JP2015183262A - Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF AND ELECTRIFICATION COMPONENT - Google Patents

Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF AND ELECTRIFICATION COMPONENT Download PDF

Info

Publication number
JP2015183262A
JP2015183262A JP2014062428A JP2014062428A JP2015183262A JP 2015183262 A JP2015183262 A JP 2015183262A JP 2014062428 A JP2014062428 A JP 2014062428A JP 2014062428 A JP2014062428 A JP 2014062428A JP 2015183262 A JP2015183262 A JP 2015183262A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
rolling
less
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062428A
Other languages
Japanese (ja)
Other versions
JP6317966B2 (en
Inventor
維林 高
Irin Ko
維林 高
基彦 鈴木
Motohiko Suzuki
基彦 鈴木
俊哉 鎌田
Toshiya Kamata
俊哉 鎌田
崇 木村
Takashi Kimura
崇 木村
佐々木 史明
Fumiaki Sasaki
史明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2014062428A priority Critical patent/JP6317966B2/en
Publication of JP2015183262A publication Critical patent/JP2015183262A/en
Application granted granted Critical
Publication of JP6317966B2 publication Critical patent/JP6317966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To markedly improve fatigue resistance of a Cu-Ni-Si-based copper alloy sheet material having good balance of strength and conductivity at a high level and good in bendability and stress relaxation resistance.SOLUTION: There is provided a copper alloy sheet material having a composition containing, by mass%, Ni:2.5 to 5.0%, Si:0.6 to 1.5%, Sn:0 to 1.2%, Zn:0 to 2.0%, Mg:0 to 1.0%, Co:0 to 2.0%, Fe:0 to 0.5%, Cr:0 to 0.5%, B:0 to 0.05%, P:0 to 0.1%, Zr:0 to 1.0%, Al:0 to 1.0%, Ti:0 to 1.0%, Mn:0 to 1.0%, V:0 to 1.0% and the balance Cu with inevitable impurities with the total content of Fe, Cr, B, P, Zr, Al, Ti, Mn and V of 0 to 3.0 mass%, with a maximum width of a grain boundary reaction type deposition product of 500 nm or less and the number density of a granular deposition product having a diameter of 100 nm or more of 10/mmor less.

Description

本発明は、コネクタ、リードフレーム、リレー、スイッチなどの電気・電子部品に適した高強度および曲げ加工性に優れるCu−Ni−Si系銅合金板材であって、特に耐疲労特性を顕著に改善した銅合金板材、およびその製造方法に関する。また、その銅合金板材を用いた通電部品に関する。   The present invention is a Cu-Ni-Si-based copper alloy sheet material with excellent strength and bending workability suitable for electrical and electronic parts such as connectors, lead frames, relays, switches, and the like, and particularly significantly improves fatigue resistance. The present invention relates to a copper alloy sheet and a manufacturing method thereof. Moreover, it is related with the electricity supply components using the copper alloy board | plate material.

電気・電子部品を構成する通電部品に使用される材料には、「強度」、「導電性」、「曲げ加工性」、「耐応力緩和性」に優れることが要求される。特に近年、電気・電子部品は高集積化、小型化および軽量化が進む傾向にあり、それに伴って素材である銅および銅合金には薄肉化の要求が高まっている。そのため、素材に要求される「強度」のレベルは一層厳しいものとなっている。具体的には引張強さ850MPa以上、好ましくは900MPa以上、更に好ましくは950MPa以上の強度レベルが望まれる。また、部品の薄肉化は電気抵抗の増大に繋がるため、高強度化と同時に「導電性」についても高く維持される必要がある。具体的には導電率35%IACS以上、好ましくは38%IACS以上、更に好ましくは40%IACS以上の導電性レベルが望まれる。   Materials used for energized parts constituting electric / electronic parts are required to be excellent in “strength”, “conductivity”, “bending workability”, and “stress relaxation resistance”. In particular, in recent years, electrical and electronic components have been increasingly integrated, miniaturized, and lightened, and accordingly, copper and copper alloys, which are materials, have been demanded to be thin. For this reason, the level of “strength” required for materials has become even stricter. Specifically, a tensile strength of 850 MPa or more, preferably 900 MPa or more, more preferably 950 MPa or more is desired. In addition, since the thinning of parts leads to an increase in electrical resistance, it is necessary to maintain high “conductivity” as well as high strength. Specifically, a conductivity level of 35% IACS or more, preferably 38% IACS or more, more preferably 40% IACS or more is desired.

強度と導電性の特性バランスに比較的優れた銅合金として、Cu−Ni−Si系銅合金(いわゆるコルソン合金)がある。この合金系では比較的高い導電率(30〜50%IACS)を維持しながら800MPa以上の引張強さに調整することができ、最近では850MPa以上、あるいは更に900MPa以上といった高強度化の技術も開発されている。   As a copper alloy having a relatively excellent balance between strength and conductivity, there is a Cu—Ni—Si based copper alloy (so-called Corson alloy). This alloy system can be adjusted to a tensile strength of 800 MPa or higher while maintaining a relatively high electrical conductivity (30-50% IACS), and recently developed a technology for increasing strength such as 850 MPa or higher, or even 900 MPa or higher. Has been.

一方、コネクタ、リレー、スイッチなどの可動部を有する通電部品には繰り返しの応力負荷に耐え得る「耐疲労特性」も重要となる。しかしながら、Cu−Ni−Si系銅合金で高強度と良好な導電性を維持しながら、耐疲労特性を改善することは容易でない。その理由として粒界反応型析出物が生じやすいことが挙げられる。Cu−Ni−Si系銅合金は時効処理によって微細なNi−Si系析出物を生成させることにより高強度を実現している。この時効処理時には、通常、粒界反応型析出物も同時に生成する。粒界反応型析出物は破壊亀裂の起点や伝播経路として作用するため、多量の粒界反応型析出物が生成すると耐疲労特性が著しく低下する。また、強度、曲げ加工性、耐応力緩和性の低下要因にもなる。Cu−Be系銅合金などでは、Ni、Co等の第三元素を添加することにより、それらの元素が粒界に偏析し、粒界反応型析出物の生成が抑制される。しかしCu−Ni−Si系銅合金では、Siが非常に活性な元素であるため、ほとんどの添加元素と化合物を生成してしまい、粒界反応型析出を抑制する効果が生じにくい。Cu−Ni−Si系銅合金において粒界反応型析出を抑制する効果的な手法は確立されていないのが現状である。   On the other hand, “fatigue resistance” that can withstand repeated stress loads is also important for energized parts having movable parts such as connectors, relays, and switches. However, it is not easy to improve fatigue resistance while maintaining high strength and good conductivity with a Cu—Ni—Si based copper alloy. The reason is that a grain boundary reaction type precipitate is likely to be generated. Cu-Ni-Si-based copper alloys achieve high strength by generating fine Ni-Si-based precipitates by aging treatment. During this aging treatment, usually, a grain boundary reaction type precipitate is also generated. Grain boundary reaction type precipitates act as a starting point and a propagation path of fracture cracks, so if a large amount of grain boundary reaction type precipitates are formed, the fatigue resistance is significantly lowered. In addition, the strength, bending workability, and stress relaxation resistance may be reduced. In a Cu—Be-based copper alloy or the like, by adding a third element such as Ni or Co, these elements segregate at the grain boundary, and the generation of grain boundary reaction type precipitates is suppressed. However, in the Cu—Ni—Si based copper alloy, since Si is a very active element, most of the additive elements and compounds are generated, and the effect of suppressing grain boundary reaction type precipitation is unlikely to occur. The present condition is that the effective method which suppresses a grain boundary reaction type precipitation in a Cu-Ni-Si type copper alloy is not established.

特開2007−169764号公報JP 2007-169664 A 特開2008−75172号公報JP 2008-75172 A

Cu−Ni−Si系銅合金の析出物形態は、粒状析出物と、粒界反応型析出物の2種類に大別される。いずれもNi2Siを主体とする第2相である。粒状析出物のうち微細なものは転位の運動の障害となり高強度化に寄与するが、粒子径100nm以上の粗大なものは延性を低下させる要因となる。他方、粒界反応型析出物は粒界から生成する層状のノジュールである。これが生成している粒界部分は非常に脆弱であり、疲労破壊や曲げ割れの起点および亀裂伝播経路として作用し、強度、曲げ加工性、耐疲労特性および耐応力緩和性を劣化させる。 The precipitate form of the Cu—Ni—Si based copper alloy is roughly classified into two types: a granular precipitate and a grain boundary reaction type precipitate. Both are second phases mainly composed of Ni 2 Si. Of the granular precipitates, fine ones impede dislocation movement and contribute to high strength, but coarse ones with a particle diameter of 100 nm or more cause a reduction in ductility. On the other hand, the grain boundary reaction type precipitate is a lamellar nodule generated from the grain boundary. The grain boundary portion where this is generated is very fragile and acts as a starting point of fatigue fracture or bending crack and a crack propagation path, and deteriorates strength, bending workability, fatigue resistance characteristics and stress relaxation resistance.

図1に、時効処理後に仕上冷間圧延を施した従来一般的なCu−Ni−Si系銅合金板材の板面(圧延面)を研磨してエッチングした金属組織SEM写真を例示する。結晶粒内には粒状析出物(符号1)が分散しており、結晶粒界からは粒界反応析出物(符号2)が層状に生成している。   FIG. 1 illustrates a SEM photograph of a metal structure obtained by polishing and etching a plate surface (rolled surface) of a conventional general Cu—Ni—Si based copper alloy sheet material that has undergone finish cold rolling after aging treatment. The granular precipitates (reference numeral 1) are dispersed in the crystal grains, and the grain boundary reaction precipitates (reference numeral 2) are generated in layers from the crystal grain boundaries.

Cu−Ni−Si系銅合金で、単に粒界反応型析出物の生成を防止するだけであれば、Ni含有量を2.5質量%以下、またはSi含有量を0.6質量%以下とすればよいことがわかっている。また、粒界反応型析出は430〜530℃の温度範囲で生じやすいので、その温度域での滞在時間を極力短くする製造条件とすれば粒界反応型析出物の多量生成を回避できる。しかし、NiやSiを上記のように低減すると引張強さ850MPa以上といった高強度が得られない。また、当該合金系で最も時効硬化が得られやすい温度域は通常430〜470℃程度であり、その温度域は粒界反応型析出物が生成しやすい430〜530℃の温度域に含まれる。従って、粒界反応型析出物が生成しやすい430〜530℃の温度域を完全に避けた時効条件は、高強度化を図る上で、容易には採用できない。   If the Cu-Ni-Si-based copper alloy merely prevents the formation of grain boundary reaction type precipitates, the Ni content is 2.5 mass% or less, or the Si content is 0.6 mass% or less. I know what to do. Further, since the grain boundary reaction type precipitation is likely to occur in the temperature range of 430 to 530 ° C., the production of a large amount of grain boundary reaction type precipitates can be avoided if the production conditions are such that the residence time in that temperature range is as short as possible. However, when Ni or Si is reduced as described above, a high strength such as a tensile strength of 850 MPa or more cannot be obtained. In addition, the temperature range in which age hardening is most easily obtained in the alloy system is usually about 430 to 470 ° C., and the temperature range is included in the temperature range of 430 to 530 ° C. at which grain boundary reaction type precipitates are easily generated. Therefore, the aging conditions that completely avoid the temperature range of 430 to 530 ° C. at which grain boundary reaction type precipitates are easily generated cannot be easily adopted in order to increase the strength.

特許文献1、2には、粒界反応析出を抑制したCu−Ni−Si系銅合金が記載されている。しかし、これらの銅合金は、昨今の通電部品に課せられる薄肉化の厳しいニーズを考慮すると、強度と導電性のバランスにおいて、更なる改善が望まれる。   Patent Documents 1 and 2 describe Cu—Ni—Si based copper alloys in which grain boundary reaction precipitation is suppressed. However, these copper alloys are desired to be further improved in the balance between strength and conductivity in consideration of the strict needs for thinning which are imposed on the current-carrying parts.

本発明は、強度と導電性を高レベルでバランスさせた、曲げ加工性および耐応力緩和性の良好なCu−Ni−Si系銅合金板材において、耐疲労特性を顕著に改善する技術を提供するものである。   The present invention provides a technique for remarkably improving fatigue resistance in a Cu-Ni-Si based copper alloy sheet having good bending workability and stress relaxation resistance, which balances strength and conductivity at a high level. Is.

発明者らは詳細な検討の結果、所定組成のCu−Ni−Si系銅合金において、
(i)溶体化処理で結晶粒径が粗大化しないように配慮して、結晶粒界の総延長を十分に確保しておくこと、
(ii)時効処理前に粒界反応型析出物が生成しない高温域で少量の微細粒状析出物を予め生成させておくこと、
(iii)通常より低温側にシフトした粒界反応型析出物が生成しにくい温度域で時効処理を施し、上記高温域で生成した微細粒状析出物と合わせて、強度向上に有効な微細粒状析出物の総数を十分に確保すること、
により上記目的が実現できることを知見した。
As a result of detailed studies, the inventors have determined that in a Cu-Ni-Si based copper alloy having a predetermined composition,
(I) Ensure that the total extension of the grain boundary is sufficiently secured in consideration of the crystal grain size not being coarsened by the solution treatment.
(Ii) generating a small amount of fine granular precipitates in advance in a high temperature range where no grain boundary reaction type precipitates are generated before aging treatment;
(Iii) Fine grain precipitation effective for strength improvement by applying aging treatment in a temperature range in which grain boundary reaction type precipitates shifted to a lower temperature side are less likely to be formed and combined with the fine grain precipitates produced in the high temperature range. Ensure a sufficient number of items,
It has been found that the above purpose can be realized.

すなわち本発明では、質量%で、Ni:2.5〜5.0%、Si:0.5〜1.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Co:0〜2.0%、Fe:0〜0.5%、Cr:0〜0.5%、B:0〜0.05%、P:0〜0.1%、Zr:0〜1.0%、Al:0〜1.0%、Ti:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%、残部Cuおよび不可避的不純物からなり、Fe、Cr、B、P、Zr、Al、Ti、MnおよびVの合計含有量が0〜3.0質量%である組成を有し、直径100nm以上の粒状析出物の個数密度が106個/mm2以下であり、好ましくは平均結晶粒径が5〜25μmである銅合金板材が提供される。粒界反応型析出物の最大幅は1000nm以下であることが好ましい。 That is, in the present invention, by mass%, Ni: 2.5 to 5.0%, Si: 0.5 to 1.5%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg : 0 to 1.0%, Co: 0 to 2.0%, Fe: 0 to 0.5%, Cr: 0 to 0.5%, B: 0 to 0.05%, P: 0 to 0.0. 1%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Ti: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, balance Cu And a granular precipitate having a composition in which the total content of Fe, Cr, B, P, Zr, Al, Ti, Mn and V is 0 to 3.0% by mass and having a diameter of 100 nm or more A copper alloy sheet having a number density of 10 6 pieces / mm 2 or less, and preferably having an average crystal grain size of 5 to 25 μm is provided. The maximum width of the grain boundary reaction type precipitate is preferably 1000 nm or less.

〔粒界反応型析出物の最大幅の測定方法〕
板面(圧延面)を研磨しエッチングした表面のSEM観察において合計5000〜7000μm2の観察領域を設定し、その領域内に存在するすべての粒界反応型析出物について、反応が生じている粒界から、その反応相の先端までの距離を調べ、この距離の最大値を「粒界反応型析出物の最大幅」とする。
〔粒状析出物の個数密度の測定方法〕
上記と同様に合計5000〜7000μm2の観察領域を設定し、その領域面積内に粒子の全体が存在するすべての粒状析出物粒子のうち、粒子を取り囲む最小円の直径が100nm以上である粒子の個数をカウントし、その個数を観察領域の面積で除した値を1mm2当たりの個数密度に換算し、その値を「直径100nm以上の粒状析出物の個数密度(個/mm2)」とする。
〔平均結晶粒径の測定方法〕
板面(圧延面)を研磨しエッチングした表面の光学顕微鏡観察によりJIS H0501の切断法で圧延方向に対し直角方向の既知長さの線分によって完全に切られる結晶粒数を数えることにより平均結晶粒径を求める。ただし、測定対象の結晶粒の総数を100個以上とする。双晶境界は結晶粒界とみなさない。
[Measurement method of maximum width of grain boundary reaction type precipitate]
In the SEM observation of the surface polished and etched on the plate surface (rolled surface), a total observation region of 5000 to 7000 μm 2 is set, and all the grain boundary reaction type precipitates existing in the region are grains in which a reaction occurs. The distance from the boundary to the tip of the reaction phase is examined, and the maximum value of this distance is defined as “the maximum width of the grain boundary reaction type precipitate”.
[Method for measuring number density of granular precipitates]
In the same manner as described above, an observation region having a total of 5000 to 7000 μm 2 is set, and among all the granular precipitate particles in which the entire particle is present within the area of the region, the diameter of the particle having the smallest circle surrounding the particle is 100 nm or more The number is counted, and the value obtained by dividing the number by the area of the observation region is converted into a number density per 1 mm 2 , and the value is defined as “number density of granular precipitates having a diameter of 100 nm or more (pieces / mm 2 )”. .
[Measurement method of average crystal grain size]
An average crystal is obtained by counting the number of crystal grains that are completely cut by a line segment of a known length perpendicular to the rolling direction according to JIS H0501 by observing the etched surface of the plate surface (rolled surface) using an optical microscope. Obtain the particle size. However, the total number of crystal grains to be measured is 100 or more. Twin boundaries are not considered grain boundaries.

上記の銅合金板材は、JIS Z2273に準拠した疲労試験において、試験片表面の最大付加応力700MPaでの疲労寿命(試験片が破断に至るまでの繰り返し振動回数)が10万回以上となる耐疲労特性を有する。板の圧延方向の引張強さTSが850MPa以上であり、導電率R(%IACS)と前記引張強さTS(MPa)の積で表される下記(1)式のA値が35000以上である特性を有するものがより好ましい対象となる。導電率は例えば35%IACS以上である。
A値=R(%IACS)×TS(MPa) …(1)
また、板の圧延方向をLD、圧延方向と板厚方向に直角の方向をTDとするとき、JIS H3110に準拠した90°W曲げ試験において割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値がLD、TDとも2.0以下となる曲げ加工性を有するものが提供される。
The above-mentioned copper alloy sheet material is fatigue resistant in a fatigue test according to JIS Z2273 with a fatigue life at the maximum applied stress of 700 MPa on the surface of the test piece (the number of repeated vibrations until the test piece is broken) of 100,000 times or more. Has characteristics. The tensile strength TS in the rolling direction of the plate is 850 MPa or more, and the A value of the following formula (1) represented by the product of the conductivity R (% IACS) and the tensile strength TS (MPa) is 35,000 or more. What has a characteristic becomes a more preferable object. The conductivity is, for example, 35% IACS or more.
A value = R (% IACS) × TS (MPa) (1)
Further, when the rolling direction of the plate is LD, and the direction perpendicular to the rolling direction and the plate thickness direction is TD, the minimum bending radius MBR and the plate thickness t that cause no crack in the 90 ° W bending test according to JIS H3110 A material having a bending workability in which the value of the ratio MBR / t is 2.0 or less for both LD and TD is provided.

上記の銅合金板材の製造法として、熱間圧延、冷間圧延、溶体化処理、時効処理を含む工程で製造するに際し、
溶体化処理は、780〜1000℃で加熱保持したのち、その冷却過程において530〜730℃の温度範囲で10〜120sec保持するヒートパターンとして、板面(圧延面)について圧延方向に対し直角方向に測定した切断法による平均結晶粒径が5〜25μmとなる条件で行い、
時効処理は、350〜420℃で行う、
銅合金板材の製造方法が提供される。この製造方法において、溶体化処理後、時効処理前に圧延率1〜35%の冷間圧延を行うことができる。また、時効処理後に圧延率1〜50%の仕上冷間圧延を行うことができる。仕上冷間圧延後には150〜430℃での低温焼鈍を施すことが好ましい。
As a manufacturing method of the above copper alloy sheet, when manufacturing in a process including hot rolling, cold rolling, solution treatment, aging treatment,
In the solution treatment, the plate surface (rolling surface) is perpendicular to the rolling direction as a heat pattern that is heated and held at 780 to 1000 ° C. and then held for 10 to 120 seconds in the temperature range of 530 to 730 ° C. in the cooling process. Performed under the condition that the average crystal grain size by the measured cutting method is 5 to 25 μm,
The aging treatment is performed at 350 to 420 ° C.
A method for producing a copper alloy sheet is provided. In this manufacturing method, cold rolling with a rolling rate of 1 to 35% can be performed after the solution treatment and before the aging treatment. Moreover, finish cold rolling with a rolling rate of 1 to 50% can be performed after the aging treatment. It is preferable to perform low temperature annealing at 150 to 430 ° C. after finish cold rolling.

また、本発明では上記銅合金板材を材料に用いた通電部品が提供される。   Moreover, in this invention, the electricity supply component using the said copper alloy board | plate material as a material is provided.

本発明によれば、強度と導電性を高いレベルでバランスさせた、曲げ加工性および耐応力緩和性に優れるCu−Ni−Si系銅合金の板材において、耐疲労特性を顕著に改善することが可能となった。本発明は、今後ますます小型化、薄肉化の進展が予想されるコネクタ、リードフレーム、リレー、スイッチなどの電気・電子部品として有用である。   According to the present invention, it is possible to remarkably improve fatigue resistance in a Cu-Ni-Si-based copper alloy plate material having a balance between strength and conductivity at a high level and excellent in bending workability and stress relaxation resistance. It has become possible. The present invention is useful as an electrical / electronic component such as a connector, a lead frame, a relay, or a switch that is expected to be further reduced in size and thickness.

従来一般的なCu−Ni−Si系銅合金板材の金属組織を例示したSEM写真。The SEM photograph which illustrated the metal structure of the conventional general Cu-Ni-Si system copper alloy sheet material. 本発明に従うCu−Ni−Si系銅合金板材の金属組織を例示したSEM写真。The SEM photograph which illustrated the metal structure of the Cu-Ni-Si system copper alloy sheet material according to the present invention.

《合金組成》
本発明では、Ni含有量が2.5〜5.0質量%の範囲にあるCu−Ni−Si系銅合金を対象とする。以下、合金成分に関する「%」は、特に断らない限り「質量%」を意味する。
<Alloy composition>
The present invention is directed to a Cu—Ni—Si based copper alloy having a Ni content in the range of 2.5 to 5.0 mass%. Hereinafter, “%” regarding alloy components means “% by mass” unless otherwise specified.

NiおよびSiは、析出物を形成し、強度上昇および導電性・熱伝導度向上に寄与する。Niが2.5%未満またはSiが0.5%未満では、最終板材製品において引張強さ850MPa以上を安定して得ることが難しい。一方、NiやSiが過剰である場合は粗大な析出物が生成しやすく、熱間圧延時に割れやすい。Ni含有量は5.0%以下とする必要があり、4.5%以下がより好ましく、4.0%以下が一層好ましい。Si含有量は1.5%以下とする必要があり、1.2%以下がより好ましい。特に好ましいNi含有量範囲は2.5〜4.0%、特に好ましいSi含有量範囲は0.6〜1.1%である。   Ni and Si form precipitates and contribute to an increase in strength and an improvement in conductivity and thermal conductivity. If Ni is less than 2.5% or Si is less than 0.5%, it is difficult to stably obtain a tensile strength of 850 MPa or more in the final plate product. On the other hand, when Ni or Si is excessive, coarse precipitates are likely to be generated and easily cracked during hot rolling. The Ni content must be 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. The Si content needs to be 1.5% or less, more preferably 1.2% or less. A particularly preferable Ni content range is 2.5 to 4.0%, and a particularly preferable Si content range is 0.6 to 1.1%.

NiとSiはNi2Siを主体とする析出物を形成する。ただし、合金中のNiおよびSiは時効処理によってすべてが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNiおよびSiは、若干の強度上昇をもたらすものの析出状態と比べてその効果は小さく、また導電率を低下させる要因になる。このためNiとSiの含有量の比はできるだけ析出物Ni2Siの組成比に近付けることが望ましい。本発明では質量%で表したNi/Si比を3.0〜6.0の範囲に調整することが望ましく、3.5〜5.0とすることが一層好ましい。ただし、以下に示すCo、Crなど、Siとの析出物を生成できる元素が添加される場合、Ni/Si比を3.0〜4.2の範囲に調整することが望ましい。 Ni and Si form precipitates mainly composed of Ni 2 Si. However, Ni and Si in the alloy are not necessarily all precipitated by the aging treatment, and to some extent, exist in a solid solution state in the Cu matrix. Although Ni and Si in a solid solution state cause a slight increase in strength, the effect thereof is small as compared with a precipitated state, and it causes a decrease in conductivity. For this reason, it is desirable that the ratio of the content of Ni and Si is as close as possible to the composition ratio of the precipitate Ni 2 Si. In the present invention, it is desirable to adjust the Ni / Si ratio expressed in mass% to a range of 3.0 to 6.0, and more preferably 3.5 to 5.0. However, when an element capable of forming a precipitate with Si, such as Co and Cr shown below, is added, it is desirable to adjust the Ni / Si ratio in the range of 3.0 to 4.2.

Snは、固溶強化作用と耐応力緩和性の向上作用を有するので、必要に応じて含有させる。0.1%以上のSn含有量を確保することがより効果的であり、0.2%以上とすることが更に効果的である。ただし、多量のSn含有は導電率の低下を招く。Sn含有量は1.2%以下の範囲に制限される。0.7%以下に管理してもよい。   Sn has a solid solution strengthening action and a stress relaxation resistance improving action, and therefore Sn is contained as necessary. It is more effective to ensure the Sn content of 0.1% or more, and it is more effective to set the content to 0.2% or more. However, a large amount of Sn will cause a decrease in conductivity. The Sn content is limited to a range of 1.2% or less. You may manage to 0.7% or less.

Znは、はんだ付け性および強度を向上させる他、鋳造性を改善させる効果を有するので、必要に応じて含有させる。Zn源としては安価な黄銅スクラップが使用できる。0.1%以上のZn含有量を確保することがより効果的であり、0.3%以上とすることが更に効果的である。ただし、多量のZn含有は導電性や耐応力腐食割れ性の低下要因となりやすい。Zn含有量は2.0%以下の範囲に制限される。1.0%以下の範囲で調整することが一層好ましい。   Zn not only improves solderability and strength, but also has an effect of improving castability, so it is contained as necessary. Inexpensive brass scrap can be used as the Zn source. It is more effective to secure a Zn content of 0.1% or more, and it is more effective to set it to 0.3% or more. However, a large amount of Zn is likely to cause a decrease in conductivity and stress corrosion cracking resistance. The Zn content is limited to a range of 2.0% or less. It is more preferable to adjust within the range of 1.0% or less.

Mgは、耐応力緩和性の向上作用と脱S作用を有するので、必要に応じて含有させる。0.01%以上のMg含有量を確保することがより効果的であり、0.1%とすることが更に効果的である。ただし、Mgは酸化されやすい元素であり、多量の添加は鋳造性の低下を招く。Mg含有量は1.0%以下の範囲に制限される。0.5%以下に管理してもよい。   Mg has an action of improving stress relaxation resistance and an action of removing S, and is thus contained as necessary. It is more effective to secure a Mg content of 0.01% or more, and it is more effective to set it to 0.1%. However, Mg is an element that is easily oxidized, and a large amount of addition causes a decrease in castability. The Mg content is limited to a range of 1.0% or less. You may manage to 0.5% or less.

Coは、強度と導電性の同時向上に有効であるため、必要に応じて添加する。添加したCoはCuマトリックス中の固溶Siと反応して析出物を生成する一方で、余剰のCoは単体でも析出する。0.1%以上のCo含有量を確保することがより効果的であり、0.5%とすることが更に効果的である。ただし、Coは高価な元素であり、過剰添加はコスト増大を招くので、Co添加は2.0%以下の含有量範囲で行う。1.5%以下の範囲で調整することが一層好ましい。   Co is effective in improving both strength and conductivity, and is added as necessary. The added Co reacts with solute Si in the Cu matrix to form precipitates, while excess Co precipitates even in a simple substance. It is more effective to secure a Co content of 0.1% or more, and it is more effective to make it 0.5%. However, Co is an expensive element, and excessive addition causes an increase in cost, so Co addition is performed in a content range of 2.0% or less. It is more preferable to adjust within the range of 1.5% or less.

その他の元素として、必要に応じてFe、Cr、B、P、Zr、Al、Ti、Mn、V等を含有させることができる。例えば、Cr、B、P、Zr、Al、Ti、Mn、Vは合金強度を更に高め、かつ応力緩和を小さくする作用を有する。Fe、Cr、Zr、Ti、Mn、Vは不可避的不純物として存在するS、Pbなどと高融点化合物を形成しやすく、また、B、P、Zr、Tiは鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。Fe、Cr、B、P、Zr、Al、Ti、Mn、Vの1種または2種以上を含有させる場合は、それらの合計含有量を0.01%以上とすることがより効果的である。ただし、多量に含有させると、熱間または冷間加工性に悪影響を与え、かつコスト的にも不利となる。これらの元素の総量は3.0%以下の範囲に制限され、2.0%以下、あるいは1.0%以下の範囲の範囲で調整することがより好まく、0.5%以下に管理してもよい。   As other elements, Fe, Cr, B, P, Zr, Al, Ti, Mn, V, and the like can be contained as necessary. For example, Cr, B, P, Zr, Al, Ti, Mn, and V have the effect of further increasing the alloy strength and reducing the stress relaxation. Fe, Cr, Zr, Ti, Mn, and V easily form a high melting point compound with S, Pb, etc. present as inevitable impurities, and B, P, Zr, and Ti have an effect of refining the cast structure. It can contribute to improvement of hot workability. When one or more of Fe, Cr, B, P, Zr, Al, Ti, Mn, and V are contained, it is more effective to set the total content to 0.01% or more. . However, if it is contained in a large amount, it adversely affects hot or cold workability and is disadvantageous in terms of cost. The total amount of these elements is limited to a range of 3.0% or less, and it is more preferable to adjust within a range of 2.0% or less, or 1.0% or less. May be.

《金属組織》
〔粒状析出物〕
粒状析出物は結晶粒内と粒界に点在する。粒子径が小さい(数nm〜数十nm)場合、硬化作用が顕著で、かつ延性の損失も少ない。一方、粗大な粒状析出物(100nm以上)は、硬化作用が小さいにもかかわらず、延性の損失が大きい。また粗大粒状析出物の大量生成は必然的に微細な粒状析出物の密度減少を招き、強度向上を阻害する要因となる。種々検討の結果、本発明では、直径100nm以上の粒状析出物の個数密度は106個/mm2以下に制限され、5.0×105個/mm2以下であることがより好ましい。
《Metallic structure》
(Granular precipitate)
The granular precipitates are scattered within the crystal grains and at the grain boundaries. When the particle diameter is small (several nm to several tens of nm), the curing action is remarkable and the loss of ductility is small. On the other hand, coarse granular precipitates (100 nm or more) have a large loss of ductility despite their small curing action. In addition, large-scale formation of coarse granular precipitates inevitably leads to a decrease in the density of fine granular precipitates, which hinders strength improvement. As a result of various studies, in the present invention, the number density of granular precipitates having a diameter of 100 nm or more is limited to 10 6 pieces / mm 2 or less, and more preferably 5.0 × 10 5 pieces / mm 2 or less.

〔粒界反応型析出物〕
粒界反応型析出物は非常に弱い部分であり、強度低下の原因となる。更に疲労破壊や曲げ割れの起点および亀裂伝播経路となり、耐疲労特性、曲げ加工性、耐応力緩和性を低下させる。従来、粒界反応型析出物(ノジュール)の面積率を低減することにより、強度の低下抑制を図った例(特許文献1)や、粒界反応型析出(不連続析出)に起因して粒界近傍に生じる無析出帯の幅を制限することにより、引張強さや曲げ加工性の低下抑制を図った例(特許文献2)がある。しかし、耐疲労特性を顕著に改善するためには、亀裂の起点および伝播経路となる粒界反応型析出物自体の幅を厳しく規制する必要があることがわかった。発明者らの詳細な検討の結果、粒界反応型析出物の幅が1000nm以上となると、強度や曲げ加工性が著しく低下する。一方、粒界反応型析出物の最大幅が500nm以下に抑制されていれば、強度、曲げ加工性などに加え、耐疲労特性をも改善することが可能となる。粒界反応型析出物の最大幅は1000nmであることが望ましく、500nm以下であることがより好ましい。300nm以下であることが一層好ましい。更には、粒界反応型析出物の幅が100nm未満で、正確な幅が測定困難である程度にまで粒界反応析出が抑制されていることが一層好ましい。
(Grain boundary reaction type precipitate)
The grain boundary reaction type precipitate is a very weak part and causes a decrease in strength. Furthermore, it becomes a starting point of fatigue fracture or bending crack and a crack propagation path, and deteriorates fatigue resistance, bending workability, and stress relaxation resistance. Conventionally, by reducing the area ratio of grain boundary reaction type precipitates (nodules), an example in which strength reduction is suppressed (Patent Document 1) and grain boundary reaction type precipitation (discontinuous precipitation) are caused. There is an example (Patent Document 2) in which a decrease in tensile strength and bending workability is suppressed by limiting the width of a precipitation-free zone generated in the vicinity of the boundary. However, it has been found that in order to significantly improve the fatigue resistance, it is necessary to strictly control the width of the grain boundary reaction type precipitate itself that becomes the crack initiation point and propagation path. As a result of detailed investigations by the inventors, when the width of the grain boundary reaction type precipitate becomes 1000 nm or more, the strength and the bending workability are remarkably lowered. On the other hand, if the maximum width of the grain boundary reaction type precipitates is suppressed to 500 nm or less, it is possible to improve fatigue resistance characteristics in addition to strength and bending workability. The maximum width of the grain boundary reaction type precipitate is preferably 1000 nm, and more preferably 500 nm or less. More preferably, it is 300 nm or less. Furthermore, it is more preferable that the grain boundary reaction precipitates have a width of less than 100 nm, and the grain boundary reaction precipitation is suppressed to such a degree that the accurate width is difficult to measure.

〔平均結晶粒径〕
平均結晶粒径が小さいほど曲げ加工性の向上に有利であるが、Cu−Ni−Si系銅合金では結晶粒微細化に伴い、粗大粒状析出物が残留しやすいという問題がある。また、平均結晶粒径が小さすぎると耐応力緩和性が悪くなりやすい。種々検討の結果、最終的に平均結晶粒径が5μm以上の値であることが好ましく、7μm以上であることがより好ましい。特に8μmを超える値であれば、車載用コネクタの用途でも満足できるレベルの耐応力緩和性を確保しやすく、好適である。ただし、結晶粒径が大きくなりすぎると曲げ部表面の肌荒を起こりやすく、曲げ加工性の低下を招く場合があるので、上述の測定方法に従う平均結晶粒径は25μm以下の範囲に制限される。20μm以下、あるいは15μm以下の範囲に調整することがより好ましい。最終的な平均結晶粒径は、溶体化処理後の段階における結晶粒径によってほぼ決まってくる。溶体化処理後の段階における結晶粒はほぼ等軸状である。最終的な結晶粒の形状は圧延によりやや扁平になり、圧延方向に伸びるが、圧延方向および板厚方向に対し直角の方向(以下「T方向」という)においてはほぼ変わらない。平均結晶粒径は、板面(圧延面)においてT方向に沿って切断法で測定すれば、最終平均結晶粒径は溶体化処理後の段階における結晶粒径とほぼ一致し、その差は無視できる。
[Average crystal grain size]
The smaller the average crystal grain size, the better the bending workability, but the Cu—Ni—Si based copper alloy has a problem that coarse granular precipitates tend to remain as the crystal grains become finer. On the other hand, if the average crystal grain size is too small, the stress relaxation resistance tends to deteriorate. As a result of various studies, the average crystal grain size is preferably a value of 5 μm or more, and more preferably 7 μm or more. In particular, a value exceeding 8 μm is preferable because it is easy to ensure a sufficient level of stress relaxation resistance even in the use of an in-vehicle connector. However, if the crystal grain size becomes too large, the surface of the bent portion is likely to be rough, and the bending workability may be lowered. Therefore, the average crystal grain size according to the above measurement method is limited to a range of 25 μm or less. . It is more preferable to adjust to a range of 20 μm or less or 15 μm or less. The final average crystal grain size is almost determined by the crystal grain size in the stage after the solution treatment. The crystal grains in the stage after the solution treatment are substantially equiaxed. The final crystal grain shape is slightly flattened by rolling and extends in the rolling direction, but is almost unchanged in a direction perpendicular to the rolling direction and the plate thickness direction (hereinafter referred to as “T direction”). If the average crystal grain size is measured by cutting along the T direction on the plate surface (rolled surface), the final average crystal grain size is almost the same as the crystal grain size in the stage after solution treatment, and the difference is ignored. it can.

《特性》
〔強度・導電性〕
Cu−Ni−Si系銅合金を用いて電気・電子部品の更なる小型化、薄肉化に対応するには、圧延方向(LD)の引張強さ850MPa以上の強度レベルが望まれる。900MPa以上であることがより好ましく、950MPa以上が一層好ましい。一方、通電部品の薄肉化のためには、導電性が良好であるも重要な要件となる。具体的には、導電率35%IACS以上であることが望ましく、38%IACS以上、更には40%IACS以上であることがより好ましい。強度と導電性は、その両者がともに高い値であること、すなわち、強度−導電性バランスに優れることが重要である。種々検討の結果、導電率R(%IACS)とLDの引張強さTS(MPa)の積で表される下記(1)式のA値が35000以上であることが望ましく、37000以上であることがより好ましく、37500以上であることが更に好ましい。
A値=R(%IACS)×TS(MPa) …(1)
"Characteristic"
[Strength / Conductivity]
In order to cope with further downsizing and thinning of electric / electronic parts using a Cu—Ni—Si based copper alloy, a strength level of 850 MPa or more in the rolling direction (LD) is desired. More preferably, it is 900 MPa or more, and more preferably 950 MPa or more. On the other hand, in order to reduce the thickness of the current-carrying parts, it is an important requirement even though the conductivity is good. Specifically, the electrical conductivity is desirably 35% IACS or more, more preferably 38% IACS or more, and even more preferably 40% IACS or more. It is important that both strength and conductivity are high values, that is, excellent in strength-conductivity balance. As a result of various studies, the A value in the following formula (1) represented by the product of conductivity R (% IACS) and LD tensile strength TS (MPa) is preferably 35000 or more, and 37000 or more. Is more preferable, and it is still more preferable that it is 37500 or more.
A value = R (% IACS) × TS (MPa) (1)

〔曲げ加工性〕
曲げ加工性については、板の圧延方向(LD)、圧延方向と板厚方向に直角の方向(TD)のいずれにおいても、JIS H3110に準拠した90°W曲げ試験において割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値が2.0以下であることが望ましい。このMBR/tがLD、TDともに1.5以下であることがより好ましく。1.0以下であることが一層好ましい。ここで、「LDのMBR/t」とはLDが長手方向となるように切り出した曲げ加工試験片で評価される、曲げ軸がTD(いわゆるG.W.)でのMBR/tである。「TDのMBR/t」とはTDが長手方向となるように切り出した曲げ加工試験片で評価される、曲げ軸がLD(いわゆるB.W.)でのMBR/tである。
[Bending workability]
Regarding bending workability, the minimum bending radius at which cracks do not occur in the 90 ° W bending test in accordance with JIS H3110 in both the rolling direction (LD) of the plate and the direction perpendicular to the rolling direction and the thickness direction (TD). The ratio MBR / t of the MBR and the plate thickness t is desirably 2.0 or less. The MBR / t is more preferably 1.5 or less for both LD and TD. More preferably, it is 1.0 or less. Here, “MBR / t of LD” is MBR / t when the bending axis is TD (so-called GW), which is evaluated by a bending test piece cut out so that the LD is in the longitudinal direction. “TD MBR / t” is MBR / t when the bending axis is LD (so-called BW), which is evaluated by a bending test piece cut so that TD is in the longitudinal direction.

〔耐疲労特性〕
耐疲労特性については、JIS Z2273に準拠した疲労試験において、試験片表面の最大付加応力700MPaでの疲労寿命(試験片が破断に至るまでの繰り返し振動回数)が10万回以上となるものが好ましく、20万回以上となるものがより好ましい。
[Fatigue resistance]
Regarding fatigue resistance, it is preferable that the fatigue life at the maximum applied stress of 700 MPa on the surface of the test piece (the number of repeated vibrations until the test piece breaks) is 100,000 times or more in the fatigue test according to JIS Z2273. More preferable is 200,000 times or more.

〔耐応力緩和性〕
耐応力緩和性については、車載用コネクタなどの用途ではTDの値が特に重要であるため、ここでは長手方向がTDである試験片を用いて、以下の方法で求めた応力緩和率で評価する。
銅合金板材から長手方向がTDの曲げ試験片(幅10mm)を採取し、試験片の長手方向における中央部の表面応力が0.2%耐力の80%の大きさとなるようにアーチ曲げした状態で固定する。上記表面応力は次式により定まる。
表面応力(MPa)=6Etδ/L0 2
ただし、
E:弾性係数(MPa)
t:試料の厚さ(mm)
δ:試料のたわみ高さ(mm)
この状態の試験片を大気中150℃の温度で1000時間保持した後の曲げ癖から次式を用いて応力緩和率を算出する。
応力緩和率(%)=(L1−L2)/(L1−L0)×100
ただし、
0:治具の長さ、すなわち試験中に固定されている試料端間の水平距離(mm)
1:試験開始時の試料長さ(mm)
2:試験後の試料端間の水平距離(mm)
この応力緩和率が5%以下のものは、車載用コネクタとして高い耐久性を有すると評価される。
[Stress relaxation resistance]
As for stress relaxation resistance, the value of TD is particularly important for applications such as in-vehicle connectors. Therefore, here, using a test piece having a longitudinal direction of TD, the stress relaxation rate is evaluated by the following method. .
Bending test piece (width: 10 mm) having a longitudinal direction of TD was taken from a copper alloy sheet, and arch-bending was performed so that the surface stress at the center in the longitudinal direction of the test piece was 0.2% of the proof stress of 80%. Secure with. The surface stress is determined by the following equation.
Surface stress (MPa) = 6 Etδ / L 0 2
However,
E: Elastic modulus (MPa)
t: sample thickness (mm)
δ: Deflection height of sample (mm)
The stress relaxation rate is calculated using the following equation from the bending habit after holding the test piece in this state at a temperature of 150 ° C. in the atmosphere for 1000 hours.
Stress relaxation rate (%) = (L 1 −L 2 ) / (L 1 −L 0 ) × 100
However,
L 0 : Length of the jig, that is, horizontal distance (mm) between the sample ends fixed during the test
L 1 : Sample length at the start of the test (mm)
L 2 : Horizontal distance between the sample ends after the test (mm)
Those having a stress relaxation rate of 5% or less are evaluated as having high durability as in-vehicle connectors.

《製造方法》
以上説明した銅合金板材は、例えば以下のような一般的な製造工程により作ることができる。
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→(時効前冷間圧延)→時効処理→(仕上冷間圧延→低温焼鈍)」
ただし、後述のようにいくつかの工程での製造条件を工夫することが重要である。なお、上記工程中には記載していないが、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。ここで、「時効前冷間圧延」や、「仕上冷間圧延」および「低温焼鈍」は省略してもよい。以下、各工程について説明する。
"Production method"
The copper alloy sheet material described above can be produced by, for example, the following general manufacturing process.
“Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → (Cold Rolling Before Aging) → Aging Treatment → (Finish Cold Rolling → Low Temperature Annealing)”
However, it is important to devise manufacturing conditions in several steps as described later. Although not described in the above steps, chamfering is performed as necessary after hot rolling, and pickling, polishing, or further degreasing is performed as necessary after each heat treatment. Here, “cold rolling before aging”, “finish cold rolling” and “low temperature annealing” may be omitted. Hereinafter, each step will be described.

〔溶解・鋳造〕
連続鋳造、半連続鋳造等により鋳片を製造すればよい。Siの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting / Casting]
The slab may be manufactured by continuous casting, semi-continuous casting, or the like. In order to prevent oxidation of Si, it is preferable to carry out in an inert gas atmosphere or a vacuum melting furnace.

〔熱間圧延〕
鋳片を熱間圧延する際、再結晶が発生しやすい700℃以上の高温域で最初の圧延パスを実施することが、鋳造組織の破壊、成分と組織の均一化を図るうえで有利である。ただし1000℃を超えると、合金成分の偏析箇所など、融点が低下している箇所で割れが生じる恐れがある。熱間圧延工程中における完全再結晶の発生を促進させるためには、1000℃〜700℃の温度域で圧延率60%以上の圧延を行うことが効果的である。また、析出物の生成と粗大化を防止するために熱間圧延の最終パス温度は500℃以上とすることが効果的である。熱間圧延後に水冷が望ましい。
なお、ある板厚t0(mm)からある板厚t1(mm)までの圧延率は、下記(2)式により求まる。後述の各工程における圧延率も同様である。
圧延率(%)=(t0−t1)/t0×100 …(2)
(Hot rolling)
When the slab is hot-rolled, it is advantageous to carry out the first rolling pass in a high temperature range of 700 ° C. or more where recrystallization is likely to occur, in order to destroy the cast structure and make the components and structure uniform. . However, if the temperature exceeds 1000 ° C., cracks may occur at a location where the melting point is lowered, such as a segregation location of the alloy component. In order to promote the occurrence of complete recrystallization during the hot rolling process, it is effective to perform rolling at a rolling rate of 60% or more in a temperature range of 1000 ° C to 700 ° C. In order to prevent the formation and coarsening of precipitates, it is effective to set the final pass temperature of hot rolling to 500 ° C. or higher. Water cooling is desirable after hot rolling.
In addition, the rolling rate from a certain plate thickness t 0 (mm) to a certain plate thickness t 1 (mm) is obtained by the following equation (2). The same applies to the rolling rate in each step described later.
Rolling ratio (%) = (t 0 −t 1 ) / t 0 × 100 (2)

〔冷間圧延〕
溶体化処理の前に行う冷間圧延では、圧延率を90%以上とすることがより効果的であり、95%以上とすることが一層効果的である。このような高い圧延率で加工された材料に対し、次工程で溶体化処理を施すことにより、圧延率で導入される歪が再結晶の核として機能し、均一な結晶粒径を有する組織が得られる。なお、冷間圧延率の上限はミルパワー等により必然的に制約を受けるので、特に規定する必要はないが、エッジ割れなどを防止する観点から概ね99%以下で良好な結果が得られやすい。
(Cold rolling)
In the cold rolling performed before the solution treatment, it is more effective to set the rolling rate to 90% or more, and it is more effective to set it to 95% or more. By applying a solution treatment to the material processed at such a high rolling rate in the next step, the strain introduced at the rolling rate functions as a nucleus of recrystallization, and a structure having a uniform crystal grain size is formed. can get. The upper limit of the cold rolling rate is inevitably restricted by the mill power or the like, and thus need not be specified. However, good results are likely to be obtained at approximately 99% or less from the viewpoint of preventing edge cracks and the like.

〔溶体化処理〕
従来の溶体化処理は「溶質元素のマトリックス中への再固溶」と「再結晶化」を主目的とするが、本発明では更に「その後の時効工程で粒界反応析出が抑制される組織状態とする」ことも重要な目的とする。溶体化処理の加熱温度は780〜1000℃の範囲内で設定する。上記温度範囲に保持する時間は30sec〜10minの範囲で設定すればよい。この加熱条件によって、溶体化処理後の平均結晶粒径をコントロールすることができる。溶体化処理後の板材において、上述の方法により求まる平均結晶粒径が5〜25μm、より好ましくは7〜20μm、更に好ましくは8〜17μmとなるように、加熱温度および加熱時間を調整する。再固溶、再結晶化を確実に行い、かつ平均結晶粒径を上記範囲に調整するための最適な溶体化条件は組成や溶体化処理前の冷間圧延率によって変動するが、予め予備実験により組成や冷間圧延率に応じた最適な溶体化処理ヒートパターン条件を把握しておくことにより、適正条件範囲に設定することが容易となる。
[Solution treatment]
The conventional solution treatment is mainly aimed at “re-solution of solute elements in the matrix” and “recrystallization”, but in the present invention, the “structure in which grain boundary reaction precipitation is suppressed in the subsequent aging process” “To state” is also an important purpose. The heating temperature of the solution treatment is set within a range of 780 to 1000 ° C. What is necessary is just to set the time hold | maintained in the said temperature range in the range of 30 sec-10min. The average crystal grain size after the solution treatment can be controlled by this heating condition. In the plate material after the solution treatment, the heating temperature and the heating time are adjusted so that the average crystal grain size obtained by the above-mentioned method is 5 to 25 μm, more preferably 7 to 20 μm, and still more preferably 8 to 17 μm. Optimal solution conditions for ensuring re-solution and recrystallization and adjusting the average crystal grain size to the above range vary depending on the composition and cold rolling rate before solution treatment, but preliminary experiments By grasping the optimum solution treatment heat pattern condition according to the composition and the cold rolling rate, it becomes easy to set the appropriate condition range.

溶体化処理後の冷却は、従来一般的に、冷却途中での第二相の析出を極力防止するために「急冷」とするのが通常である。しかしながら、そのような通常の溶体化処理条件では、その後の時効中に粒界反応析出が生じやすくなる。本発明では、溶体化処理の冷却途中において、粒界反応型析出がほとんど起こらない530〜730℃、より好ましくは580〜725℃の温度領域に10〜120sec、より好ましくは20〜100sec保持することで、結晶粒界(および結晶粒内)に微細な粒状析出物を生成させておく。このような、結晶粒の粗大化がなく、かつ微細な粒状析出物が既に生成している組織状態の溶体化処理材を、比較的低温側にシフトした条件の時効処理に供したとき、粒界反応型析出物の生成が顕著に抑制できることがわかった。また、ここで形成した微細な粒状析出物は強度向上にも寄与する。この冷却途中の保持温度が高すぎると結晶粒の粗大化や微細粒状析出物の生成量不足を招く。保持温度が低すぎて530℃未満430℃以上の温度域での保持になれば粒界反応型析出が生じてしまい、更に温度低いと微細な粒状析出物が生成せず、通常の急冷による溶体化処理と同様の結果となる。また、保持時間が長すぎると微細な粒状析出物が粗大化してしまい、強度が低下する。保持時間が短すぎると微細な粒状析出物の生成量が少なくなり、通常の急冷による溶体化処理と同様の結果となる。なお、530℃から300℃までの平均冷却速度は100℃/sec以上とすることが望ましい。   The cooling after the solution treatment is generally “quenching” in order to prevent the precipitation of the second phase during the cooling as much as possible. However, under such normal solution treatment conditions, grain boundary reaction precipitation is likely to occur during subsequent aging. In the present invention, during the cooling of the solution treatment, the grain boundary reaction type precipitation hardly occurs at 530 to 730 ° C., more preferably 580 to 725 ° C. for 10 to 120 sec, more preferably 20 to 100 sec. Thus, fine granular precipitates are generated at the crystal grain boundaries (and within the crystal grains). When the solution treatment material in such a state that there is no coarsening of crystal grains and fine granular precipitates are already formed is subjected to an aging treatment under conditions shifted to a relatively low temperature side, It was found that the formation of boundary reaction type precipitates can be remarkably suppressed. Moreover, the fine granular precipitate formed here also contributes to strength improvement. If the holding temperature during the cooling is too high, the crystal grains become coarse and the production amount of fine granular precipitates is insufficient. If the holding temperature is too low and the holding is in a temperature range of less than 530 ° C. and 430 ° C. or more, grain boundary reaction type precipitation occurs, and if the temperature is lower, fine granular precipitates are not generated, and a solution by normal rapid cooling The result is the same as the conversion process. On the other hand, if the holding time is too long, fine granular precipitates are coarsened and the strength is lowered. If the holding time is too short, the amount of fine granular precipitates is reduced, resulting in the same result as a solution treatment by normal rapid cooling. The average cooling rate from 530 ° C. to 300 ° C. is preferably 100 ° C./sec or more.

上述の溶体化処理後の冷却条件は、連続通板ラインの場合、各冷却ゾーンの温度と長さ、および通板速度の制御によって実現できる。設備的な制限がある場合、通常の溶体化処理(急冷)後に、530〜730℃、より好ましくは580〜725℃の加熱炉で保持時間10〜120sec、より好ましくは20〜100secの熱処理を行ってもよい。   In the case of a continuous plate line, the cooling conditions after the solution treatment described above can be realized by controlling the temperature and length of each cooling zone and the plate passing speed. When there is an equipment limitation, after a normal solution treatment (rapid cooling), a heat treatment is performed in a heating furnace at 530 to 730 ° C., more preferably 580 to 725 ° C. for a holding time of 10 to 120 seconds, more preferably 20 to 100 seconds. May be.

〔時効前冷間圧延〕
続いて、時効処理の前に冷間圧延を行うことができる。この段階での冷間圧延はその後の時効処理中の析出を促進する効果があり、これにより必要な特性(導電率、硬さ)を引き出すための時効温度を低下させ、または時効時間を短くするうえで有利となる。
この冷間圧延は省略してもよいが、行う場合は圧延率1〜50%の範囲とすることが望ましく、1〜40%とすることがより好ましく、1〜35%とすることが一層好ましい。圧延率が高すぎると、最終製品のTD方向の曲げ加工性悪くなる。
[Cold rolling before aging]
Subsequently, cold rolling can be performed before the aging treatment. Cold rolling at this stage has the effect of accelerating precipitation during the subsequent aging treatment, thereby lowering the aging temperature for extracting necessary properties (conductivity and hardness) or shortening the aging time. This is advantageous.
Although this cold rolling may be omitted, when it is performed, the rolling rate is preferably in the range of 1 to 50%, more preferably 1 to 40%, and even more preferably 1 to 35%. . When the rolling rate is too high, the bending workability of the final product in the TD direction is deteriorated.

〔時効処理〕
Cu−Ni−Si系銅合金の時効処理は、従来一般に430〜500℃程度の温度域で行われている。しかしながら、この温度域では粒界反応析出が極めて起こりやすい。上述した溶体化処理では、溶体化処理後に既に少量の微細な粒状析出物が生成したことにより、時効後最高強度が得られる時効処理温度はより低温側へシフトしている。このため、低温時効で高強度化することができる。具体的には350〜420℃で時効処理を行う。この温度域では粒界反応型析出が顕著に抑制される。380〜410℃がより好ましい。時効処理時間は60〜600minの範囲で設定すればよく、120〜540minに範囲に管理してもよい。時効処理中の表面酸化を極力抑制する場合には、水素、窒素またはアルゴン雰囲気を使うことができる。
[Aging treatment]
The aging treatment of the Cu—Ni—Si based copper alloy is conventionally performed in a temperature range of about 430 to 500 ° C. in general. However, grain boundary reaction precipitation is extremely likely to occur in this temperature range. In the solution treatment described above, since a small amount of fine granular precipitates have already been generated after the solution treatment, the aging treatment temperature at which the maximum strength after aging is obtained is shifted to a lower temperature side. For this reason, it is possible to increase the strength by low temperature aging. Specifically, an aging treatment is performed at 350 to 420 ° C. In this temperature range, grain boundary reaction type precipitation is remarkably suppressed. 380-410 degreeC is more preferable. The aging treatment time may be set in the range of 60 to 600 min, and may be managed in the range of 120 to 540 min. In order to suppress the surface oxidation during the aging treatment as much as possible, a hydrogen, nitrogen or argon atmosphere can be used.

〔仕上冷間圧延〕
仕上冷間圧延は強度レベル(特に0.2%耐力)の向上に極めて有効である。ただし、仕上冷間圧延率が高くなるとTDの曲げ加工性が悪くなりやすい。仕上冷間圧延は圧延率1〜35%の範囲で行うことが効果的であり、5〜20%の範囲がより好ましい。この仕上冷間圧延は省略してもよい。
[Finish cold rolling]
Finish cold rolling is extremely effective in improving the strength level (particularly 0.2% yield strength). However, when the finish cold rolling rate increases, the TD bending workability tends to deteriorate. It is effective to perform the finish cold rolling within a range of a rolling rate of 1 to 35%, and a range of 5 to 20% is more preferable. This finish cold rolling may be omitted.

〔低温焼鈍〕
仕上冷間圧延後には、板条材の残留応力の低減や曲げ加工性の向上、空孔やすべり面上の転位の低減による耐応力緩和性向上を目的として、低温焼鈍を施すことができる。加熱温度は150〜430℃とすることが望ましく、200〜420℃とすることがより好ましい。これにより強度、導電率、曲げ加工性と耐応力緩和性を同時に向上させることができる。この加熱温度が高すぎると粒界反応析出が発生しやすくなる。逆に加熱温度が低すぎると上記特性の改善効果が十分に得られない。上記温度での保持時間は5sec以上とすることが望ましく、通常1h以内の範囲で良好な結果が得られる。
銅合金板材としての最終的な板厚は例えば0.05〜1.0mmとすればよい。0.08〜0.5mmとすることが一層好ましい。
[Low temperature annealing]
After finish cold rolling, low-temperature annealing can be performed for the purpose of reducing the residual stress of the strip material, improving the bending workability, and improving the stress relaxation resistance by reducing the dislocations on the pores and the sliding surface. The heating temperature is preferably 150 to 430 ° C, more preferably 200 to 420 ° C. Thereby, strength, electrical conductivity, bending workability and stress relaxation resistance can be improved at the same time. If this heating temperature is too high, grain boundary reaction precipitation tends to occur. Conversely, if the heating temperature is too low, the effect of improving the above characteristics cannot be obtained sufficiently. The holding time at the above temperature is desirably 5 seconds or longer, and good results are usually obtained within a range of 1 h.
The final thickness of the copper alloy sheet may be, for example, 0.05 to 1.0 mm. More preferably, the thickness is 0.08 to 0.5 mm.

表1に示す組成の銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を950℃に加熱したのち抽出して、熱間圧延を開始した。熱間圧延の最終パス温度は600℃〜500℃の間にある。熱間圧延終了後は水冷した。鋳片からのトータルの熱間圧延率は約90%である。このうち950〜750℃での圧延率は約70%であった。熱間圧延後、表層の酸化層を機械研磨により除去(面削)し、厚さ10mmの圧延板を得た。次いで、圧延率97〜99%の範囲で冷間圧延を行った後、溶体化処理に供した。   A copper alloy having the composition shown in Table 1 was melted and cast using a vertical semi-continuous casting machine. The obtained slab was heated to 950 ° C. and extracted, and hot rolling was started. The final pass temperature of hot rolling is between 600 ° C and 500 ° C. After the hot rolling was finished, it was cooled with water. The total hot rolling rate from the slab is about 90%. Among these, the rolling rate at 950 to 750 ° C. was about 70%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing to obtain a rolled plate having a thickness of 10 mm. Subsequently, after performing cold rolling in the range of a rolling rate of 97 to 99%, it was subjected to a solution treatment.

溶体化処理は、表2に示す条件で大気中で行った。一部の比較例を除き、溶体化処理の冷却過程を利用して途中の温度で所定時間保持したのち、水冷した。水冷により530℃から300℃までの平均冷却速度は100℃/sec以上であった。この保持を行わなかった例では、従来一般的な溶体化処理と同様、溶体化の加熱保持後に水冷した。溶体化処理後の板材からサンプルを採取し、上述の方法で平均結晶粒径を測定した。表2中にその結果を示す。溶体化処理後にはいくつかの例で表2に示す圧延率での時効前冷間圧延を行った。次いで、表2に示す条件で時効処理を窒素雰囲気中で行い、その後、いくつかの例で表2に示す圧延率での仕上冷間圧延を行った。仕上冷間圧延を行った例では、その後、420℃、1minの低温処理を大気中で施した。以上の工程で板厚0.15mmの銅合金板材を作製し、供試材とした。
なお、No.32およびNo.33は、それぞれ市販のCu−Ni−Si系銅合金(DOWAオーリンメタル株式会社販売、DOWAメタニクス株式会社作製のC7025―TM03およびTM04、板厚0.15mm)を入手して供試材としたものである。
The solution treatment was performed in the air under the conditions shown in Table 2. Except for some comparative examples, using the cooling process of the solution treatment, the temperature was maintained at an intermediate temperature for a predetermined time, and then cooled with water. The average cooling rate from 530 ° C. to 300 ° C. by water cooling was 100 ° C./sec or more. In an example in which this holding was not performed, water cooling was performed after heating and holding the solution, as in the conventional general solution treatment. A sample was taken from the plate material after the solution treatment, and the average crystal grain size was measured by the method described above. The results are shown in Table 2. After the solution treatment, cold rolling before aging at the rolling rates shown in Table 2 was performed in some examples. Next, an aging treatment was performed in a nitrogen atmosphere under the conditions shown in Table 2, and then finish cold rolling at a rolling rate shown in Table 2 was performed in some examples. In the example where the finish cold rolling was performed, a low temperature treatment of 420 ° C. and 1 minute was then performed in the air. A copper alloy plate material having a thickness of 0.15 mm was produced by the above steps, and used as a test material.
In addition, No. 32 and No. 33 obtain commercially available Cu—Ni—Si based copper alloys (saved by DOWA Aurin Metal Co., Ltd., C7025-TM03 and TM04 produced by DOWA Metanics Co., Ltd., thickness 0.15 mm). Thus, it is a sample material.

各供試材について、板面(圧延面)を研磨しエッチングした表面の組織観察を行い、上述の測定方法に従い、平均結晶粒径、粒界反応型析出物の最大幅、直径100nm以上の粒状析出物の個数密度を求めた。板面の研磨は、耐水ペーパーで1500番まで磨いた後、電解研磨する方法でを行った。電解研磨液は、体積比で、蒸留水:10、リン酸:5、エタノール:5、2−プロパノール:1の混合液とした。電解研磨はElectroMet4(BUEHLER社製)を用い、φ10mmの領域に室温で電圧15Vで20秒間電解研磨を施す方法で行った。平均結晶粒径、粒界反応型析出物の幅、直径も同様の板面研磨によるサンプルを用いて測定した。その際、平均結晶粒径を測定するための光学顕微鏡観察においては、観察領域を300μm×300μmの矩形領域とした。また、粒界反応型析出物および粒状析出物のSEM観察においては、ランダムに選択した5視野にそれぞれ42μm×29μmの観察領域を設定し、観察領域の合計面積を6090μm2とした。この合計面積から単位面積当たりの粒状析出物の個数密度(個/mm2)を算出した。これらの結果を表3に示す。 For each sample material, the surface of the plate surface (rolled surface) polished and etched is observed, and according to the measurement method described above, the average crystal grain size, the maximum width of the grain boundary reaction type precipitate, and the grain size of 100 nm or more The number density of precipitates was determined. The surface of the plate was polished by a method of electrolytic polishing after polishing to 1500 with water resistant paper. The electropolishing liquid was a mixed solution of distilled water: 10, phosphoric acid: 5, ethanol: 5, 2-propanol: 1 by volume ratio. Electropolishing was performed by using ElectroMet4 (manufactured by BUEHLER) and performing electropolishing for 20 seconds at a voltage of 15 V at a room temperature of φ10 mm at room temperature. The average crystal grain size, the width of the grain boundary reaction type precipitate, and the diameter were also measured using the same plate surface sample. At that time, in observation with an optical microscope for measuring the average crystal grain size, the observation area was a rectangular area of 300 μm × 300 μm. Further, in SEM observation of grain boundary reaction type precipitates and granular precipitates, an observation area of 42 μm × 29 μm was set in each of five randomly selected visual fields, and the total area of the observation areas was set to 6090 μm 2 . From this total area, the number density (particles / mm 2 ) of granular precipitates per unit area was calculated. These results are shown in Table 3.

また、供試材について以下の各特性を調べた。
〔導電率〕
JIS H0505に従って各供試材の導電率を測定した。
〔引張強さと0.2%耐力〕
各供試材からLDの引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241に準拠した引張試験行い、引張強さと0.2%耐力を測定した。n=3の平均値によって引張強さと0.2%耐力を求めた。
〔曲げ加工性〕
供試材から長手方向がLDの曲げ試験片およびTDの曲げ試験片(いずれも幅10mm)を採取し、JIS H3110に準拠した90°W曲げ試験を行った。試験後の試験片について曲げ加工部の表面および断面を光学顕微鏡にて100倍の倍率で観察することにより、割れが発生しない最小曲げ半径MBRを求め、これを供試材の板厚tで除することによりLD、TDそれぞれのMBR/t値を求めた。各供試材のLD、TDとも試験数n=3で実施し、n=3のうち最も悪い結果となった試験片の成績を採用してMBR/t値を表示した。
〔疲労寿命〕
LDの試験片を用いてJIS Z2273に従って疲労試験を行った。幅10mmの短冊状の試験片の一端を固定具に固定し、他端をナイフエッジを介して正弦波振動を与え疲労寿命を測定した。試験片表面の最大付加応力700MPaでの疲労寿命(試験片が破断に至るまでの繰り返し振動回数)を測定した。測定は同じ条件下で4回行い、4回の測定の平均値を当該板材の成績として採用した。
〔応力緩和率〕
前述の方法に従って応力緩和率を測定した。
これらの結果を表3に示す。表3中に記載されるLDおよびTDは試験片の長手方向を意味する。
In addition, the following characteristics of the test material were examined.
〔conductivity〕
The electrical conductivity of each test material was measured according to JIS H0505.
[Tensile strength and 0.2% yield strength]
An LD tensile test piece (JIS No. 5) was sampled from each specimen, and a tensile test according to JIS Z2241 was performed with the number of tests n = 3, and the tensile strength and 0.2% proof stress were measured. Tensile strength and 0.2% yield strength were determined by the average value of n = 3.
[Bending workability]
A bending test piece having a LD in the longitudinal direction and a bending test piece having a TD (both 10 mm in width) were sampled from the test material and subjected to a 90 ° W bending test in accordance with JIS H3110. By observing the surface and cross section of the bent portion of the test piece after the test with an optical microscope at a magnification of 100 times, the minimum bending radius MBR at which no crack occurs is obtained, and this is divided by the thickness t of the specimen. As a result, the MBR / t values of LD and TD were obtained. Both the LD and TD of each test material were tested with the number of tests n = 3, and the result of the test piece with the worst result among n = 3 was adopted to display the MBR / t value.
[Fatigue life]
A fatigue test was performed according to JIS Z2273 using a test piece of LD. One end of a strip-shaped test piece having a width of 10 mm was fixed to a fixture, and the other end was subjected to sinusoidal vibration through a knife edge to measure the fatigue life. The fatigue life at the maximum applied stress of 700 MPa on the surface of the test piece (the number of repeated vibrations until the test piece was broken) was measured. The measurement was performed four times under the same conditions, and the average value of the four measurements was adopted as the performance of the plate material.
[Stress relaxation rate]
The stress relaxation rate was measured according to the method described above.
These results are shown in Table 3. LD and TD described in Table 3 mean the longitudinal direction of the test piece.

表3からわかるように、本発明例の銅合金板材はいずれも平均結晶粒径が5〜25μm、粒界反応型析出物の幅が500nm以下、直径100nm以上の粒状析出物の個数密度が106個/mm2以下、引張強さは850MPa以上、MBR/t値がLD、TDとも2.0以下であり、かつ付加応力700MPaでの疲労寿命が20万回以上という優れた耐疲労特性を有する。更に、車載用コネクタ等の用途において重要となるTDの応力緩和率が5%以下という優れた耐応力緩和性を兼ね備えている。 As can be seen from Table 3, all of the copper alloy sheets of the examples of the present invention have an average crystal grain size of 5 to 25 μm, a grain boundary reaction type precipitate width of 500 nm or less, and a number density of granular precipitates having a diameter of 100 nm or more. Excellent fatigue resistance of 6 pieces / mm 2 or less, tensile strength of 850 MPa or more, MBR / t value of 2.0 or less for both LD and TD, and fatigue life of 200,000 cycles or more at an applied stress of 700 MPa Have. Furthermore, it has excellent stress relaxation resistance with a TD stress relaxation rate of 5% or less, which is important in applications such as in-vehicle connectors.

これに対し、比較例No.21〜25は本発明例No.1〜5と同じ組成の合金について、通常の工程で製造したもの(溶体化処理後に急冷却したもの)である。これらはいずれも粒界反応析出物の生成が抑制されていないため、同組成の本発明例と比べ、導電性、強度、曲げ加工性、耐疲労特性、耐応力緩和性などの各特性が全般的に劣った。   On the other hand, Comparative Examples Nos. 21 to 25 are manufactured in a normal process (although rapidly cooled after the solution treatment) for alloys having the same composition as the inventive examples Nos. 1 to 5. Since none of these has suppressed the formation of grain boundary reaction precipitates, the characteristics such as conductivity, strength, bending workability, fatigue resistance, and stress relaxation resistance are generally compared to the inventive examples of the same composition. Inferior.

比較例No.26〜28は化学組成が規定範囲外であることにより、良好な特性が得られなかった例である。No.26はNiとSiの含有量が低すぎたことにより、強度レベルが低く、これに伴い、耐疲労特性が劣る。No.27はNiとSiの含有量が高すぎたので、熱間圧延時に割れが生じ、評価できる板材を作れなかった。No.28は粒界反応析出を抑制するためにCrとFeを多量に添加したので粒界反応析出がほとんど発生しなかったが、Cr、FeとSiとが粗大な金属間化合物(粒状析出物)を形成したことにより、強度、曲げ加工性、耐疲労特性、耐応力緩和性ともに悪くなった。   Comparative Examples Nos. 26 to 28 are examples in which good characteristics were not obtained because the chemical composition was outside the specified range. No. 26 has a low strength level due to too low contents of Ni and Si, and accordingly, fatigue resistance is inferior. In No. 27, since the contents of Ni and Si were too high, cracking occurred during hot rolling, and a plate material that could be evaluated could not be made. In No. 28, a large amount of Cr and Fe was added to suppress the intergranular reaction precipitation, so that almost no intergranular reaction precipitation occurred, but Cr, Fe and Si were coarse intermetallic compounds (granular precipitates). ) Deteriorated in strength, bending workability, fatigue resistance, and stress relaxation resistance.

比較例No.29〜31は本発明例No.3と同じ組成の合金について、溶体化処理工程を不適切な条件で実施したものである。No.29は溶体化加熱温度が高すぎたので結晶粒が粗大化し、冷却過程で650℃、50secの保持を行ったにもかかわらず、時効処理中に粒界反応析出を抑制できなかった。その結果、曲げ加工性を耐疲労特性に劣った。No.30は逆に溶体化処理温度が750℃と低すぎたので、直径100nm以上の粒状析出物が大量残留(未固溶)し、時効処理中に粒界反応析出を抑制できたものの、強度、曲げ加工性、耐疲労特性、耐応力緩和性が悪い結果となった。No.31は溶体化処理後の冷却過程での保持時間が長すぎたので、粒状析出物が過量に生成してしまい、時効処理中に粒界反応析出を抑制できたものの、強度、曲げ加工性、耐疲労特性が悪くなった。   Comparative Examples Nos. 29 to 31 are solutions in which the solution treatment process was performed under inappropriate conditions for an alloy having the same composition as that of Invention Example No. 3. In No. 29, since the solution heating temperature was too high, the crystal grains became coarse, and despite the holding at 650 ° C. for 50 sec during the cooling process, grain boundary reaction precipitation could not be suppressed during the aging treatment. As a result, bending workability was inferior to fatigue resistance. In contrast, No. 30 had a solution treatment temperature of 750 ° C. which was too low, so that a large amount of granular precipitates having a diameter of 100 nm or more remained (not solid solution), and the grain boundary reaction precipitation could be suppressed during the aging treatment. The results were poor in strength, bending workability, fatigue resistance, and stress relaxation resistance. No. 31 had too long a holding time in the cooling process after solution treatment, so that granular precipitates were generated excessively, and grain boundary reaction precipitation could be suppressed during the aging treatment, but the strength and bending work The fatigue and fatigue resistance properties deteriorated.

比較例No.32と33はCu−Ni−Si系銅合金を代表するC70250−TM03とC70250−TM04の市販品(いずれも板厚0.15mm)である。これらはいずれも幅500nmを超える粒界反応析出物が生成しており、ほぼ同様の組成を有する本発明例No.1と比べ、導電性、強度、曲げ加工性、耐疲労特性、耐応力緩和性に劣る。   Comparative Examples No. 32 and 33 are commercially available products (both plate thicknesses of 0.15 mm) of C70250-TM03 and C70250-TM04 that represent Cu—Ni—Si based copper alloys. In all of these, grain boundary reaction precipitates having a width of more than 500 nm are generated, and compared with Example No. 1 of the present invention having almost the same composition, conductivity, strength, bending workability, fatigue resistance, stress relaxation Inferior to sex.

図2に、本発明例No.1供試材についての板面(圧延面)を研磨してエッチングした金属組織SEM写真を例示する。   In FIG. 2, the metal structure SEM photograph which grind | polished and etched the plate | board surface (rolling surface) about this invention example No. 1 test material is illustrated.

1 粒状析出物
2 粒界反応型析出物
1 granular precipitate 2 grain boundary reaction type precipitate

Claims (12)

質量%で、Ni:2.5〜5.0%、Si:0.5〜1.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Co:0〜2.0%、Fe:0〜0.5%、Cr:0〜0.5%、B:0〜0.05%、P:0〜0.1%、Zr:0〜1.0%、Al:0〜1.0%、Ti:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%、残部Cuおよび不可避的不純物からなり、Fe、Cr、B、P、Zr、Al、Ti、MnおよびVの合計含有量が0〜3.0質量%である組成を有し、粒界反応型析出物の最大幅が500nm以下、直径100nm以上の粒状析出物の個数密度が106個/mm2以下である銅合金板材。 In mass%, Ni: 2.5 to 5.0%, Si: 0.5 to 1.5%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1. 0%, Co: 0 to 2.0%, Fe: 0 to 0.5%, Cr: 0 to 0.5%, B: 0 to 0.05%, P: 0 to 0.1%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Ti: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, remaining Cu and inevitable impurities The total content of Fe, Cr, B, P, Zr, Al, Ti, Mn and V is 0 to 3.0% by mass, and the maximum width of the grain boundary reaction type precipitate is 500 nm or less. A copper alloy sheet material in which the number density of granular precipitates having a diameter of 100 nm or more is 10 6 pieces / mm 2 or less. 質量%で、Ni:2.5〜5.0%、Si:0.5〜1.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Co:0〜2.0%、Fe:0〜0.5%、Cr:0〜0.5%、B:0〜0.05%、P:0〜0.1%、Zr:0〜1.0%、Al:0〜1.0%、Ti:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%、残部Cuおよび不可避的不純物からなり、Fe、Cr、B、P、Zr、Al、Ti、MnおよびVの合計含有量が0〜3.0質量%である組成を有し、直径100nm以上の粒状析出物の個数密度が106個/mm2以下であり、JIS Z2273に準拠した疲労試験において、試験片表面の最大付加応力700MPaでの疲労寿命(試験片が破断に至るまでの繰り返し振動回数)が10万回以上となる耐疲労特性を有する銅合金板材。 In mass%, Ni: 2.5 to 5.0%, Si: 0.5 to 1.5%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1. 0%, Co: 0 to 2.0%, Fe: 0 to 0.5%, Cr: 0 to 0.5%, B: 0 to 0.05%, P: 0 to 0.1%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Ti: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, remaining Cu and inevitable impurities The total content of Fe, Cr, B, P, Zr, Al, Ti, Mn and V is 0 to 3.0% by mass, and the number density of granular precipitates having a diameter of 100 nm or more is 10 6 pieces / mm 2 or less, the fatigue test according to JIS Z2273, fatigue life of up to additional stress 700MPa surface of the test piece (repetition number of oscillations up to the test piece to fracture) is more than 100,000 times Has fatigue resistance Copper alloy sheet that. 板の圧延方向の引張強さTSが850MPa以上であり、導電率R(%IACS)と前記引張強さTS(MPa)の積で表される下記(1)式のA値が35000以上である請求項1または2に記載の銅合金板材。
A値=R(%IACS)×TS(MPa) …(1)
The tensile strength TS in the rolling direction of the plate is 850 MPa or more, and the A value of the following formula (1) represented by the product of the conductivity R (% IACS) and the tensile strength TS (MPa) is 35,000 or more. The copper alloy sheet material according to claim 1 or 2.
A value = R (% IACS) × TS (MPa) (1)
板面(圧延面)について圧延方向に対し直角方向に測定した切断法による平均結晶粒径が5〜25μmである請求項1〜3のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 3, wherein an average crystal grain size by a cutting method measured in a direction perpendicular to the rolling direction with respect to the sheet surface (rolled surface) is 5 to 25 µm. 導電率が35%IACS以上である請求項1〜4のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 4, wherein the conductivity is 35% IACS or more. 板の圧延方向をLD、圧延方向と板厚方向に直角の方向をTDとするとき、JIS H3110に準拠した90°W曲げ試験において割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値がLD、TDとも2.0以下となる曲げ加工性を有する請求項1〜5のいずれか1項に記載の銅合金板材。   When the rolling direction of the plate is LD, and the direction perpendicular to the rolling direction and the plate thickness direction is TD, the ratio MBR of the minimum bending radius MBR and the plate thickness t in which cracking does not occur in the 90 ° W bending test according to JIS H3110. The copper alloy sheet material according to any one of claims 1 to 5, wherein the copper alloy sheet has bending workability in which the value of / t is 2.0 or less for both LD and TD. 粒界反応型析出物の最大幅が1000nm以下である請求項2〜6のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 2 to 6, wherein the maximum width of the grain boundary reaction type precipitate is 1000 nm or less. 質量%で、Ni:2.5〜5.0%、Si:0.5〜1.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Co:0〜2.0%、Fe:0〜0.5%、Cr:0〜0.5%、B:0〜0.05%、P:0〜0.1%、Zr:0〜1.0%、Al:0〜1.0%、Ti:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%、残部Cuおよび不可避的不純物からなり、Fe、Cr、B、P、Zr、Al、Ti、MnおよびVの合計含有量が0〜3.0質量%である組成を有する銅合金板材を、熱間圧延、冷間圧延、溶体化処理、時効処理を含む工程で製造するに際し、
溶体化処理は、780〜1000℃で加熱保持したのち、その冷却過程において530〜730℃の温度範囲で10〜120sec保持するヒートパターンとして、板面(圧延面)について圧延方向に対し直角方向に測定した切断法による平均結晶粒径が5〜25μmとなる条件で行い、
時効処理は、350〜420℃で行う、
銅合金板材の製造方法。
In mass%, Ni: 2.5 to 5.0%, Si: 0.5 to 1.5%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1. 0%, Co: 0 to 2.0%, Fe: 0 to 0.5%, Cr: 0 to 0.5%, B: 0 to 0.05%, P: 0 to 0.1%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Ti: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, remaining Cu and inevitable impurities A copper alloy sheet having a composition in which the total content of Fe, Cr, B, P, Zr, Al, Ti, Mn and V is 0 to 3.0% by mass, hot rolling, cold rolling, solution When manufacturing in processes including aging treatment and aging treatment,
In the solution treatment, the plate surface (rolling surface) is perpendicular to the rolling direction as a heat pattern that is heated and held at 780 to 1000 ° C. and then held for 10 to 120 seconds in the temperature range of 530 to 730 ° C. in the cooling process. Performed under the condition that the average crystal grain size by the measured cutting method is 5 to 25 μm,
The aging treatment is performed at 350 to 420 ° C.
A method for producing a copper alloy sheet.
溶体化処理後、時効処理前に圧延率1〜50%の冷間圧延を行う、請求項8に記載の銅合金板材の製造方法。   The method for producing a copper alloy sheet according to claim 8, wherein cold rolling is performed at a rolling rate of 1 to 50% after the solution treatment and before the aging treatment. 時効処理後に圧延率1〜35%の仕上冷間圧延を行う、請求項8または9に記載の銅合金板材の製造方法。   The manufacturing method of the copper alloy sheet material of Claim 8 or 9 which performs finish cold rolling with a rolling rate of 1-35% after an aging treatment. 仕上冷間圧延後に150〜430℃での低温焼鈍を施す、請求項10に記載の銅合金板材の製造方法。   The manufacturing method of the copper alloy sheet | seat material of Claim 10 which performs low temperature annealing at 150-430 degreeC after finish cold rolling. 請求項1〜7のいずれか1項に記載の銅合金板材を材料に用いた通電部品。   The electricity supply component which used the copper alloy board | plate material of any one of Claims 1-7 for the material.
JP2014062428A 2014-03-25 2014-03-25 Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component Active JP6317966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062428A JP6317966B2 (en) 2014-03-25 2014-03-25 Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062428A JP6317966B2 (en) 2014-03-25 2014-03-25 Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component

Publications (2)

Publication Number Publication Date
JP2015183262A true JP2015183262A (en) 2015-10-22
JP6317966B2 JP6317966B2 (en) 2018-04-25

Family

ID=54350154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062428A Active JP6317966B2 (en) 2014-03-25 2014-03-25 Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component

Country Status (1)

Country Link
JP (1) JP6317966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448745A (en) * 2015-12-01 2016-03-30 赵雅珺 Fabrication method of lead frame
CN108699632A (en) * 2016-02-19 2018-10-23 威兰德-沃克公开股份有限公司 One kind sliding members made of ormolu
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084764A (en) * 2009-10-13 2011-04-28 Dowa Metaltech Kk High strength copper alloy plate material and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084764A (en) * 2009-10-13 2011-04-28 Dowa Metaltech Kk High strength copper alloy plate material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448745A (en) * 2015-12-01 2016-03-30 赵雅珺 Fabrication method of lead frame
CN108699632A (en) * 2016-02-19 2018-10-23 威兰德-沃克公开股份有限公司 One kind sliding members made of ormolu
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP6317966B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP5075438B2 (en) Cu-Ni-Sn-P copper alloy sheet and method for producing the same
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JPWO2010013790A1 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP5873618B2 (en) Method for producing copper alloy
JP5880670B2 (en) Method for determining melting temperature of copper alloy slabs
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP5135496B2 (en) Cu-Be based copper alloy sheet and method for producing the same
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP2006291356A (en) Ni-sn-p based copper alloy
JP2017179492A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP6317966B2 (en) Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP2008038231A (en) High-strength sheet material of copper alloy superior in bendability, and manufacturing method therefor
JP2005344143A (en) Titanium copper having excellent strength, conductivity, and bending workability, and its production method
JP2017039959A (en) Cu-Ti-BASED COPPER ALLOY SHEET AND MANUFACTURING METHOD THEREFOR AND ELECTRIFICATION COMPONENT
JP6749122B2 (en) Copper alloy plate with excellent strength and conductivity
JP6286241B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6317966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250