JP2009079283A - High-strength, high-conductivity two phase copper alloy - Google Patents
High-strength, high-conductivity two phase copper alloy Download PDFInfo
- Publication number
- JP2009079283A JP2009079283A JP2007251462A JP2007251462A JP2009079283A JP 2009079283 A JP2009079283 A JP 2009079283A JP 2007251462 A JP2007251462 A JP 2007251462A JP 2007251462 A JP2007251462 A JP 2007251462A JP 2009079283 A JP2009079283 A JP 2009079283A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- strength
- alloy
- conductivity
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
本発明は強度と曲げ加工性に優れ、例えば電子機器用のばね材に好適に適用できる高強度高導電性二相銅合金に関する。 The present invention relates to a high-strength and highly conductive two-phase copper alloy that is excellent in strength and bending workability and can be suitably applied to, for example, a spring material for electronic equipment.
コネクタ製品の高密度化,小型化が飛躍的に進んでいることから、コネクタ用材料には充分な接触圧を持ちつつ,曲げ半径が小さいこと、つまり強度と曲げ加工性の両立が要求されている。 As the density and miniaturization of connector products has progressed dramatically, connector materials must have sufficient contact pressure and a small bending radius, that is, both strength and bending workability must be achieved. Yes.
一般に、Cuに強化元素を添加して高強度化すると導電率が低下し、一方で導電率を上昇させるためCu純度を高めると低強度となる関係がある。そこで、Cu母相中に第二相を晶出させた合金系(複相合金)が開発された。この合金は、強加工することにより第二相がファイバ状に分散され、りん青銅と同等の強度を持ちつつ、母相はCuであるため、導電率が60%IACS(international annealed copper standard、焼鈍標準軟銅に対する電気伝導度の比)を超える高導電性材が得られている。この複相合金系としては、Cu-Cr、Cu-Agなどが知られている(例えば、特許文献1〜3参照)。又、Cu-Fe系合金も報告されている(特許文献4参照)。 In general, when a strengthening element is added to Cu to increase the strength, the electrical conductivity decreases, while on the other hand, increasing the Cu purity has a relationship of decreasing the strength to increase the electrical conductivity. Therefore, an alloy system (double phase alloy) was developed in which the second phase was crystallized in the Cu matrix. This alloy has a second phase dispersed in a fiber form by strong processing and has the same strength as phosphor bronze, but the parent phase is Cu, so the conductivity is 60% IACS (international annealed copper standard, annealed) A highly conductive material exceeding the ratio of electrical conductivity to standard annealed copper has been obtained. As this multiphase alloy system, Cu—Cr, Cu—Ag, and the like are known (see, for example, Patent Documents 1 to 3). A Cu—Fe alloy has also been reported (see Patent Document 4).
しかしながら、従来の複相銅合金の場合,第二相の効果により材料強度は向上するものの,曲げ加工性が充分とはいえない。又、複相合金はその加工方向,すなわち第二相の延伸方向の強度や加工性に優れるため,複相合金を線材に用いる場合には強度上の問題は生じない。一方,複相合金を圧延材として用いる場合、プレス打抜き等の加工を行うため、圧延方向,圧延直角方向ともに充分な曲げ加工性を要求される。
ところが、複相合金の圧延材においては,圧延直角方向の曲げ加工性が圧延平行方向に比べて劣るという問題がある。これは上述した第二相の延伸方向と強度との関係(異方性)に起因する。特に,第二相を微細に分散させて強度を向上させることを目的として複相合金を強加工すると、材料組織の異方性が顕著となり曲げ加工性が低下する。
従って,従来の複相合金は強度と曲げ加工性を両立することができなかった。
However, in the case of a conventional multiphase copper alloy, the material strength is improved by the effect of the second phase, but the bending workability is not sufficient. In addition, the multiphase alloy is excellent in strength and workability in the working direction, that is, in the drawing direction of the second phase, so that there is no problem in strength when the multiphase alloy is used for the wire. On the other hand, when a multiphase alloy is used as a rolled material, sufficient bending workability is required in both the rolling direction and the direction perpendicular to the rolling in order to perform processing such as press punching.
However, a rolled material of a multiphase alloy has a problem that bending workability in the direction perpendicular to rolling is inferior to that in the rolling parallel direction. This is due to the relationship (anisotropy) between the stretching direction and strength of the second phase described above. In particular, when a multiphase alloy is strongly processed for the purpose of finely dispersing the second phase and improving the strength, the anisotropy of the material structure becomes remarkable and the bending workability decreases.
Therefore, the conventional multiphase alloy cannot achieve both strength and bending workability.
又、特許文献4に記載されたようなCu-Fe系合金を用いる場合、一般の銅合金程度の高い強度を得るためにはFeを10質量%を超えて添加する必要があるが、合金の溶解温度が一般の銅合金より極めて高くなるという問題がある(Cu-15%Feで溶解温度が1450℃以上)。この場合、高温の溶湯を冷却して合金を鋳造するため冷却時間が長くなり,鋳造によって得られたFe晶出物が粗大となるため,高強度かつ高導電率という特性が得られない。
つまり、Cu-Fe系複相合金は,溶解が困難であるだけでなく充分な特性が得られず、現実的に製造が困難であるとされている。従来、Feを10%を超えて添加しないと一般の銅合金程度の強度が得られないとされてきた。しかしながら、多量(15%程度)のFeを添加すると溶解温度が高くなり、適切な炉材が少ないと共に、冷却時間が長くなるためにFe晶出物が粗大になるという問題があり、Cu-Fe系合金は実際には製造が困難である。一方、溶解温度を低減するにはFe添加量を 4-6%程度に低減することが有効であるが、この場合には第二相による強度向上効果が不充分となる。
In addition, when using a Cu-Fe alloy as described in Patent Document 4, it is necessary to add Fe in excess of 10% by mass in order to obtain a strength as high as that of a general copper alloy. There is a problem that the melting temperature is much higher than that of a general copper alloy (Cu-15% Fe has a melting temperature of 1450 ° C or higher). In this case, since the alloy is cast by cooling the high-temperature molten metal, the cooling time becomes long and the Fe crystallized material obtained by casting becomes coarse, so that the characteristics of high strength and high conductivity cannot be obtained.
That is, it is said that the Cu—Fe-based multiphase alloy is difficult to melt and also does not provide sufficient characteristics, and is actually difficult to manufacture. Conventionally, it has been said that the strength of a general copper alloy cannot be obtained unless Fe is added in excess of 10%. However, when a large amount (about 15%) of Fe is added, the melting temperature becomes high, there are few suitable furnace materials, and there is a problem that the Fe crystallized material becomes coarse due to the long cooling time, Cu-Fe In fact, it is difficult to manufacture a base alloy. On the other hand, to reduce the melting temperature, it is effective to reduce the amount of Fe added to about 4-6%. However, in this case, the effect of improving the strength by the second phase is insufficient.
本発明は上記の課題を解決するためになされたものであり、強度と曲げ加工性に優れたCu-Fe系の高強度高導電性二相銅合金の提供を目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a Cu—Fe-based high-strength, high-conductivity, two-phase copper alloy excellent in strength and bending workability.
本発明者らは種々検討した結果、Cu-Fe系二相合金を採用し、合金中にMgを固溶させることで、Fe添加量が10%以下であっても、Fe濃度が高い(10-30%)場合より合金の強度を向上させることに成功した。これはMgにより晶出物が微細化して従来の複相合金よりも相間の界面積が大きくなること、及びMgが主に銅母相に固溶してCu母相が強化されるためFe相が延伸して微細化して高強度となることによる。 As a result of various investigations, the present inventors have adopted a Cu-Fe-based two-phase alloy, and by dissolving Mg in the alloy, the Fe concentration is high even when the Fe addition amount is 10% or less (10 -30%) succeeded in improving the strength of the alloy. This is because the crystallized material becomes finer due to Mg and the interfacial area between phases becomes larger than that of conventional double-phase alloys, and Mg is mainly dissolved in the copper matrix and the Cu matrix is strengthened. Is stretched and refined to become high strength.
上記の目的を達成するために、本発明の高強度高導電性二相銅合金は、質量%でFeを4%以上10%以下含有し0.01〜0.5%のMgが合金中に固溶し、残部Cu及び不可避的不純物からなり、Cu母相と第二相とからなる。 In order to achieve the above object, the high-strength, high-conductivity, two-phase copper alloy of the present invention contains 4% to 10% Fe by mass, and 0.01 to 0.5% Mg is dissolved in the alloy. It consists of the remainder Cu and inevitable impurities, and consists of a Cu matrix and a second phase.
圧延直角断面から見たときの前記第二相の厚みが1μm以下であることが好ましい。
圧延直角断面から見たとき、隣接する前記第二相の間隔が1μm以下であることが好ましい。
It is preferable that the thickness of the second phase is 1 μm or less when viewed from a cross section perpendicular to rolling.
When viewed from a cross section perpendicular to rolling, the interval between the adjacent second phases is preferably 1 μm or less.
本発明によれば、強度と曲げ加工性に優れたCu-Fe系高強度高導電性二相銅合金が得られる。 According to the present invention, a Cu—Fe-based high-strength and highly conductive two-phase copper alloy excellent in strength and bending workability can be obtained.
以下、本発明に係る高強度高導電性二相銅合金の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, embodiments of the high-strength, high-conductivity two-phase copper alloy according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
[Fe]
上記銅合金はFeを4%以上10%以下含有する。Feが4%以上含有されるとCu母相中に第二相として晶出し、いわゆる「複相合金」を構成する。Fe含有量が4%未満であるとFeはまったく晶出せず、第二相による複合強化の効果が少ない。
なお、Cu-Fe系合金として報告された文献においては、Fe10-30%まで添加した例がほとんどであり、強度はFe濃度に比例して高くなる傾向が見られる。しかしながらFe濃度が高くなるにつれて溶解温度が高くなり,晶出相が粗大になるため、Fe濃度が10%を超えても強度はほとんど向上せず効果が飽和する。
[Fe]
The copper alloy contains 4% to 10% Fe. When Fe is contained in an amount of 4% or more, it is crystallized as a second phase in the Cu matrix and constitutes a so-called “double phase alloy”. When the Fe content is less than 4%, Fe does not crystallize at all, and the effect of composite strengthening by the second phase is small.
In addition, in the literature reported as a Cu-Fe-based alloy, there are almost cases where Fe is added up to 10-30%, and the strength tends to increase in proportion to the Fe concentration. However, as the Fe concentration increases, the melting temperature increases and the crystallization phase becomes coarse, so even if the Fe concentration exceeds 10%, the strength is hardly improved and the effect is saturated.
従来、Feを10%以上添加しないと一般の銅合金程度の強度が得られないとされてきた。しかしながら、多量(15%程度)のFeを添加すると溶解温度が高くなり、適切な炉材が少ないと共に、冷却時間が長くなるためにFe晶出物が粗大になるという問題があり、Cu-Fe系合金は実際には製造が困難である。一方、溶解温度を低減するにはFe添加量を 4-6%程度に低減することが有効であるが、この場合には第二相による強度向上効果が不充分となる。
そこで本発明においては,合金中にMgを固溶させることにより、合金の強度及び曲げ加工性の向上に成功した。
Conventionally, it has been said that the strength of a general copper alloy cannot be obtained unless Fe is added in an amount of 10% or more. However, when a large amount (about 15%) of Fe is added, the melting temperature becomes high, there are few suitable furnace materials, and there is a problem that the Fe crystallized material becomes coarse due to the long cooling time, Cu-Fe In fact, it is difficult to manufacture a base alloy. On the other hand, to reduce the melting temperature, it is effective to reduce the amount of Fe added to about 4-6%. However, in this case, the effect of improving the strength by the second phase is insufficient.
Therefore, in the present invention, the strength and bending workability of the alloy were successfully improved by dissolving Mg in the alloy.
[第二相]
第二相は、Cu及び他の化学成分を含む合金溶湯から鋳造時にこれらの元素が晶出したものであり、晶出の際、第二相にFeが多く分配される。Cu,Feは互いに固溶する元素であり,Cu母相中に晶出する第二相はCuとFeを含むが、X線による定性分析によれば、第二相中のFe濃度は約80%以上と考えられる。但し、これに限定されるものではない。
又、第二相は,Cu母相内に例えば針状に晶出するが,晶出形態はこれに限定されない。第二相は、最終工程終了後の圧延組織の断面を研磨した後、SEM(走査型電子顕微鏡)のBSE(反射電子)像により、母相と異なる組成として観察することができる。組織が観察しにくい場合は、エッチング又は電解研磨を行ってもよい。
[Second phase]
The second phase is obtained by crystallizing these elements from a molten alloy containing Cu and other chemical components during casting, and a large amount of Fe is distributed to the second phase during the crystallization. Cu and Fe are elements that dissolve in each other, and the second phase that crystallizes in the Cu matrix contains Cu and Fe. According to the qualitative analysis by X-ray, the Fe concentration in the second phase is about 80%. It is considered to be more than%. However, it is not limited to this.
The second phase is crystallized, for example, in a needle shape in the Cu matrix, but the crystallization form is not limited to this. The second phase can be observed as a composition different from the parent phase by a BSE (backscattered electron) image of an SEM (scanning electron microscope) after polishing the cross section of the rolled structure after the final step. If the structure is difficult to observe, etching or electropolishing may be performed.
[Mg]
0.01〜0.5%のMgを合金中に添加すると、Mgが主にCu母相に固溶し、溶解鋳造時に晶出相を微細化する.微細化された晶出相は加工によって延伸し,さらに相間の界面積が増大することで高強度が得られる.その際,固溶したMgは第二相を延伸しやすくする効果がある。Mgは状態図から見て、第二相にはほとんど固溶せず、本発明の合金を実際にEPMAを用いた特性X線分析したところ、Mgが検出限界以下であったことを本発明者らは確認している。MgはFe晶出物(第二相)を微細化する。Mgの添加濃度を0.01〜0.5%とする。Mgの添加濃度が0.01%未満であると、Fe第二相を微細化する効果が得られず、0.5%を超えるとMgがCu母相へ固溶し難くなって酸化物(MgOなど)として晶出する。なお、Mgの添加濃度が0.3%を超えると粗大な粒子(酸化物、ノロ)が発生して曲げ加工性の劣化を招くと共に、この粗大粒子の粒径が第二相間の間隔よりも大きいため第二相を分断し,結果的に第二相の延伸を抑制してしまうため,強度が低下する。従って、好ましくはMg の含有量を0.3%以下とする。
[Mg]
When 0.01 to 0.5% of Mg is added to the alloy, Mg mainly dissolves in the Cu matrix and refines the crystallization phase during melt casting. The refined crystallized phase is stretched by processing, and the interfacial area between the phases is increased to obtain high strength. At that time, the dissolved Mg has an effect of facilitating the stretching of the second phase. As seen from the phase diagram, Mg was hardly dissolved in the second phase, and when the alloy of the present invention was actually subjected to characteristic X-ray analysis using EPMA, the inventors found that Mg was below the detection limit. Have confirmed. Mg refines the Fe crystallized product (second phase). The additive concentration of Mg is 0.01 to 0.5%. If the additive concentration of Mg is less than 0.01%, the effect of refining the Fe second phase cannot be obtained, and if it exceeds 0.5%, Mg hardly dissolves in the Cu matrix and becomes an oxide (such as MgO). Crystallize. Note that if the Mg concentration exceeds 0.3%, coarse particles (oxides, noro) are generated, leading to deterioration of bending workability, and the particle size of the coarse particles is larger than the interval between the second phases. Since the second phase is divided and as a result, the extension of the second phase is suppressed, the strength decreases. Therefore, the Mg content is preferably 0.3% or less.
さらに、Mgは銅合金を固溶強化させると共に、銅合金の再結晶温度を上昇させるので、耐熱性(半軟化温度)が向上する。 Furthermore, Mg strengthens the copper alloy in solid solution and raises the recrystallization temperature of the copper alloy, so that the heat resistance (semi-softening temperature) is improved.
以上のように、Mgを添加することで、Cu-Fe系合金のFe濃度を10%以下に低減しても高強度が得られる。特に、4〜7%のFe濃度の範囲で,ばね材として要求される強度,0.2%耐力で700MPa以上の強度が得られ、40%IACS以上の高導電率が得られる。 As described above, by adding Mg, high strength can be obtained even when the Fe concentration of the Cu—Fe alloy is reduced to 10% or less. In particular, in the range of 4 to 7% Fe concentration, the strength required as a spring material, strength of 700MPa or more can be obtained with 0.2% proof stress, and high conductivity of 40% IACS or more can be obtained.
合金中の固溶元素の含有割合の測定方法は、例えば得られた材料の表面又は断面をオージェ電子分光分析法(AES:Auger Electron Spectroscopy)により分析し、元素定量を行うことで求めることができる。この場合、予め、各元素の純物質に対して検量線を作成しておき、定量を行えばよい。
又、波長分散型(WDS;Wave-length Dispersive Spectroscopy)のEPMAを用いて、合金の定量分析を行うこともできる。
なお、同一供試材においても析出物の含有割合には、ばらつきがある。そこで、例えば1つの合金試料において50点に対し固溶元素の含有割合を測定し,その最大値を固溶元素の含有割合とすることができる。
The method for measuring the content ratio of the solid solution element in the alloy can be obtained, for example, by analyzing the surface or cross section of the obtained material by Auger Electron Spectroscopy (AES) and performing element quantification. . In this case, a calibration curve may be created in advance for the pure substance of each element, and quantification may be performed.
Further, quantitative analysis of an alloy can be performed using a wavelength dispersive spectroscopy (WDS) EPMA.
In addition, even in the same specimen, the content ratio of precipitates varies. Therefore, for example, the content ratio of the solid solution element can be measured for 50 points in one alloy sample, and the maximum value can be set as the content ratio of the solid solution element.
本発明においては、合金中に添加したFeはCuと二相合金を形成する。通常、FeをCu母相に析出させる熱処理(時効処理)はなくてもよいが、時効処理しなくとも溶解鋳造,熱間圧延等の高温での工程では冷却時に意図的ではない析出物が析出することもある。ただし,これらの析出物は,数が少なく特性に影響を及ぼさない。Feは第二相として晶出した際、Cu母相にFeが所定濃度で固溶する。この場合、状態図によれば、Cu中に固溶するFeの固溶限は1094℃における平衡状態において約3.8%である。但し、溶解鋳造時の冷却速度によってFeの晶出量及び析出量は変化する。本発明者らの検討によれば、実質的に4%以上のFe濃度で二相合金が形成されることを確認している。
なお、上記したように、本発明においては、Mgによる微細化効果によって、充分な強度と導電性が得られる。
In the present invention, Fe added to the alloy forms a two-phase alloy with Cu. Usually, heat treatment (aging treatment) for precipitating Fe into the Cu matrix may not be required, but unintentional precipitates precipitate during cooling in high-temperature processes such as melt casting and hot rolling without aging treatment. Sometimes. However, these precipitates are few and do not affect the properties. When Fe crystallizes as the second phase, Fe is dissolved in the Cu matrix at a predetermined concentration. In this case, according to the phase diagram, the solid solubility limit of Fe dissolved in Cu is about 3.8% in an equilibrium state at 1094 ° C. However, the amount of Fe crystallized and precipitated varies depending on the cooling rate during melt casting. According to the study by the present inventors, it has been confirmed that a two-phase alloy is formed at an Fe concentration of substantially 4% or more.
Note that, as described above, in the present invention, sufficient strength and conductivity can be obtained by the refinement effect by Mg.
上記銅合金中の不可避的不純物の含有量は、JISに規格する無酸素銅と同一であるのが好ましい。例えば、JIS H 2123に規格する無酸素形銅C1011における、不純物の含有量と同等にすることができる。
これらの不純物としては、Gd,Y,Yb,Nd,In,Pd,Teを挙げることができる。
The content of inevitable impurities in the copper alloy is preferably the same as oxygen-free copper specified in JIS. For example, it can be made equivalent to the content of impurities in oxygen-free copper C1011 standardized to JIS H2123.
Examples of these impurities include Gd, Y, Yb, Nd, In, Pd, and Te.
ところで、複相合金は,複合則を利用し、又は異相界面の面積を増加させることで強化する合金であり、異相界面の面積を増加することによる効果が大きい。このため、i)第二相が合金中に数多く分散している(同じ体積分率なら微細に分散している)ほど、ii)第二相が引き伸ばされやすいほど、iii)加工度が大きくなるほど、高強度化される。これらの理由から,第二相の形状及び大きさを制御するとより高い強度が得られる。 By the way, the multiphase alloy is an alloy that is strengthened by using the composite law or increasing the area of the heterogeneous interface, and the effect by increasing the area of the heterogeneous interface is great. For this reason, i) the more the second phase is dispersed in the alloy (the more the same volume fraction, the more finely dispersed), ii) the easier the second phase is stretched, and iii) the greater the degree of work. Increased strength. For these reasons, higher strength can be obtained by controlling the shape and size of the second phase.
上記i)については, Mgを合金中に添加することにより、溶解鋳造時の晶出物を微細化することで実現できる。本発明者らは、溶解鋳造時のデンドライトアームスペースが1μm以下となることを観察している。ii)については,Mgが銅母相へ固溶することにより、第二相が延伸し易くなるとともに,Fe相を微細化する。
iii)については,従来の複相合金と同様、加工度を大きくすればよく、複相合金に通常用いられる加工度で十分な強度が得られる。例えば,加工度80%以上とすると、0.2%耐力で700MPa程度まで高強度化される。但し、本発明においては、Mgによる晶出物の微細化効果により,低加工度でも高強度が得られる。
The above item i) can be realized by adding Mg to the alloy to refine the crystallized product during melting and casting. The inventors have observed that the dendrite arm space during melt casting is 1 μm or less. As for ii), Mg dissolves in the copper matrix phase, so that the second phase is easily stretched and the Fe phase is refined.
With regard to iii), the degree of work should be increased as in the case of conventional multiphase alloys, and sufficient strength can be obtained with the degree of work normally used for multiphase alloys. For example, if the processing degree is 80% or more, the strength is increased to about 700 MPa with 0.2% proof stress. However, in the present invention, high strength can be obtained even at a low degree of processing due to the refinement effect of the crystallized material by Mg.
次に、第二相の形態について説明する。図1は、本発明の合金の圧延材組織を模式的に示したものである。この図において、圧延材組織は、Cu母相2のマトリクス中に第二相4が分散されている。そして、「板幅方向を「圧延直角方向T」とし、板の長手方向を「圧延平行方向L」とする。本発明においては、好ましくは第二相は圧延平行方向の長さが厚みtの10倍以上であり、例えばリボン状(舌片状)の形態を示す。 Next, the form of the second phase will be described. FIG. 1 schematically shows the rolled material structure of the alloy of the present invention. In this figure, in the rolled material structure, the second phase 4 is dispersed in the matrix of the Cu matrix 2. Then, “the width direction of the plate is defined as“ a perpendicular direction T of rolling ”and the longitudinal direction of the plate is defined as“ the parallel direction L of rolling ”. In the present invention, the second phase preferably has a length in the rolling parallel direction of 10 times or more of the thickness t, and shows, for example, a ribbon shape (tongue piece shape).
[第二相の厚み]
図1において、圧延直角断面から見たとき、第二相の厚み(圧延方向の第二相長さに相当)t1とし、隣接する第二相の間隔(圧延方向の距離)をdとする。圧延直角断面とは、圧延直角方向Tに沿い圧延表面に垂直な面で圧延材を切断した時の断面をいう。圧延平行方向は、例えば圧延表面に形成された圧延ロールの目を圧延平行方向と定めればよい。
第二相の厚みt1が小さくなるほど、強度が高くなる。又、dは、圧延加工度を高くすることで小さくすることができる。但し、本発明においては、Mgによる晶出物の微細化効果により、加工度を過度に高くする必要はないが,加工度を高くすることでより大きな効果が得られる。
本発明の合金の場合、t1を1μm以下とすることで、より高い強度が得られ、t1を0.3μm以下とするとさらに好ましい。
[Thickness of the second phase]
In FIG. 1, when viewed from a cross section perpendicular to rolling, the thickness of the second phase (corresponding to the second phase length in the rolling direction) is t1, and the interval between adjacent second phases (distance in the rolling direction) is d. The rolling perpendicular section refers to a section when the rolled material is cut along a plane perpendicular to the rolling surface along the rolling perpendicular direction T. The rolling parallel direction may be determined, for example, as the rolling parallel direction of the rolls formed on the rolling surface.
The strength increases as the thickness t1 of the second phase decreases. Moreover, d can be reduced by increasing the rolling degree. However, in the present invention, it is not necessary to excessively increase the workability due to the refinement effect of the crystallized product by Mg, but a greater effect can be obtained by increasing the workability.
In the case of the alloy of the present invention, by setting t1 to 1 μm or less, higher strength can be obtained, and t1 is further preferably set to 0.3 μm or less.
t1を小さくすると、強度が向上する理由についてさらに説明する。複相合金は複合則を利用した強化機構であり,通常、複合則では材料の強度(σ:応力)は、第一相及び第二相の体積分率(それぞれV1,V2)に依存するが(σ=V1σ1+V2σ2)、第二相の体積分率よりはむしろ分散した第二相間の距離の方が強度への寄与が大きい。つまり、第二相同士の間隔が加工によって狭まること、つまりCu母相と第二相の異相界面の面積を増大させること、すなわち、Cu母相厚みが薄くなることが最も高強度化につながる。 The reason why the strength is improved by reducing t1 will be further described. A multiphase alloy is a strengthening mechanism using a composite law. In general, the strength (σ: stress) of a material depends on the volume fractions of the first and second phases (V1 and V2 respectively). (Σ = V1σ1 + V2σ2), rather than the volume fraction of the second phase, the distance between the dispersed second phases contributes more to the strength. That is, when the interval between the second phases is narrowed by processing, that is, the area of the heterophase interface between the Cu matrix and the second phase is increased, that is, the thickness of the Cu matrix is thinned, the highest strength is obtained.
そして、第二相同士の間隔を狭めるためには、個々の第二相が微細となり、その厚みも小さくなっていることが必要である。すなわち、複相合金を強化するためには,第二相の初期晶出物を微細とさせ、さらにその後の加工により第二相を変形させて厚みを小さくして互いに近接させることが重要である。 And in order to narrow the space | interval of 2nd phases, it is necessary for each 2nd phase to become fine and the thickness to also become small. That is, in order to strengthen the multiphase alloy, it is important to make the initial crystallized product of the second phase fine, and further deform the second phase by subsequent processing to reduce the thickness so that they are close to each other. .
[隣接する第二相の間隔]
又、上記したように、圧延直角断面から見て、隣接する第二相の間隔dが小さいほど高強度が得られるため、dを1μm以下とすることが好ましい。厚さt1が減少するのと同様の理由により、強度は界面積に依存する。すなわち,組織写真上の第二相の積層方向(圧延による圧下がかかる方向)に垂直に線を引いた際、この線を通過する母相と第二相(リボン状組織)の界面の数に強度が依存する。そして、加工した際に第二相がすべて剪断されるだけの強度がこの材料の強度を示し、上記界面の数が多いほど強度が高くなると考えられる。
dを0.2〜0.65μm以下とするとさらに好ましい。
[Interval between adjacent second phases]
Further, as described above, when viewed from the cross section perpendicular to the rolling direction, the smaller the distance d between the adjacent second phases, the higher the strength is obtained. Therefore, d is preferably 1 μm or less. For the same reason that the thickness t1 decreases, the strength depends on the interfacial area. That is, when a line is drawn perpendicularly to the stacking direction of the second phase on the structure photograph (the direction of rolling reduction), the number of interfaces between the parent phase and the second phase (ribbon-like structure) passing through this line Strength depends. And the intensity | strength which only the 2nd phase is sheared when processing shows the intensity | strength of this material, and it is thought that intensity | strength becomes high, so that there are many said interfaces.
It is more preferable that d is 0.2 to 0.65 μm or less.
なお、t1及びdの値は、Mgの添加量によって制御できる。 The values of t1 and d can be controlled by the amount of Mg added.
以上のようにして、第二相の間隔dを1μm以下とし、微細な析出物を母相に析出させることで、0.2%耐力が700MPa以上の銅合金が得られる。 As described above, a copper alloy having a 0.2% proof stress of 700 MPa or more can be obtained by setting the distance d between the second phases to 1 μm or less and precipitating fine precipitates in the mother phase.
[製造]
電気銅又は無酸素銅を主原料とし、上記化学成分その他を添加した組成を溶解炉にて溶解し、インゴットを作製する。インゴットを例えば均質化焼鈍、熱間圧延、冷間圧延、焼鈍、冷間圧延、焼鈍(歪取焼鈍)を順次行うことで、圧延材が得られる。冷間圧延は、例えば総加工度95%以上で行うことが好ましい。但し、製造方法は上記に限定されない。
[Manufacturing]
An ingot is prepared by melting a composition in which electrolytic copper or oxygen-free copper is used as a main raw material and adding the above chemical components and the like in a melting furnace. A rolled material is obtained by sequentially performing, for example, homogenization annealing, hot rolling, cold rolling, annealing, cold rolling, and annealing (distortion annealing) on the ingot. Cold rolling is preferably performed, for example, at a total workability of 95% or more. However, the manufacturing method is not limited to the above.
なお、本発明は、上記実施形態に限定されない。
本発明の銅合金は、ばね用材料(条)、箔等の種々の形態とすることができる。例えば、本発明の銅合金をばね材用の条とした場合、コネクタ等の電子機器に適用可能である。コネクタとしては、公知のあらゆる形態、構造のものに適用できるが、通常はオス(ジャック、プラグ)とメス(ソケット、レセプタクル)からなっている。端子は、例えば串状の多数のピンが並設され、他のコネクタと嵌合した際に端子同士が電気的に接触するよう、適宜折り曲げられてバネのようになっていることがある。そして、通常、コネクタの端子が上記電子機器用銅合金で構成されている。
以上のように、本発明の銅合金は、端子,コネクタ,スイッチ,リレー等の電気・電子機器用のばね材として有効である。
In addition, this invention is not limited to the said embodiment.
The copper alloy of the present invention can be in various forms such as spring materials (strips) and foils. For example, when the copper alloy of the present invention is used for the spring material, it can be applied to electronic devices such as connectors. The connector can be applied to all known forms and structures, but usually consists of a male (jack, plug) and a female (socket, receptacle). For example, the terminals may be arranged like a spring, with a number of skewered pins arranged side by side and appropriately bent so that the terminals come into electrical contact with each other when fitted to other connectors. And the terminal of a connector is normally comprised with the said copper alloy for electronic devices.
As described above, the copper alloy of the present invention is effective as a spring material for electric / electronic devices such as terminals, connectors, switches, and relays.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
1.試料の作製
電気銅に表1、表2に示す組成の元素をそれぞれ添加して真空溶解してインゴットを鋳造し、これを800℃の温度で3時間の条件で均質化焼鈍し、950℃で溶体化処理後、熱間圧延を施した。さらに面削して冷間圧延を行い、仕上げ冷間圧延を行い、板厚0.080mmのばね材用試料を作製した。冷間圧延の総圧延加工度を99.7%とした。なお、必要に応じて最後に歪取焼鈍を行った(500℃で15秒)。歪取焼鈍を行うことで曲げ加工性が向上する。
又、第二相の形態(厚みt1、d)は、試料の断面SEMのBSE像から求めた。析出物の粒径は、最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面の析出物を走査型電子顕微鏡又は透過型電子顕微鏡により10視野観察して求めた。
合金中の固溶元素の含有割合の測定方法は、試料の断面を波長分散型(WDS;Wave-length Dispersive Spectroscopy)のEPMA(日本電子株式会社製のFE-EPMA)により分析して求めた。この場合、予め、各元素の純物質に対して検量線を作成しておき、定量を行った。
1. Preparation of sample Ingot was cast by adding elements of the composition shown in Tables 1 and 2 to electrolytic copper, and melted in vacuum, and this was homogenized and annealed at a temperature of 800 ° C for 3 hours. After the solution treatment, hot rolling was performed. Further, chamfering was performed, cold rolling was performed, and finish cold rolling was performed to prepare a spring material sample having a plate thickness of 0.080 mm. The total degree of cold rolling was 99.7%. In addition, strain relief annealing was finally performed as necessary (at 500 ° C. for 15 seconds). Bending workability is improved by performing strain relief annealing.
The form of the second phase (thickness t1, d) was determined from the BSE image of the cross section SEM of the sample. The grain size of the precipitate was determined by cutting the alloy strip before the final cold rolling in a direction perpendicular to the thickness parallel to the rolling direction, and observing the precipitate in the cross section with 10 fields of view using a scanning electron microscope or a transmission electron microscope.
The measurement method of the content ratio of the solid solution element in the alloy was obtained by analyzing the cross section of the sample with a wavelength dispersive (WDS) EPMA (FE-EPMA manufactured by JEOL Ltd.). In this case, a calibration curve was prepared in advance for the pure substance of each element, and quantification was performed.
<試料の評価>
(1)強度の評価
JIS-Z2241に従い、試料の引張強度を測定し、0.2%耐力(YS:yielding strength)を求めた。試料はJISに従って作製した。
(2)導電性の評価
四端子法にて、試料の導電率を求めた。単位の%IACS(international annealed copper standard)は、焼鈍標準軟銅に対する電気伝導度の比である。ただし、合金に上記添加元素(Sn等)を含む場合,導電率が低下するので、添加元素を含まない場合は50%IACS以上,添加元素を含む場合は45%IACS以上であれば、導電性が良好であると評価した。
<Sample evaluation>
(1) Strength evaluation
According to JIS-Z2241, the tensile strength of the sample was measured to obtain 0.2% yield strength (YS). The sample was produced according to JIS.
(2) Evaluation of conductivity The conductivity of the sample was determined by the four probe method. The unit% IACS (international annealed copper standard) is the ratio of electrical conductivity to annealed standard soft copper. However, the conductivity decreases when the alloy contains the above additive elements (Sn, etc.). Therefore, if the additive element is not included, the conductivity is 50% IACS or more. If the additive element is contained, the conductivity is 45% IACS or more. Was evaluated as being good.
(3)曲げ加工性の評価
日本伸銅協会技術標準(JBMA T307)に従ってW曲げ試験を行った。圧延直角方向に延びる10mm幅の試料(t:試料厚さ)について最小曲げ半径(MBR)を求めた。基準例のMBR/tは1程度であり、MBR/tの値が小さいほど曲げ加工性が良好である。
(3) Evaluation of bending workability A W bending test was performed according to the Japan Copper and Brass Association Technical Standard (JBMA T307). The minimum bending radius (MBR) was determined for a 10 mm wide sample (t: sample thickness) extending in the direction perpendicular to the rolling. The MBR / t of the reference example is about 1, and the smaller the MBR / t value, the better the bending workability.
得られた結果を表1〜表2に示す。 The obtained results are shown in Tables 1 and 2.
表1〜表2から明らかなように、各実施例の場合、0.2%耐力が700MPa以上に向上し導電率も40%IACSであった。
特に、最後に歪取焼鈍を行った実施例1、9、10、14、15の場合、圧延直角方向の曲げ加工性が著しく向上した。
As is apparent from Tables 1 and 2, in each example, the 0.2% proof stress was improved to 700 MPa or more, and the conductivity was 40% IACS.
In particular, in Examples 1, 9, 10, 14, and 15 in which strain relief annealing was finally performed, bending workability in the direction perpendicular to the rolling was remarkably improved.
一方、Feの含有量が4%未満である比較例1、3、4の場合、二相合金が得られず、強度が低下した。
Mgを含まない比較例2の場合、第二相が粗大化し(厚さ3.4μm以上)、強度が低下した。
Mgの含有量が0.5%を超えた比較例5、7の場合、酸化物が大量に発生して100nmを超える粗大粒が析出し、曲げ加工性が低下した。
Mgを含有しなかった比較例6の場合、強度が低下した。
On the other hand, in the case of Comparative Examples 1, 3, and 4 in which the Fe content was less than 4%, a two-phase alloy was not obtained and the strength was lowered.
In the case of Comparative Example 2 not containing Mg, the second phase was coarsened (thickness of 3.4 μm or more), and the strength decreased.
In the case of Comparative Examples 5 and 7 in which the Mg content exceeded 0.5%, a large amount of oxide was generated, and coarse grains exceeding 100 nm were precipitated, resulting in a decrease in bending workability.
In the case of Comparative Example 6 that did not contain Mg, the strength decreased.
2 Cu母相
4 第二相
2 Cu parent phase 4 Second phase
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007251462A JP4971926B2 (en) | 2007-09-27 | 2007-09-27 | High-strength, high-conductivity, two-phase copper alloy rolling strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007251462A JP4971926B2 (en) | 2007-09-27 | 2007-09-27 | High-strength, high-conductivity, two-phase copper alloy rolling strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009079283A true JP2009079283A (en) | 2009-04-16 |
JP4971926B2 JP4971926B2 (en) | 2012-07-11 |
Family
ID=40654260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007251462A Expired - Fee Related JP4971926B2 (en) | 2007-09-27 | 2007-09-27 | High-strength, high-conductivity, two-phase copper alloy rolling strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4971926B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015117392A (en) * | 2013-12-17 | 2015-06-25 | 株式会社オートネットワーク技術研究所 | Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920439A (en) * | 1982-07-27 | 1984-02-02 | Furukawa Electric Co Ltd:The | High-strength copper alloy having corrosion and abrasion resistance |
JPH0718355A (en) * | 1993-06-30 | 1995-01-20 | Mitsubishi Electric Corp | Copper alloy for electronic appliance and its production |
JP2006283129A (en) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | High strength and high conductivity copper alloy, copper alloy spring material, copper alloy foil, and method for producing high strength and high conductivity copper alloy |
JP2007113093A (en) * | 2005-10-24 | 2007-05-10 | Nikko Kinzoku Kk | High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor |
-
2007
- 2007-09-27 JP JP2007251462A patent/JP4971926B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920439A (en) * | 1982-07-27 | 1984-02-02 | Furukawa Electric Co Ltd:The | High-strength copper alloy having corrosion and abrasion resistance |
JPH0718355A (en) * | 1993-06-30 | 1995-01-20 | Mitsubishi Electric Corp | Copper alloy for electronic appliance and its production |
JP2006283129A (en) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | High strength and high conductivity copper alloy, copper alloy spring material, copper alloy foil, and method for producing high strength and high conductivity copper alloy |
JP2007113093A (en) * | 2005-10-24 | 2007-05-10 | Nikko Kinzoku Kk | High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015117392A (en) * | 2013-12-17 | 2015-06-25 | 株式会社オートネットワーク技術研究所 | Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING |
WO2015093270A1 (en) * | 2013-12-17 | 2015-06-25 | 株式会社オートネットワーク技術研究所 | Cu-fe alloy rolled plate for terminal fitting and terminal fitting |
Also Published As
Publication number | Publication date |
---|---|
JP4971926B2 (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4563480B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5261500B2 (en) | Cu-Ni-Si-Mg alloy with improved conductivity and bendability | |
JP5045783B2 (en) | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment | |
TWI381398B (en) | Cu-Ni-Si alloy for electronic materials | |
JP3699701B2 (en) | Easy-to-process high-strength, high-conductivity copper alloy | |
JP5156316B2 (en) | Cu-Sn-P copper alloy sheet, method for producing the same, and connector | |
JP5075447B2 (en) | Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component | |
JP5983589B2 (en) | Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals | |
TWI626323B (en) | Copper alloys for electronic materials | |
KR102114517B1 (en) | Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment | |
JP4446479B2 (en) | Copper alloy for electronic equipment | |
WO2010016428A1 (en) | Copper alloy material for electrical/electronic component | |
TWI429764B (en) | Cu-Co-Si alloy for electronic materials | |
JP2006299287A (en) | Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy | |
JP4971925B2 (en) | High-strength and highly conductive two-phase copper alloy | |
JP5098096B2 (en) | Copper alloy, terminal or bus bar, and method for producing copper alloy | |
JP4302579B2 (en) | High-strength, high-conductivity copper alloy for electronic equipment | |
JP2009242871A (en) | High strength and high electric conductivity two-phase copper alloy foil | |
JP5045782B2 (en) | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment | |
JP2008081834A (en) | High-strength, high-conductivity dual phase copper alloy | |
JP4971856B2 (en) | Precipitation type copper alloy | |
JP4623737B2 (en) | High-strength and highly conductive two-phase copper alloy | |
JP5048046B2 (en) | Copper alloy for electronic equipment | |
JP4971926B2 (en) | High-strength, high-conductivity, two-phase copper alloy rolling strip | |
JP2012229467A (en) | Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090318 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120402 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |