JP2007113093A - High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor - Google Patents

High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor Download PDF

Info

Publication number
JP2007113093A
JP2007113093A JP2005307928A JP2005307928A JP2007113093A JP 2007113093 A JP2007113093 A JP 2007113093A JP 2005307928 A JP2005307928 A JP 2005307928A JP 2005307928 A JP2005307928 A JP 2005307928A JP 2007113093 A JP2007113093 A JP 2007113093A
Authority
JP
Japan
Prior art keywords
phase
strength
copper alloy
heat
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005307928A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Okubo
光浩 大久保
Kazuhiko Fukamachi
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2005307928A priority Critical patent/JP2007113093A/en
Publication of JP2007113093A publication Critical patent/JP2007113093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength, high-electric conductivity, and heat-resistant copper alloy excellent in the heat resistance in addition to strength, electric conductivity, bending workability and bending property of foil, and to provide a producing method therefor. <P>SOLUTION: The high-strength, high electric conductivity, and heat resistant copper alloy contains, by mass ratio, 4-20% Ag as a whole, and further, contains 0.01-0.1% total content of additional elements of one or more selected from a group of Gd, Cr, Mg, Ti, Zr and the balance Cu with inevitable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高強度高導電性銅合金及びその製造方法に関し、特に端子・コネクタ、スイッチ等の耐熱性を要求される電子機器に好適に用いられる高強度高導電性銅合金及びその製造方法に関する。   The present invention relates to a high-strength, high-conductivity copper alloy and a method for producing the same, and more particularly to a high-strength, high-conductivity copper alloy suitably used for electronic devices that require heat resistance such as terminals, connectors, switches, and the like, and a method for producing the same.

端子、コネクタ、スイッチ、リレー等の電気・電子機器用のばね材には優れたばね特性、曲げ加工性、導電性が要求され、従来からりん青銅等が用いられてきたが、近年では電子部品の超小型化の要請から高強度高導電性の合金が開発されている。特に近年では、電子部品が高集積化し、電子部品の回路を流れる電流量も大幅に増加している。このため、使用時に電子部品に多量のジュール熱が発生し、部品の材料にかなりの熱が負荷されて材料の軟化や特性の変化が懸念される。そこで、電子部品用材料である銅合金には、従来の高強度高導電性に加え、高耐熱性が要求されてきている。   Spring materials for electrical and electronic equipment such as terminals, connectors, switches, and relays are required to have excellent spring characteristics, bending workability, and electrical conductivity. Conventionally, phosphor bronze has been used. High-strength, high-conductivity alloys have been developed due to the demand for ultra-small size. In particular, in recent years, electronic parts have been highly integrated, and the amount of current flowing through the circuit of the electronic parts has also increased significantly. For this reason, a large amount of Joule heat is generated in the electronic component during use, and a considerable amount of heat is applied to the material of the component. Thus, copper alloys that are materials for electronic components are required to have high heat resistance in addition to the conventional high strength and high conductivity.

一方、電子機器の電子回路に多く用いられるプリント配線板として、圧延銅箔、電解銅箔が主に用いられる。特に可撓性銅張積層板(フレキシブル基板)として、屈曲性に優れた圧延銅箔が適している。さらに、回路に強度や耐熱性が要求される場合は、銅合金箔が用いられる。これら圧延銅箔及び圧延銅合金箔においても、近年の電子部品の小型化により、上記ばね材用銅合金と同様に高強度高導電性が要請される。   On the other hand, rolled copper foil and electrolytic copper foil are mainly used as printed wiring boards often used in electronic circuits of electronic devices. In particular, a rolled copper foil having excellent flexibility is suitable as a flexible copper-clad laminate (flexible substrate). Furthermore, when the circuit requires strength and heat resistance, a copper alloy foil is used. These rolled copper foils and rolled copper alloy foils are also required to have high strength and high conductivity in the same manner as the copper alloy for spring materials due to the recent miniaturization of electronic components.

一般に、Cuに強化元素を添加して高強度化すると導電率が低下し、一方で導電率を上昇させるためCu純度を高めると低強度となる関係がある。そこで、Cu母相中に第二相を晶出させた合金系(複相合金)が開発された。この合金は、強加工することにより第二相がファイバ状に分散され、りん青銅と同等以上の強度を持ちつつ、母相はCuであるため、導電率が60%IACS(international annealed copper standard:焼鈍標準軟銅に対する電気伝導度の比)を超える高導電性が得られている。この複相合金系としては、Cu−Cr、Cu−Fe、Cu−Nb、Cu−W、Cu−Ta、Cu−Agなどが知られている(例えば、特許文献1〜8参照)。   In general, when a strengthening element is added to Cu to increase the strength, the electrical conductivity decreases, while on the other hand, increasing the Cu purity to increase the electrical conductivity has a relationship of decreasing the strength. Therefore, an alloy system (double phase alloy) in which the second phase is crystallized in the Cu matrix has been developed. In this alloy, the second phase is dispersed in a fiber shape by being strongly processed and has a strength equal to or higher than that of phosphor bronze and the parent phase is Cu. Therefore, the conductivity is 60% IACS (international annealed copper standard: High electrical conductivity exceeding the ratio of electrical conductivity to annealed standard annealed copper is obtained. As this multiphase alloy system, Cu—Cr, Cu—Fe, Cu—Nb, Cu—W, Cu—Ta, Cu—Ag, and the like are known (for example, see Patent Documents 1 to 8).

上記従来技術の場合、第二相をファイバ状に延伸するための加工法として、線引き、圧延等の手段が用いられている。例えば、下記特許文献1、2には複相合金を圧延して製造すると、第二相が圧延方向に充分延伸されて繊維状になり、圧延直角方向(圧延材の長手方向に圧延が進むとして、圧延材の幅方向をいう)の強度も向上することが記載されている。
一般に、複相合金は、複合則を利用し、又は異相界面の面積を増加させることで強化される合金であり、第二相をリボン状に分散させることで強化される。ここで、銅中に固溶せずに晶出した第二相は、強加工により銅母相中にリボン状に分散することにより形成されるため、異相界面の面積を増加させて材料を強化する効果が大きい。このため、第二相が数多く分散している(同じ体積分率なら微細に分散している)ほど、第二相が引き伸ばされやすいほど、また加工度が大きくなるほど高強度化される。
In the case of the above prior art, means such as drawing and rolling are used as a processing method for stretching the second phase into a fiber shape. For example, in Patent Documents 1 and 2 below, when a multi-phase alloy is rolled and manufactured, the second phase is sufficiently stretched in the rolling direction to become fibrous, and the rolling proceeds in the direction perpendicular to the rolling direction (the longitudinal direction of the rolled material). It also describes that the strength of the rolled material is also improved.
In general, a multiphase alloy is an alloy that is strengthened by using a composite law or increasing the area of a heterophase interface, and is strengthened by dispersing a second phase in a ribbon shape. Here, the second phase crystallized without dissolving in copper is formed by dispersing in a ribbon shape in the copper matrix by strong processing, so the area of the heterophase interface is increased and the material is strengthened Great effect. For this reason, as the second phase is more dispersed (if the volume fraction is the same, it is finely dispersed), the second phase is more easily stretched, and the degree of processing is increased, so that the strength is increased.

特開平6‐192801号公報JP-A-6-192801 特開平6‐279894号公報JP-A-6-279894 特開平9‐104935号公報JP-A-9-104935 特開平9‐235633号公報JP-A-9-235633 特開平9‐249925号公報Japanese Patent Laid-Open No. 9-249925 特開平10‐53824号公報JP-A-10-53824 特開平10‐140267号公報Japanese Patent Laid-Open No. 10-140267 特公昭48‐34652号公報Japanese Patent Publication No. 48-34652

しかしながら、従来の複相銅合金の場合、リボン状に伸長した第二相により高強度化されるものの、この第二相は耐熱性が低いという問題がある。例えば、複相銅合金素材を冷間圧延後、導電性と曲げ性を確保するために150℃〜300℃の焼鈍を行うと、第二相が球状化し強度が極端に低下する。
すなわち、本発明は上記の課題を解決するためになされたものであり、強度、導電性、曲げ加工性、及び箔にした際の屈曲性に加え、耐熱性に優れた高強度高導電性耐熱銅合金及びその製造方法の提供を目的とする。
However, in the case of the conventional multiphase copper alloy, although the strength is increased by the second phase extending in a ribbon shape, there is a problem that the second phase has low heat resistance. For example, if a double-phase copper alloy material is cold-rolled and then annealed at 150 ° C. to 300 ° C. to ensure conductivity and bendability, the second phase becomes spherical and the strength is extremely reduced.
That is, the present invention has been made in order to solve the above-mentioned problems, and in addition to strength, conductivity, bending workability, and flexibility when formed into a foil, high strength and high conductivity heat resistance excellent in heat resistance. An object is to provide a copper alloy and a method for producing the same.

本発明者らは種々検討した結果、所定の合金組成を有すること、好ましくはCu母相中に晶出させた第二相をリボン状に引き伸ばすことにより、上記課題を解決できることを見出した。本発明者らは特に、第二相に特定の元素が存在すると、熱処理による第二相の球状化を抑制し、耐熱性をさらに改善できることを見出した。   As a result of various studies, the present inventors have found that the above problem can be solved by stretching the second phase crystallized in the Cu matrix, preferably in a ribbon shape, having a predetermined alloy composition. In particular, the present inventors have found that when a specific element is present in the second phase, the spheroidization of the second phase due to heat treatment can be suppressed and the heat resistance can be further improved.

上記の目的を達成するために、本発明の高強度高導電性耐熱銅合金は、質量率でAgを全体で4%以上20%以下含有し、さらにGd,Cr,Mg,Ti,Zrの群から選ばれる1種以上の添加元素を総量で0.01%以上0.1%以下含有し、残部がCu及び不可避的不純物からなる。
Cu母相、及びAgを含む第二相からなる2相合金の圧延材であって、該圧延材の厚み方向から見た時、前記第二相の厚さが1μm以下であり,かつ隣接する第二相の間隔が1μm以下である層状組織を有することが好ましく、前記添加元素が前記第二相に50質量%以上分配されていることが好ましい。W曲げ試験においてMBR/t≦1を満たすことが好ましい。
In order to achieve the above object, the high-strength, high-conductivity heat-resistant copper alloy of the present invention contains Ag in a mass ratio of 4% or more and 20% or less as a whole, and a group of Gd, Cr, Mg, Ti, Zr. One or more additive elements selected from the group consisting of 0.01% to 0.1% in total amount, the balance being made of Cu and inevitable impurities.
A rolled material of a two-phase alloy composed of a Cu matrix and a second phase containing Ag, and when viewed from the thickness direction of the rolled material, the thickness of the second phase is 1 μm or less and adjacent It is preferable to have a layered structure in which the interval between the second phases is 1 μm or less, and it is preferable that 50% by mass or more of the additive element is distributed in the second phase. It is preferable to satisfy MBR / t ≦ 1 in the W bending test.

本発明の高強度高導電性耐熱銅合金の製造方法は、質量率でAgを全体で4%以上20%以下含有し、さらにGd,Cr,Mg,Ti,Zrの群から選ばれる1種以上の添加元素を総量で0.01%以上0.1%以下含有し、残部がCu及び不可避的不純物からなる銅合金を溶解鋳造した後、冷間加工と該冷間加工後の熱処理とを少なくとも1回以上行い、前記熱処理を350℃〜550℃で0.5〜20時間行い、かつ前記冷間加工の総加工度を90%以上とする。   The manufacturing method of the high-strength, high-conductivity heat-resistant copper alloy of the present invention contains Ag in a mass ratio of 4% or more and 20% or less as a whole, and one or more selected from the group of Gd, Cr, Mg, Ti, Zr After adding and totaling 0.01% or more and 0.1% or less of the additive elements of the above, with the balance being a copper alloy consisting of Cu and inevitable impurities, at least cold working and heat treatment after the cold working are performed. At least once, the heat treatment is performed at 350 ° C. to 550 ° C. for 0.5 to 20 hours, and the total degree of cold working is 90% or more.

本発明によれば、強度、導電性、曲げ加工性、及び箔にした際の屈曲性に加え、耐熱性に優れた銅合金が得られる。   According to the present invention, a copper alloy excellent in heat resistance can be obtained in addition to strength, conductivity, bending workability, and flexibility when formed into a foil.

以下、本発明に係る高強度高導電性耐熱銅合金(以下、適宜「銅合金」と記載する)の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of a high-strength, high-conductivity heat-resistant copper alloy (hereinafter referred to as “copper alloy” as appropriate) according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<組成>
本発明に係る銅合金は、質量率でAgを全体で4%以上20%以下含有し、さらにGd,Cr,Mg,Ti,Zrの群から選ばれる1種以上の添加元素を総量で0.01%以上0.1%以下含有し、残部がCu及び不可避的不純物からなる。
<Composition>
The copper alloy according to the present invention contains Ag in a mass ratio of 4% or more and 20% or less as a whole, and further contains one or more additive elements selected from the group of Gd, Cr, Mg, Ti, and Zr in a total amount of 0.2%. The content is 01% or more and 0.1% or less, and the balance is made of Cu and inevitable impurities.

[Ag]
Agが4%以上含有されるとCu母相中にAg相(第二相)として晶出し、高強度を得ることができる。Agの含有量が4%未満であると、Ag晶出物の数が激減するため、Ag相による複合強化の効果が少ない。一方、含有量が20%を超えると耐熱性や熱間加工性が低下し、又強度の上昇効果が飽和するため、20%以下とする。また、含有量が20%を超えると、熱処理や熱間加工の際にCu結晶粒界に晶出するAgの量が非常に大きくなるため、曲げ加工時に割れの起点となりやすく、曲げ加工性が低下する。
なお、Agの含有量は、Cu母相とAg相を合わせた合金全体における値を示す。
Ag相は、Cu及び所定の化学成分を含む合金溶湯から鋳造時にAgが晶出したものである。Ag相はAgを50%以上含む。Ag相は、Cu母相内に例えば針状に晶出するが、晶出形態はこれに限定されない。なお、Cu母相は、例えばCuを90%以上含むが、これに限らない。
Ag相は、最終工程終了後の圧延組織の断面を研磨した後、SEM(走査電子顕微鏡)のBSE(反射電子)像により、母相と異なる組成として観察することができる。組織が観察しにくい場合は、エッチング又は電解研磨を行ってもよい。
[Ag]
When Ag is contained in an amount of 4% or more, it is crystallized as an Ag phase (second phase) in the Cu matrix, and high strength can be obtained. When the content of Ag is less than 4%, the number of Ag crystallized substances is drastically reduced, so that the effect of composite strengthening by the Ag phase is small. On the other hand, if the content exceeds 20%, the heat resistance and hot workability deteriorate, and the effect of increasing the strength is saturated. Further, if the content exceeds 20%, the amount of Ag crystallized at the Cu grain boundary during heat treatment or hot working becomes very large. descend.
In addition, content of Ag shows the value in the whole alloy which match | combined Cu mother phase and Ag phase.
In the Ag phase, Ag is crystallized from a molten alloy containing Cu and a predetermined chemical component during casting. The Ag phase contains 50% or more of Ag. The Ag phase is crystallized, for example, in a needle shape in the Cu matrix, but the crystallization form is not limited to this. In addition, although Cu mother phase contains 90% or more of Cu, for example, it is not restricted to this.
The Ag phase can be observed as a composition different from the parent phase by a BSE (backscattered electron) image of an SEM (scanning electron microscope) after polishing the cross section of the rolled structure after the final process. If the structure is difficult to observe, etching or electropolishing may be performed.

[Ag相の形態]
複相合金は、Cu母相より強度の高いAg相による複合則に基づく強化(弾性的効果)、又は(Cu母相とAg相間の)異相界面の面積増加による強化(塑性的効果)を利用している。そして、複相合金を強加工すると第二相であるAg相が繊維状又はリボン状に微細に分散し、又、異相界面の面積が増加して複相合金が強化される。
このため、第二相がCu母相中に数多く分散している(同じ体積分率なら微細に分散している)ほど、第二相が引き伸ばされやすいほど、また加工度が大きくなるほど高強度化を図ることができる。
[Form of Ag phase]
Double-phase alloys utilize strengthening (elastic effect) based on the composite law of Ag phase, which is stronger than Cu matrix, or strengthening (plastic effect) by increasing the area of the heterophase interface (between Cu matrix and Ag phase). is doing. When the multiphase alloy is strongly processed, the Ag phase as the second phase is finely dispersed in the form of fibers or ribbons, and the area of the heterogeneous interface is increased to strengthen the multiphase alloy.
For this reason, the more the second phase is dispersed in the Cu matrix (finely dispersed if the volume fraction is the same), the easier the second phase is stretched, and the higher the workability, the higher the strength. Can be achieved.

このようなことから、加工度を大きくとれる圧延材であって、該圧延材の厚み方向から見た時、Ag相の厚さが1μm以下であり,かつ隣接するAg相の距離が1μm以下である層状組織を有することが好ましい。
このような組織を有すると、繊維状又はリボン状のAg相によって、0.2%耐力が700MPa以上の高強度合金が得られる。さらに、この合金において加工度を99.5%以上とすると、圧延材の厚み方向から見た時のAg相の厚さは100nm程度となり、0.2%耐力が1GPaを越える高強度が得られる。
なお、高強度が得られる点で、上記したAg相の形態は「繊維状」でも「リボン状」でもよいが、Ag相の形態がリボン状であると、Ag相が剪断されにくく耐熱性が向上すると共に、繊維状の相よりも曲げ加工性が向上する。
For this reason, the rolled material has a high degree of workability. When viewed from the thickness direction of the rolled material, the thickness of the Ag phase is 1 μm or less and the distance between adjacent Ag phases is 1 μm or less. It preferably has a layered structure.
With such a structure, a high-strength alloy having a 0.2% proof stress of 700 MPa or more is obtained by the fibrous or ribbon-like Ag phase. Furthermore, when the workability is 99.5% or more in this alloy, the thickness of the Ag phase when viewed from the thickness direction of the rolled material is about 100 nm, and a high strength with a 0.2% proof stress exceeding 1 GPa is obtained. .
The Ag phase may be “fibrous” or “ribbon” in terms of obtaining high strength, but if the Ag phase is ribbon, the Ag phase is less likely to be sheared and has heat resistance. While improving, bending workability improves rather than a fibrous phase.

ここで、繊維状とは、Ag相が圧延方向に延伸されるが、圧延直角方向(圧延材の長手方向に圧延が進むとして、圧延材の幅方向をいう)には殆ど延伸されずに紐状になっているものをいう。リボン状とは、Ag相が圧延方向に延伸されると共に、圧延直角方向にも延伸され、舌片状の形態を示すものをいう。リボン状のAg相を含むと、上記圧延直角方向に材料を曲げた際の曲げ加工性が向上する。
Ag相が圧延直角方向にも延伸されてリボン状になっている形態としては、例えば、圧延直角方向から組織観察を行った時、個々のAg相の(圧延直角方向の長さ/圧延材の厚み方向の長さ)で表されるアスペクト比が10以上であるものが挙げられる。
Here, the fibrous form means that the Ag phase is stretched in the rolling direction, but is hardly stretched in the direction perpendicular to the rolling direction (assuming that rolling proceeds in the longitudinal direction of the rolled material). The one that is in the shape. The ribbon shape means that the Ag phase is stretched in the rolling direction and is also stretched in the direction perpendicular to the rolling direction to show a tongue-like shape. When the ribbon-shaped Ag phase is included, bending workability when the material is bent in the direction perpendicular to the rolling direction is improved.
As a form in which the Ag phase is stretched also in the direction perpendicular to the rolling to form a ribbon, for example, when the structure is observed from the direction perpendicular to the rolling, the length of each Ag phase (length in the direction perpendicular to the rolling / The aspect ratio represented by (the length in the thickness direction) is 10 or more.

[添加元素]
上記添加元素(Gd,Cr,Mg,Ti,及びZr)は、上記Ag相に固溶し、耐熱性を向上させる。上記添加元素の1種以上を総量で0.01%以上0.1%以下含有することが必要である。含有量の総量が0.01%未満であると、添加元素がAg相に充分に固溶せず、耐熱性の向上効果が少なくなる。一方、総量が0.1%を超えると合金の導電率を著しく低下させるからである。
ここで、添加元素はAg相に50質量%以上分配されることが好ましい。Ag相への添加元素の分配量が50%未満の場合、Ag相の純度が高くなるため、耐熱性の向上効果が少なくなると共に、Cu母相への添加元素の分配量が大きくなるため、導電率が低下する傾向にある。
なお、添加元素がAg相に分配される割合は、例えば以下のように求めることができる。まず、インゴットの断面を機械研磨し、EDS(エネルギー分散型X線分析)若しくはWDS(波長分散型X線分析)を搭載したSEM(走査型電子顕微鏡)、又はFE−SEM(電解放出型走査電子顕微鏡)を用い、晶出物及び母相のX線分析を行う。これによりCu母相及びAg相にそれぞれ含有される添加元素の濃度分析を行う。ここで、予め、添元素を含まない標準試料のピーク値を基準として、各相の濃度を求める。精度の高い分析を行うためには、EDSよりWDSの方が好ましく、またFE−SEMのように電解放出型の電子線源を用いる方が好ましい。ただし、正確な定量分析を行う場合は、湿式分析が望ましい。
なお、実際には、所定の視野中のインゴットについて、マトリクス中の添加元素濃度とAg相中の添加元素濃度の比を求め、(Ag相中の添加元素の濃度/Cuマトリクス中の添加元素の濃度)≧1の関係にあればよい。
[Additive elements]
The additive elements (Gd, Cr, Mg, Ti, and Zr) are dissolved in the Ag phase to improve heat resistance. It is necessary to contain at least 0.01% and no more than 0.1% of one or more of the above additive elements. When the total content is less than 0.01%, the additive elements are not sufficiently dissolved in the Ag phase, and the effect of improving heat resistance is reduced. On the other hand, if the total amount exceeds 0.1%, the electrical conductivity of the alloy is remarkably lowered.
Here, the additive element is preferably distributed in the Ag phase by 50 mass% or more. When the distribution amount of the additive element to the Ag phase is less than 50%, the purity of the Ag phase is high, so the effect of improving the heat resistance is reduced, and the distribution amount of the additive element to the Cu matrix is increased. The conductivity tends to decrease.
In addition, the ratio by which an additional element is distributed to Ag phase can be calculated | required as follows, for example. First, the cross section of the ingot is mechanically polished, SDS (scanning electron microscope) equipped with EDS (energy dispersive X-ray analysis) or WDS (wavelength dispersive X-ray analysis), or FE-SEM (electrolytic emission scanning electron) Using a microscope), X-ray analysis of the crystallized product and the mother phase is performed. Thereby, the concentration analysis of the additive element contained in each of the Cu matrix and the Ag phase is performed. Here, the concentration of each phase is obtained in advance with reference to the peak value of a standard sample not containing an additive element. In order to perform highly accurate analysis, WDS is preferable to EDS, and it is preferable to use a field emission electron beam source such as FE-SEM. However, wet analysis is desirable for accurate quantitative analysis.
Actually, for the ingot in a predetermined field of view, the ratio of the additive element concentration in the matrix and the additive element concentration in the Ag phase is obtained, and (the concentration of the additive element in the Ag phase / the concentration of the additive element in the Cu matrix). It suffices if the relationship (density) ≧ 1.

Ag相が添加元素を含有すると耐熱性が向上する理由は次のように考えられる。一般に、金属は熱処理によって所定の温度(再結晶温度)を超えると再結晶し、急激に軟化する。従って、金属の再結晶温度を上昇させることにより耐熱性を向上することができる。又、再結晶温度は、不純物の存在や、金属が所定の比率で合金となることによって上昇する。従って上記添加元素がAg相に含まれることにより、Ag相の再結晶温度が上昇し、耐熱性が向上するものと考えられる。
又、添加元素を一定量以上加えると、材料を冷間加工する途中での熱処理や、冷間加工後の熱処理において、添加元素が単体又は化合物の形態で析出するため、析出強化により強度が上昇するとともに再結晶温度も上昇する。
さらに、複相合金中のAg相は、冷間加工によって剪断や引張り応力を受け、最終的に数百ナノメートルオーダーの長さのリボン状となる。この場合、Ag相中で、剪断応力や引張り応力を集中的に受けた部分は極めて不安定となり、高熱に曝されると分断される可能性がある。一方、Ag相中に添加元素が固溶するとAg相を強化し、剪断応力や引張り応力に対して安定な形態を保つようになり、熱的に安定な組織となると考えられる。
The reason why the heat resistance is improved when the Ag phase contains an additive element is considered as follows. Generally, when a metal exceeds a predetermined temperature (recrystallization temperature) by heat treatment, it recrystallizes and softens rapidly. Therefore, heat resistance can be improved by raising the recrystallization temperature of the metal. Further, the recrystallization temperature rises due to the presence of impurities and the metal becoming an alloy at a predetermined ratio. Therefore, it is considered that when the additive element is contained in the Ag phase, the recrystallization temperature of the Ag phase rises and the heat resistance is improved.
In addition, when a certain amount or more of the additive element is added, the additive element precipitates in the form of a simple substance or a compound in the heat treatment during the cold working of the material or in the heat treatment after the cold working. At the same time, the recrystallization temperature increases.
Furthermore, the Ag phase in the multiphase alloy is subjected to shearing or tensile stress by cold working, and finally becomes a ribbon having a length on the order of several hundred nanometers. In this case, a portion of the Ag phase that is intensively subjected to shearing stress or tensile stress becomes extremely unstable and may be divided when exposed to high heat. On the other hand, when the additive element is dissolved in the Ag phase, the Ag phase is strengthened, and a stable form is maintained against shearing stress and tensile stress, which is considered to be a thermally stable structure.

[不可避的不純物]
上記銅合金中の不可避的不純物の含有量は、JIS H2123に規格する無酸素型銅C1011ほど清浄である必要はない。例えば、炉材や原料などから通常混入する範囲の成分を含有してもよい。なお、銅合金中に、Y,Yb,Nd,In,Pd,及びTeの群から選ばれる1種の元素を総量で0.01%以下含有してもよく、この範囲の含有量であれば、曲げ性、導電性、強度を損なうことも少ない。特に、銅合金中にY,Yb,又はNdを上記範囲で含有すると、耐熱性が上昇する。
[Inevitable impurities]
The content of inevitable impurities in the copper alloy need not be as clean as oxygen-free copper C1011 standardized in JIS H2123. For example, you may contain the component of the range normally mixed from a furnace material, a raw material, etc. The copper alloy may contain a total of 0.01% or less of one element selected from the group of Y, Yb, Nd, In, Pd, and Te. In addition, bending properties, conductivity, and strength are less likely to be impaired. In particular, when Y, Yb, or Nd is contained in the above range in the copper alloy, the heat resistance is increased.

<銅合金の製造方法>
本発明の高強度高導電性耐熱銅合金の製造方法は、上記組成の銅合金を溶解鋳造した後、冷間加工と該冷間加工後の熱処理とを少なくとも1回以上行う工程を有する。
熱処理は350℃〜550℃で、0.5〜20時間行う。熱処理を行うと、Ag相に固溶した添加元素がAg相中に析出してAg相をさらに強化し、耐熱性をさらに向上させることができる。また、上記温度範囲で熱処理を行うと導電率が約50%以上の値まで回復する。つまり、後述する冷間加工の加工度が大きくなるほど、導電率の低下が大きくなるが、熱処理条件を上記範囲とすることで、導電率を回復することができる。
熱処理温度が350℃未満であると、添加元素によるAg相の析出強化が不充分となり、又、導電率が回復しない。又、熱処理温度が550℃を超えると導電率は大幅に回復するが、材料が軟化し耐熱性が低下する。
<Method for producing copper alloy>
The method for producing a high-strength, high-conductivity heat-resistant copper alloy of the present invention has a step of performing cold working and heat treatment after the cold working at least once after the copper alloy having the above composition is melt-cast.
The heat treatment is performed at 350 ° C. to 550 ° C. for 0.5 to 20 hours. When the heat treatment is performed, the additive element dissolved in the Ag phase is precipitated in the Ag phase to further strengthen the Ag phase and further improve the heat resistance. Further, when heat treatment is performed in the above temperature range, the electrical conductivity is recovered to a value of about 50% or more. That is, as the degree of cold working, which will be described later, increases, the decrease in conductivity increases, but the conductivity can be recovered by setting the heat treatment conditions in the above range.
When the heat treatment temperature is less than 350 ° C., precipitation strengthening of the Ag phase by the additive element becomes insufficient, and the electrical conductivity is not recovered. Further, when the heat treatment temperature exceeds 550 ° C., the electrical conductivity is greatly recovered, but the material is softened and the heat resistance is lowered.

前記冷間加工の総加工度を90%以上とする。本発明の製造方法においては、複相合金の特性から、加工度が増大するほど強度が上昇する傾向にあり、総加工度が90%以上であれば、約700MPa以上の強度を確保することができる。なお、総加工度とは、面削後から冷間圧延終了までの加工度である。   The total degree of cold working is 90% or more. In the production method of the present invention, due to the characteristics of the multiphase alloy, the strength tends to increase as the workability increases. If the total workability is 90% or more, a strength of about 700 MPa or more can be secured. it can. The total workability is the workability from chamfering to the end of cold rolling.

従来では、銅系複相合金の圧延材は半導体素子と同等の熱膨張係数を有するため、ヒートシンク、ヒートスプレッタなどの放熱用部品として用いられてきた。しかし高強度、高導電を有するものの、曲げ性を確保するために熱処理を施すと極端に強度が低下することから、従来の材料は端子等のばね材に用いることはできなかった。以上のようにして、本発明では、導電性、強度が共に良好な銅合金を得ることができるだけでなく、優れた耐熱性を備えているため、端子等のばね材として電子機器類の超小型化、超軽量化や性能向上に大きく寄与し得るなど、産業上きわめて有効な効果がもたらされる。本発明の銅合金を箔とした場合、例えば、プリント配線板、特に可撓性銅張積層板に適用可能である。   Conventionally, a rolled material of a copper-based multiphase alloy has a thermal expansion coefficient equivalent to that of a semiconductor element, and thus has been used as a heat dissipation component such as a heat sink or a heat spreader. However, although it has high strength and high conductivity, if heat treatment is performed to ensure bendability, the strength is extremely lowered, so that conventional materials cannot be used for spring materials such as terminals. As described above, according to the present invention, not only can a copper alloy having both good conductivity and strength be obtained, but also because it has excellent heat resistance, it can be used as a spring material for terminals and the like for electronic devices. It can make a significant contribution to industrialization, such as reducing the weight, making it super lightweight, and improving performance. When the copper alloy of the present invention is used as a foil, it can be applied to, for example, a printed wiring board, particularly a flexible copper-clad laminate.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。   In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.試料の製造
各実施例及び比較例について、電気銅を真空溶解し、表1に示す所定の組成の元素をそれぞれ添加してインゴットを鋳造した。インゴットを均質化焼鈍後、表2に示す総加工度で冷間圧延した後、熱処理し、板厚1.5mmの試験片とした。熱処理は、第二相が分断しない所定の温度で行った。
なお、各実施例の総加工度:99.7%、熱処理温度:450℃×1hとした。
1. Manufacture of a sample About each Example and the comparative example, electrolytic copper was melted | dissolved in vacuum and the element of the predetermined composition shown in Table 1 was added, respectively, and the ingot was cast. After the ingot was homogenized and annealed, it was cold-rolled at the total workability shown in Table 2 and then heat-treated to obtain a test piece having a plate thickness of 1.5 mm. The heat treatment was performed at a predetermined temperature at which the second phase was not divided.
In addition, the total processing degree of each Example: 99.7%, and heat treatment temperature: 450 ° C. × 1 h.

2.試料の評価
(1)Ag相の確認
各実施例及び比較例につき、インゴットの断面を機械研磨し、光学顕微鏡により晶出物観察するか、又はSEM(走査型電子顕微鏡)若しくはFE−SEM(電解放出型走査電子顕微鏡)を用いて晶出物のBSE像を撮影した。これにより二相合金の確認を行った。
又、上記インゴットの断面を機械研磨し、EDS(エネルギー分散型X線分析)、WDS(波長分散型X線分析)を搭載したSEM(走査型電子顕微鏡)、又はFE−SEM(電解放出型走査電子顕微鏡)を用いて上記晶出物の元素分析を行った。晶出物の点分析を行うか、又は母相と晶出物の元素マップを得た。これにより、Ag相を確認した。
2. Sample Evaluation (1) Confirmation of Ag Phase For each example and comparative example, the ingot cross section was mechanically polished and crystallized material was observed with an optical microscope, or SEM (scanning electron microscope) or FE-SEM (electrolysis) A BSE image of the crystallized product was taken using an emission scanning electron microscope. This confirmed the two-phase alloy.
Also, the cross section of the ingot is mechanically polished, SDS (scanning electron microscope) equipped with EDS (energy dispersive X-ray analysis), WDS (wavelength dispersive X-ray analysis), or FE-SEM (electrolytic emission scanning). The crystallized product was subjected to elemental analysis using an electron microscope. A point analysis of the crystallized product was performed, or an elemental map of the parent phase and the crystallized product was obtained. This confirmed the Ag phase.

(2)引張強さの測定
JIS Z2241に従い、各実施例及び比較例の試料の圧延平行方向について引張試験を行い、引張強さ(0.2%耐力(YS))を測定した。試料は上記JISに従って作製した。引張強さが700MPa以上であれば引張強さが優れていると判断することができる。
(3)導電率の測定
四端子法にて、試料の導電率を求めた。導電率が50%IACS以上であれば導電率が優れていると判断することができる。
なお、引張強さが700MPa以上で、かつ導電率が50%IACS以上である場合に、強度と導電性に共に優れた銅合金であると判断した。
(4)曲げ加工性
各試料について、JIS H3110及びH3130に従い、W曲げ試験を行い、圧延直角方向及び圧延平行方向にそれぞれ延びる10mm幅の試料(t:試料厚さ)の最小曲げ半径(MBR)を求めた。そして、以下の基準で曲げ加工性を評価した。
○:MBR/t≦1であるもの
×:MBR/t>1であるもの
(5)耐熱性
各試料を1時間焼鈍した時の強度が、焼鈍しない試料の強度の1/2になる焼鈍温度を半軟化温度として求めた。半軟化温度が400℃以上であれば耐熱性が優れていると判断することができる。
(2) Measurement of tensile strength According to JIS Z2241, the tensile test was done about the rolling parallel direction of the sample of each Example and the comparative example, and tensile strength (0.2% yield strength (YS)) was measured. The sample was produced according to the above JIS. If the tensile strength is 700 MPa or more, it can be determined that the tensile strength is excellent.
(3) Measurement of conductivity The conductivity of the sample was determined by the four probe method. If the conductivity is 50% IACS or more, it can be determined that the conductivity is excellent.
When the tensile strength was 700 MPa or more and the electrical conductivity was 50% IACS or more, it was judged that the copper alloy was excellent in both strength and conductivity.
(4) Bending workability Each sample was subjected to a W bending test in accordance with JIS H3110 and H3130, and a minimum bending radius (MBR) of a 10 mm wide sample (t: sample thickness) extending in the direction perpendicular to the rolling direction and the rolling parallel direction, respectively. Asked. And bending workability was evaluated according to the following criteria.
○: MBR / t ≦ 1 x: MBR / t> 1 (5) Heat resistance Annealing temperature at which the strength when each sample is annealed for 1 hour is half the strength of a sample that is not annealed Was determined as the semi-softening temperature. If the semi-softening temperature is 400 ° C. or higher, it can be determined that the heat resistance is excellent.

(6)箔の屈曲性の評価
前記各実施例及び比較例の試験片をさらに冷間圧延し、板厚0.050mm(50μm)の箔とした。この箔に対し、MIT屈曲性試験により屈曲性の評価を行った。試験条件は、曲げ半径2.0mm,曲げ荷重500g,折り曲げ角度を左右へ135°とし、試料が破断に至るまでの曲げ回数を数え、以下の基準で評価した。
○:曲げ回数が基準例より多いもの(通常、100回を超えるもの)
−:曲げ回数が基準例と同等のもの
×:曲げ回数が基準例より少ないもの
(6) Evaluation of Flexibility of Foil The test pieces of the respective Examples and Comparative Examples were further cold-rolled to obtain a foil having a plate thickness of 0.050 mm (50 μm). The flexibility of this foil was evaluated by the MIT flexibility test. The test conditions were a bending radius of 2.0 mm, a bending load of 500 g, a bending angle of 135 ° to the left and right, the number of times of bending until the sample broke, and the following criteria were evaluated.
○: The number of times of bending is greater than the reference example (usually more than 100 times)
-: The number of bendings is the same as the reference example ×: The number of bendings is less than the reference example

圧延板について得られた結果を表1、2に示し、箔について得られた結果を表3、4に示す。なお、各表中の「−」は、成分を添加しなかったことを表す。   The results obtained for the rolled sheets are shown in Tables 1 and 2, and the results obtained for the foils are shown in Tables 3 and 4. In addition, "-" in each table | surface represents not having added the component.

Figure 2007113093
Figure 2007113093

Figure 2007113093
Figure 2007113093

Figure 2007113093
Figure 2007113093

Figure 2007113093
表1から明らかなように、各実施例の場合、強度、導電性、曲げ加工性、及び耐熱性に共に優れていた。又、表3の各実施例の箔の場合も、強度、導電性、屈曲性がいずれも優れ、性能上のバランスのよい銅合金を得ることができた。
なお、同じ実施例について表1と表3の強度を比較すると、箔にすることで強度を更に向上できることが判明した。
Figure 2007113093
As is clear from Table 1, in each case, the strength, conductivity, bending workability, and heat resistance were all excellent. Moreover, also in the case of the foil of each Example of Table 3, the strength, the electroconductivity, and the flexibility were all excellent, and the copper alloy with the balance on performance was able to be obtained.
In addition, when the intensity | strength of Table 1 and Table 3 was compared about the same Example, it became clear that intensity | strength can further be improved by using foil.

一方、添加元素を含まない比較例1の場合、耐熱性が著しく劣った。
Agの含有量が4%未満である比較例2,3の場合、二相合金が得られず、強度が大幅に低下した。又、比較例3の場合、添加元素の含有量の総量が0.1%を超え、合金の導電率も低下した。
Agの含有量が20%を超えた比較例4,5の場合、曲げ加工性が大幅に低下した。なお、各比較例4,5の場合、Gd、Tiを添加したため、耐熱性は低下しなかった。又、比較例5の場合、添加元素の含有量の総量が0.1%を超えたため、合金の導電率も低下した。
On the other hand, in the case of the comparative example 1 which does not contain an additive element, heat resistance was remarkably inferior.
In the case of Comparative Examples 2 and 3 in which the Ag content was less than 4%, a two-phase alloy was not obtained, and the strength was greatly reduced. In the case of Comparative Example 3, the total content of additive elements exceeded 0.1%, and the electrical conductivity of the alloy also decreased.
In the case of Comparative Examples 4 and 5 in which the Ag content exceeded 20%, the bending workability was greatly reduced. In each of Comparative Examples 4 and 5, since Gd and Ti were added, the heat resistance did not decrease. Moreover, in the case of the comparative example 5, since the total content of the additive element exceeded 0.1%, the electrical conductivity of the alloy also decreased.

添加元素の含有量の総量が0.1%を超えた比較例6〜10の場合、合金の導電率が著しく低下した。又、比較例7〜10の場合、曲げ加工性も低下した。これは、添加元素の含有量が多いために、添加元素の酸化物や介在物が合金中に生成し、曲げ加工時の割れの起点となったためと考えられる。
Agの含有量が4%未満で、かつ添加元素の含有量の総量が0.01%未満である比較例11の場合、二相合金が得られず強度が大幅に低下し、又、耐熱性も低下した。
Agの含有量が20%を超え、かつ添加元素の含有量の総量が0.01%未満である比較例12の場合、曲げ加工性が大幅に低下し、又、耐熱性も低下した。
In the case of Comparative Examples 6 to 10 in which the total content of additive elements exceeded 0.1%, the electrical conductivity of the alloy was significantly reduced. Moreover, in the case of Comparative Examples 7-10, bending workability also fell. This is thought to be because the oxide and inclusions of the additive element were produced in the alloy due to the high content of the additive element, and this was the starting point for cracking during bending.
In the case of Comparative Example 11 in which the Ag content is less than 4% and the total content of the additive elements is less than 0.01%, a two-phase alloy cannot be obtained and the strength is greatly reduced, and the heat resistance Also declined.
In the case of Comparative Example 12 in which the Ag content exceeds 20% and the total content of the additive elements is less than 0.01%, the bending workability is greatly reduced and the heat resistance is also reduced.

合金製造時の総加工度が90%未満である比較例13〜16の場合、強度が大幅に低下した。なお、比較例14の場合、加工前に熱処理したため、導電率が回復した。但し、熱処理温度が350℃未満である比較例15の場合、導電率の回復は見られなかった。一方、熱処理温度が550℃を超えた比較例16の場合、導電率は大幅に回復したが、材料が軟化し耐熱性も劣った。これは、Ag相中の添加元素の析出形態が粗大になったためと考えられる。   In the case of Comparative Examples 13 to 16 in which the total workability during alloy production was less than 90%, the strength was significantly reduced. In the case of Comparative Example 14, the conductivity was recovered because the heat treatment was performed before the processing. However, in the case of Comparative Example 15 where the heat treatment temperature was less than 350 ° C., no recovery of conductivity was observed. On the other hand, in the case of Comparative Example 16 in which the heat treatment temperature exceeded 550 ° C., the electrical conductivity was greatly recovered, but the material was softened and the heat resistance was inferior. This is considered because the precipitation form of the additive element in the Ag phase became coarse.

合金製造時の総加工度が90%以上であるが、加工前に熱処理しなかった比較例17の場合、導電率が劣った。
合金製造時の総加工度が90%以上であるが、加工前の熱処理温度が350℃未満である比較例18の場合、曲げ加工性が劣った。これは、低温熱処理によってAg相中の添加元素が微細に析出し、Ag相が母相よりも強化されたためと考えられる。
合金製造時の総加工度が90%以上であるが、加工前の熱処理温度が550℃を超えた比較例19の場合、耐熱性に劣った。これは、Ag相中の添加元素が粗大に析出し、Ag相の高温強度の向上効果が消失したためと考えられる。
In the case of Comparative Example 17, in which the total degree of work during the manufacture of the alloy was 90% or more but was not heat-treated before working, the conductivity was poor.
In the case of Comparative Example 18 in which the total degree of work at the time of manufacturing the alloy is 90% or more but the heat treatment temperature before work is less than 350 ° C., the bending workability is inferior. This is presumably because the additive element in the Ag phase was finely precipitated by the low-temperature heat treatment, and the Ag phase was strengthened more than the parent phase.
Although the total degree of processing at the time of manufacturing the alloy was 90% or more, in the case of Comparative Example 19 in which the heat treatment temperature before processing exceeded 550 ° C., the heat resistance was poor. This is presumably because the additive element in the Ag phase was coarsely precipitated and the effect of improving the high-temperature strength of the Ag phase disappeared.

Claims (5)

質量率でAgを全体で4%以上20%以下含有し、さらにGd,Cr,Mg,Ti,Zrの群から選ばれる1種以上の添加元素を総量で0.01%以上0.1%以下含有し、残部がCu及び不可避的不純物からなる、高強度高導電性耐熱銅合金。 Contains Ag in a mass ratio of 4% or more and 20% or less as a whole, and further contains one or more additive elements selected from the group of Gd, Cr, Mg, Ti, and Zr in a total amount of 0.01% or more and 0.1% or less. A high-strength, high-conductivity heat-resistant copper alloy that contains Cu and inevitable impurities. Cu母相、及びAgを含む第二相からなる2相合金の圧延材であって、該圧延材の厚み方向から見た時、前記第二相の厚さが1μm以下であり,かつ隣接する第二相の間隔が1μm以下である層状組織を有する請求項1に記載の高強度高導電性耐熱銅合金。 A rolled material of a two-phase alloy composed of a Cu matrix and a second phase containing Ag, and when viewed from the thickness direction of the rolled material, the thickness of the second phase is 1 μm or less and adjacent The high-strength, high-conductivity heat-resistant copper alloy according to claim 1, which has a layered structure in which the interval between the second phases is 1 µm or less. 前記添加元素が前記第二相に50質量%以上分配されている請求項2に記載の高強度高導電性耐熱銅合金。 The high-strength, high-conductivity heat-resistant copper alloy according to claim 2, wherein the additive element is distributed in the second phase by 50 mass% or more. W曲げ試験においてMBR/t≦1を満たす、請求項1〜3のいずれかに記載の高強度高導電性耐熱銅合金。 The high-strength, high-conductivity heat-resistant copper alloy according to any one of claims 1 to 3, which satisfies MBR / t ≦ 1 in a W bending test. 質量率でAgを全体で4%以上20%以下含有し、さらにGd,Cr,Mg,Ti,Zrの群から選ばれる1種以上の添加元素を総量で0.01%以上0.1%以下含有し、残部がCu及び不可避的不純物からなる銅合金を溶解鋳造した後、冷間加工と該冷間加工後の熱処理とを少なくとも1回以上行う銅合金の製造方法であって、前記熱処理を350℃〜550℃で0.5〜20時間行い、かつ前記冷間加工の総加工度を90%以上とする請求項1〜4のいずれかに記載の高強度高導電性耐熱銅合金の製造方法。
Contains Ag in a mass ratio of 4% or more and 20% or less as a whole, and further contains one or more additive elements selected from the group of Gd, Cr, Mg, Ti, and Zr in a total amount of 0.01% or more and 0.1% or less. A copper alloy manufacturing method comprising, after melting and casting a copper alloy containing Cu and inevitable impurities, and performing cold working and heat treatment after the cold working at least once. The high-strength, high-conductivity heat-resistant copper alloy according to any one of claims 1 to 4, wherein the heat treatment is performed at 350 ° C to 550 ° C for 0.5 to 20 hours, and the total degree of cold working is 90% or more. Method.
JP2005307928A 2005-10-24 2005-10-24 High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor Pending JP2007113093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307928A JP2007113093A (en) 2005-10-24 2005-10-24 High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307928A JP2007113093A (en) 2005-10-24 2005-10-24 High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor

Publications (1)

Publication Number Publication Date
JP2007113093A true JP2007113093A (en) 2007-05-10

Family

ID=38095554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307928A Pending JP2007113093A (en) 2005-10-24 2005-10-24 High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor

Country Status (1)

Country Link
JP (1) JP2007113093A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079283A (en) * 2007-09-27 2009-04-16 Nikko Kinzoku Kk High-strength, high-conductivity two phase copper alloy
EP3091094A1 (en) * 2015-05-07 2016-11-09 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie Flat rolled product made of a copper alloy comprising silver
WO2019013163A1 (en) * 2017-07-10 2019-01-17 株式会社協成 Conductive member using copper-silver alloy, contact pin and device
KR20220092713A (en) * 2020-12-24 2022-07-04 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same
CN115427595A (en) * 2021-03-23 2022-12-02 古河电气工业株式会社 Copper alloy wire
CN115768910A (en) * 2020-06-30 2023-03-07 三菱综合材料株式会社 Copper alloy, copper alloy plastic working material, electronic/electrical device module, terminal, bus bar, lead frame, and heat dissipation substrate
JP7322247B1 (en) 2022-06-07 2023-08-07 Swcc株式会社 Cu-Ag alloy wire and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279893A (en) * 1993-03-25 1994-10-04 Mitsubishi Materials Corp Copper alloy excellent in strength and electrical conductivity
JPH07173556A (en) * 1993-12-16 1995-07-11 Teikoku Piston Ring Co Ltd High strength copper alloy
JPH0941056A (en) * 1995-07-31 1997-02-10 Mitsubishi Materials Corp Motor commutator material
JP2005113259A (en) * 2003-02-05 2005-04-28 Sumitomo Metal Ind Ltd Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JP2005281850A (en) * 2003-09-19 2005-10-13 Sumitomo Metal Ind Ltd Copper alloy and method for producing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279893A (en) * 1993-03-25 1994-10-04 Mitsubishi Materials Corp Copper alloy excellent in strength and electrical conductivity
JPH07173556A (en) * 1993-12-16 1995-07-11 Teikoku Piston Ring Co Ltd High strength copper alloy
JPH0941056A (en) * 1995-07-31 1997-02-10 Mitsubishi Materials Corp Motor commutator material
JP2005113259A (en) * 2003-02-05 2005-04-28 Sumitomo Metal Ind Ltd Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JP2005281850A (en) * 2003-09-19 2005-10-13 Sumitomo Metal Ind Ltd Copper alloy and method for producing thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079283A (en) * 2007-09-27 2009-04-16 Nikko Kinzoku Kk High-strength, high-conductivity two phase copper alloy
EP3091094A1 (en) * 2015-05-07 2016-11-09 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie Flat rolled product made of a copper alloy comprising silver
WO2019013163A1 (en) * 2017-07-10 2019-01-17 株式会社協成 Conductive member using copper-silver alloy, contact pin and device
CN115768910A (en) * 2020-06-30 2023-03-07 三菱综合材料株式会社 Copper alloy, copper alloy plastic working material, electronic/electrical device module, terminal, bus bar, lead frame, and heat dissipation substrate
CN115768910B (en) * 2020-06-30 2024-01-12 三菱综合材料株式会社 Copper alloy, copper alloy plastic working material, module for electronic and electrical equipment, terminal, bus bar, lead frame, and heat dissipating substrate
KR20220092713A (en) * 2020-12-24 2022-07-04 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same
KR102445225B1 (en) 2020-12-24 2022-09-21 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same
CN115427595A (en) * 2021-03-23 2022-12-02 古河电气工业株式会社 Copper alloy wire
JP7322247B1 (en) 2022-06-07 2023-08-07 Swcc株式会社 Cu-Ag alloy wire and manufacturing method thereof
WO2023238671A1 (en) * 2022-06-07 2023-12-14 Swcc株式会社 Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING SAME

Similar Documents

Publication Publication Date Title
KR100876051B1 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
JP4756197B2 (en) Cu-Mg-P-based copper alloy and method for producing the same
JP2008266787A (en) Copper alloy material and its manufacturing method
JP2006265731A (en) Copper alloy
JP5520533B2 (en) Copper alloy material and method for producing the same
JP2007113093A (en) High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor
JP4446479B2 (en) Copper alloy for electronic equipment
JP2005206891A (en) Copper alloy with high strength and high electroconductivity
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
KR20120130342A (en) Cu-ni-si alloy for electronic material
JP2006161148A (en) Copper alloy
JP2006299287A (en) Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP5468798B2 (en) Copper alloy sheet
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP2009203510A (en) Copper alloy having both of high strength and high electroconductivity
JP4459067B2 (en) High strength and high conductivity copper alloy
JP2007270305A (en) Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
JP4859238B2 (en) High strength high conductivity heat resistant copper alloy foil
JP2006219705A (en) High-strength and high-conductivity copper alloy, and manufacturing method therefor
JP4601063B2 (en) High strength and high conductivity copper alloy, copper alloy spring material and copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP4302579B2 (en) High-strength, high-conductivity copper alloy for electronic equipment
JP4971925B2 (en) High-strength and highly conductive two-phase copper alloy
JP5048046B2 (en) Copper alloy for electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720