and the forged copper alloy has conductivity of more than 4% IACS. The recording will be combined with Shi Xi to limit the growth of the puller and the rise resistance to softening. J·sheng, it is believed that it will help the ageing hardening compound. If the diamond content is less than 〇. 5 %, the precipitation of the second phase containing the diamond ceramsite will be insufficient. And, the combination 〇.5 % minimum cobalt content and When the content of the bismuth is 5 〇 / 〇, the particle size of the alloy after solid solution is kept below 2 〇 micrometers. When the cobalt content exceeds 2.5 Å, the excess second phase particles are precipitated, resulting in precipitation. The reduction in the workability and the inferior ferromagnetic properties of the copper alloy. The strength of the Cu-Ni-Si alloy containing Co is described in the pamphlet of International Publication No. 2006/101 172 (Patent Document 3). In a certain condition, the composition of 200900515 is greatly improved. Specifically, a copper alloy for electronic materials is described as containing Ni: from about 0.5 to about 25% by mass, c〇: from about 0.5 to about 2.5% by mass and si : 'About 3〇~ about 12% by mass, the remainder consists of CU and unavoidable impurities. The mass ratio of the total mass of 妒 and c〇 to the mass ratio of Si in the composition of the alloy ([Ni+CQ]/ The Si ratio ^ H [Ni + C 〇 ] / Si $ is about 5, and the Berri wave ratio (Ni / Co ratio) of Ni and c 该 in the alloy composition is about ο"$ Ni / Co $ about 2. It is described that if the cold rolling speed after heating is intentionally increased during the solution treatment, the strength of the Cu_Ni_Si copper alloy can be effectively improved, so: cold It is also effective to control the speed by averaging the above-mentioned speed. It is also known that it is preferable to control the coarse inclusions in the copper base. In Japanese Laid-Open Patent Publication No. Hei 2-49369 (Patent Document 4) After the adjustment of the composition of the alloy, the composition contains Mg, Zn, Sn, Fe, Tl, Zr, Cr, A1, p, M^^
Be’,控制、選定製造條件來控制基地中之析出物、結晶 物、氧化物等夾雜物的分布, — 料用銅合金之材料。具體而言,記載:=電子材 及導電性的電子材料用銅合金,其特種人具有優異之強度 :2〜一之Si,剩餘部分由Cu及不可避免之 雜質所構成’又夾雜物的大小在 避免之 阿-μ + M m以下’且在平行於 壓乙方向的剖面上,5〜1〇#m之大 、 個/mm2。 的失雜物個數未達50 且’在該文獻中記載有在半連續 過程中,#造之鎢造時的凝固 由於有曰,會生成Ni-Si系之叙大結晶物及析出物, 200900515 因此對此加以控制的方法,亦即「藉由以8〇(TC以上之温 度,加熱1小時以上後,進行熱間壓延,使終溫在650。〇 以^ ’、將粗大夾雜4勿固溶於基地中 '然而,若力口熱温度在 900 C以上時’則會有產生大量的銹[且在進行熱間壓 延時會產生龜裂等問題的發生,因此較佳為使加熱温度為 800C以上未達9〇〇。〇」。 [專利文獻1]日本特開平1 1-222641號公報 [專利文獻2]日本特表2〇〇5_532477號公報 [專利文獻3]國際公開第2〇〇6/1〇1172號小冊子 [專利文獻4]日本特開2001-49369號公報 【發明内容】Be' controls and selects the manufacturing conditions to control the distribution of inclusions such as precipitates, crystals, and oxides in the base, and materials for the copper alloy. Specifically, it is described that: = copper alloy for electronic materials and conductive electronic materials, the special person has excellent strength: 2 to Si, the remainder is composed of Cu and unavoidable impurities, and the size of inclusions 5~1〇#m is large, and /mm2 is in the section parallel to the direction of the pressure B in the avoidance of the A-μ + M m. The number of lost impurities is less than 50 and 'in this document, it is described that in the semi-continuous process, the solidification of the tungsten produced by ##, resulting in the formation of Ni-Si-based large crystals and precipitates, 200900515 Therefore, the method of controlling this is, that is, "by 8 〇 (temperature above TC, after heating for more than 1 hour, the heat is rolled, the final temperature is 650. 〇 to ^ ', the coarse inclusions 4 Solid solution in the base ' However, if the heat temperature is above 900 C', there will be a large amount of rust [and the occurrence of cracks and other problems during the thermal pressure delay, so it is better to make the heating temperature 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 〇6/1〇1 172 [Patent Document 4] JP-A-2001-49369 [Summary of the Invention]
隹λ、;已知可藉由上述方式將c〇添加於系合 金’來提升強度及導電性,$而本發明人發現,若對添力口口 有之CU'Nl-Sl '系合金之組織加以觀察’則相較於未添 力才Λ 4刀的粗大第二相粒子皆散佈在各處。此第二相 粒子主要是由c〇㈣化物所構成。粗大的第二相粒子不 僅對強度沒有幫助,而且亦會對彎曲加工性造成不良影 / ;第相粒子的生成,若為未含有Co之Cu-Ni-Si 系合金,即使在可抑制的條件下進行製造,亦無法加以抑 制。亦即,Cu-Ni-Si-Co系合金,即使以專利文獻4所記 載之在〜觸。C的温度下加熱丨小時以上後,再進行 熱間壓延,使終温纟65吖以上之用以抑制粗大夾雜物生 成的方法’亦無法纟C"夕化物為主體之粗大第二相粒子 8 200900515 充分固溶於基地中。並且,即使以專利錢3所教示之於 固溶處理時提高加熱後之冷卻速度的方法,亦無法充分抑 制粗大的第二相粒子。 因此,本發明以提供一種粗大第二相粒子之生成獲得 P制之Cu Ni Si-Co系合金為課題。且,本發明亦以提供 此Cn-Ni-Si-Co系合金之製造方法為另一課題。 ’、 心研究之後,發 ’可藉此來抑制 本發明人’為了解決上述課題,經潛 現在特定條件下進行熱間壓延及固溶處理 粗大弟一相粒子的發生。 =體而言,係得知在Cu_Ni_Si_c〇系合金之製造步驟 中,猎由滿足下列兩條件,可抑制至幾乎不會對強度及彎 曲加工性造成任何不良影響的程度。 a⑴以95〇。°〜105代加熱1小時以上後,進行熱間 壓延,並使熱間壓延結束時的温度在85(rc以上,然後以 1 5°C /s以上的冷卻速度進行冷卻; (2)以85〇£>c〜105〇°c進行固溶處理,然後以15t:/s 以上的冷卻速度加以冷卻。 根據此製造方法’可使粒徑超過10//m之第二相粒子 消失,且可抑制粒徑為5心〜…m之第二相粒子在5〇 個/mm以下。若為此種第二相粒子的分布條件,則幾 會對強度及彎曲加工性造成任何不良影響。 且,雖然亦已知藉由添加Cr可提升強度及導電性,但 是抓Si,Co系合金中添加。,則粗大之第二相粒 子…寸更加容易生成。係因為Cr t形成矽化物而易於 200900515 粗大化的緣故。因迚 / u此,例如於專利文獻2中,記载 鉻含量纟0.08%以下戰有應便 士 ^ 然而’若根據本發明之製法,則即 使添加其數倍之昔,介叮4 亦可抑制粗大之Cr矽化物的生成。 因此,可使添加Cr夕不t 1 取 面效果更加突出,且與添加Co之 效果相結合,可更Λ扭 旯加如升卡遜合金的特性。 以上述見解為基礎所+ 土嶸所π成之本發明之電子材料用銅合 玉’,、含有Ni. ι·〇〜2 5暂旦0/ 5 貝 $%、Co: 〇·5 〜2.5 質量%、Si . 0.30〜1.20質量%,剩餘 . ^力士— 幻餘口P刀由Cu及不可避免之雜質所構 成又有存在粒彳坐超過1 〇 > # m的弟二相粒子,且於平行於 壓延方向之剖面上,粒彳①. 、 為5#m〜10am之第二相粒子在 5 0個/mm2以下。 本發明之電子材料用@人人 用銅5盃於一實施形態中,在平 於壓延方向之剖面上,粒彳<τ< 位仫為5"m〜1〇#m之第二相粒子 在25個/mm2以下。 本發明之電子材料用銅合金於—實施形態中,進一步 含有Cr最大至〇.5質量。/〇。 本發明之電子材料用鋼合今 I於另一實施形態中,進一 步含有選自由Mg、P、as、Sh、 八s W、Be、B、Mn、Sn、Ti、Zr、 A卜Fe、Zn及Ag所構成之群+ s , n 取尤群中至少1種之合金元素合計 隶大至2·〇質量%。 本發明亦是一種用以製造卜、+. ^上述銅合金之製造方法,係 包含依序進行下述步驟: -將具有所欲組成之鑄錠加以炫解鑄造之步驟; 乂 950 C〜l〇5〇C加熱丄小時以上後進行熱間壓延, 10 200900515 使熱間壓延結束時的温度在8 5 〇 °c以μ L从上,且以15ΐ:/s以上 之平均冷卻速度冷卻至4〇〇 t之步驟; -冷間壓延步驟; 以15°C/S以上之平 -以85〇°C〜l〇5〇°c進行固溶處理 均冷部速度冷卻至400。(3之步驟; -任意之冷間壓延步驟; -時效處理步驟;及 -任意之冷間壓延步驟。 本發明更是—種使用上述銅合金之伸銅品。 本月更疋種使用上述銅合金之電子零件。 根據本發明,由於可抑制粗大第二相粒子之生成,因 此可提供一種較不會受到隹λ,; it is known that c 〇 can be added to the alloy by the above method to improve the strength and conductivity, and the inventors have found that if the CU'Nl-Sl' alloy is added to the mouth of the force The organization observes it, and the coarse second phase particles of the four knives are scattered everywhere. This second phase particle is mainly composed of a c〇(tetra) compound. The coarse second phase particles do not contribute to the strength, but also cause adverse effects on the bending workability. The formation of the phase particles is a Cu-Ni-Si alloy which does not contain Co, even in a suppressable condition. Manufacturing underneath cannot be suppressed. In other words, the Cu-Ni-Si-Co alloy is not touched by the patent document 4. After heating at a temperature of C for more than a few hours, the inter-heat rolling is performed to make the final temperature 纟65 吖 or more to suppress the formation of coarse inclusions, and the coarse second phase particles 8 which are mainly composed of C" 200900515 Fully dissolved in the base. Further, even if the method of increasing the cooling rate after heating in the solution treatment as taught by the patent money 3 does not sufficiently suppress the coarse second phase particles. Therefore, the present invention has been made in order to obtain a Cu Ni Si-Co alloy made of P from the formation of coarse second phase particles. Further, the present invention is also another object of providing a method for producing the Cn-Ni-Si-Co alloy. After the study of the heart, the present invention can be used to suppress the inventors' efforts to solve the above problems, and to perform the inter-thermal rolling and solution treatment under the specific conditions to produce the coarse phase one-phase particles. In the case of the body, it is known that in the manufacturing step of the Cu_Ni_Si_c lanthanide alloy, the hunt can be suppressed to such an extent that it hardly causes any adverse effect on the strength and the bending workability by satisfying the following two conditions. a(1) is 95〇. After heating for 1 hour or more in °~105 generation, the inter-heat rolling is performed, and the temperature at the end of the inter-heat rolling is 85 (rc or more, and then cooled at a cooling rate of 15 ° C /s or more; (2) 85固£>c~105〇°c is solution treated and then cooled at a cooling rate of 15t:/s or more. According to this manufacturing method, the second phase particles having a particle diameter of more than 10/m can be eliminated, and It is possible to suppress the number of second phase particles having a particle diameter of 5 centimeters to ... m to 5 Å/mm or less. If the distribution conditions of such second phase particles are present, the strength and bending workability may be adversely affected. Although it is also known that the strength and conductivity can be improved by adding Cr, it is added to the Si-based alloy, and the coarse second-phase particles are more easily formed. It is easy to form a telluride because of Cr t. 200900515 In the case of 粗/u, for example, in Patent Document 2, it is described that the chromium content is less than 0.08%, and that there is a penny. However, if the method according to the present invention is used, even if the number of times is increased,叮4 can also suppress the formation of coarse Cr telluride. The effect of the surface is more prominent, and combined with the effect of adding Co, it can be more twisted and twisted and added with the characteristics of the ascending alloy. Based on the above findings, the invention is based on the invention. Copper alloy jade for electronic materials, containing Ni. ι·〇~2 5 temporary denier 0/ 5 shell $%, Co: 〇·5 ~2.5 mass%, Si. 0.30~1.20 mass%, surplus. ^力士— The P-knife of the phantom is composed of Cu and inevitable impurities, and there are two phase particles of the sputum that are more than 1 〇># m, and in the cross section parallel to the rolling direction, the granules are 1. The second phase particles of #m~10am are at 50/mm2 or less. The electronic material of the present invention uses 5 cups of copper for everyone. In one embodiment, the grain 彳<τ< The second phase particles having a position of 5 "m~1〇#m are 25/mm2 or less. The copper alloy for electronic materials of the present invention further contains Cr up to 〇.5 mass in the embodiment. In another embodiment, the steel for electronic material of the present invention further comprises a material selected from the group consisting of Mg, P, as, Sh, s W, Be, B, Mn, Sn Groups of s, Ti, Zr, A, Fe, Zn, and Ag + s , n are at least one of the alloying elements in the group, and the total amount of the alloying elements is as large as 2·〇% by mass. The present invention is also used to manufacture +. ^ The above copper alloy manufacturing method comprises the following steps: - a step of casting the ingot having the desired composition by dazzle casting; 乂950 C~l〇5〇C heating for more than one hour Inter-calendering, 10 200900515 The temperature at the end of the calender calendering is at 8 5 〇 ° c in μL from above, and is cooled to 4 〇〇t at an average cooling rate of 15 ΐ:/s or more; - Cold rolling Step; solid solution treatment at a temperature of 15 ° C / S or more - at 85 ° ° C ~ l 〇 5 ° ° c cooling the cooling rate to 400. (3 steps; - any cold rolling step; - aging treatment step; and - any cold rolling step. The present invention is a copper alloy using the above copper alloy. Electronic parts of alloys. According to the present invention, since generation of coarse second phase particles can be suppressed, it is possible to provide a less
Wsi-c。系合全。亦二弟-相拉子之生成影響之 ^ 亦即’由於可控制因添加Co、Cr所 造成之負面影響,因此 坏 果…^ U此几制對合金之特性提升的正面效 提升強度。 在不犧牲導電性及-曲加工性下, 【實施方式】 [第二相粒子之分布條件] 右為卡遜糸合金’則可葬由每#、吞上 ^ Μ „ , ^ ^ 、】Τ猎由貝轭適當的熱處理,使以 鱼屬間化合物為主體 電率發生劣化," 弟-相粒子析出,且不會使導 至是c日士 亚可4求高強度化。然而,若添加C。,甚 至-C…則第二相粒子容易粗大化。Wsi-c. The system is complete. The influence of the second brother-phase puller ^, that is, because of the negative effects caused by the addition of Co and Cr, the bad effect...^ U is a positive effect on the alloy's characteristics. Without sacrificing conductivity and curvature processing, [Embodiment] [Distribution condition of second phase particles] Right is Carson 糸 alloy', which can be buried by ##, ^ Μ „ , ^ ^ , Τ The proper heat treatment of the yoke by the shell yoke causes the electric potential of the fish-based compound to deteriorate, and the younger-phase particles are precipitated, and the lead is not required to be high-strength. Adding C., even -C..., the second phase particles are easily coarsened.
粒徑在1 " m L 幫助, 之粗大第2相粒子不僅對強度沒有The particle size is 1 " m L helps, the coarse 2nd phase particles are not only for strength
吊助,且亦會佶辔A σ工性降低。特別是粒徑超過1 0 // m 11 200900515 之弟二相粒子,由於會明顯使彎曲加工性降低,因此必須 要使上限為Wm。,准,粒徑為5//m〜1〇#m之第二相粒 子’只要在50個W以内的話’就不會損及強度、弯曲 力口工性。 根據本發明,可充分抑制c〇矽化物、c 表之第二相粒子的粗大化,且 勿為代 J而疋弟—相粒子之分布的 上述要件。第二相粒子之粒徑及個數’可將相對材料之壓 延方向為平行之剖面加以敍刻後,藉由SEM觀察來加以測 得。於本發明中,帛2相粒子之粒徑,係指在該條件下進 订SEM觀察時,環繞該粒子之最小圓的直徑。 因此,於本發明之一實施形態中,不存在粒徑超過1〇 之第二相粒子,且平行於壓延方向之剖面上,粒徑為 〜l〇/im之第二相粒子在以下。 於本發明之-較佳實施形態中,不存在粒徑超過… 爪之第二相粒子,且平行於壓延方向之剖面上,粒徑為5 〜i0/zm之第二相粒子在25個&…以下。 於本兔月之更佳實施形態中,不存在粒徑超過】〇 # m之第二相粒子,且平行於壓延方向之剖面上,粒徑為5 βηι〜l〇#mi第二相粒子在2(M@/mm2以下。 於本發明之-再更佳實施形態中,不存在粒徑超過1〇 ”之第二相粒子,且平行於壓延方向之剖面上,粒徑為 ^以瓜〜:^“爪之第二相粒子在^個&⑷以下。 於本發明中,第二相粒子主要係指石夕化物’但並不限 於此’亦可是在炼解鑄造之凝固過程中所產生的結晶物與 12 200900515 在之後的冷卻過tb rtrl 4 .Lifting, and will also reduce the workability of A σ. In particular, since the two-phase particles having a particle diameter exceeding 10 0 / m 11 200900515 have a marked deterioration in bending workability, it is necessary to make the upper limit Wm. In the case where the second phase particles of the particle size of 5/m to 1 〇#m are within 50 W, the strength and bending workability are not impaired. According to the present invention, it is possible to sufficiently suppress the coarsening of the c-telluride and the second phase particles of the c-table, and it is not necessary to be the above-mentioned requirement for the distribution of the phase-phase particles. The particle diameter and the number of the second phase particles can be measured by SEM observation after the cross section of the opposite material is parallelized. In the present invention, the particle diameter of the 帛2-phase particles means the diameter of the smallest circle surrounding the particles when the SEM observation is performed under the conditions. Therefore, in one embodiment of the present invention, the second phase particles having a particle diameter of more than 1 Å are not present, and the second phase particles having a particle diameter of 〜1 〇/im are as follows in the cross section parallel to the rolling direction. In a preferred embodiment of the present invention, there is no second phase particle having a particle size exceeding the claw, and a second phase particle having a particle diameter of 5 to i0/zm in a cross section parallel to the rolling direction is 25 &;…the following. In a preferred embodiment of the present invention, there is no second phase particle having a particle size exceeding 〇#m, and the particle size is 5βηι~l〇#mi in the cross section parallel to the rolling direction. 2 (M@/mm2 or less. In the further preferred embodiment of the present invention, the second phase particles having a particle diameter of more than 1 Å are not present, and the particle diameter is in the cross section parallel to the rolling direction. : ^ "The second phase particles of the claw are below ^ & (4). In the present invention, the second phase particles mainly refer to the stone slick compound 'but not limited to this' or may be in the solidification process of the refining and casting The resulting crystals were cooled with 12 200900515 after tb rtrl 4 .
/、 生的析出物、在熱間壓延後之A 郃過程中所產生的挤山此 ^ <令 ,,的析出物、在固溶處理後之冷卻過程中戶斤 產生的析出物、以;g y_ n± 1 > 甲所 ΓΧΓ Γ . 寸效處理過程中所產生的析出物。 [Ni、Co及Si之添加量]/, the raw precipitate, the crushed mountain produced during the heat-pressed A 郃 process, the precipitate, the precipitate produced during the cooling process after the solution treatment, ;g y_ n± 1 > A ΓΧΓ ΓΧΓ Γ . The precipitate produced during the treatment process. [Addition of Ni, Co and Si]
Ni Co及Sl ’可藉由實施適當之熱處理以形 化合物,且不會使導電率# 屬間 . 守%半土生 < 化,並可謀求高強度化。Ni Co and Sl ' can be formed by a suitable heat treatment to form a compound, and the conductivity # is not interdependent. %% is maintained and can be increased in strength.
Ni、Co及Si之各添力口吾,戈χτ. ,Λ 备咏加里右Ni未達1_〇質量。Λ,c〇 未達0.5質!%,Si未達03暂晉。/η 士 貝里/0時,則無法得到所欲之 強度’相反地’若Ni超過2.5質量%,co超過25質”Ni, Co, and Si add force to each of them, Geχτ., 咏 咏 咏 Gary right Ni has not reached 1_〇 quality. Hey, c〇 is not up to 0.5 quality! %, Si did not reach 03 temporary promotion. /η 士士里/0, you can't get the intensity you want. 'Inversely' If Ni exceeds 2.5% by mass, co exceeds 25 quality."
Si超過U質量%時,則雖可謀求高強度化,但導 會明顯降低,並且熱間加工性亦合 刀均另化。因此,使Ni、c〇 及Si的添加量為犯:U〜2.5質量。/。,C〇: 0.5〜2·5質旦 %’ ^0.30 42質量%。較佳為m: i 5〜2〇質量% 0.5 〜2.0 質量%,Si · 〇·5 〜ίο 質量%。 [Cr之添加量]When Si exceeds U mass%, the strength can be increased, but the lead is remarkably lowered, and the hot workability is also reduced. Therefore, the addition amount of Ni, c〇 and Si is made to be: U~2.5 mass. /. , C〇: 0.5~2·5 quality denier %' ^0.30 42% by mass. Preferably, m: i 5 to 2 〇 mass% 0.5 to 2.0 mass%, Si · 〇·5 ̄ίο mass%. [Cr addition amount]
Cr ’可藉由實施適當之熱處理 使Cr早獨或以Cr石夕 化物(為與Si之化合物)的形態析屮 /〜何出於銅母相中,不會損 及強度’並可謀求導電率的提升。因 r总丄 μ此’可添加Cr最大〇 5 質量%於本發明之Cn-Ni-Si-Co系合么山 ^ 迅中。惟,右未達〇.〇3 質量% ’則該效果小’若超過0.5質量%,則由於會形成對 強化沒有幫助之未固溶粒子,損及加工性,因此較佳添加 0.03〜0.5質量%,更佳為0_1〜0.3暂θ 貝重%。 [其他之添加元素] 進一步藉由添加既定量之Mg、ρ、As、sb、Be、β、 13 200900515 Μη、Sn、Ti、Zr、Al、Fe、Ζη及Ag’而可具有各種效果, 可彼此補其不足之處,不僅強度、導電率,由於亦具有改 善製造性(如改善彎曲加工性、鍍敷性及受鑄塊組織微細 化影響之熱間加工性)之效果,因此可视所求之特性,將 上述其中一種以上的元素適當添加於本發明之Cu-Ni-Si-Co 系合金中,於該種情形時,其總量最大為2.0質量%,較 佳為0.001〜2_0質量%,更佳為〇.〇1〜1 ·0質量%。相反地, 若此等元素的總量未達0.001質量%時’則無法得到所欲 的效果’若超過2.0質量%時,則導電率將會明顯降低, 且製造性亦會顯著劣化,故不佳。 [製造方法] 卡遜系銅合金之一般製程,首先係使用大氣熔解爐, 將電解銅、Ni、Si、Co等原料加以熔解,以得到所欲組成 溶融液。接者,將此溶融液鱗造成禱鍵。然後,進行熱 間壓延,並反覆進行冷間壓延與熱處理,精加工成且有所 :厚度及特性之條、箱。熱處理,具有固溶處理與時效處 :固溶處理,係以約700〜約刪t的高温進行加熱, 士卜糸化合物' c〇_Si系化合物固溶於&基地中 :使:?地再結晶。有時固溶處理亦可以熱間壓延來進 ’則是在、約350〜約550。〇的温度範圍内加 s、:之時八:上’使經固溶處 口物以微細粒子的形態析出。 升強度與導電率。為了得到f古夕出/由此日守效處理可提 及/或時'、 ^強度,有時會在時效前 ^效後,進行冷間塵延。且,於時效後進行冷間厂堅延 14 200900515 的情形,有時會在冷間壓延後進行去應變退火(低温退 火)。 在上述各步驟之間’適當時可進行用以去除表面氧化 錢皮之研磨、研磨、珠粒喷擊酸洗等。 本發明之銅合金雖然經過上述製程,但為了防止第二 相粒子之粗大化,而必須嚴格控管熱間壓延與固溶處理之 進行。在鑄造時的凝固過程中’會不可避免地生成粗大的 結晶物,在其冷卻過程中則會不可避免地生成粗大的析出 物。因此,在之後的步驟中,必須將此等之第二相粒子固 溶於母相中,而若在95〇t〜1〇5(rc下保持i小時以上後, 再進行熱間壓延,並使熱間壓延結束時的温度纟85〇。。以 上的話,則即使添加有co,甚至是Cr的情形,亦可將立 固溶於母相中。95吖以上之温度條件,肖其他卡遜系合 的!月开v相車乂之下’係較咼的温度設定。若熱間壓延前之 保持温度未達95CTC時,則固溶將會不充分,若超過ι〇5〇Cr ' can be formed by pre-existing Cr or by the form of Cr-based compound (which is a compound with Si) by appropriate heat treatment, and it is not affected by the strength of the copper matrix, and can be made conductive. The rate is improved. Since r total 丄 μ this can be added with Cr maximum 〇 5 mass% in the Cn-Ni-Si-Co system of the present invention. However, if the right side does not reach 〇.〇3 mass% 'the effect is small', if it exceeds 0.5 mass%, it will form an undissolved particle which does not contribute to strengthening, and the workability is impaired. Therefore, it is preferable to add 0.03 to 0.5 mass. %, more preferably 0_1~0.3 temporary θ. [Other addition elements] Further, various effects can be obtained by adding a predetermined amount of Mg, ρ, As, sb, Be, β, 13 200900515 Μη, Sn, Ti, Zr, Al, Fe, Ζη, and Ag'. In addition to the insufficiency of each other, not only the strength and electrical conductivity, but also the effect of improving the manufacturability (such as the improvement of the bending workability, the plating property, and the hot workability affected by the micronization of the ingot structure), In view of the characteristics, one or more of the above elements are appropriately added to the Cu-Ni-Si-Co alloy of the present invention. In this case, the total amount is at most 2.0% by mass, preferably 0.001 to 2_0. %, more preferably 〇.〇1~1 · 0 mass%. On the other hand, if the total amount of these elements is less than 0.001% by mass, 'the desired effect cannot be obtained'. If it exceeds 2.0% by mass, the electrical conductivity will be remarkably lowered, and the manufacturability will be remarkably deteriorated, so good. [Manufacturing Method] The general process of the Caston copper alloy is firstly using an atmospheric melting furnace to melt the raw materials such as electrolytic copper, Ni, Si, and Co to obtain a desired molten liquid. In addition, the molten liquid scale is prayed. Then, the inter-heat rolling is performed, and the inter-cold rolling and heat treatment are repeated, and the finished product is formed into a strip and a box of thickness and characteristics. Heat treatment, with solid solution treatment and aging treatment: solution treatment, heating at a high temperature of about 700 ~ about t, the compound of the cessil compound 'c〇_Si compound is dissolved in the base of the base: Recrystallize. Sometimes the solution treatment can also be carried out by calendering at a temperature of about 350 to about 550. When s is added in the temperature range of 〇, at the time of 8: upper, the solid solution is precipitated in the form of fine particles. Increase strength and electrical conductivity. In order to obtain f 夕 出 / / / / / / / / / / / / / / / / / / / , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Moreover, after the aging, the cold room is strengthened. In the case of 200900515, strain relief annealing (low temperature annealing) is sometimes performed after cold rolling. The polishing, the grinding, the bead blasting, and the like for removing the surface oxidized skin may be carried out as appropriate between the above steps. Although the copper alloy of the present invention has undergone the above-described process, in order to prevent coarsening of the second phase particles, it is necessary to strictly control the heat-intercalation and solution treatment. In the solidification process during casting, coarse crystals are inevitably formed, and coarse precipitates are inevitably formed during the cooling process. Therefore, in the subsequent step, the second phase particles must be dissolved in the matrix phase, and if it is maintained at 95 〇t~1〇5 (rc for more than i hours, heat-calendering is performed, and The temperature at the end of the calender calendering is 〇85 〇. If the above is added, even if co is added, even in the case of Cr, the solid solution may be dissolved in the matrix phase. The temperature condition above 95 ,, other Kason The temperature is set below the monthly opening v-phase '. If the temperature before the hot rolling is less than 95CTC, the solid solution will be insufficient. If it exceeds 〇5〇
c士時、,則會有使材㈣解的可能m熱間壓延結束 3寸的温度未達8501 ’則由於所固溶之元素會再度析出, 因此而無法得到高強度。 ^彳上述第—相粒子固溶後,若熱間壓延結束後的冷 呈冷,度較慢時’則亦會導致。及,或c。的矽化物 斤出右在稍後的步驟中’以此種组織進行以提升強 •^為目的的熱處理(時 . V时双處理)時,則由於在冷卻過程中, 將冒以析出之析出物為核, 析出物,因此而I法得到為對強度〉又有^助的粗大 …'法侍到咼強度。然而,若提高平均冷卻 15 200900515 u又至夕化物析出較為顯著的400。。,具體而言,15°C /s 以上的話,則可以抑制該矽化物的析出。 。於口心處理時亦相同,可藉由使固溶處理温度為850 C 1 050 c ’來固溶第二相粒子。固溶處理後之冷卻亦如 上W理由Ά須使其快速’ i 4Q(rc的平均冷卻速度同樣 '、、、要在5 C /s以上。若不控管熱間壓延後的冷卻速度, 而僅對固溶處理後的冷卻速度加以控制,亦無法藉由之後 的時效處理來充分抑制粗大的第二相粒子。熱間壓延後的 q卻速度,以及固溶處理後的冷卻速度必須要一同加以控 制。 熱間壓延結束後及固溶處理後之上述平均冷卻速度, 較佳在20°C/s以上。 使冷卻快速的方法,水冷係最為有效果的方法。惟, 由於因使用於水冷之水的溫度會使冷卻速度改變,因此可 藉由控管水温來使冷卻更加快速。若水温在25t以上時, 則有時候會無法得到所欲之冷卻速度,因此較佳為保才:在 25 C以下。若將材料放進儲存有水的槽内進行水冷時,則 25^上’ @此較佳為;霧成霧 狀(喷淋狀或霧氣狀)使材料在一定之水、、β卩 、 /皿以下) 下冷卻,或是以一直有冷水流至水槽的方式來防止水温上 昇。且,亦可藉由增設水冷噴嘴、增加每單位小時之水量, 來提高冷卻速度。In the case of c, there is a possibility that the material (4) may be melted. If the temperature of 3 inches is less than 8501 ′, the solid solution may be precipitated again, so that high strength cannot be obtained. ^ After the above-mentioned first-phase particles are solid-solved, if the cold after the end of the hot rolling is cold, the degree is slower. And, or c. The bismuth compound is extracted from the right side in the later step, 'the heat treatment for the purpose of lifting the strong metal (the double treatment when V. V), because it will precipitate during the cooling process. The precipitate is a nucleus, a precipitate, and therefore the I method is obtained as a coarseness of the strength and the help of the method. However, if the average cooling 15 200900515 u is increased, the precipitation of the compound is more significant. . Specifically, when it is 15 ° C /s or more, precipitation of the telluride can be suppressed. . The same is true for the core treatment, and the second phase particles can be solid-solved by setting the solution treatment temperature to 850 C 1 050 c '. The cooling after the solution treatment is also as described above for the reason that it is not required to be fast 'i 4Q (the average cooling rate of rc is the same ', and is above 5 C / s. If the cooling rate after the inter-heat rolling is not controlled, Only the cooling rate after the solution treatment is controlled, and the coarse second phase particles cannot be sufficiently suppressed by the subsequent aging treatment. The q speed after the hot rolling and the cooling rate after the solution treatment must be the same. The above average cooling rate after the end of the hot rolling and after the solution treatment is preferably 20 ° C / s or more. The method of rapid cooling, the most effective method of water cooling, but because of the use of water cooling The temperature of the water will change the cooling rate, so the cooling can be made faster by controlling the water temperature. If the water temperature is above 25t, sometimes the desired cooling rate will not be obtained, so it is better to protect it: 25 C or less. If the material is placed in a tank in which water is stored for water cooling, then 25^@@ is preferred; the mist is foggy (spray or mist) to make the material in a certain amount of water,卩 卩, / / below) Or to prevent the water temperature from rising by the way that cold water always flows to the sink. Moreover, the cooling rate can be increased by adding a water-cooled nozzle and increasing the amount of water per unit hour.
於本發明,“至400°C之平均冷卻速度,,,係指計算 材料從熱間壓延終溫或固溶處理溫度冷卻至4〇〇。〇之I 16 200900515 日守’以(固溶温度·40〇) (0c ) /冷卻時門 値rc/s) 。 了間(S) 所算出之 又,時效處理之條件,σ 以平f所丨f % / ,、要有助於析出物之微細化, 乂十㊉所丨貝用進行的條件 以估挤屮舲τ - 1一而/主意設定溫度及時間 以使析出物不粗大化。若舉時效處理 3 5 0〜5 5 0。「认、β — 之條件的一例’為在 550匚的溫度範圍内卜 。「的、、θ择#阁 ^ 更佳為在400〜500 C的/皿度乾圍内 幾半mud f又日守政處理後的冷卻速度, f" 成手不會對析出物的大小造成任何影響。 本發明之Cu-Ni-Si-Co系合金,可Λ 丁山 u< ., ’’ 加工成各種伸銅品, 幻如板'條、管、棒及線, .如人人 卫且本發明之Cu-Ni-Si-Co 系銅合金,可使用於導線 口口 0日 疋牧亞接腳、端子、繼電 為、開關、二次電池用箔材等之電子零件等。 [實施例] 以下與比較例-起顯示本發明之實施例,惟此等實施 例’僅是為了更加瞭解本發明及其優點所提供者,並非用 以限定本發明者。 以高頻熔解爐’在130(rc下將表1所記载之各種成分 組成的銅合金加以溶製,鑄造成厚度3〇mm的鑄錠。接著, 將此鑄錠加熱至looot後,以各種最後溫度(熱間壓延级 温γ進行熱間屢延至板厚10mm,迅速地以各種冷卻速度 冷卻至40(TC,最後在100t:以下。然後,為了去除表面 的銹皮,實施平面切削至厚度9mm後,以冷間壓延製成厚 度為〇,3mm之板。接著在950t:下進行12〇秒的固溶處理二 然後馬上以各種冷卻速度將其冷卻至4〇(rc,最後在 17 200900515 c以下。之後進行 3小時在惰性環境氣气最後以50°。。花費 對以… 效處理’製得試驗片。 出物 所製得之各試驗片,以下述方式進1 出物之分布、強度、導電性及f曲加工性的特,心仃析 目粒子,則是以使用直徑i # m 的機械研磨,將材料平行於塵延方 精:石研磨粒 —碑# 、’ (波美)之氯化鐵水溶液中,邊、隹 仃見",浸潰2分鐘。藉由此蝕刻 :使第二相粒子出現。使一M〔場發:::: 子顯微鏡,簡LIPS公司製〕,倍率咖倍(觀察視野= 川“„〇,對此剖面任意觀察1〇個部位,計算粒徑$〜μ ”之析出物的個數、及粒徑超過1〇”之析出物的個數, 然後算出每1mm2之個數。可藉由使用FE_SEM之咖〔能 散X射線分析〕分析其代表形態者,來確認第二相:b 矽化物。 碍 強度,可進行壓延平行方向之拉伸試驗來測得〇2%安 全限應力(YS : MPA )。 導電率(EC; %IACS),則可藉由惠斯登電橋所測得 之體積電阻率來求得。 彎曲加工性之評價,係以Badway (彎曲轴之方向與壓 延方向相同)之W彎曲試驗,使用W字型金屬模具,在 試樣板厚與彎曲半徑之比為1的條件下進行9 〇。彎曲加工。 評價,係以光學顯微鏡觀察彎曲加工部表面,將未觀察到 裂痕的情形判斷為實用上沒有問題’表示為〇,有裂痕的 18 200900515 情形則為X。 結果示於表1。 \ 19 200900515 \ 彎曲加工性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 導電性 %IACS On 1—H un (Ν ιη 1—Η Ό 強度 MPa 〇 00 〇 00 〇 CO § 00 00 s 00 as 00 o 冢 o g 00 S 00 ο ο οο 00 m oo 00 o 00 o Ch 00 Os 00 ο 析出物 >10//m 個/mm2 〇 〇 〇 〇 ο ο o o o o o 〇 ο ο ο o o o o o ο ο 析出物 5 〜10//m 個/mm2 rn 卜 Τ-Η m oo 1—^ m (N 00 CN 卜 r—( m ΓΛ IT) <N oo (D 00 1—Η 固溶處理 (方法) 水冷1 水冷1 水冷2 水冷2 水冷2 丨水冷2 1水冷l 1 丨水冷1 水冷1 水冷1 水冷1 水冷1 水冷2 水冷2 水冷2 水冷2 水冷1 水冷1 水冷1 水冷1 水冷1 水冷1 冷卻 〇〇 00 产Η m VO i oo 1—( 00 f'«Ή 00 oo 00 1—H oo I丨1 Ο ι—Η in IT) 1—^ Ό * 1 ^ 00 00 τ-^ 00 τ-Η OO r-H 00 οο > "< 熱間壓延 (方法) 水冷1 水冷1 水冷2 水冷2 水冷2 水冷1 1水冷l 水冷1 水冷1 水冷1 水冷1 水冷1 水冷2 水冷2 1 水冷2 水冷1 水冷1 水冷1 水冷1 水冷1 水冷1 水冷1 冷卻雜 00 ί—^ Ό Τ—Η UO Η 00 oo 1—( oo 1—H 00 oo 00 v〇 ( IT) 1—Η oo r_____A oo οο Τ—^ οο r-H 00 产 < 00 οο r11 i 最後; ON 〇 00 00 〇 00 o 〇\ o o ο o C\ ο 沄 00 00 Ο οο o ο s ο ο s ο ο ο 組成(質量〇/〇) Ms O.lMg O.lMg O.lMg O.lMg O.lMg O.lMg O.lMg O.lMg (N <Ν (Ν CN (Ν (N CN CN o (Ν (N 0.05 ^t; 0.65 0.65 0.65 0.65 0.65 0.65 ; 0.54 0.54 ] _1 0.81 0.81 0.65 0.65 0.65 0.65 ! 0.65 1_ 0.65 0.54 0.54 0.81 0.81 0.65 0.65 〇 1—^ ρ («' < ρ 1—( ρ ρ Η p \Ω 'O to r__ Η 1—H p ρ ι—Η ρ r*H p 1 Ο ρ in »—* ir> ρ ρ r Η 〇〇 00 , < 00 oq >' < 00 r' Η oo oo r Ή 00 OO f 00 00 r_ — οο 00 ^-Η OO ΟΟ I I oo 1—( oo r__ < oo 1 CO r—* oo r-^ οο ι "4 oo ϊ—Η 〇 1 1 CN 寸 oo o\ o r-^ r— * CN rn ΙΟ Γ- 产 OO (Ν (Ν 200900515 〇 〇 X 〇 〇 X X X X X -,-- _ X X _ - ο - 穿 芽 a; 芽 CO p. ο kn Ο ο :.Λ〇ϊ .¾ 〇 卜 , , s 卜 S 卜 vn P 卜 〇 _5 ο ,._< rs (N .1—<: ΓΟ cn -r cn r*^ ΠΊ .寸 m V〇 i l〇 o s 没 .家 Ξ -»—Η 〇 r—« § T?H ΓΠ 4^ 朵 CO 女 cn; _ 3 r^, cn r i 今: m f k CN 1 m 1 介 糾 <rv t Ϊ m rn' .ώ m '4' rn 2 »r, ΓΟ 1—H rn 卜 二 :JU m ; m 会 cn i% (N c \ % cn $ CO i m 1 s cn i |p| cn $ ο ο. .〇 o 〇 «η W, ο o Ό o 〇 ο 00 :g: 00; s 00 .O- CT) 00 o oo oc 00 〇 3 1 I I I 耀 I I t i·"1 i o f r—t o o Ϊ—( 〇 s ;:ο·; 04 o (N (N 〇 <N (N 〇 <N (N CN (N 〇 (N ρ·' ο ο o VO in v〇 o ί〇 〇 o o !2 ;2 〇 s S T—H rn cn o p p l_ _< p r—^ P ,丨— p r—< o F.._< p ρ ϊ> CN οο , < oq 1 < 00 1 — 00 < < oo r H 00 i 1 00 CO 1 ( OO i—l oo OO r-H 00 ”H oo 00 f— ΓΊ (Ν 04 Ό (N 〇\ (N 沄 m CN m £ i ιί : 200900515 表1中’為熱間壓延後之冷卻條件的水a 於相對試驗片體積(刪⑼mm3) 5G倍之水^ 2浸潰 ”,水冷2係較水冷3增加10%水量的情形,水;2 ΐ在又t5t3增力口20%水量,且使用流水將水槽中之水温# 以下的情形。空冷係放置在空氣中冷卻的情 為固溶處理時之冷卻條件的水冷 驗片體積—倍之水量之水槽 =水冷3增力,水量的情形,水冷"二二 增力口 20%水詈,日你m,士, ^ ^ 3 使用W水將水槽中之水溫控管在2 5 、 下的N开v。空冷係放置在空氣中冷卻的情形。 、 以下說明各試驗片。 Νο.1〜Ν〇.22為本發明之實施例。可知 及彎曲加工性皆是高水準。 &導電性 -林Γ二為無添加co及Cr之例。可知此情形,即使未 厭 …、間壓延後、固溶處理時的冷卻條件,亦可抑击丨 粗大之析出物。 」』抑制 攸No.24可知,即使僅添加少量# &,若無控管 條件及最後溫度’則會產生相當量的析出物,亦即c 容易產生析出物。 1 很 Ν〇·25係在N〇24之試驗片進一步添加有微量 例析出物之量進_步增加。由此⑲, 析出物。 j各易產生 及No.27為熱間壓延後的冷卻條件適卷,田 後溫度及固溶處理時的冷卻條件不適當之例。㈤—取 22 200900515 Ν〇·28為最後溫度適當,但是熱間壓延後及固溶處理 • 時的冷卻條件不適當之例。 Ν〇.29為最後溫度及固溶處理時的冷卻條件適當,但 是熱間壓延後的冷卻條件不適當之例。 Ν〇·30為組成條件適當,但是冷卻條件及最後溫度皆 不適當之例。 Ν〇·3 1為組成條件適當,但是冷卻條件及最後溫度皆 不適當。 fIn the present invention, "the average cooling rate to 400 ° C," means that the calculated material is cooled from the inter-heat rolling final temperature or the solution treatment temperature to 4 Torr. I 2009 I 16 200900515 守守' (Solution temperature) ·40〇) (0c) / Threshold rc/s when cooling. The condition of aging treatment calculated by (S), σ is equal to f % / , and should contribute to the precipitation Micronization, the conditions for the use of ten 丨 丨 以 以 估 估 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - An example of the condition of recognizing, β - is in the temperature range of 550 。. ", , θ Select #阁 ^ More preferably in the 400~500 C / 度度干围half half f f The cooling rate after the treatment, f" the hand does not have any influence on the size of the precipitate. The Cu-Ni-Si-Co alloy of the present invention can be processed into various coppers. Product, illusion plate's strips, tubes, rods and wires, such as the Guardian and the Cu-Ni-Si-Co copper alloy of the present invention, can be used for wire mouth 0 疋 疋 亚 、, terminal An electronic component such as a relay, a switch, or a foil for a secondary battery, etc. [Embodiment] Hereinafter, embodiments of the present invention are shown as a comparative example, but the embodiments are merely for understanding the present invention and The advantages provided by the present invention are not limited to those of the present invention. In a high-frequency melting furnace, a copper alloy composed of various components described in Table 1 is dissolved at 130 (rc), and cast into an ingot having a thickness of 3 mm. Then, after the ingot was heated to the looot, the heat was repeatedly extended to a plate thickness of 10 mm at various final temperatures (heat-to-calender temperature γ), and rapidly cooled to 40 (TC, and finally at 100 t: or less at various cooling rates. Then, in order to remove the scale on the surface, planar cutting is performed to a thickness of 9 mm, and then a plate having a thickness of 〇, 3 mm is formed by cold rolling. Then, a solution treatment of 12 sec is performed at 950 t: and then various cooling is performed immediately. The speed is cooled to 4 〇 (rc, finally below 17 200900515 c. After 3 hours in an inert atmosphere, the final gas is 50 °. The cost of the test is made to produce a test piece. Each test piece, in the following manner 1 The distribution, strength, conductivity and f-processability of the material, and the analysis of the particles of the heart, the mechanical grinding using the diameter i # m, the material parallel to the dust square fine: stone abrasive grain - monument # , '(Bomei) in the aqueous solution of ferric chloride, side, 隹仃 see ", dipping for 2 minutes. By etching: the second phase particles appear. Make a M [field hair:::: submicroscope , by the LIPS company, the magnification of the coffee times (observation field of view = Chuan "„〇, any section of this section is observed arbitrarily, the number of precipitates of particle size $~μ ” is calculated, and the particle size exceeds 1〇” The number of precipitates is then calculated for each number of 1 mm 2 . The second phase: b telluride can be confirmed by analyzing the representative form by using FE_SEM coffee (dispersive X-ray analysis). In the case of the strength, a tensile test in the parallel direction of rolling can be performed to measure the 〇2% safety limit stress (YS: MPA). Conductivity (EC; % IACS) can be obtained from the volume resistivity measured by the Wheatstone bridge. The bending workability was evaluated by a W-bend test using a W-shaped metal mold using a W-shaped metal mold at a ratio of a sample thickness to a bending radius of 1 using a W-bend test. Bending processing. In the evaluation, the surface of the bent portion was observed with an optical microscope, and the case where no crack was observed was judged to be practically no problem, and it was expressed as 〇, and in the case of cracked 18 200900515, it was X. The results are shown in Table 1. \ 19 200900515 \ Bending processability 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 conductivity %IACS On 1—H un (Ν ιη 1—Η Ό Strength MPa 〇00 〇 00 〇CO § 00 00 s 00 as 00 o 冢og 00 S 00 ο ο οο 00 m oo 00 o 00 o Ch 00 Os 00 ο Precipitate >10//m/mm2 〇〇〇〇ο ο ooooo 〇 ο ο ο ooooo ο ο Precipitates 5 ~10//m/mm2 rn Bu Τ-Η m oo 1—^ m (N 00 CN 卜r—( m ΓΛ IT) <N oo (D 00 1—Η Solution treatment (method) Water-cooling 1 Water-cooling 1 Water-cooling 2 Water-cooling 2 Water-cooling 2 Water-cooling 2 1 Water-cooling l 1 Water-cooling 1 Water-cooling 1 Water-cooling 1 Water-cooling 1 Water-cooling 1 Water-cooling 2 Water-cooling 2 Water-cooling 2 Water-cooling 2 Water-cooling 1 Water-cooling 1 Water-cooling 1 Water-cooling 1 Water cooling 1 Water cooling 1 Cooling 〇〇 Η Η m VO i oo 1—( 00 f'«Ή 00 oo 00 1—H oo I丨1 Ο ι—Η in IT) 1—^ Ό * 1 ^ 00 00 τ- ^ 00 τ-Η OO rH 00 οο >"< Hot rolling (method) Water cooling 1 Water cooling 1 Water cooling 2 Water cooling 2 Water cooling 2 Water cooling 1 1 Water cooling l Water cooling 1 Water cooling 1 Water cooling 1 Water cooling 1 Water cooling 1 water cooling 2 water cooling 2 1 water cooling 2 water cooling 1 water cooling 1 water cooling 1 water cooling 1 water cooling 1 water cooling 1 water cooling 1 cooling miscellaneous 00 ί—^ Ό 1—Η oo r_____A oo οο Τ—^ οο rH 00 Produce < 00 οο r11 i Last; ON 〇00 00 〇00 o 〇\ oo ο o C\ ο 沄00 00 Ο οο o ο s ο ο s ο ο ο Composition (mass 〇/〇) Ms O.lMg O.lMg O.lMg O.lMg O.lMg O.lMg O.lMg O.lMg (N <Ν (Ν CN (Ν (N CN CN o ( Ν (N 0.05 ^t; 0.65 0.65 0.65 0.65 0.65 0.65 ; 0.54 0.54 ] _1 0.81 0.81 0.65 0.65 0.65 0.65 ! 0.65 1_ 0.65 0.54 0.54 0.81 0.81 0.65 0.65 〇1—^ ρ («' < ρ 1—( ρ ρ Η p \Ω 'O to r__ Η 1—H p ρ ι—Η ρ r*H p 1 Ο ρ in »—* ir> ρ ρ r Η 〇〇00 , < 00 oq >' < 00 r ' Η oo oo r Ή 00 OO f 00 00 r_ — οο 00 ^-Η OO ΟΟ II oo 1—( oo r__ < oo 1 CO r—* oo r-^ οο ι "4 oo ϊ—Η 〇1 1 CN inchoo o\ o r-^ r— * CN rn ΙΟ Γ- OO (Ν 200900515 〇〇X 〇 〇XXXXX -,-- _ XX _ - ο - 芽 芽 芽 CO 芽 芽 芽 芽 3 Rs (N .1—<: ΓΟ cn -r cn r*^ ΠΊ . inch m V〇il〇os no. Ξ -»—Η 〇r—« § T?H ΓΠ 4^ CO CO cn; _ 3 r^, cn ri Today: mfk CN 1 m 1 介 &<rv t Ϊ m rn' .ώ m '4' rn 2 »r, ΓΟ 1—H rn Bu 2: JU m ; m will cn i % (N c \ % cn $ CO im 1 s cn i |p| cn $ ο ο. .〇o 〇«η W, ο o Ό o 〇ο 00 :g: 00; s 00 .O- CT) 00 o oo oc 00 〇3 1 III 耀II ti·"1 iofr—too Ϊ—( 〇s ;: ο·; 04 o (N (N 〇<N (N 〇<N (N CN (N 〇 (N ρ·' ο ο o VO in v〇o ί〇〇oo !2 ;2 〇s ST—H rn cn opp l_ _< pr—^ P , 丨 — pr—< o F.._< p ρ ϊ> CN οο , < oq 1 < 00 1 — 00 << oo r H 00 i 1 00 CO 1 ( OO i — l oo OO rH 00 ”H oo 00 f— ΓΊ (Ν 04 Ό ( N 〇\ (N 沄m CN m £ i ιί : 20090 0515 In Table 1, 'water a for the cooling condition after calendering is in the relative test piece volume (deleted (9) mm3) 5G times the water ^ 2 impregnation", water-cooled 2 is 10% more water than the water-cooled 3, water; 2 ΐIn the t5t3 booster port 20% water, and use the running water to make the water in the sink temperature below #. The air-cooling system is placed in the air for cooling. The volume of the water-cooled test piece for the cooling condition of the solution treatment--the water volume of the water tank = the water-cooling force of 3, the amount of water, the water cooling " 22 liters of water , you m, Shi, ^ ^ 3 Use W water to the water temperature control tube in the sink at 2 5, N under the v. The air cooling system is placed in the air to cool. Each test piece will be described below. Νο.1~Ν〇.22 is an embodiment of the present invention. Both the bending processability and the bending processability are high. & Conductivity - Lin Biao II is an example of no addition of co and Cr. It can be seen that in this case, even if it is not rotated, the intercalation, or the cooling condition at the time of solution treatment, it is possible to suppress the coarse precipitate. "Inhibition 攸 No. 24 shows that even if only a small amount of # & is added, if there is no control condition and the final temperature, a considerable amount of precipitates are generated, that is, c is likely to be precipitated. 1 Very Ν〇·25 series The test piece of N〇24 was further added with a small amount of precipitates. Thus 19, precipitates. j is easy to produce and No. 27 is suitable for cooling conditions after hot rolling, and the cooling conditions at the time of the field and the solution treatment are not appropriate. (5)—take 22 200900515 Ν〇·28 is an example where the final temperature is appropriate, but the cooling conditions after hot rolling and solution treatment are not appropriate. Ν〇.29 is a case where the cooling conditions at the final temperature and the solution treatment are appropriate, but the cooling conditions after the inter-heat rolling are not appropriate. Ν〇·30 is an example in which the composition conditions are appropriate, but the cooling conditions and the final temperature are not appropriate. Ν〇·3 1 is suitable for the composition conditions, but the cooling conditions and the final temperature are not appropriate. f
No.32為固溶處理時的冷卻條件適當,但最後溫度及 熱間壓延後的冷卻條件不適當之例。 Νο·33與No.31相同’皆為冷卻條件及最後溫度都不 適當之例,且使熱間壓延後的冷卻速度更慢之例。No. 32 is an example in which the cooling conditions at the time of solution treatment are appropriate, but the cooling conditions after the final temperature and the inter-heat rolling are not appropriate. Νο·33 is the same as No. 31. Both are examples in which the cooling conditions and the final temperature are not appropriate, and the cooling rate after the heat-to-heat rolling is made slower.
No_34為相對於no.33,進一步使固溶處理後的冷卻速 度更慢之例。 Νο·3 5為Co之量過剩,且冷卻條件及最後溫度皆不適 當之例。 /No. 34 is an example in which the cooling rate after the solution treatment is further lowered with respect to no. Νο·3 5 is an excess of Co, and the cooling conditions and the final temperature are not suitable. /
No.36係在No.35之試驗片進一步添加有微量Cr之 例。 【圖式簡單說明】 【主要元件符號說明】 *、、、 23No. 36 is an example in which a small amount of Cr is further added to the test piece of No. 35. [Simple description of the diagram] [Explanation of main component symbols] *, ,, 23
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007092269A JP4937815B2 (en) | 2007-03-30 | 2007-03-30 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200900515A true TW200900515A (en) | 2009-01-01 |
TWI367952B TWI367952B (en) | 2012-07-11 |
Family
ID=39830921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097108444A TW200900515A (en) | 2007-03-30 | 2008-03-11 | Cu-Ni-Si-Co-based copper alloy for electronic material, and method for production thereof |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4937815B2 (en) |
KR (1) | KR101159562B1 (en) |
CN (1) | CN101646791B (en) |
TW (1) | TW200900515A (en) |
WO (1) | WO2008123436A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041197A1 (en) * | 2007-09-28 | 2009-04-02 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
JP4596490B2 (en) * | 2008-03-31 | 2010-12-08 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
WO2010064547A1 (en) * | 2008-12-01 | 2010-06-10 | 日鉱金属株式会社 | Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor |
JP5261161B2 (en) | 2008-12-12 | 2013-08-14 | Jx日鉱日石金属株式会社 | Ni-Si-Co-based copper alloy and method for producing the same |
JP4708485B2 (en) | 2009-03-31 | 2011-06-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
JP5578827B2 (en) * | 2009-10-13 | 2014-08-27 | Dowaメタルテック株式会社 | High-strength copper alloy sheet and manufacturing method thereof |
JP4677505B1 (en) | 2010-03-31 | 2011-04-27 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
JP5961335B2 (en) | 2010-04-05 | 2016-08-02 | Dowaメタルテック株式会社 | Copper alloy sheet and electrical / electronic components |
JP4830035B2 (en) | 2010-04-14 | 2011-12-07 | Jx日鉱日石金属株式会社 | Cu-Si-Co alloy for electronic materials and method for producing the same |
JP4672804B1 (en) | 2010-05-31 | 2011-04-20 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
JP4708497B1 (en) | 2010-06-03 | 2011-06-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si alloy plate and method for producing the same |
JP4834781B1 (en) | 2010-08-24 | 2011-12-14 | Jx日鉱日石金属株式会社 | Cu-Co-Si alloy for electronic materials |
JP2012072470A (en) | 2010-09-29 | 2012-04-12 | Jx Nippon Mining & Metals Corp | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME |
CN102560191A (en) * | 2010-12-09 | 2012-07-11 | 北京有色金属研究总院 | High-performance elastic copper alloy and preparation and processing method thereof |
JP5441876B2 (en) * | 2010-12-13 | 2014-03-12 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
JP5451674B2 (en) | 2011-03-28 | 2014-03-26 | Jx日鉱日石金属株式会社 | Cu-Si-Co based copper alloy for electronic materials and method for producing the same |
JP4799701B1 (en) | 2011-03-29 | 2011-10-26 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same |
JP6039999B2 (en) | 2012-10-31 | 2016-12-07 | Dowaメタルテック株式会社 | Cu-Ni-Co-Si based copper alloy sheet and method for producing the same |
JP5647703B2 (en) * | 2013-02-14 | 2015-01-07 | Dowaメタルテック株式会社 | High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts |
CN106636734B (en) * | 2015-10-30 | 2019-01-15 | 北京有色金属研究总院 | High-intensitive, highly conductive, high resistance to stress relaxation copper alloy elastic material and preparation method thereof |
CN105316523A (en) * | 2015-12-02 | 2016-02-10 | 苏州龙腾万里化工科技有限公司 | Durable resistance alloy for milling machine regulator |
JP6152212B1 (en) * | 2016-03-31 | 2017-06-21 | Dowaメタルテック株式会社 | Cu-Ni-Si copper alloy sheet |
CN105908015A (en) * | 2016-05-05 | 2016-08-31 | 太仓小小精密模具有限公司 | Anti-oxidization copper alloy mold material |
CN106399749B (en) * | 2016-10-05 | 2018-01-05 | 宁波兴业盛泰集团有限公司 | A kind of high strength and high flexibility cupro-nickel Si system alloy material and preparation method thereof |
CN106756202A (en) * | 2016-11-23 | 2017-05-31 | 宁波兴业盛泰集团有限公司 | A kind of blaster fuse frame material complicated pluralism Cu alloy material and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6045698B2 (en) * | 1982-01-20 | 1985-10-11 | 日本鉱業株式会社 | Lead material for semiconductor equipment |
JPS63143230A (en) * | 1986-12-08 | 1988-06-15 | Nippon Mining Co Ltd | Precipitation strengthening high tensile copper alloy having high electrical conductivity |
JP3699701B2 (en) * | 2002-10-31 | 2005-09-28 | 日鉱金属加工株式会社 | Easy-to-process high-strength, high-conductivity copper alloy |
JP4068626B2 (en) * | 2005-03-31 | 2008-03-26 | 日鉱金属株式会社 | Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same |
JP2007136467A (en) * | 2005-11-15 | 2007-06-07 | Hitachi Cable Ltd | Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy |
-
2007
- 2007-03-30 JP JP2007092269A patent/JP4937815B2/en active Active
-
2008
- 2008-03-11 TW TW097108444A patent/TW200900515A/en unknown
- 2008-03-28 CN CN2008800101753A patent/CN101646791B/en active Active
- 2008-03-28 WO PCT/JP2008/056142 patent/WO2008123436A1/en active Application Filing
- 2008-03-28 KR KR1020097021841A patent/KR101159562B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
TWI367952B (en) | 2012-07-11 |
CN101646791A (en) | 2010-02-10 |
KR20090122303A (en) | 2009-11-26 |
KR101159562B1 (en) | 2012-06-26 |
JP4937815B2 (en) | 2012-05-23 |
WO2008123436A1 (en) | 2008-10-16 |
JP2008248333A (en) | 2008-10-16 |
CN101646791B (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200900515A (en) | Cu-Ni-Si-Co-based copper alloy for electronic material, and method for production thereof | |
JP4596493B2 (en) | Cu-Ni-Si alloy used for conductive spring material | |
JP4677505B1 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5319700B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4596490B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4837697B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5320642B2 (en) | Copper alloy manufacturing method and copper alloy | |
JP5506806B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4799701B1 (en) | Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same | |
JP5619389B2 (en) | Copper alloy material | |
JP5610643B2 (en) | Cu-Ni-Si-based copper alloy strip and method for producing the same | |
EP2607508B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
US9076569B2 (en) | Cu—Co—Si alloy material and manufacturing method thereof | |
JP2012201977A (en) | Cu-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME | |
TW201224171A (en) | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME | |
JP6222885B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP2012229467A (en) | Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP5524901B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP6175932B2 (en) | Drawing copper wire, drawing copper wire manufacturing method and cable | |
JP6246454B2 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP7430502B2 (en) | Copper alloy wire and electronic equipment parts | |
US20170096725A1 (en) | Cu-Co-Ni-Si Alloy for Electronic Components | |
JP5623960B2 (en) | Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same | |
JP2012229469A (en) | Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL |