JP5520533B2 - Copper alloy material and method for producing the same - Google Patents

Copper alloy material and method for producing the same Download PDF

Info

Publication number
JP5520533B2
JP5520533B2 JP2009158868A JP2009158868A JP5520533B2 JP 5520533 B2 JP5520533 B2 JP 5520533B2 JP 2009158868 A JP2009158868 A JP 2009158868A JP 2009158868 A JP2009158868 A JP 2009158868A JP 5520533 B2 JP5520533 B2 JP 5520533B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
area ratio
cube orientation
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158868A
Other languages
Japanese (ja)
Other versions
JP2011012321A (en
Inventor
春彦 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009158868A priority Critical patent/JP5520533B2/en
Publication of JP2011012321A publication Critical patent/JP2011012321A/en
Application granted granted Critical
Publication of JP5520533B2 publication Critical patent/JP5520533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、リードフレーム、端子、コネクタ、ワイヤーハーネス、ターミナル、リレー、スイッチ、ばね材料などの電気・電子機器に適用される銅合金材に関する。   The present invention relates to a copper alloy material applied to electrical / electronic devices such as lead frames, terminals, connectors, wire harnesses, terminals, relays, switches, and spring materials.

従来、一般的に電気・電子機器用材料としては、鉄系材料のほか、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅系材料も広く用いられている。
近年、電気・電子機器の小型化、軽量化、さらにこれに伴う部品高密度実装化に対する要求が高まり、これらに適用される銅系材料にも種々の特性についてより高水準のレベルが求められている。必要とされる特性のうち主なものとしては、導電性、耐応力緩和性、曲げ加工性、ばね性、及び耐疲労特性などを挙げることができる。このような要求を満足すべく、機械強度が高く、曲げ加工性に優れ、導伝率が高いコルソン合金(Cu−Ni−Si系)やチタン銅、ベリリウム銅が電気・電子機器用途として開発されている。
例えば、曲げ加工性を低下させないで機械強度を向上させたチタン銅合金およびその製造方法が提案されている(特許文献1参照)。また合金の組成や析出物を制御して疲労特性を向上させる方法についても提案されている(特許文献2〜4参照)。しかし、合金の組成や析出物による機械強度の増加には限界がある。また曲げ加工性や導電率とバランスさせながら、機械強度や疲労特性を向上させる点からも限界があり、改良が望まれていた。
Conventionally, as materials for electric / electronic devices, copper-based materials such as phosphor bronze, red brass, brass, etc., which are excellent in electrical conductivity and thermal conductivity, have been widely used as materials for electric / electronic devices.
In recent years, there has been an increasing demand for smaller and lighter electrical and electronic devices and higher density mounting of components, and copper-based materials applied to these devices are required to have higher levels of various characteristics. Yes. Among the required properties, the main properties include conductivity, stress relaxation resistance, bending workability, springiness, and fatigue resistance. In order to satisfy these requirements, Corson alloys (Cu-Ni-Si series), titanium copper, and beryllium copper with high mechanical strength, excellent bending workability, and high conductivity have been developed for use in electrical and electronic equipment. ing.
For example, a titanium-copper alloy with improved mechanical strength without reducing bending workability and a method for producing the same have been proposed (see Patent Document 1). A method for improving fatigue properties by controlling the composition and precipitates of the alloy has also been proposed (see Patent Documents 2 to 4). However, there is a limit to the increase in mechanical strength due to the alloy composition and precipitates. In addition, there is a limit in terms of improving mechanical strength and fatigue characteristics while balancing with bending workability and conductivity, and an improvement has been desired.

特開2002−356726号公報JP 2002-356726 A 特開2002−3963号公報JP 2002-3963 A 特開2005−187885号公報Japanese Patent Laid-Open No. 2005-187885 特開2004−225112号公報JP 2004-225112 A

本発明は、合金の組成や析出物を変えることなく、耐疲労特性の優れた銅合金材を提供することを目的とする。   An object of the present invention is to provide a copper alloy material having excellent fatigue resistance without changing the composition and precipitates of the alloy.

本発明者等は、これらの課題を解決すべく鋭意検討を重ねた結果、特定の合金組成を有するコルソン系合金であって、EBSD法で測定されるCube方位{001}<100>の割合が5〜50%であり、ND Rotated Cube方位{100}<011>の面積率が2〜10%である集合組織を有し、かつ結晶粒径が15μm以上、200μm以下である銅合金材が、耐疲労特性に優れることを見出した。本発明はこの知見に基づきなされたものである。
すなわち、本発明は、
(1)Niを1.5〜5.0mass%、Siを0.40〜1.70mass%含有し、残部がCuと不可避不純物からなり、
EBSD法で測定されるCube方位{001}<100>の面積率が5〜50%であり、ND Rotated Cube方位{100}<011>の面積率が2〜10%である集合組織を有し、かつ結晶粒径が15μm以上、200μm以下であることを特徴とする銅合金材、
)銅合金がB、Al、As、Hf、Zr、Cr、Ti、C、Co、Fe、P、In、Sb、Mn、Ta、V、Sn、ZnおよびMgからなる群から選ばれる少なくとも1つを合計で0.005〜1.5mass%含有することを特徴とする(1)に記載の銅合金材及び、
)(1)または(2)に記載の銅合金材を製造する方法であって、銅合金の柱状晶の[100]軸を鋳造方向と直交する面から±15°以内とすることを特徴とする、連続鋳造または半連続鋳造による銅合金材の製造方法、
を提供するものである。
As a result of intensive studies to solve these problems, the present inventors have obtained a Corson alloy having a specific alloy composition, and the ratio of the Cube orientation {001} <100> measured by the EBSD method is 5-50% der Ri, ND Rotated Cube orientation {100} <011> area ratio of having a 2-10% der Ru texture and grain size 15μm or more, the copper alloy material is 200μm or less Has been found to be excellent in fatigue resistance. The present invention has been made based on this finding.
That is, the present invention
(1) Ni is contained in an amount of 1.5 to 5.0 mass%, Si is contained in an amount of 0.40 to 1.70 mass%, and the balance is made of Cu and inevitable impurities.
Area ratio of 5% to 50% der of Cube orientation measured by the EBSD method {001} <100> is, the ND Rotated Cube orientation {100} <011> area ratio of 2-10% der Ru texture And a copper alloy material characterized by having a crystal grain size of 15 μm or more and 200 μm or less,
( 2 ) At least the copper alloy is selected from the group consisting of B, Al, As, Hf, Zr, Cr, Ti, C, Co, Fe, P, In, Sb, Mn, Ta, V, Sn, Zn, and Mg The copper alloy material according to (1 ), containing one 0.005-1.5 mass% in total,
( 3 ) A method for producing a copper alloy material according to (1) or (2) , wherein the [100] axis of the columnar crystal of the copper alloy is within ± 15 ° from the plane perpendicular to the casting direction. A method for producing a copper alloy material by continuous casting or semi-continuous casting,
Is to provide.

本発明によれば、強度、曲げ加工性、導電率のいずれも損なうことなく耐疲労特性に優れた銅合金材を得ることができる。そのため、リードフレーム、端子、コネクタ、ワイヤーハーネス、ターミナル、リレー、スイッチ、ばね材料などの電気・電子機器に好適な銅合金材を提供することができる。   According to the present invention, a copper alloy material excellent in fatigue resistance can be obtained without impairing any of strength, bending workability, and conductivity. Therefore, it is possible to provide a copper alloy material suitable for electrical / electronic devices such as lead frames, terminals, connectors, wire harnesses, terminals, relays, switches, and spring materials.

本発明の銅合金材及びその製造方法について好ましい実施の態様を、以下に詳細に説明する。なお、本発明の銅合金材は、特定の形状を有する銅合金材、例えば板材、条材、線材、棒材、箔などであり、どのような電気電子部品にも用いることができ、その部品は特に限定されるものではないが、例えば、リードフレーム、端子、コネクタ、ワイヤーハーネス、ターミナル、リレー、スイッチ、ばね材料など高度の疲労特性が要求される部品に好適に用いられる。   Preferred embodiments of the copper alloy material and the method for producing the same of the present invention will be described in detail below. The copper alloy material of the present invention is a copper alloy material having a specific shape, for example, a plate material, a strip material, a wire material, a rod material, a foil, and the like, and can be used for any electric / electronic component. Although it is not particularly limited, for example, it is suitably used for components that require high fatigue characteristics such as lead frames, terminals, connectors, wire harnesses, terminals, relays, switches, and spring materials.

まず、EBSD法とその方法から得られる情報について説明する。
(1)EBSD法
本発明の銅合金材の結晶方位は、EBSD(Electron Backscatter Diffraction:電子後方散乱回折)法(以下単に、「EBSD法」という。)で測定される。EBSD法では、走査電子顕微鏡(SEM)内で試料表面の1点に電子線を入射させ、生じる反射電子回折模様から、その箇所での結晶方位や結晶構造を得ることができる。そして一定間隔で試料表面上に電子線を走査させることにより、その走査部分の結晶方位や結晶構造を得ることができる。本発明においては、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Cube方位から10°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率とした。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、方位分布は板厚方向で異なることがあるため、EBSDによる方位解析は板厚方向に3点をとり、平均を取った。
以上により、銅合金材のCube方位{001}<100>とND Rotated Cube方位{100}<011>の面積率が測定される。
First, the EBSD method and information obtained from the method will be described.
(1) EBSD Method The crystal orientation of the copper alloy material of the present invention is measured by an EBSD (Electron Backscatter Diffraction) method (hereinafter simply referred to as “EBSD method”). In the EBSD method, an electron beam is made incident on one point on the surface of a sample in a scanning electron microscope (SEM), and a crystal orientation and a crystal structure at that point can be obtained from a generated reflected electron diffraction pattern. Then, by scanning the surface of the sample with an electron beam at regular intervals, the crystal orientation and crystal structure of the scanned portion can be obtained. In the present invention, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps, and the orientation was analyzed. The deviation angle is calculated for all measurement points, the first decimal place is an effective number, and the area of crystal grains having an orientation within 10 ° from the Cube orientation is divided by the total measurement area to obtain the area ratio. .
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. In addition, since the azimuth distribution may differ in the plate thickness direction, the azimuth analysis by EBSD took three points in the plate thickness direction and took an average.
As described above, the area ratios of the Cube orientation {001} <100> and the ND Rotated Cube orientation {100} <011> of the copper alloy material are measured.

(2)Cube方位
本発明の銅合金材及びその製造方法においては、EBSD法で測定されるCube方位{001}<100>の面積率が5〜50%である集合組織を有するものとされる。具体的には、EBSD法で測定された部分の面積の5〜50%がCube方位{001}<100>であればよい。
端子、コネクタ、ワイヤーハーネスなどの電気・電子機器の金属部品には、部品の動作あるいは着脱の際に、弾性応力内の曲げ応力が繰り返し与えられる。巨視的には弾性範囲内の応力でも、微視的にはごく一部の原子がもといた場所に戻らない非弾性的な挙動の振舞いを起こし、これが蓄積してクラックの導入および破壊を起こす。それに対して、Cube方位{001}<100>の面積率を5〜50%に高めることで、微視的な原子の非弾性的な挙動の発生頻度が減少するため、クラックの発生が抑制され、疲労寿命が増大するという効果が得られる。面積率が5%未満では効果が小さく、50%より大きい場合は伸びの特性が低下するため、面積率は5〜50%とした。
さらに、EBSD法で測定されるND Rotated Cube方位{100}<011>の面積率を2〜10%とする。その場合には、同様に微視的な原子の非弾性的な挙動の発生頻度が減少する効果が得られる。面積率が2%未満では効果が小さく、大きすぎる場合は伸びの特性が低下するため、面積率は2〜10%とした。
(2) Cube orientation In the copper alloy material of the present invention and the manufacturing method thereof, the Cube orientation {001} <100> measured by the EBSD method has a texture with an area ratio of 5 to 50%. . Specifically, 5 to 50% of the area of the part measured by the EBSD method may be the Cube orientation {001} <100>.
Bending stress within elastic stress is repeatedly applied to metal parts of electrical / electronic devices such as terminals, connectors, and wire harnesses when the parts are operated or detached. Macroscopically, even a stress in the elastic range causes a behavior of inelastic behavior that does not return to the place where only a part of the atoms originated microscopically, which accumulates and introduces and breaks a crack. On the other hand, by increasing the area ratio of the Cube orientation {001} <100> to 5 to 50%, the frequency of occurrence of inelastic behavior of microscopic atoms is reduced, so that the generation of cracks is suppressed. The effect that the fatigue life is increased is obtained. If the area ratio is less than 5%, the effect is small. If the area ratio is more than 50%, the elongation characteristics deteriorate, so the area ratio is set to 5 to 50%.
Furthermore, 10% 2 The area ratio of ND Rotated Cube orientation {100} measured <011> in EBSD method. In that case, the effect of reducing the frequency of occurrence of inelastic behavior of microscopic atoms can be obtained. When the area ratio is less than 2%, the effect is small, and when the area ratio is too large, the elongation characteristics deteriorate, so the area ratio is set to 2 to 10 %.

(3)結晶粒径
本発明においては、EBSD法で測定される結晶粒径を15μm以上、200μm以下とすることにより、粒界等の微視的に原子の配列が乱れた部位が少なくなるため、微視的な原子の非弾性的な挙動の発生頻度が減少し、クラックの発生が抑制され、疲労強度が増大する。結晶粒径が15μm未満では疲労強度の向上の効果が小さく、200μmより大きい場合は曲げ加工性の特性が低下するため、結晶粒径は15μm〜200μmとした。結晶粒径を15μm以上とするためには、例えば、溶体化熱処理の温度、時間、および前加工時の歪量を調整することでできる。
EBSD法で測定される結晶粒径は、JIS H 0501に従い切断法により求めた。
(3) Crystal grain size In the present invention, by setting the crystal grain size measured by the EBSD method to 15 μm or more and 200 μm or less, the number of microscopically disordered atomic arrangements such as grain boundaries is reduced. The frequency of occurrence of inelastic behavior of microscopic atoms is reduced, the generation of cracks is suppressed, and the fatigue strength is increased. When the crystal grain size is less than 15 μm, the effect of improving the fatigue strength is small. When the crystal grain size is larger than 200 μm, the bending workability characteristics deteriorate, so the crystal grain size is set to 15 μm to 200 μm. In order to set the crystal grain size to 15 μm or more, for example, the temperature and time of solution heat treatment and the amount of strain during pre-processing can be adjusted.
The crystal grain size measured by the EBSD method was determined by a cutting method in accordance with JIS H 0501.

次に本発明の合金に使用される材料について説明する。本発明においては、Niを1.5〜5.0%(質量%、以下同じ)、Siを0.40〜1.70%含有し、残部がCuと不可避不純物からなる銅合金材を使用する。この合金を使用することにより、Cu中にNiとSiを加え、Ni−Si化合物を微細析出させる、析出強化型合金とすることができる。この析出強化型合金を製造する工程には、次の2つの重要な熱処理が取り入れられる。まず、溶体化処理とよばれる高温(通常は700℃以上)にてNiとSiをCu母相に固溶させる目的の熱処理と、溶体化処理温度より低い温度で熱処理する、いわゆる時効析出処理である。この時効析出処理により、高温で固溶したNiとSiを析出させることができる。このようにして高い温度と低い温度でNiとSiがCuに固溶する原子の量の差を使って、本発明の合金を製造することができる。
It will be described timber fees that are used to alloy of the present invention. In the present invention, the Ni 1.5 to 5.0% (mass%, hereinafter the same), the Si containing 0.40 to 1.70%, using a copper alloy material the balance being Cu and inevitable impurities you. By using this alloy, it is possible to obtain a precipitation-strengthened alloy in which Ni and Si are added to Cu and the Ni—Si compound is finely precipitated. The following two important heat treatments are incorporated into the process for producing the precipitation strengthened alloy. First, a so-called aging precipitation treatment in which Ni and Si are dissolved in a Cu matrix at a high temperature (usually 700 ° C. or more) called a solution treatment and a heat treatment at a temperature lower than the solution treatment temperature. is there. By this aging precipitation treatment, Ni and Si dissolved at a high temperature can be precipitated. In this way, the alloy of the present invention can be produced using the difference in the amount of atoms in which Ni and Si are dissolved in Cu at high and low temperatures.

NiとSiについては、NiとSiの添加比を制御することにより、Ni−Si化合物の析出強化によって銅合金材の強度を向上させることができる。Niの含有量は1.5〜5.0mass%であり、好ましくは2.0〜4.5mass%である。Siの含有量は0.40〜1.70mass%であり、好ましくは0.45〜1.2mass%である。   For Ni and Si, the strength of the copper alloy material can be improved by precipitation strengthening of the Ni—Si compound by controlling the addition ratio of Ni and Si. The content of Ni is 1.5 to 5.0 mass%, preferably 2.0 to 4.5 mass%. The content of Si is 0.40 to 1.70 mass%, preferably 0.45 to 1.2 mass%.

本発明の銅合金材には、さらにB、Al、As、Hf、Zr、Cr、Ti、C、Co、Fe、P、In、Sb、Mn、Ta、V、Sn、ZnおよびMgからなる群から選ばれる少なくとも1つを合計で0.005〜1.5mass%含有することができる。
これらの元素の銅合金材中の含有量の総量が1.5mass%を超える場合には、導電性を低下させる弊害を生じる場合がある。
Mg、Sn、Znは、添加することにより、耐応力緩和特性を向上させることができる。それぞれを添加した場合よりも、併せて添加した場合に相乗効果によって、さらに耐応力緩和特性が向上する。また半田脆化が著しく改善する効果がある。Mnは添加すると強度を向上させることができる
Cr、Fe、Ti、Zr、HfはNiやSiとの化合物や単体で微細に析出し、析出硬化に寄与する。またB、Pは熱間加工性を向上させるとともに、強度を向上させる。
そのほか、Al、As、C、Co、In、Sb、TaおよびVは、母相に固溶し強度を向上させる。
The copper alloy material of the present invention further includes a group consisting of B, Al, As, Hf, Zr, Cr, Ti, C, Co, Fe, P, In, Sb, Mn, Ta, V, Sn, Zn, and Mg. 0.005 to 1.5 mass% in total can be contained.
If the total content of these elements in the copper alloy material exceeds 1.5 mass%, there may be a negative effect of lowering the conductivity.
By adding Mg, Sn, and Zn, the stress relaxation resistance can be improved. The stress relaxation resistance is further improved by the synergistic effect when added together than when each is added. In addition, the solder embrittlement is remarkably improved. When Mn is added, the strength can be improved. Cr, Fe, Ti, Zr, and Hf are finely precipitated as a compound or simple substance with Ni or Si and contribute to precipitation hardening. B and P improve the hot workability and improve the strength.
In addition, Al, As, C, Co, In, Sb, Ta, and V are dissolved in the parent phase to improve the strength.

製造方法について述べる。
従来の電気・電子機器に適用される銅合金材(例えば、コルソン合金)の製造方法は、鋳造−均質化−熱間圧延−冷間圧延−溶体化熱処理−時効析出熱処理−仕上圧延−調質焼鈍である。通常この方法でのCube方位の面積率は、せいぜい3%未満である。
鋭意研究の結果、Cube方位の面積率を高めるためには、鋳塊段階においてCube方位の結晶粒が多く存在することが有意であることが分かった。従来方法では、鋳塊でのCube方位の面積率が小さく、鋳造−均質化−熱間圧延−冷間圧延−溶体化熱処理−時効析出熱処理−仕上圧延−調質焼鈍の一連の工程後の銅合金材のCube方位が十分に成長しなかった。
本発明においては、銅合金材の柱状晶の[100]軸を鋳造方向と直交する面から±15°以内として鋳造することが好ましい。これにより鋳塊のCube方位を高めることができ、鋳造−均質化−熱間圧延−冷間圧延−溶体化熱処理−時効析出熱処理−仕上圧延−調質焼鈍の一連の工程後の銅合金材のCube方位の面積率を高くすることができる。鋳塊組織の柱状晶の[100]軸の向きを調整するために、鋳型下端以降の2次冷却の冷却能を小さく設定するか、1次冷却を強くするためにモールド用フラックスとして硼砂、硼酸、および氷晶石を主成分とする溶融フラックスを使用するか、両方を同時に行ってもよい。鋳造以降の工程においては、均質化処理後に、500〜1000℃の温度で、トータル加工率が20〜97%の熱間圧延を実施し、その後50%〜99.9%の冷間圧延を実施するとよい。その後に再結晶がおこる溶体化熱処理にて、溶質元素が完全に固溶する温度とその温度からプラス20℃の範囲で、5秒〜5分間保持することで、結晶粒を15ミクロン以上に制御できる。
なお本発明の銅合金材は連続鋳造でも半連続鋳造でも製造することができる。
A manufacturing method will be described.
The manufacturing method of copper alloy material (for example, Corson alloy) applied to the conventional electric and electronic equipment is casting-homogenization-hot rolling-cold rolling-solution heat treatment-aging precipitation heat treatment-finish rolling-tempering Annealing. Usually, the area ratio of the Cube orientation in this method is less than 3% at most.
As a result of intensive studies, it has been found that in order to increase the area ratio of the Cube orientation, it is significant that a large number of crystal grains of the Cube orientation exist in the ingot stage. In the conventional method, the area ratio of the Cube orientation in the ingot is small, and the copper after a series of steps of casting-homogenization-hot rolling-cold rolling-solution heat treatment-aging precipitation heat treatment-finish rolling-temper annealing The Cube orientation of the alloy material did not grow sufficiently.
In the present invention, it is preferable to cast the [100] axis of the columnar crystal of the copper alloy material within ± 15 ° from the plane orthogonal to the casting direction. Thus, the Cube orientation of the ingot can be increased, and the copper alloy material after a series of steps of casting-homogenization-hot rolling-cold rolling-solution heat treatment-aging precipitation heat treatment-finish rolling-temper annealing The area ratio of the Cube orientation can be increased. In order to adjust the direction of the [100] axis of the columnar crystals of the ingot structure, the cooling capacity of the secondary cooling after the lower end of the mold is set to be small, or borax and boric acid are used as mold fluxes to increase the primary cooling. , And a melt flux composed mainly of cryolite, or both may be performed simultaneously. In the processes after casting, after the homogenization treatment, hot rolling with a total processing rate of 20 to 97% is performed at a temperature of 500 to 1000 ° C., and then cold rolling with 50 to 99.9% is performed. Good. Then, in the solution heat treatment where recrystallization occurs, the crystal grain size is controlled to 15 microns or more by holding it for 5 seconds to 5 minutes within the temperature range where the solute element is completely dissolved and within the range of 20 ° C. from that temperature. it can.
The copper alloy material of the present invention can be produced by either continuous casting or semi-continuous casting.

以下に本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(供試材の作製)
本発明の実施例及び比較例に用いた銅合金は、表1に示した成分を含有し、残部がCuと不可避不純物からなる合金(実施例1〜、比較例1〜4)である。これらの各合金をコアレス炉(高周波誘導溶解炉)にて木炭被覆下で大気溶解し、4辺が銅モールドに囲まれた鋳型に鋳造し、厚さ250mm、幅620mm、長さ2500mmの鋳塊を作製した。
次に鋳型の幅155mm位置と厚み125mm位置の交点位置に、φ3mmの径のSUS棒を鋳型上端部の湯面より鉛直方向に挿入し、未凝固部の深さを測定した。得られた未凝固部の深さから鋳型長さ(銅モールド長さ)を減じた値を、鋳型下端深さから凝固終了深さまでの距離として定義した。この距離が250mm以上となるように、鋳造速度を50〜200mm/分の範囲で調整して、鋳造を行い、鋳塊を得た。
得られた鋳塊より定常部の250×620×300mmブロックを切断し取り出し、幅620mmの中央部より鋳造方向と平行断面のスライス(250×15×300mm)を採取した。これを硝酸に0.5〜1時間浸し、エッチングされて得られたマクロ組織より柱状晶の[100]軸の向きを得た。鋳造方向と直交する面と柱状晶の[100]軸の向きが交わる角度を測定し、この平均値を表1に示した。
さらに鋳塊を均質化処理後、500〜1000℃に温度調整し、トータル加工率で60〜96%の圧延を行い、その後得られた圧延材を直接水冷して厚さ約10mmのコイルとした。この圧延材の表面をミーリングし酸化スケールを除去した。この時点での圧延材のCube方位の割合は5〜95%とした。その後、加工率85〜99.8%の冷間圧延、700〜1020℃で5秒〜1時間の溶体化熱処理、加工率1〜60%の仕上げ冷間圧延、200〜600℃で5秒〜10時間の調質焼鈍を記載の順に実施し、厚さ0.15mmの供試材を得た。
(Production of test materials)
The copper alloy used for the Example of this invention and the comparative example is an alloy (Examples 1-5 , Comparative Examples 1-4) which contains the component shown in Table 1 and the remainder consists of Cu and an unavoidable impurity. Each of these alloys is melted in the atmosphere under charcoal coating in a coreless furnace (high frequency induction melting furnace), cast into a mold surrounded by a copper mold on four sides, and an ingot having a thickness of 250 mm, a width of 620 mm, and a length of 2500 mm Was made.
Next, a SUS rod having a diameter of 3 mm was inserted in the vertical direction from the molten metal surface at the upper end of the mold at the intersection of the position of the width 155 mm and the thickness 125 mm of the mold, and the depth of the unsolidified portion was measured. A value obtained by subtracting the mold length (copper mold length) from the depth of the obtained unsolidified portion was defined as the distance from the mold lower end depth to the solidification end depth. The casting speed was adjusted in the range of 50 to 200 mm / min so that this distance was 250 mm or more, and casting was performed to obtain an ingot.
A 250 × 620 × 300 mm block of a stationary part was cut out from the obtained ingot, and a slice (250 × 15 × 300 mm) having a cross section parallel to the casting direction was collected from a central part of 620 mm width. This was immersed in nitric acid for 0.5 to 1 hour, and the direction of the [100] axis of the columnar crystal was obtained from the macrostructure obtained by etching. The angle at which the direction perpendicular to the casting direction and the direction of the [100] axis of the columnar crystal intersect was measured, and the average value is shown in Table 1.
Further, after the ingot is homogenized, the temperature is adjusted to 500 to 1000 ° C., rolling is performed at a total processing rate of 60 to 96%, and then the obtained rolled material is directly cooled with water to form a coil having a thickness of about 10 mm. . The surface of the rolled material was milled to remove oxide scale. At this time, the ratio of the Cube orientation of the rolled material was set to 5 to 95%. Then, cold rolling at a working rate of 85 to 99.8%, solution heat treatment at 700 to 1020 ° C. for 5 seconds to 1 hour, finish cold rolling at a working rate of 1 to 60%, and 200 to 600 ° C. for 5 seconds to The temper annealing for 10 hours was performed in the order of description, and a specimen having a thickness of 0.15 mm was obtained.

(銅合金材の供試材の特性評価)
銅合金材の供試材について、下記の特性評価を行い、その結果を表1に示した。
a.EBSD法による評価
測定面積が結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。まず測定部分の結晶の方位を同定し、Cube方位{001}<100>及びND Rotated Cube方位{100}<011>の占める面積率を各々求めた。また同時に結晶粒径を測定した。
(Characteristic evaluation of copper alloy materials)
The following characteristics evaluation was performed on the copper alloy material, and the results are shown in Table 1.
a. Evaluation by EBSD method A sample area of 500 μm square containing 200 or more crystal grains was scanned in steps of 0.5 μm, and the orientation was analyzed. First, the crystal orientation of the measurement portion was identified, and the area ratios occupied by the Cube orientation {001} <100> and the ND Rotated Cube orientation {100} <011> were respectively determined. At the same time, the crystal grain size was measured.

b.引張試験
供試材から圧延方向と平行に切り出したJIS Z2201−13B号の試験片を引張速度50mm/分、ゲージ長50mmの条件で、JIS Z2241に準じて3本測定し、0.2%耐力および付与応力について、その平均値を示した。
b. Tensile test Three test pieces of JIS Z2201-13B cut out in parallel with the rolling direction from the test material were measured according to JIS Z2241 under the conditions of a tensile speed of 50 mm / min and a gauge length of 50 mm, and 0.2% proof stress. The average values for the applied stress were also shown.

c.疲労試験
供試材から圧延方向と平行に切り出した幅10mmの試験片について、JIS Z 2273に準じて、両振り平面曲げの疲労試験を行った。試験片に加わる最大応力(σ)、振幅(f)、支点と作用点との距離(L)、および試料の厚み(t:0.15mm)が、以下の式となるように試験条件を設定した。
L=√(3tEf/(2σ))
E:ヤング率(=120GPa)
試料が破断したときの回数(Nf)を5回測定し、その平均値を疲労寿命繰り返し回数とした。
c. Fatigue test A test piece having a width of 10 mm cut out from the test material in parallel with the rolling direction was subjected to a double-bending plane bending fatigue test in accordance with JIS Z 2273. Test conditions are set so that the maximum stress (σ), amplitude (f), distance between fulcrum and action point (L), and sample thickness (t: 0.15 mm) applied to the test piece are as follows: did.
L = √ (3tEf / (2σ))
E: Young's modulus (= 120 GPa)
The number of times (Nf) when the sample broke was measured five times, and the average value was defined as the fatigue life repetition number.

Figure 0005520533
Figure 0005520533

本発明の実施例1〜の銅合金材は、0.2%耐力及び付与応力に問題はなく、疲労寿命繰り返し回数が1.×10〜1.6×10と良好な値を示している。
それに対して、比較例4ではCube方位{001}<100>の面積率(%)が5%未満で、結晶粒径が15μm未満であるため、疲労寿命繰り返し回数は実施例のほぼ半分という結果になっている。また比較例3では結晶粒径が15μm以上であるが、Cube方位{001}<100>の面積率(%)は5%未満であるので、やはり疲労寿命繰り返し回数は実施例のほぼ半分という結果になっている。
また比較例1、2はCube方位{001}<100>の面積率(%)は5〜50%の範囲内にあるが、結晶粒径が15μm未満のため、疲労寿命繰り返し回数は実施例より劣る結果になっている。
The copper alloy materials of Examples 1 to 5 of the present invention have no problem in 0.2% proof stress and applied stress, and the fatigue life repetition number is 1. 1 × 10 7 to 1.6 × 10 7 and a good value are shown.
On the other hand, in Comparative Example 4, the area ratio (%) of the Cube orientation {001} <100> is less than 5% and the crystal grain size is less than 15 μm. It has become. In Comparative Example 3, the crystal grain size is 15 μm or more, but the area ratio (%) of the Cube orientation {001} <100> is less than 5%. It has become.
In Comparative Examples 1 and 2, the area ratio (%) of the Cube orientation {001} <100> is in the range of 5 to 50%, but the crystal grain size is less than 15 μm. The result is inferior.

Claims (3)

Niを1.5〜5.0mass%、Siを0.40〜1.70mass%含有し、残部がCuと不可避不純物からなり、
EBSD法で測定されるCube方位{001}<100>の面積率が5〜50%であり、ND Rotated Cube方位{100}<011>の面積率が2〜10%である集合組織を有し、かつ平均結晶粒径が15μm以上、200μm以下であることを特徴とする銅合金材。
Ni is contained in 1.5 to 5.0 mass%, Si is contained in 0.40 to 1.70 mass%, and the balance is made of Cu and inevitable impurities.
Area ratio of 5% to 50% der of Cube orientation measured by the EBSD method {001} <100> is, the ND Rotated Cube orientation {100} <011> area ratio of 2-10% der Ru texture And a copper alloy material having an average crystal grain size of 15 μm or more and 200 μm or less.
銅合金がB、Al、As、Hf、Zr、Cr、Ti、C、Co、Fe、P、In、Sb、Mn、Ta、V、Sn、ZnおよびMgからなる群から選ばれる少なくとも1つを合計で0.005〜1.5mass%含有することを特徴とする請求項に記載の銅合金材。 The copper alloy is at least one selected from the group consisting of B, Al, As, Hf, Zr, Cr, Ti, C, Co, Fe, P, In, Sb, Mn, Ta, V, Sn, Zn, and Mg. copper alloy material according to claim 1, characterized in that it contains 0.005~1.5Mass% in total. 請求項1または2に記載の銅合金材を製造する方法であって、銅合金の柱状晶の[100]軸を鋳造方向と直交する面から±15°以内とすることを特徴とする、連続鋳造または半連続鋳造による銅合金材の製造方法。
The method for producing a copper alloy material according to claim 1 or 2 , wherein the [100] axis of the columnar crystal of the copper alloy is within ± 15 ° from the plane orthogonal to the casting direction. A method for producing a copper alloy material by casting or semi-continuous casting.
JP2009158868A 2009-07-03 2009-07-03 Copper alloy material and method for producing the same Active JP5520533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158868A JP5520533B2 (en) 2009-07-03 2009-07-03 Copper alloy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158868A JP5520533B2 (en) 2009-07-03 2009-07-03 Copper alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011012321A JP2011012321A (en) 2011-01-20
JP5520533B2 true JP5520533B2 (en) 2014-06-11

Family

ID=43591503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158868A Active JP5520533B2 (en) 2009-07-03 2009-07-03 Copper alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5520533B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845521B2 (en) 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
JP5690170B2 (en) * 2011-02-25 2015-03-25 株式会社神戸製鋼所 Copper alloy
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
CN103443309B (en) * 2011-05-02 2017-01-18 古河电气工业株式会社 Copper alloy sheet material and process for producing same
CN103703154B (en) * 2011-08-04 2015-11-25 株式会社神户制钢所 Copper alloy
WO2013021970A1 (en) * 2011-08-05 2013-02-14 古河電気工業株式会社 Rolled copper foil for secondary battery collector and production method therefor
JP2013104078A (en) * 2011-11-11 2013-05-30 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP6126791B2 (en) 2012-04-24 2017-05-10 Jx金属株式会社 Cu-Ni-Si copper alloy
KR20160117210A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP6345290B1 (en) * 2017-03-22 2018-06-20 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584692B2 (en) * 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4566048B2 (en) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4280287B2 (en) * 2007-01-12 2009-06-17 株式会社神戸製鋼所 Copper alloy for electrical and electronic parts with excellent heat resistance
EP2298945B1 (en) * 2008-06-03 2014-08-20 The Furukawa Electric Co., Ltd. Copper alloy sheet material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011012321A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5520533B2 (en) Copper alloy material and method for producing the same
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5654571B2 (en) Cu-Ni-Si alloy for electronic materials
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
KR20100113644A (en) Cu-ni-si-co-cr alloy for electronic material
WO2021060013A1 (en) Copper alloy for electronic/electrical devices, copper alloy planar bar stock for electronic/electrical devices, component for electronic/electrical devices, terminal and bus bar
WO2019189534A1 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP5107093B2 (en) Copper alloy with high strength and high conductivity
WO2015004940A1 (en) Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
KR101807969B1 (en) Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP2011046970A (en) Copper alloy material and method for producing the same
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP6464743B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment components, and terminals
JP2019194361A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2012211355A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
JP2012046804A (en) Copper alloy material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5520533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350