JP2008081834A - High-strength, high-conductivity dual phase copper alloy - Google Patents

High-strength, high-conductivity dual phase copper alloy Download PDF

Info

Publication number
JP2008081834A
JP2008081834A JP2006266763A JP2006266763A JP2008081834A JP 2008081834 A JP2008081834 A JP 2008081834A JP 2006266763 A JP2006266763 A JP 2006266763A JP 2006266763 A JP2006266763 A JP 2006266763A JP 2008081834 A JP2008081834 A JP 2008081834A
Authority
JP
Japan
Prior art keywords
phase
strength
alloy
rolling
precipitates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006266763A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Okubo
大久保光浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006266763A priority Critical patent/JP2008081834A/en
Publication of JP2008081834A publication Critical patent/JP2008081834A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength, high-conductivity dual phase copper alloy having excellent strength and bending workability. <P>SOLUTION: The rolled material has a composition comprising, by mass, 3 to 15% Ag, and in which one or more kinds of precipitates selected from the group consisting of Fe, Cr and Fe-P are precipitated into a Cu mother phase, and also, the total concentration composing the precipitates in the alloy is 0.1 to <2%, and the balance Cu with inevitable impurities, has a structure composed of the Cu mother phase and the second phase, and has a 0.2% proof stress of ≥800 MPa. The grain diameter of the precipitates is 20 to 100 nm, and the thickness of the second phase viewed from the cross-section orthogonal to the rolling direction is ≤1 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は強度と導電性に優れ、例えば電子機器用のばね材に好適に適用できる二相銅合金に関する。   The present invention relates to a two-phase copper alloy that is excellent in strength and conductivity and can be suitably applied to, for example, a spring material for electronic equipment.

端子、コネクタ、スイッチ,リレー等の電気・電子機器用のばね材(コネクタ用材)には優れたばね特性、曲げ性、導電性が要求され、従来からりん青銅等が用いられてきたが、近年では電子部品の一層の小型化の要請から高強度高導電性の合金が開発されている。
また,電気・電子機器の大電流化に伴ってジュール熱の発生が多くなり,さらに車搭載用のコネクタでは周囲の温度の影響もあるため、上記ばね材には耐熱性が要求されている。例えば、耐熱性が低い場合,長時間の使用によって接圧の低下を招き,接点不良の欠陥を招くことになる。
一般に、Cuに強化元素を添加して高強度化すると導電率が低下し、一方で導電率を上昇させるためCu純度を高めると低強度となる関係がある。そこで、Cu母相中に第二相を晶出させた合金系(複相合金)が開発された。この合金は、強加工することにより第二相がファイバ状に分散され、りん青銅と同等の強度を持ちつつ、母相はCuであるため、導電率が60%IACS(international annealed copper standard、焼鈍標準軟銅に対する電気伝導度の比)を超える高導電性材が得られている。この複相合金系としては、Cu-Cr、Cu-Fe、Cu-Nb、Cu-W、Cu-Ta、Cu-Agなどが知られている(例えば、特許文献1〜7参照)。
Spring materials (connector materials) for electrical and electronic equipment such as terminals, connectors, switches, and relays are required to have excellent spring characteristics, bendability, and conductivity. Conventionally, phosphor bronze has been used. High-strength, high-conductivity alloys have been developed in response to demands for further miniaturization of electronic components.
In addition, the generation of Joule heat increases with the increase in electric current of electric and electronic devices, and the temperature of the spring material is required for the connector mounted on the vehicle, because of the influence of ambient temperature. For example, when the heat resistance is low, the contact pressure decreases due to long-term use, leading to defects in contact failure.
In general, when a strengthening element is added to Cu to increase the strength, the electrical conductivity decreases, while on the other hand, increasing the Cu purity has a relationship of decreasing the strength to increase the electrical conductivity. Therefore, an alloy system (double phase alloy) was developed in which the second phase was crystallized in the Cu matrix. This alloy has a second phase dispersed in a fiber form by strong processing and has the same strength as phosphor bronze, but the parent phase is Cu, so the conductivity is 60% IACS (international annealed copper standard, annealed) A highly conductive material exceeding the ratio of electrical conductivity to standard annealed copper has been obtained. As this multiphase alloy system, Cu—Cr, Cu—Fe, Cu—Nb, Cu—W, Cu—Ta, Cu—Ag and the like are known (for example, see Patent Documents 1 to 7).

一方、複相合金において、圧延されたAg相は400℃程度の熱処理によって分断,球状化(pinching-off)するため、複相合金の耐熱性が低いことが問題となっている。これに対し,Cu母相に炭化物等の粒子を分散させて耐熱性を向上させる技術が知られている(例えば、特許文献8参照)。   On the other hand, in a multiphase alloy, the rolled Ag phase is divided and pinched-off by a heat treatment at about 400 ° C., so that the heat resistance of the multiphase alloy is low. On the other hand, a technique for improving heat resistance by dispersing particles such as carbide in a Cu matrix is known (see, for example, Patent Document 8).

特開平9-249925号公報JP-A-9-249925 特開平10-140267号公報Japanese Patent Laid-Open No. 10-140267 特開平10-8166号公報Japanese Patent Laid-Open No. 10-8166 特開平06-192801号公報Japanese Patent Laid-Open No. 06-192801 特開平06-279894号公報Japanese Patent Laid-Open No. 06-279894 特開平10-53824号公報Japanese Patent Laid-Open No. 10-53824 特開平10-349085号公報Japanese Patent Laid-Open No. 10-349085 特開2000-96163号公報JP 2000-96163 A

ところで、上記従来技術の場合、第二相をファイバ状に延伸するための強加工法として、線引き、圧延等の手段が用いられる。この場合、線材であれば、そもそも線方向の強度しか要求されないので、線引きして第二相を延伸するだけで充分な強度が確保される。
また、特許文献4〜7記載の技術は、上記複相合金により圧延材を製造したものであり、第二相が圧延平行方向に充分延伸されて繊維状になると、圧延直角方向(圧延材の長手方向に圧延が進むとして、圧延材の幅方向をいう)の強度も向上することが記載されている。
By the way, in the case of the said prior art, means, such as drawing and rolling, are used as a strong processing method for extending | stretching a 2nd phase to a fiber form. In this case, since the wire is only required to have a strength in the wire direction, sufficient strength can be ensured only by drawing and stretching the second phase.
In addition, the techniques described in Patent Documents 4 to 7 are produced by using the above-mentioned multiphase alloy to produce a rolled material. When the second phase is sufficiently stretched in the parallel direction of rolling to become fibrous, It is described that the strength of the rolled material is also improved as rolling proceeds in the longitudinal direction.

しかしながら、これら文献には、曲げ加工性について記載はない。例えば、コネクタを上記圧延材から採取する場合、コネクタの並ぶ方向を圧延材の長手方向とし、各ピンが圧延材の幅方向に延びるようにしてコネクタを打抜くのが通例であるが、上記圧延直角方向に曲げる場合には、この方向の曲げ加工性が低いと、コネクタへ曲げ加工する際、クラックが発生することがある。このような複相合金での問題は、本発明者らが初めて着目したものであり、従来の複相合金について本発明者らが圧延直角方向の曲げ加工性を調査した結果、曲げ加工性が非常に悪いことが判明した。   However, these documents do not describe bending workability. For example, when a connector is taken from the rolled material, it is customary to punch the connector in such a way that the connector is aligned in the longitudinal direction of the rolled material and each pin extends in the width direction of the rolled material. When bending in a perpendicular direction, if the bending workability in this direction is low, cracks may occur when bending the connector. The problem with such a multi-phase alloy is what the present inventors have paid attention to for the first time, and as a result of investigating the bending workability in the direction perpendicular to the rolling of the conventional multi-phase alloy, the bending workability is It turned out to be very bad.

一方、上記特許文献8記載の技術の場合、1時間の熱処理に対する耐熱性(いわゆる半軟化温度)は確認されているが、バネ材を実際の製品に使用する場合は長時間の(高温もしくは常温での応力緩和特性)耐熱性が要求される。例えば、CPUソケット等の電子機器の場合、150℃×1000時間での耐熱性試験(後述する応力緩和試験)を基準とすることが多い。
半軟化温度の評価試験と,応力緩和試験とは異なる特性を評価するものと考えられる。具体的には、銅箔等の板材を樹脂と接着する際やキュア(熱処理)する際には,400℃×1時間程度の熱処理を実施するので,その時点での強度が重要となる。したがってこの際の軟化特性の基準として,半軟化温度が挙げられる。この半軟化特性を向上させる方法としては,転位の動きを抑制するか又は再結晶温度を上げることが有効であり、析出物による転位のピン止め(pinning)や、添加元素による再結晶温度の上昇が有効となる。
一方,CPUソケット等のバネ材銅合金においては,大電流によるジュール熱の発生によって強度の軟化が起こり,接圧の低下を招く恐れがある。したがって、一定温度での接圧(応力)の緩和率を評価することが必要となる。応力緩和特性は,原理的には半軟化特性と関係せず,へたりの主要因は結晶粒の粒界(界面)すべりであり、一般的にこの界面すべりを抑制するものとして析出物が有効であると考えられる。
しかしながら、従来の複相合金について応力緩和率を調査し、改善した例は無く,本発明者らが調査した結果,従来の複相合金はいずれも応力緩和率が低い(長時間耐熱性に劣る)ことが判明した。
On the other hand, in the case of the technique described in Patent Document 8, heat resistance (so-called semi-softening temperature) against heat treatment for 1 hour has been confirmed. However, when the spring material is used for an actual product, it can be used for a long time (high temperature or room temperature). Stress relaxation characteristics) Heat resistance is required. For example, in the case of an electronic device such as a CPU socket, the heat resistance test at 150 ° C. × 1000 hours (stress relaxation test described later) is often used as a reference.
It is considered that the characteristics different from the evaluation test of the semi-softening temperature and the stress relaxation test are evaluated. Specifically, when a plate material such as a copper foil is bonded to a resin or cured (heat treatment), heat treatment is performed at about 400 ° C. for about 1 hour, and the strength at that time is important. Therefore, the semi-softening temperature can be given as a reference for the softening characteristics. In order to improve this semi-softening property, it is effective to suppress the movement of dislocations or raise the recrystallization temperature. Pinning dislocations by precipitates and increasing the recrystallization temperature by added elements. Becomes effective.
On the other hand, in a copper alloy of a spring material such as a CPU socket, the strength is softened due to the generation of Joule heat due to a large current, and the contact pressure may be reduced. Therefore, it is necessary to evaluate the relaxation rate of the contact pressure (stress) at a constant temperature. In principle, stress relaxation characteristics are not related to semi-softening characteristics, and the main cause of sag is the grain boundary (interface) slip of crystal grains. In general, precipitates are effective in suppressing this interface slip. It is thought that.
However, no investigation has been made on the stress relaxation rate of conventional multiphase alloys, and there has been no improvement. As a result of investigations by the present inventors, all of the conventional multiphase alloys have low stress relaxation rates (inferior long-term heat resistance). )It has been found.

以上のように、第二相を微細に分散させて強度を高くするには強加工が必要となるが,強加工を行うほど曲げ加工性は低下する。また,曲げ加工性を確保するために焼鈍を行うと,繊維状のAg相が球状化してしまい,強度が低下する。したがって,強度と曲げ加工性の両立は従来困難であった。
本発明は上記の課題を解決するためになされたものであり、強度と曲げ加工性に優れた高強度高導電性二相銅合金の提供を目的とする。
As described above, strong processing is required to increase the strength by finely dispersing the second phase, but the bending workability decreases as the strong processing is performed. In addition, if annealing is performed to ensure bending workability, the fibrous Ag phase becomes spheroidized and the strength decreases. Therefore, it has been difficult to achieve both strength and bending workability.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-strength, high-conductivity two-phase copper alloy excellent in strength and bending workability.

本発明者らは種々検討した結果、Cu母相中にAgを主体とする第二相を晶出させた合金系(以下、「複相合金」と称する)の圧延材において、圧延直角断面から見たとき、第二相の厚み及びその間隔を小さくし、さらに析出物を析出させることで、強度が向上し、曲げ加工性も改善されることを突き止めた。
つまり、本発明の複相合金においては,粒界に対応するものが母相と第二相との界面となるため、この界面でのすべりを抑制するものとして析出物が有効となる。上記したように、析出物は半軟化特性及び応力緩和特性のいずれにも有効であるため、本発明の析出型銅合金は半軟化特性及び応力緩和特性のいずれの特性も向上させることができる。
As a result of various studies, the present inventors have found that in a rolled material of an alloy system in which a second phase mainly composed of Ag is crystallized in a Cu matrix (hereinafter referred to as “double phase alloy”), As seen, it was found that the strength and the bending workability were improved by reducing the thickness and interval of the second phase and further depositing precipitates.
That is, in the multiphase alloy of the present invention, the one corresponding to the grain boundary is the interface between the parent phase and the second phase, and therefore precipitates are effective for suppressing the slip at this interface. As described above, since the precipitate is effective for both the semi-softening property and the stress relaxation property, the precipitation type copper alloy of the present invention can improve both the semi-softening property and the stress relaxation property.

上記の目的を達成するために、本発明の高強度高導電性二相銅合金は、質量%でAgを3%以上15%以下含有すると共に、Fe,Cr及びFe-Pの群から選ばれる1種又は2種以上の析出物がCu母相に析出し、かつ前記析出物を構成する元素の合金中の合計濃度が0.1%以上2%未満であり残部Cu及び不可避的不純物からなり、Cu母相と第二相とからなる0.2%耐力が800MPa以上の圧延材であって、前記析出物の粒径が20〜100nmであり、圧延直角断面から見たとき前記第二相の厚みが1μm以下である曲げ加工性に優れたものである。   In order to achieve the above object, the high-strength and highly-conductive two-phase copper alloy of the present invention contains 3% or more and 15% or less of Ag by mass%, and is selected from the group of Fe, Cr and Fe-P. One or more kinds of precipitates are precipitated in the Cu matrix, and the total concentration of the elements constituting the precipitates in the alloy is 0.1% or more and less than 2%, and the remainder consists of Cu and unavoidable impurities. It is a rolled material having a 0.2% proof stress of 800 MPa or more consisting of a parent phase and a second phase, the grain size of the precipitate is 20 to 100 nm, and the thickness of the second phase is 1 μm when viewed from the cross section perpendicular to the rolling It is excellent in the following bending workability.

圧延直角断面から見たとき、隣接する前記第二相の間隔が3μm以下であることが好ましい。
さらに、Sn,Mg及びTiの群から選ばれる1種以上の添加元素を合計で0.01%以上0.2%以下含有することが好ましい。
When viewed from a cross section perpendicular to rolling, the interval between the adjacent second phases is preferably 3 μm or less.
Furthermore, it is preferable to contain a total of 0.01% or more and 0.2% or less of one or more additive elements selected from the group consisting of Sn, Mg and Ti.

本発明によれば、強度と曲げ加工性に優れた高強度高導電性二相銅合金が得られる。   According to the present invention, a high-strength and highly conductive two-phase copper alloy having excellent strength and bending workability can be obtained.

以下、本発明に係る高強度高導電性二相銅合金の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Embodiments of the high-strength, high-conductivity two-phase copper alloy according to the present invention will be described below. In the present invention, “%” means “% by mass” unless otherwise specified.

[化学成分]
化学成分として、上記銅合金はAgを3%以上15%以下含有する。Agが3%以上含有されるとCu母相中に第二相として晶出し、いわゆる「複相合金」を構成する。Ag含有量が3%未満であると、第二相による複合強化の効果が少ない。Ag含有量が15%を超えても合金の特性(特に強度)はほとんど上昇せず効果が飽和するとともに,導電率が低下する。
上記銅合金中の不可避的不純物の含有量は、JISに規格する無酸素銅と同一であるのが好ましい。例えば、JIS H 2123に規格する無酸素形銅C1011における、不純物の含有量と同等にすることができる。
これらの不純物としては、Gd,Y,Yb,Nd,In,Pd,Teを挙げることができる。
[Chemical composition]
As a chemical component, the copper alloy contains 3% to 15% of Ag. When 3% or more of Ag is contained, it is crystallized as a second phase in the Cu matrix and constitutes a so-called “double phase alloy”. When the Ag content is less than 3%, the effect of composite strengthening by the second phase is small. Even if the Ag content exceeds 15%, the properties (especially strength) of the alloy hardly increase, the effect is saturated, and the conductivity decreases.
The content of inevitable impurities in the copper alloy is preferably the same as oxygen-free copper specified in JIS. For example, it can be made equivalent to the content of impurities in oxygen-free copper C1011 standardized to JIS H2123.
Examples of these impurities include Gd, Y, Yb, Nd, In, Pd, and Te.

[第二相]
第二相は、Cu及び上記化学成分を含む合金溶湯から鋳造時に上記元素が晶出したものであり、晶出の際、第二相にAgが多く分配される。通常、第二相中のAg濃度は50%以上である。又、第二相は,Cu母相内に例えば針状に晶出するが,晶出形態はこれに限定されない。第二相は、最終工程終了後の圧延組織の断面を研磨した後、SEM(走査型電子顕微鏡)のBSE(反射電子)像により、母相と異なる組成として観察することができる。組織が観察しにくい場合は、エッチング又は電解研磨を行ってもよい。
[Second phase]
In the second phase, the element is crystallized at the time of casting from a molten alloy containing Cu and the chemical component, and a large amount of Ag is distributed to the second phase during the crystallization. Usually, the Ag concentration in the second phase is 50% or more. The second phase is crystallized, for example, in a needle shape in the Cu matrix, but the crystallization form is not limited to this. The second phase can be observed as a composition different from the parent phase by a BSE (backscattered electron) image of an SEM (scanning electron microscope) after polishing the cross section of the rolled structure after the final step. If the structure is difficult to observe, etching or electropolishing may be performed.

図1は、本発明の合金の圧延材組織を模式的に示したものである。この図において、圧延材組織は、Cu母相2のマトリクス中に第二相4が分散されている。そして、「板幅方向を「圧延直角方向T」とし、板の長手方向を「圧延平行方向L」とする。本発明においては、好ましくは第二相は圧延平行方向の長さが厚みtの10倍以上であり、例えばリボン状(舌片状)の形態を示す。   FIG. 1 schematically shows the rolled material structure of the alloy of the present invention. In this figure, in the rolled material structure, the second phase 4 is dispersed in the matrix of the Cu matrix 2. Then, “the width direction of the plate is defined as“ a perpendicular direction T of rolling ”and the longitudinal direction of the plate is defined as“ the parallel direction L of rolling ”. In the present invention, the second phase preferably has a length in the rolling parallel direction of 10 times or more of the thickness t, and shows, for example, a ribbon shape (tongue piece shape).

[第二相の厚み]
図1において、圧延直角断面から見たとき、第二相の厚み(圧延方向の第二相長さに相当)t1とし、隣接する第二相の間隔(圧延方向の距離)をdとする。圧延直角断面とは、圧延直角方向Tに沿い圧延表面に垂直な面で圧延材を切断した時の断面をいう。圧延平行方向は、例えば圧延表面に形成された圧延ロールの目を圧延平行方向と定めればよい。
第二相の厚みt1が小さくなるほど、強度が高くなる。又、dは、圧延加工度を高くすることで小さくすることができる。本発明の合金の場合、t1を1μm以下とすることで、より高い強度が得られる。
[Thickness of the second phase]
In FIG. 1, when viewed from a cross section perpendicular to rolling, the thickness of the second phase (corresponding to the second phase length in the rolling direction) is t1, and the interval between adjacent second phases (distance in the rolling direction) is d. The rolling perpendicular section refers to a section when the rolled material is cut along a plane perpendicular to the rolling surface along the rolling perpendicular direction T. The rolling parallel direction may be determined, for example, as the rolling parallel direction of the rolls formed on the rolling surface.
The strength increases as the thickness t1 of the second phase decreases. Moreover, d can be reduced by increasing the rolling degree. In the case of the alloy of the present invention, higher strength can be obtained by setting t1 to 1 μm or less.

t1を小さくすると、強度が向上する理由についてさらに説明する。複相合金は複合則を利用した強化機構であり,通常、複合則では材料の強度(σ:応力)は、第一相及び第二相の体積分率(それぞれV1,V2)に依存するが(σ=V1σ1+V2σ2)、第二相の体積分率よりはむしろ分散した第二相間の距離の方が強度への寄与が大きい。つまり、第二相同士の間隔が加工によって狭まること、つまりCu母相と第二相の異相界面の面積を増大させること、すなわち、Cu母相厚みが薄くなることが最も高強度化につながる。   The reason why the strength is improved by reducing t1 will be further described. A multiphase alloy is a strengthening mechanism that uses a composite law. In general, the strength (σ: stress) of a material depends on the volume fractions of the first and second phases (V1 and V2 respectively). (Σ = V1σ1 + V2σ2), rather than the volume fraction of the second phase, the distance between the dispersed second phases contributes more to the strength. That is, when the interval between the second phases is reduced by processing, that is, the area of the heterophase interface between the Cu matrix and the second phase is increased, that is, the thickness of the Cu matrix is thinned, the highest strength is obtained.

そして、第二相同士の間隔を狭めるためには、個々の第二相が微細となり、その厚みも小さくなっていることが必要である。すなわち、複相合金を強化するためには,第二相の初期晶出物を微細とさせ、さらにその後の加工により第二相を変形させて厚みを小さくして互いに近接させることが重要である。   And in order to narrow the space | interval of 2nd phases, it is necessary for each 2nd phase to become fine and the thickness to also become small. In other words, in order to strengthen the multiphase alloy, it is important to make the initial crystallized product of the second phase fine and further deform the second phase by subsequent processing to reduce the thickness and bring them close to each other. .

[隣接する第二相の間隔]
又、上記したように、圧延直角断面から見て、隣接する第二相の間隔dが小さいほど高強度が得られるため、dを3μm以下とすることが好ましい。厚さt1が減少するのと同様の理由により、強度は界面積に依存する。すなわち,組織写真上の第二相の積層方向(圧延による圧下がかかる方向)に垂直に線を引いた際、この線を通過する母相と第二相(リボン状組織)の界面の数に強度が依存する。そして、加工した際に第二相がすべて剪断されるだけの強度がこの材料の強度を示し、上記界面の数が多いほど強度が高くなると考えられる。
[Interval between adjacent second phases]
Further, as described above, as viewed from the cross-section perpendicular to the rolling, as the distance d between the adjacent second phases is smaller, the higher strength is obtained, so d is preferably 3 μm or less. For the same reason that the thickness t1 decreases, the strength depends on the interfacial area. That is, when a line is drawn perpendicularly to the stacking direction of the second phase on the structure photograph (the direction of rolling reduction), the number of interfaces between the parent phase and the second phase (ribbon-like structure) passing through this line Strength depends. And the intensity | strength which only the 2nd phase is sheared when processing shows the intensity | strength of this material, and it is thought that intensity | strength becomes high, so that there are many said interfaces.

[t1及びdを制御する方法]
tを1μm以下に制御する方法としては,例えば冷間圧延の加工度が90%以上になるよう、低加工度で熱処理を実施することが挙げられる。例えば、後述の実施例では,30%の冷間加工後に500℃の熱処理をし,その後99.7%の冷間圧延を実施している。
又、第二相となる晶出物を微細化するよう、溶解鋳造時の冷却速度を調整することによってt1を制御することもできる。例えば、凝固の際に発生する熱量を鋳型の熱容量が上回るように調整することが望ましく,好ましくは鋳型の熱容量が大きいほど良い。又、鋳型の冷却速度が速ければ速いほど,晶出物は微細になり、従来強加工によってしか得られなかったのと同様な微細組織を溶解鋳造で得ることが容易となる。従って、その後の加工と熱処理とを組み合わせることによって,t1及びdを制御可能である。
なお、上記のように制御することにより、第二相の圧延平行方向の長さを厚みtの10倍以上にすることができる。
[Method for controlling t1 and d]
As a method for controlling t to 1 μm or less, for example, heat treatment is performed at a low workability so that the workability of cold rolling is 90% or more. For example, in the examples described later, heat treatment at 500 ° C. is performed after 30% cold working, and then 99.7% cold rolling is performed.
Moreover, t1 can also be controlled by adjusting the cooling rate at the time of melting and casting so as to refine the crystallized material that becomes the second phase. For example, it is desirable to adjust the amount of heat generated during solidification to exceed the heat capacity of the mold, and preferably the larger the heat capacity of the mold. Also, the faster the mold cooling rate, the finer the crystallized material, and it becomes easier to obtain the same fine structure by melt casting that has been obtained only by strong processing. Therefore, t1 and d can be controlled by combining subsequent processing and heat treatment.
By controlling as described above, the length of the second phase in the rolling parallel direction can be made 10 times or more the thickness t.

[析出物]
上記銅合金は、さらにFe,Cr及びFe-Pの群から選ばれる1種又は2種以上の析出物をCu母相に析出してなる。析出物を構成する元素は銅合金素材に含有され、この素材を冷間加工後に時効熱処理することによって、Cu母相内に主に析出し、銅合金を析出硬化させる。析出物のうち、Fe-Pは金属間化合物であり、その組成比は限定されないが通常Fe:P=2:1の組成比である。
析出物を構成する元素(析出元素)の合金中の合計濃度は0.1%以上2%未満である。上記析出物は主としてCu母相に析出するが、析出せずに合金中に固溶しているものもあるため、合金中の濃度で規定している。析出元素の合金中の濃度は、例えば湿式法で測定することができる。
[Precipitate]
The copper alloy is formed by further depositing one or more precipitates selected from the group of Fe, Cr and Fe-P in the Cu matrix. The elements constituting the precipitates are contained in the copper alloy material, and this material is subjected to an aging heat treatment after cold working, thereby precipitating mainly in the Cu matrix and precipitation hardening of the copper alloy. Among the precipitates, Fe—P is an intermetallic compound, and the composition ratio is not limited, but is usually a composition ratio of Fe: P = 2: 1.
The total concentration of the elements constituting the precipitate (precipitated elements) in the alloy is 0.1% or more and less than 2%. Although the above precipitates are mainly precipitated in the Cu matrix, some of them are dissolved in the alloy without being precipitated, and thus are defined by the concentration in the alloy. The concentration of the precipitated element in the alloy can be measured, for example, by a wet method.

既に述べたように、半軟化特性を向上させる方法としては,析出物による転位のピン止め(pinning)や、添加元素による再結晶温度の上昇が有効となる。又、応力緩和特性を向上させる方法としては,結晶粒の粒界(界面)すべりを抑制するものとして析出物が有効である。本発明の複相合金においては,粒界に対応するものが母相と第二相との界面となるため、析出物によりこの界面でのすべりを抑制することができる。従って、析出物により、半軟化特性及び応力緩和特性のいずれの特性も向上させることができる。
さらに、後述する添加元素(Sn等)を含む場合は,さらに耐熱性(半軟化温度)が向上する。
析出元素の濃度が0.1%未満の場合、析出物が充分に析出せず、2%以上であると析出物の粒径が100nmを超えて粗大になり、以下の問題を生じる。
As already described, as a method for improving the semi-softening characteristics, dislocation pinning by precipitates and increase in recrystallization temperature by additive elements are effective. Further, as a method for improving the stress relaxation characteristics, precipitates are effective for suppressing the grain boundary (interface) slip of the crystal grains. In the multiphase alloy of the present invention, the one corresponding to the grain boundary is the interface between the parent phase and the second phase, and therefore the slip at this interface can be suppressed by the precipitate. Accordingly, the precipitates can improve both the semi-softening characteristic and the stress relaxation characteristic.
Furthermore, when the additive element (Sn etc.) mentioned later is included, heat resistance (semi-softening temperature) improves further.
When the concentration of the precipitated element is less than 0.1%, the precipitate does not sufficiently precipitate, and when it is 2% or more, the particle size of the precipitate exceeds 100 nm and becomes coarse, resulting in the following problems.

析出物の粒径は20〜100nmであることが必要である。析出物はCu母相に主に析出し、圧延による第二相の延伸を妨害するため、析出物の粒径が第二相の厚み程度に粗大化すると、析出物が第二相を分断し、第二相が延伸しなくなって曲げ加工性が劣化する。特に、本発明においては、第二相を微細化して厚みt1を1μm以下にしているため、析出物の粒径をそれより1桁小さい100nm以下とする必要がある。但し、析出物の粒径が20nm未満であると、その後の加工等によって析出物が母相内に再固溶するため、20〜100nmの範囲とする。
析出物の粒径は、例えば最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面の析出物を走査型電子顕微鏡や透過型電子顕微鏡により10視野程度観察して求めることができる。析出物の大きさが5〜50nmの場合は50万倍〜70万倍の倍率、100〜2000nmの場合は5〜10万倍で撮影を行うとよい。そして、撮影した写真の画像を画像解析装置(例えば、株式会社ニレコ製、商品名ルーゼックス)を用いて大きさ5nm以上の析出物のすべてについて個々に長径a、短径b,及び面積を測定し、それらの平均値から析出物の粒径を計算することができる。
The particle size of the precipitate needs to be 20-100 nm. Precipitates mainly precipitate in the Cu matrix and hinder the extension of the second phase by rolling, so when the grain size of the precipitate is coarsened to the thickness of the second phase, the precipitate divides the second phase. The second phase is not stretched and the bending workability is deteriorated. In particular, in the present invention, since the second phase is refined so that the thickness t1 is 1 μm or less, the particle size of the precipitates needs to be 100 nm or less, which is one digit smaller than that. However, if the particle size of the precipitate is less than 20 nm, the precipitate is re-dissolved in the matrix by subsequent processing or the like, so the range is 20 to 100 nm.
The grain size of the precipitate is obtained, for example, by cutting the alloy strip before the final cold rolling in a direction perpendicular to the thickness parallel to the rolling direction, and observing about 10 fields of view with a scanning electron microscope or a transmission electron microscope. be able to. When the size of the precipitate is 5 to 50 nm, it is preferable to shoot at a magnification of 500,000 to 700,000 times, and when it is 100 to 2000 nm, the image is taken at 5 to 100,000 times. Then, the major axis a, the minor axis b, and the area of each of the precipitates having a size of 5 nm or more are measured for each of the photographed photographs using an image analysis apparatus (for example, product name Luzex, manufactured by Nireco Corporation). From these average values, the particle size of the precipitate can be calculated.

時効熱処理は、例えば300℃〜600℃の温度で0.5〜100時間行うことができ、これにより析出物を微細化することができる。なお、この熱処理を冷間加工後に行うと,固溶した析出元素の拡散が促進され,析出し易くなるので望ましい。又、加工度が大きい時点で熱処理をすると、その後に冷間加工しても強度が向上し難いため,できるだけ低加工度における熱処理が望ましい。一方,加工前に熱処理をすると固溶した析出元素が析出しにくくなるが,15時間程度の長時間の熱処理を行えば微細に析出し,析出強化の効果が得られるので、加工前に熱処理をしてもよい。   The aging heat treatment can be performed, for example, at a temperature of 300 ° C. to 600 ° C. for 0.5 to 100 hours, whereby the precipitate can be refined. In addition, it is desirable to perform this heat treatment after cold working because diffusion of a solid solution precipitated element is promoted and precipitation is facilitated. In addition, if the heat treatment is performed at a time when the degree of work is large, it is difficult to improve the strength even if it is subsequently cold worked. Therefore, heat treatment at a degree of work as low as possible is desirable. On the other hand, when heat treatment is performed before processing, the precipitated elements that are dissolved are difficult to precipitate. However, if heat treatment is performed for a long time of about 15 hours, fine precipitation occurs and the effect of precipitation strengthening can be obtained. May be.

以上のように、第二相の厚みt1を1μm以下とし、微細な析出物を母相に析出させることで、0.2%耐力が800MPa以上の銅合金が得られる。   As described above, a copper alloy having a 0.2% proof stress of 800 MPa or more can be obtained by setting the thickness t1 of the second phase to 1 μm or less and precipitating fine precipitates in the parent phase.

合金中の析出物の含有割合は、例えば得られた材料の表面又は断面をオージェ電子分光分析法(AES:Auger Electron Spectroscopy)により分析し、元素定量を行うことで求めることができる。この場合、予め、各元素の純物質に対して検量線を作成しておき、定量を行えばよい。
なお、同一供試材においても析出物の含有割合には、ばらつきがある。そこで、例えば1つの合金試料において50点(50の晶出物)に対し析出物の含有割合を測定し,その最大値を析出物の含有割合とすることができる。又、二種以上の析出物を含有している場合は、それらの合計量を含有割合とする。
The content ratio of the precipitate in the alloy can be determined, for example, by analyzing the surface or cross section of the obtained material by Auger Electron Spectroscopy (AES) and performing elemental determination. In this case, a calibration curve may be created in advance for the pure substance of each element, and quantification may be performed.
In addition, even in the same specimen, the content ratio of precipitates varies. Therefore, for example, in one alloy sample, the content ratio of precipitates can be measured with respect to 50 points (50 crystallization products), and the maximum value can be set as the content ratio of precipitates. Moreover, when it contains 2 or more types of deposits, let those total amount be a content rate.

[添加元素]
さらに、本発明の合金に、Sn,Mg及びTiの群から選ばれる1種以上の添加元素を合計で0.01%以上0.2%以下含有することが好ましい。添加元素は、Cu母相内に主に固溶し、銅合金を固溶強化させ、又、銅合金の再結晶温度を上昇させるので、耐熱性(半軟化温度)が向上する。
添加元素の合計が0.01%未満の場合、固溶強化が充分でなく、0.2%を超えると導電率が低下すると共に曲げ加工性も劣化する。
合金中の添加元素の含有割合の測定方法は、上述した析出元素の含有割合の測定方法と同様とすることができる。
[Additive elements]
Furthermore, it is preferable that the alloy of the present invention contains one or more additive elements selected from the group of Sn, Mg and Ti in a total amount of 0.01% to 0.2%. The additive element mainly dissolves in the Cu matrix, strengthens the copper alloy, and raises the recrystallization temperature of the copper alloy, thereby improving the heat resistance (semi-softening temperature).
When the total amount of additive elements is less than 0.01%, solid solution strengthening is not sufficient, and when it exceeds 0.2%, the electrical conductivity is lowered and the bending workability is also deteriorated.
The method for measuring the content ratio of the additive element in the alloy can be the same as the method for measuring the content ratio of the precipitated element described above.

[製造]
電気銅又は無酸素銅を主原料とし、上記化学成分その他を添加した組成を溶解炉にて溶解し、インゴットを作製する。インゴットを例えば均質化焼鈍、熱間圧延、冷間圧延、焼鈍、冷間圧延、焼鈍を順次行うことで、圧延材が得られる。冷間圧延は、例えば加工度η=3.5以上で行うことが好ましい。
[Manufacturing]
An ingot is prepared by melting a composition in which electrolytic copper or oxygen-free copper is used as a main raw material and adding the above chemical components and the like in a melting furnace. A rolled material can be obtained by sequentially performing, for example, homogenization annealing, hot rolling, cold rolling, annealing, cold rolling, and annealing on the ingot. Cold rolling is preferably performed, for example, at a working degree η = 3.5 or more.

なお、本発明は、上記実施形態に限定されない。
本発明の銅合金は、ばね用材料(条)、箔等の種々の形態とすることができる。例えば、本発明の銅合金をばね材用の条とした場合、コネクタ等の電子機器に適用可能である。コネクタとしては、公知のあらゆる形態、構造のものに適用できるが、通常はオス(ジャック、プラグ)とメス(ソケット、レセプタクル)からなっている。端子は、例えば串状の多数のピンが並設され、他のコネクタと嵌合した際に端子同士が電気的に接触するよう、適宜折り曲げられてバネのようになっていることがある。そして、通常、コネクタの端子が上記電子機器用銅合金で構成されている。
In addition, this invention is not limited to the said embodiment.
The copper alloy of the present invention can be in various forms such as spring materials (strips) and foils. For example, when the copper alloy of the present invention is used for the spring material, it can be applied to electronic devices such as connectors. The connector can be applied to all known forms and structures, but usually consists of a male (jack, plug) and a female (socket, receptacle). For example, the terminals may be arranged like a spring, with a number of skewered pins arranged side by side and appropriately bent so that the terminals come into electrical contact with each other when fitted to other connectors. And the terminal of a connector is normally comprised with the said copper alloy for electronic devices.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.試料の作製
電気銅に表1、表2に示す組成の元素をそれぞれ添加して真空溶解してインゴットを鋳造し、これを800℃の温度で3時間の条件で均質化焼鈍し、950℃で溶体化処理後、熱間圧延を施した。さらに面削して冷間圧延を行い、伸ばされた第二相を分断するために500℃の焼鈍を行い、仕上げ冷間圧延を行い、板厚0.1mmのばね材用試料を作製した。冷間圧延の間に時効処理(500℃で15時間)を施した。冷間圧延の総圧延加工度を99.7%とし、1パスあたりの加工度30〜36%,張力350MPa以上(ただし、冷間圧延の初期パスでは150MPa、板厚が薄くなった後期パスでは375MPa程度)とした。
又、第二相の形態(厚みt1、d)は、試料の断面SEMのBSE像から求めた。析出物の粒径は、最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面の析出物を走査型電子顕微鏡又は透過型電子顕微鏡により10視野観察して求めた。析出物の大きさが5〜50nmの場合は50万倍〜70万倍の倍率、100〜2000nmの場合は5〜10万倍で撮影を行った。そして、撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用い、大きさ5nm以上の析出物のすべてについて個々に長径a、短径b,及び面積を測定し、それらの平均値から析出物の粒径を計算した。
1. Preparation of sample Ingot was cast by adding elements of the composition shown in Tables 1 and 2 to electrolytic copper, and melted in vacuum, and this was homogenized and annealed at a temperature of 800 ° C for 3 hours. After the solution treatment, hot rolling was performed. Further, chamfering was performed and cold rolling was performed. In order to divide the stretched second phase, annealing was performed at 500 ° C., finish cold rolling was performed, and a spring material sample having a plate thickness of 0.1 mm was produced. An aging treatment (15 hours at 500 ° C.) was applied during cold rolling. The total rolling degree of cold rolling is 99.7%, the degree of working per pass is 30 to 36%, and the tension is 350MPa or more (however, the initial pass of cold rolling is 150MPa, and the latter pass when the plate thickness is reduced is about 375MPa) ).
The form of the second phase (thickness t1, d) was determined from the BSE image of the cross section SEM of the sample. The grain size of the precipitate was determined by cutting the alloy strip before the final cold rolling parallel to the rolling direction at a right angle to the thickness, and observing the precipitate in the cross section with 10 fields of view using a scanning electron microscope or a transmission electron microscope. When the size of the precipitate was 5 to 50 nm, the image was taken at a magnification of 500,000 to 700,000 times, and when it was 100 to 2000 nm, the image was taken at 5 to 100,000 times. And using the image analysis apparatus (product name Luzex, manufactured by Nireco Co., Ltd.), the major axis a, the minor axis b, and the area are individually measured for all the precipitates having a size of 5 nm or more. From the average value, the particle size of the precipitate was calculated.

<試料の評価>
(1)強度の評価
JIS-Z2241に従い、試料の引張強度を測定し、0.2%耐力(YS:yielding strength)を求めた。試料はJISに従って作製した。
(2)導電性の評価
四端子法にて、試料の導電率を求めた。単位の%IACS(international annealed copper standard)は、焼鈍標準軟銅に対する電気伝導度の比である。ただし、合金に上記添加元素(Sn等)を含む場合,導電率が低下するので、添加元素を含まない場合は50%IACS以上,添加元素を含む場合は45%IACS以上であれば、導電性が良好であると評価した。
<Sample evaluation>
(1) Strength evaluation
According to JIS-Z2241, the tensile strength of the sample was measured to obtain 0.2% yield strength (YS). The sample was produced according to JIS.
(2) Evaluation of conductivity The conductivity of the sample was determined by the four probe method. The unit% IACS (international annealed copper standard) is the ratio of electrical conductivity to annealed standard soft copper. However, the conductivity decreases when the alloy contains the above additive elements (Sn, etc.). Therefore, if the additive element is not included, the conductivity is 50% IACS or more. If the additive element is contained, the conductivity is 45% IACS or more. Was evaluated as being good.

(3)曲げ加工性の評価
日本伸銅協会技術標準(JBMA T307)に従ってW曲げ試験を行った。圧延直角方向に延びる10mm幅の試料(t:試料厚さ)について最小曲げ半径(MBR)を求めた。そして、以下の基準で各実験例及び比較例の試料を評価した。
○:MBR/tの値が基準例の値より小さいもの
△:MBR/tの値が基準例の値より大きいもの
×:MBR/tの値が基準例の値よりかなり大きいもの
基準例のMBR/tは1程度である。
(4)応力緩和率
高温下での応力緩和特性として、応力緩和率(日本伸銅協会(JCBA)の技術標準:JCBA T309)を測定した。この試験は、幅10mmの短冊試験片を片持ちはりに取付け、高温の曲げ状態で所定時間保持後のたわみ変位(自由端における所定位置の変位)を初期状態と比較し、温度によるへたりを評価する方法である。試験後と初期状態のたわみが変わらない場合の応力緩和率の値は0%となり、試験後のたわみが初期状態より大きくなるほど、応力緩和率の値が大きくなる(応力が低下する)。
応力緩和率は次式
応力緩和率=(y−y1)/y0×100(%)
(但し、y=所定時間経過後のたわみ変位(mm)、y1=初期たわみ(mm)、y0=設定高さ(mm))で与えられる。
又、設定高さは次式
y0=(2/3)×l×l×σ0/(E×t)
(但し、l=標点距離(mm)、σ0=負荷応力(kg/mm2);0.2%耐力の80%または0.2%耐力以下の任意の応力、E=ヤング率(kg/mm2)、t=板厚(mm))で与えられる。
(3) Evaluation of bending workability A W bending test was performed according to the Japan Copper and Brass Association Technical Standard (JBMA T307). The minimum bending radius (MBR) was determined for a 10 mm wide sample (t: sample thickness) extending in the direction perpendicular to the rolling. The samples of each experimental example and comparative example were evaluated according to the following criteria.
○: MBR / t value is smaller than the reference example value Δ: MBR / t value is larger than the reference example value ×: MBR / t value is considerably larger than the reference example value MBR of the reference example / T is about 1.
(4) Stress relaxation rate As a stress relaxation property at high temperature, a stress relaxation rate (Technical Standard of Japan Copper and Brass Association (JCBA): JCBA T309) was measured. In this test, a strip test piece having a width of 10 mm is attached to a cantilever beam, the deflection displacement (displacement at a predetermined position at the free end) after being held for a predetermined time in a high temperature bent state is compared with the initial state, and the sag due to temperature It is a method to evaluate. When the deflection after the test and the initial state does not change, the value of the stress relaxation rate is 0%, and as the deflection after the test becomes larger than the initial state, the value of the stress relaxation rate increases (stress decreases).
The stress relaxation rate is the following formula: Stress relaxation rate = (y−y1) / y0 × 100 (%)
(However, y = deflection displacement (mm) after elapse of a predetermined time, y1 = initial deflection (mm), y0 = set height (mm)).
The set height is the following formula: y0 = (2/3) × l × l × σ0 / (E × t)
(Where, l = target distance (mm), σ 0 = load stress (kg / mm 2); 80% of 0.2% proof stress or any stress below 0.2% proof stress, E = Young's modulus (kg / mm 2 ), T = plate thickness (mm)).

応力緩和の測定は、試料を150℃とし、一定の緩和率を示すまで測定を行った。具体的には、25,50,100,200時間の応力緩和率を測定していき、およそ1000時間でほぼ一定の応力緩和率を示したので、この値を応力緩和率とした。
なお、一般的に使用されるリン青銅の150℃×1000h後の応力緩和率は40%程度である。従って、以下の各実施例及び比較例の評価において、応力緩和率が40%以下のものを耐熱性が良好であるとみなした。
The stress relaxation was measured until the sample was 150 ° C. and showed a certain relaxation rate. Specifically, the stress relaxation rate was measured for 25, 50, 100, and 200 hours, and a substantially constant stress relaxation rate was shown in about 1000 hours. This value was taken as the stress relaxation rate.
In addition, the stress relaxation rate after 150 degreeC x 1000 hours of the phosphor bronze generally used is about 40%. Therefore, in the evaluation of the following examples and comparative examples, those having a stress relaxation rate of 40% or less were regarded as having good heat resistance.

得られた結果を表1〜表9に示す。
なお、表1〜表5は実施例の結果を示し、表6〜表9は比較例の結果を示す。ここで、表6の比較例は、総加工度、溶体化処理温度、熱処理温度を実施例と同一条件とした。一方、表7の比較例は、溶体化処理温度、熱処理温度を実施例と同一条件としたが、総加工度を70.0%に低減した。
表8の比較例は、総加工度、溶体化処理温度を実施例と同一条件としたが、熱処理温度を200℃に低減した。但し、表8の比較例のうち比較例57〜59については、熱処理温度を200℃に低減するとともに、溶体化処理温度を750℃に低減した。
表9の比較例は、総加工度、溶体化処理温度を実施例と同一条件としたが、熱処理温度を700℃に高くした。但し、表9の比較例のうち比較例82〜84については、熱処理温度を700℃に高くするとともに、溶体化処理温度を750℃に低減した。
The obtained results are shown in Tables 1 to 9.
Tables 1 to 5 show the results of the examples, and Tables 6 to 9 show the results of the comparative examples. Here, in the comparative example of Table 6, the total processing degree, the solution treatment temperature, and the heat treatment temperature were set to the same conditions as in the examples. On the other hand, in the comparative example of Table 7, the solution treatment temperature and the heat treatment temperature were the same as those in the example, but the total degree of processing was reduced to 70.0%.
In the comparative example of Table 8, the total degree of processing and the solution treatment temperature were the same as those in the example, but the heat treatment temperature was reduced to 200 ° C. However, in Comparative Examples 57 to 59 among the comparative examples in Table 8, the heat treatment temperature was reduced to 200 ° C and the solution treatment temperature was reduced to 750 ° C.
In the comparative example of Table 9, the total processing degree and the solution treatment temperature were the same as those in the example, but the heat treatment temperature was increased to 700 ° C. However, among Comparative Examples 82 to 84 among Comparative Examples in Table 9, the heat treatment temperature was increased to 700 ° C and the solution treatment temperature was reduced to 750 ° C.

Figure 2008081834
Figure 2008081834

Figure 2008081834
Figure 2008081834

Figure 2008081834
Figure 2008081834

Figure 2008081834
Figure 2008081834

Figure 2008081834
Figure 2008081834

表1〜表5から明らかなように、各実施例の場合、0.2%耐力が800MPaに向上すると共に、曲げ加工性に優れ、導電率も良好であった。さらに各実施例の場合、応力緩和率が40%以下であり、耐熱性にも優れていた。   As is apparent from Tables 1 to 5, in each example, the 0.2% proof stress was improved to 800 MPa, the bending workability was excellent, and the electrical conductivity was also good. Further, in each example, the stress relaxation rate was 40% or less, and the heat resistance was excellent.

Figure 2008081834
Figure 2008081834

一方、表6において、析出元素を添加しなかった比較例1〜3の場合、析出物が析出せず、応力緩和率が40%を超え、耐熱性に劣った。Agの含有量が3%未満である比較例4の場合、第2相が晶出せず、0.2%耐力が800MPa未満に低下した。Agの含有量が15%を超えた比較例5の場合、曲げ加工性が劣化した。
析出元素の合計含有量が2%以上である比較例6、7、9、10の場合、析出物の粒径が100nmを超えて粗大化し、曲げ加工性が劣化した。なお、これらの比較例では、熱処理温度が高いため、析出物の大きさが変化した。
比較例8の場合、析出物の粒径が100nmを超えて粗大化し、曲げ加工性が劣化した。
析出元素の合計含有量が0.1%未満である比較例11、12の場合、析出物が析出せず、応力緩和率が40%を超え、耐熱性に劣った。
添加元素の合計含有量が0.5%を超えた比較例13〜16の場合、導電性が低下すると共に、曲げ加工性も劣化した。
On the other hand, in Comparative Examples 1 to 3 in which no precipitation element was added in Table 6, no precipitate was deposited, the stress relaxation rate exceeded 40%, and the heat resistance was poor. In the case of Comparative Example 4 in which the Ag content was less than 3%, the second phase did not crystallize, and the 0.2% yield strength decreased to less than 800 MPa. In the case of Comparative Example 5 in which the Ag content exceeded 15%, the bending workability deteriorated.
In Comparative Examples 6, 7, 9, and 10 in which the total content of the precipitated elements was 2% or more, the particle size of the precipitate exceeded 100 nm, and the bending workability deteriorated. In these comparative examples, since the heat treatment temperature was high, the size of the precipitate changed.
In the case of Comparative Example 8, the particle size of the precipitate exceeded 100 nm and became coarse, and the bending workability deteriorated.
In Comparative Examples 11 and 12 in which the total content of the precipitated elements was less than 0.1%, no precipitate was deposited, the stress relaxation rate exceeded 40%, and the heat resistance was poor.
In the case of Comparative Examples 13 to 16 in which the total content of additive elements exceeded 0.5%, the conductivity decreased and the bending workability also deteriorated.

Figure 2008081834
Figure 2008081834

表7に示す各比較例の場合、総加工度が70.0%に低減したため、第二相の厚みt1が1μmを超え、0.2%耐力が800MPa未満に低下した。   In the case of each comparative example shown in Table 7, since the total workability was reduced to 70.0%, the thickness t1 of the second phase exceeded 1 μm, and the 0.2% proof stress decreased to less than 800 MPa.

Figure 2008081834
Figure 2008081834

表8に示す各比較例の場合、熱処理温度を200℃に低減したため、析出物が析出しないか、又は析出物が充分に成長せずに粒径が20nm未満であったため、曲げ加工性が低下した。   In the case of each comparative example shown in Table 8, since the heat treatment temperature was reduced to 200 ° C., the precipitate did not precipitate or the precipitate did not grow sufficiently and the particle size was less than 20 nm, so the bending workability was lowered. did.

Figure 2008081834
Figure 2008081834

表9に示す各比較例の場合、熱処理温度を700℃に高くしたため、第二相の厚みt1が1μmを超え、0.2%耐力が800MPa未満に低下した。   In the case of each comparative example shown in Table 9, since the heat treatment temperature was increased to 700 ° C., the thickness t1 of the second phase exceeded 1 μm, and the 0.2% proof stress decreased to less than 800 MPa.

本発明の合金の圧延材組織を模式的に示した図である。It is the figure which showed typically the rolling material structure | tissue of the alloy of this invention.

符号の説明Explanation of symbols

2 Cu母材
4 第二相
2 Cu base material 4 Second phase

Claims (3)

質量%でAgを3%以上15%以下含有すると共に、Fe,Cr及びFe-Pの群から選ばれる1種又は2種以上の析出物がCu母相に析出し、かつ前記析出物を構成する元素の合金中の合計濃度が0.1%以上2%未満であり残部Cu及び不可避的不純物からなり、Cu母相と第二相とからなる0.2%耐力が800MPa以上の圧延材であって、前記析出物の粒径が20〜100nmであり、圧延直角断面から見たとき前記第二相の厚みが1μm以下である曲げ加工性に優れた高強度高導電性二相銅合金。   Containing at least 3% and not more than 15% of Ag by mass%, one or more precipitates selected from the group of Fe, Cr and Fe-P are precipitated in the Cu matrix and constitute the precipitates The total concentration in the alloy of the elements to be made is 0.1% or more and less than 2%, consisting of the balance Cu and unavoidable impurities, and a 0.2% proof stress consisting of a Cu parent phase and a second phase having a yield strength of 800 MPa or more, A high-strength, high-conductivity, two-phase copper alloy excellent in bending workability in which the grain size of the precipitate is 20-100 nm and the thickness of the second phase is 1 μm or less when viewed from a cross section perpendicular to rolling. 圧延直角断面から見たとき、隣接する前記第二相の間隔が3μm以下である請求項1に記載の高強度高導電性二相銅合金。   2. The high-strength, high-conductivity, two-phase copper alloy according to claim 1, wherein when viewed from a cross-section perpendicular to rolling, an interval between adjacent second phases is 3 μm or less. さらに、Sn,Mg及びTiの群から選ばれる1種以上の添加元素を合計で0.01%以上0.2%以下含有する請求項1又は2に記載の高強度高導電性二相銅合金。   Furthermore, the high intensity | strength highly conductive two-phase copper alloy of Claim 1 or 2 which contains 0.01 to 0.2% in total of 1 or more types of additional elements chosen from the group of Sn, Mg, and Ti.
JP2006266763A 2006-09-29 2006-09-29 High-strength, high-conductivity dual phase copper alloy Withdrawn JP2008081834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266763A JP2008081834A (en) 2006-09-29 2006-09-29 High-strength, high-conductivity dual phase copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266763A JP2008081834A (en) 2006-09-29 2006-09-29 High-strength, high-conductivity dual phase copper alloy

Publications (1)

Publication Number Publication Date
JP2008081834A true JP2008081834A (en) 2008-04-10

Family

ID=39352976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266763A Withdrawn JP2008081834A (en) 2006-09-29 2006-09-29 High-strength, high-conductivity dual phase copper alloy

Country Status (1)

Country Link
JP (1) JP2008081834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199906A1 (en) * 2016-05-16 2017-11-23 古河電気工業株式会社 Copper alloy wire material
KR20220092713A (en) * 2020-12-24 2022-07-04 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199906A1 (en) * 2016-05-16 2017-11-23 古河電気工業株式会社 Copper alloy wire material
JP6284691B1 (en) * 2016-05-16 2018-02-28 古河電気工業株式会社 Copper alloy wire
CN108368565A (en) * 2016-05-16 2018-08-03 古河电气工业株式会社 Copper series alloy wire rod
US10626483B2 (en) 2016-05-16 2020-04-21 Furukawa Electric Co., Ltd. Copper alloy wire rod
KR20220092713A (en) * 2020-12-24 2022-07-04 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same
KR102445225B1 (en) 2020-12-24 2022-09-21 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP2006265731A (en) Copper alloy
JP4446479B2 (en) Copper alloy for electronic equipment
KR102114517B1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
EP2554691A1 (en) Cu-ni-si alloy for electronic material
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
US20110038753A1 (en) Copper alloy sheet material
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP2006299287A (en) Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP2007113093A (en) High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
US20150357073A1 (en) Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, method of producing copper alloy for electric and electronic device, conductive component for electric and electronic device, and terminal
JP4971925B2 (en) High-strength and highly conductive two-phase copper alloy
JP4859238B2 (en) High strength high conductivity heat resistant copper alloy foil
JP4971856B2 (en) Precipitation type copper alloy
JP4302579B2 (en) High-strength, high-conductivity copper alloy for electronic equipment
JP5048046B2 (en) Copper alloy for electronic equipment
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
JP4623737B2 (en) High-strength and highly conductive two-phase copper alloy
JP2008081834A (en) High-strength, high-conductivity dual phase copper alloy
JP2011241411A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device
JP2007031794A (en) High-strength copper alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201