JP4859238B2 - High strength high conductivity heat resistant copper alloy foil - Google Patents

High strength high conductivity heat resistant copper alloy foil Download PDF

Info

Publication number
JP4859238B2
JP4859238B2 JP2007091418A JP2007091418A JP4859238B2 JP 4859238 B2 JP4859238 B2 JP 4859238B2 JP 2007091418 A JP2007091418 A JP 2007091418A JP 2007091418 A JP2007091418 A JP 2007091418A JP 4859238 B2 JP4859238 B2 JP 4859238B2
Authority
JP
Japan
Prior art keywords
phase
foil
less
strength
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007091418A
Other languages
Japanese (ja)
Other versions
JP2008248325A (en
Inventor
光浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2007091418A priority Critical patent/JP4859238B2/en
Publication of JP2008248325A publication Critical patent/JP2008248325A/en
Application granted granted Critical
Publication of JP4859238B2 publication Critical patent/JP4859238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フレキシブル銅張積層板や電池用集電体等に用いて好適な高強度高導電性銅合金箔に関する。   The present invention relates to a high-strength, high-conductivity copper alloy foil suitable for use in flexible copper-clad laminates, battery current collectors, and the like.

電子機器の電子回路に用いられるプリント配線板(FPC)として、銅箔と樹脂層とを積層したフレキシブル銅張積層板(CCL)が知られている。ところが、CCLにおいて銅箔に樹脂フィルムを貼付したり熱可塑性樹脂を塗布する際、銅箔に高い張力が付加されるため、銅箔が薄肉化するにつれて銅箔が破断し易くなるという問題があった。
また,リチウムイオン電池用集電体として銅箔を用いる場合、電池の充放電に伴う活物質の体積変化によって銅箔に応力が付加され、クラックが発生するおそれがあった。銅箔は厚みが薄くなるに従って伸びや引張強さが低下するので,これらの問題が顕著になっている。
As a printed wiring board (FPC) used for an electronic circuit of an electronic device, a flexible copper-clad laminate (CCL) in which a copper foil and a resin layer are laminated is known. However, when a resin film is applied to a copper foil or a thermoplastic resin is applied to the CCL, a high tension is applied to the copper foil, so that there is a problem that the copper foil easily breaks as the copper foil becomes thinner. It was.
Further, when a copper foil is used as a current collector for a lithium ion battery, a stress is applied to the copper foil due to a change in volume of the active material that accompanies charging / discharging of the battery, which may cause cracks. As copper foils become thinner, their elongation and tensile strength decrease, so these problems are significant.

そこで、強度と導電率に優れ,耐熱性に優れた銅合金として、Cu母相中に第二相を晶出させた合金系(複相合金)が開発されている。この合金は、強加工することにより第二相がファイバ状に分散され、りん青銅と同等以上の強度を持ちつつ、母相はCuであるため、導電率が60%IACS(international annealed copper standard:焼鈍標準軟銅に対する電気伝導度の比)を超える高導電性が得られている。この複相合金系としては、Cu−Cr、Cu−Fe、Cu−Nb、Cu−W、Cu−Ta、Cu−Agなどが知られている(例えば、特許文献1〜8参照)。
上記従来技術の場合、第二相をファイバ状に延伸するための加工法として、線引き、圧延等の手段が用いられている。例えば、下記特許文献1、2には複相合金を圧延して製造すると、第二相が圧延方向に充分延伸されて繊維状になり、圧延直角方向(圧延材の長手方向に圧延が進むとして、圧延材の幅方向をいう)の強度も向上することが記載されている。
一般に、複相合金は、複合則を利用し、又は異相界面の面積を増加させることで強化される合金であり、第二相をリボン状に分散させることで強化される。ここで、銅中に固溶せずに晶出した第二相は、強加工により銅母相中にリボン状に分散することにより形成されるため、異相界面の面積を増加させて材料を強化する効果が大きい。このため、第二相が数多く分散している(同じ体積分率なら微細に分散している)ほど、第二相が引き伸ばされやすいほど、また加工度が大きくなるほど高強度化される。
Therefore, an alloy system (double phase alloy) in which a second phase is crystallized in a Cu parent phase has been developed as a copper alloy having excellent strength and electrical conductivity and excellent heat resistance. In this alloy, the second phase is dispersed in a fiber shape by being strongly processed and has a strength equal to or higher than that of phosphor bronze and the parent phase is Cu. Therefore, the conductivity is 60% IACS (international annealed copper standard: High electrical conductivity exceeding the ratio of electrical conductivity to annealed standard annealed copper is obtained. As this multiphase alloy system, Cu—Cr, Cu—Fe, Cu—Nb, Cu—W, Cu—Ta, Cu—Ag, and the like are known (for example, see Patent Documents 1 to 8).
In the case of the above prior art, means such as drawing and rolling are used as a processing method for stretching the second phase into a fiber shape. For example, in Patent Documents 1 and 2 below, when a multi-phase alloy is rolled and manufactured, the second phase is sufficiently stretched in the rolling direction to become fibrous, and the rolling proceeds in the direction perpendicular to the rolling direction (the longitudinal direction of the rolled material). It also describes that the strength of the rolled material is also improved.
In general, a multiphase alloy is an alloy that is strengthened by using a composite law or increasing the area of a heterophase interface, and is strengthened by dispersing a second phase in a ribbon shape. Here, the second phase crystallized without dissolving in copper is formed by dispersing in a ribbon shape in the copper matrix by strong processing, so the area of the heterophase interface is increased and the material is strengthened Great effect. For this reason, as the second phase is more dispersed (if the volume fraction is the same, it is finely dispersed), the second phase is more easily stretched, and the degree of processing is increased, so that the strength is increased.

特開平6‐192801号公報JP-A-6-192801 特開平6‐279894号公報JP-A-6-279894 特開平9‐104935号公報JP-A-9-104935 特開平9‐235633号公報JP-A-9-235633 特開平9‐249925号公報Japanese Patent Laid-Open No. 9-249925 特開平10‐53824号公報JP-A-10-53824 特開平10‐140267号公報Japanese Patent Laid-Open No. 10-140267 特公昭48‐34652号公報Japanese Patent Publication No. 48-34652

しかしながら、各特許文献1〜8に記載の技術はいずれも線材や圧延板を対象とし、銅箔を製造するのに適しているとはいえない。つまり、箔の厚みが薄くなるに従って伸びや引張強さが低下するので,合金の強度をより一層向上させる必要がある。又、合金中に晶出物や介在物があると、箔を製造する際にピンホールが生じたり、この銅箔を用いて得られたCCLのエッチング性が劣化して生産性の低下や回路欠損が生じる可能性がある。従って、箔に用いる合金の晶出物や介在物の含有量、大きさを低減することが必要となる。
このように、箔に用いる銅合金には、従来より強度が要求されるだけでなく、晶出物や介在物の管理が重要になってくる。特に,電子機器の小型化,軽量化に伴い,FPC回路の銅配線幅(L)と銅配線間距離(S)が小さくなる傾向にあり, L/S=20μm/20μm程度にファインピッチ化されると言われている。このファインピッチ化に伴い、使用される銅箔の板厚も10μm以下となることが予想される。
However, none of the techniques described in Patent Documents 1 to 8 are suitable for manufacturing a copper foil for a wire or a rolled plate. That is, as the thickness of the foil is reduced, the elongation and tensile strength are reduced, so that it is necessary to further improve the strength of the alloy. In addition, if there are crystallized substances or inclusions in the alloy, pinholes are produced during the production of the foil, or the etching properties of the CCL obtained using this copper foil deteriorate, resulting in a decrease in productivity and circuit. Defects can occur. Therefore, it is necessary to reduce the content and size of the crystallized product and inclusions of the alloy used for the foil.
As described above, the copper alloy used for the foil is required not only to have strength, but also to manage crystallized substances and inclusions. In particular, as electronic devices become smaller and lighter, the FPC circuit's copper wiring width (L) and the distance between copper wirings (S) tend to decrease, and the fine pitch is reduced to about L / S = 20μm / 20μm. It is said that. Along with this fine pitch, the thickness of the copper foil used is expected to be 10 μm or less.

一方、例えば、特許文献5,6には、Cu−Cr系2相合金にさらにZrを添加した合金が開示されているが、CrやZrの添加量が多過ぎると導電率の低下が大きくなると共に、箔中に粗大な晶出物が生じるため、この合金を箔に用いることは難しい。   On the other hand, for example, Patent Documents 5 and 6 disclose an alloy in which Zr is further added to a Cu—Cr two-phase alloy. However, if the amount of Cr or Zr added is too large, the decrease in conductivity increases. At the same time, coarse crystals are produced in the foil, so it is difficult to use this alloy for the foil.

すなわち、本発明は上記の課題を解決するためになされたものであり、箔にした際の強度、導電性、及び耐熱性に優れた高強度高導電性耐熱銅合金箔の提供を目的とする。   That is, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-strength, high-conductivity heat-resistant copper alloy foil excellent in strength, conductivity, and heat resistance when formed into a foil. .

本発明者らは種々検討した結果、Cu母相中に晶出させた第二相をリボン状に引き伸ばすことにより、上記課題を解決できることを見出した。
上記の目的を達成するために、本発明の高強度高導電性耐熱銅合金箔は、質量率で3%以上15%以下のAgを含む第二相とCu母相とからなる2相合金の圧延箔であって、質量率でCr,Fe及びFe−Pの群から選ばれる1種又は2種以上の第1添加元素を合計で0.1%以上3%未満含有し、かつ前記第1添加元素を主成分とする析出物が少なくともCu母相に析出し、残部がCu及び不可避的不純物からなり、箔の厚み方向から見た時、前記第二相の厚さが1μm以下であり,かつ隣接する第二相の間隔が1μm以下である層状組織を有し、前記析出物の粒径が20〜100nmである厚み20μm以下のものである。
As a result of various studies, the present inventors have found that the above problem can be solved by stretching the second phase crystallized in the Cu matrix into a ribbon shape.
In order to achieve the above object, the high-strength, high-conductivity heat-resistant copper alloy foil of the present invention is a two-phase alloy composed of a second phase containing 3% to 15% Ag and a Cu parent phase in mass ratio. It is a rolled foil, which contains one or more first additive elements selected from the group consisting of Cr, Fe and Fe-P in terms of mass ratio in total of 0.1% or more and less than 3%, and the first Precipitates mainly composed of additive elements are precipitated at least in the Cu matrix, the remainder is made of Cu and inevitable impurities, and when viewed from the thickness direction of the foil, the thickness of the second phase is 1 μm or less, and have a lamellar structure interval between the adjacent second phase is 1μm or less, the particle size of the precipitates are the following thickness 20μm is 20 to 100 nm.

本発明の高強度高導電性耐熱銅合金箔は、400-600℃程度で10時間以上時効処理して製造されることが好ましい。
本発明の高強度高導電性耐熱銅合金箔の製造方法は、質量率で3%以上15%以下のAgを含む第二相とCu母相とからなる2相合金の圧延箔であって、質量率でCr,Fe及びFe−Pの群から選ばれる1種又は2種以上の第1添加元素を合計で0.1%以上3%未満含有し、かつ前記第1添加元素を主成分とする析出物が少なくともCu母相に析出し、残部がCu及び不可避的不純物からなり、箔の厚み方向から見た時、前記第二相の厚さが1μm以下であり,かつ隣接する第二相の間隔が1μm以下である層状組織を有し、前記析出物の粒径が20〜100nmである厚み20μm以下の高強度高導電性耐熱銅合金箔の製造方法であって、400-600℃程度で10時間以上時効処理する。


The high-strength, high-conductivity heat-resistant copper alloy foil of the present invention is preferably produced by aging treatment at about 400-600 ° C. for 10 hours or more .
The method for producing a high-strength, high-conductivity heat-resistant copper alloy foil of the present invention is a rolled foil of a two-phase alloy composed of a second phase containing 3% to 15% Ag and a Cu parent phase by mass, It contains at least 0.1% and less than 3% of one or more first additive elements selected from the group consisting of Cr, Fe and Fe-P by mass ratio, and the first additive element as a main component The precipitate formed is precipitated at least in the Cu matrix, the balance is made of Cu and inevitable impurities, and when viewed from the thickness direction of the foil, the thickness of the second phase is 1 μm or less, and the adjacent second phase Is a method for producing a high-strength, high-conductivity heat-resistant copper alloy foil having a thickness of 20 μm or less, having a layered structure with an interval of 1 μm or less, and a particle size of the precipitates of 20 to 100 nm, Aged at least 10 hours.


本発明によれば、箔にした際の強度、導電性、及び耐熱性に優れた銅合金箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the copper alloy foil excellent in the intensity | strength at the time of making foil, electroconductivity, and heat resistance is obtained.

以下、本発明に係る高強度高導電性耐熱銅合金(以下、適宜「銅合金」と記載する)箔の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of a high-strength, high-conductivity heat-resistant copper alloy (hereinafter referred to as “copper alloy” as appropriate) foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<組成>
本発明に係る銅合金箔は、質量率で3%以上15%以下のAgを含む第二相とCu母相とからなる2相合金の圧延箔である。
<Composition>
The copper alloy foil according to the present invention is a rolled foil of a two-phase alloy composed of a second phase containing 3% or more and 15% or less of Ag by a mass ratio and a Cu parent phase.

[Ag]
Agが3%以上含有されるとCu母相中にAg相(第二相)として晶出し、高強度を得ることができる。Agの含有量が3%未満であると、Ag晶出物の数が激減するため、Ag相による複合強化の効果が少ない。一方、含有量が15%を超えると耐熱性や熱間加工性が低下し、又強度の上昇効果が飽和するため、15%以下とする。また、含有量が15%を超えると、熱処理や熱間加工の際にCu結晶粒界に晶出するAgの量が非常に大きくなるため、箔を屈曲した際に割れの起点となりやすい。
なお、Agの含有量は、Cu母相とAg相を合わせた合金全体における値を示す。
Ag相は、Cu及び所定の化学成分を含む合金溶湯から鋳造時にAgが晶出したものである。Ag相はAgを50%以上含む。Ag相は、Cu母相内に例えば針状に晶出するが、晶出形態はこれに限定されない。なお、Cu母相は、例えばCuを90%以上含むが、これに限らない。
Ag相は、最終工程終了後の圧延組織の断面を研磨した後、SEM(走査電子顕微鏡)のBSE(反射電子)像により、母相と異なる組成として観察することができる。組織が観察しにくい場合は、エッチング又は電解研磨を行ってもよい。
[Ag]
When 3% or more of Ag is contained, it is crystallized as an Ag phase (second phase) in the Cu matrix and high strength can be obtained. When the Ag content is less than 3%, the number of Ag crystallized substances is drastically reduced, so that the effect of composite strengthening by the Ag phase is small. On the other hand, if the content exceeds 15%, the heat resistance and hot workability deteriorate, and the effect of increasing the strength is saturated. On the other hand, if the content exceeds 15%, the amount of Ag crystallized at the Cu crystal grain boundary during heat treatment or hot working becomes very large, so that it tends to become a starting point of cracking when the foil is bent.
In addition, content of Ag shows the value in the whole alloy which match | combined Cu mother phase and Ag phase.
In the Ag phase, Ag is crystallized from a molten alloy containing Cu and a predetermined chemical component during casting. The Ag phase contains 50% or more of Ag. The Ag phase is crystallized, for example, in a needle shape in the Cu matrix, but the crystallization form is not limited to this. In addition, although Cu mother phase contains 90% or more of Cu, for example, it is not restricted to this.
The Ag phase can be observed as a composition different from the parent phase by a BSE (backscattered electron) image of an SEM (scanning electron microscope) after polishing the cross section of the rolled structure after the final process. If the structure is difficult to observe, etching or electropolishing may be performed.

[Ag相の形態]
複相合金は、Cu母相より強度の高いAg相による複合則に基づく強化(弾性的効果)、又は(Cu母相とAg相間の)異相界面の面積増加による強化(塑性的効果)を利用している。そして、複相合金を強加工すると第二相であるAg相が繊維状又はリボン状に微細に分散し、又、異相界面の面積が増加して複相合金が強化される。特に、異相界面の面積を増加することによる効果が大きい。
[Form of Ag phase]
Double-phase alloys utilize strengthening (elastic effect) based on the composite law of Ag phase, which is stronger than Cu matrix, or strengthening (plastic effect) by increasing the area of the heterophase interface (between Cu matrix and Ag phase). is doing. When the multiphase alloy is strongly processed, the Ag phase as the second phase is finely dispersed in the form of fibers or ribbons, and the area of the heterogeneous interface is increased to strengthen the multiphase alloy. In particular, the effect of increasing the area of the heterogeneous interface is great.

このため、1)第二相がCu母相中に数多く分散している(同じ体積分率なら微細に分散している)ほど、2)第二相が引き伸ばされやすいほど、3)加工度が大きくなるほど、高強度化を図ることができる。本発明者らは、これらのメカニズムに基づき、第二相の形状及び大きさを制御することで高強度が得られることを見出した。
上記1)については,Ag及び第1添加元素を析出させる時効処理を最適化することで達成することができる。時効時間を長時間(400-600℃程度で10時間以上、より好ましくは15時間程度)とすると、第1添加元素の析出だけでなく,Agの析出も同時に生じる。これにより、複相合金と析出型合金の両者の特徴を一度の熱処理で得られることになり,Ag以外の添加元素の析出とともに,Agが微細に析出することとなる。
Therefore, 1) the more the second phase is dispersed in the Cu matrix (the more the same volume fraction, the more finely dispersed), 2) the easier the second phase is stretched, and 3) the degree of workability. As the size increases, the strength can be increased. Based on these mechanisms, the present inventors have found that high strength can be obtained by controlling the shape and size of the second phase.
The above 1) can be achieved by optimizing the aging treatment for precipitating Ag and the first additive element. When the aging time is long (at about 400-600 ° C., 10 hours or more, more preferably about 15 hours), not only the first additive element but also Ag precipitates simultaneously. As a result, the characteristics of both the multiphase alloy and the precipitation-type alloy can be obtained by a single heat treatment, and Ag precipitates finely together with the precipitation of additive elements other than Ag.

上記2)については,Cu母相に固溶した第1添加元素が析出することによりCu母相が強化され、第二相であるAg相が延伸し易くなる。 上記3)については、加工度が大きいほど、第二相が微細になって異相界面の面積が増加し、強度が向上する。本発明においては、箔にするために板厚を薄くする必要があり、加工度が大きくなるので、この効果が極めて大きい。また,Ag相の厚さを制御して高強度を得るため、最終加工度は大きければ大きいほど好ましい(例えば、95%を超える加工度)。   As for 2), the first additive element dissolved in the Cu matrix phase is precipitated, whereby the Cu matrix phase is strengthened, and the Ag phase as the second phase is easily stretched. As for the above 3), the greater the degree of processing, the finer the second phase becomes, the area of the heterophase interface increases, and the strength improves. In the present invention, it is necessary to reduce the plate thickness in order to obtain a foil, and the degree of processing increases, so this effect is extremely large. In addition, in order to obtain high strength by controlling the thickness of the Ag phase, it is preferable that the final degree of processing is larger (for example, the degree of processing exceeding 95%).

以上の1)〜3)のことから、箔の厚み方向から見た時、Ag相の厚さが1μm以下であり,かつ隣接するAg相の距離が1μm以下である層状組織を有する。本発明においては、箔にするために加工度が大きくなるため、従来の合金に比べて第二相が微細になり、高い強度が得られる。
このような組織を有すると、繊維状又はリボン状のAg相によって、0.2%耐力が700MPa以上の高強度合金が得られる。さらに、この合金において加工度を99.5%以上とすると、箔の厚み方向から見た時のAg相の厚さは100nm程度となり、0.2%耐力が1GPaを越える高強度が得られる。
なお、高強度が得られる点で、上記したAg相の形態は「繊維状」でも「リボン状」でもよいが、Ag相の形態がリボン状であると、Ag相が剪断されにくく耐熱性が向上すると共に、繊維状の相よりも曲げ加工性が向上する。
From the above 1) to 3), when viewed from the thickness direction of the foil, it has a layered structure in which the thickness of the Ag phase is 1 μm or less and the distance between adjacent Ag phases is 1 μm or less. In the present invention, since the degree of processing is increased in order to form a foil, the second phase becomes finer and higher strength can be obtained as compared with conventional alloys.
With such a structure, a high-strength alloy having a 0.2% proof stress of 700 MPa or more is obtained by the fibrous or ribbon-like Ag phase. Furthermore, when the workability is 99.5% or more in this alloy, the thickness of the Ag phase when viewed from the thickness direction of the foil is about 100 nm, and a high strength with a 0.2% proof stress exceeding 1 GPa is obtained.
The Ag phase may be “fibrous” or “ribbon” in terms of obtaining high strength, but if the Ag phase is ribbon, the Ag phase is less likely to be sheared and has heat resistance. While improving, bending workability improves rather than a fibrous phase.

ここで、繊維状とは、Ag相が圧延方向に延伸されるが、圧延直角方向(圧延材の長手方向に圧延が進むとして、圧延材の幅方向をいう)には殆ど延伸されずに紐状になっているものをいう。リボン状とは、Ag相が圧延方向に延伸されると共に、圧延直角方向にも延伸され、舌片状の形態を示すものをいう。リボン状のAg相を含むと、上記圧延直角方向に材料を曲げた際の曲げ加工性が向上する。
Ag相が圧延直角方向にも延伸されてリボン状になっている形態としては、例えば、圧延直角方向から組織観察を行った時、個々のAg相の(圧延直角方向の長さ/圧延材の厚み方向の長さ)で表されるアスペクト比が10以上であるものが挙げられる。
Here, the fibrous form means that the Ag phase is stretched in the rolling direction, but is hardly stretched in the direction perpendicular to the rolling direction (assuming that rolling proceeds in the longitudinal direction of the rolled material). The one that is in the shape. The ribbon shape means that the Ag phase is stretched in the rolling direction and is also stretched in the direction perpendicular to the rolling direction to show a tongue-like shape. When the ribbon-shaped Ag phase is included, bending workability when the material is bent in the direction perpendicular to the rolling direction is improved.
As a form in which the Ag phase is stretched also in the direction perpendicular to the rolling to form a ribbon, for example, when the structure is observed from the direction perpendicular to the rolling, the length of each Ag phase (length in the direction perpendicular to the rolling / The aspect ratio represented by (the length in the thickness direction) is 10 or more.

[第1添加元素]
本発明においては、質量率でCr,Fe及びFe−Pの群から選ばれる1種又は2種以上の第1添加元素を合計で0.1%以上3%未満含有し、かつ第1添加元素を主成分とする析出物が少なくともCu母相に析出していることが必要である。但し、Pは単独では析出物とならないため、必ずFeとPを併用する必要がある。
第1添加元素の含有量の合計が0.1%未満であると、これらの元素がCu母相に析出することによる析出硬化の作用が少なくなる。一方、含有量の合計が3%以上であると、これらが粗大な晶出物として析出し、箔の屈曲性等の加工性が劣化すると共にピンホール等の欠陥が生じ、導電率も著しく低下する。
合金中の第1添加元素の含有量は、オージェ電子分光分析を用いて測定することができる。但し、箔は厚みが薄いため,箔の表面方向から分析することが好ましい。
[First additive element]
In the present invention, the first additive element contains a total of 0.1% or more and less than 3% of one or more first additive elements selected from the group consisting of Cr, Fe, and Fe-P by mass ratio. It is necessary that a precipitate containing as a main component is precipitated at least in the Cu matrix. However, since P alone does not become a precipitate, Fe and P must be used in combination.
When the total content of the first additive elements is less than 0.1%, the effect of precipitation hardening due to precipitation of these elements in the Cu matrix is reduced. On the other hand, if the total content is 3% or more, these precipitate as coarse crystallized products, the workability such as the bendability of the foil deteriorates, and defects such as pinholes occur, and the conductivity is also significantly reduced. To do.
The content of the first additive element in the alloy can be measured using Auger electron spectroscopy. However, since the foil is thin, it is preferable to analyze from the surface direction of the foil.

[析出物]
本発明においては、少なくともCu母相中に、第1添加元素を主成分とする析出物が析出している。通常、この析出物はCu母相に50%以上析出し、残りがAg相中に析出する。又、Crは単独で析出するが、FeとPは一定の組成比でFe−P系の金属間化合物として析出し、Pと金属間化合物を析出した残りのFeは単独で析出する。
上記析出物の粒径が20〜100nmであることが好ましい。上記析出物の粒径が20nm未満であると、合金を析出硬化する作用が少なくなると共に、析出物が微細に過ぎて合金中に固溶し、導電率の低下を招く。析出物の粒径が100nmを超えると、析出物が粗大になるため、箔にした際にピンホール等の欠陥になるばかりでなく、強度の低下を招き、箔を曲げ加工した際に割れの起点となり易い。
[介在物]
好ましくは、銅合金中に存在する長径1μm以上の介在物の個数が50個/mm2以下であり、より好ましくは、介在物の個数が30個/mm2以下である。介在物の長径と個数をこのように規定した理由は、FPC回路のファインピッチ化に伴い銅合金箔の板厚が10μm以下となった場合、介在物の長径が1μmを超えると銅合金箔の製造時にピンホールが発生しやすくなるからである。又、銅合金箔の板厚が10μm以下となった場合、上記介在物が銅合金中に50個/mm2を超えて存在するとピンホールが顕著になるからである。
なお,介在物とは,溶解時の炉材や雰囲気の影響を受けて生成する粗大な粒子であり,一般的に材料の欠陥を招く。介在物の組成は,主に炉材等の溶解設備に起因する酸化物や窒化物,珪化物等であることが多いが,溶解する合金の組成によっては,添加元素に起因することもある。後者の例として,Cu-Cr-Zr合金の場合、Zrが活性な金属のため,Zr起因の介在物が観察される。
[Precipitate]
In the present invention, a precipitate mainly composed of the first additive element is precipitated at least in the Cu matrix. Usually, this precipitate precipitates 50% or more in the Cu matrix, and the rest precipitates in the Ag phase. Further, Cr precipitates alone, but Fe and P precipitate as Fe-P intermetallic compounds at a constant composition ratio, and the remaining Fe depositing P and intermetallic compounds precipitates alone.
The particle size of the precipitate is preferably 20 to 100 nm. When the particle size of the precipitate is less than 20 nm, the effect of precipitation hardening of the alloy is reduced, and the precipitate is too fine to be dissolved in the alloy, resulting in a decrease in conductivity. When the particle size of the precipitate exceeds 100 nm, the precipitate becomes coarse, so not only does it become a defect such as a pinhole when it is made into a foil, but also causes a decrease in strength, and cracking occurs when the foil is bent. Easy to start.
[Inclusion]
Preferably, the number of inclusions having a major axis of 1 μm or more present in the copper alloy is 50 pieces / mm 2 or less, and more preferably, the number of inclusions is 30 pieces / mm 2 or less. The reason for defining the major axis and number of inclusions in this way is that when the thickness of the copper alloy foil becomes 10 μm or less with the fine pitch of the FPC circuit, if the major axis of the inclusion exceeds 1 μm, the copper alloy foil This is because pinholes are likely to occur during manufacturing. Also, when the thickness of the copper alloy foil is 10 μm or less, pinholes become prominent if the inclusions exceed 50 / mm 2 in the copper alloy.
Inclusions are coarse particles that are generated under the influence of furnace materials and atmosphere during melting, and generally lead to material defects. The composition of inclusions is mainly oxides, nitrides, silicides, and the like mainly resulting from melting equipment such as furnace materials, but depending on the composition of the alloy to be melted, it may be attributed to additional elements. As an example of the latter, in the case of a Cu—Cr—Zr alloy, inclusions due to Zr are observed because Zr is an active metal.

介在物を上記した長径と個数に制御する方法としては,溶解雰囲気を制御したり,溶解時に使用する炉材を考慮することが挙げられる。但し、この方法による場合、溶解時の炉材や雰囲気の影響を低減することはできるが、合金組成に起因する介在物の生成を抑制することが困難である。そこで,本発明においては、合金組成に起因する介在物の生成を抑制するため、合金中の添加元素(第1〜第3添加元素)の組成及び濃度を規定している。
なお、本発明において、合金中の介在物の長径と個数は、以下に述べる方法で算出することができるが、画像解析上、介在物は上記析出物と区別できないため,1μm以上の粒子をすべて介在物とみなしてカウントする。この場合,粗大な析出物も介在物に含まれることになる。但し,粗大な析出物も介在物と同様の欠陥を招く粒子であるため,両者を区別せずにカウントしても問題はなく、粗大な粒子は少ないほど好ましい。
As a method of controlling the inclusions to the above-mentioned major axis and number, it is possible to control the melting atmosphere or consider the furnace material used during melting. However, when this method is used, it is possible to reduce the influence of the furnace material and atmosphere during melting, but it is difficult to suppress the formation of inclusions due to the alloy composition. Therefore, in the present invention, in order to suppress the formation of inclusions resulting from the alloy composition, the composition and concentration of additive elements (first to third additive elements) in the alloy are defined.
In the present invention, the major axis and the number of inclusions in the alloy can be calculated by the method described below. However, in the image analysis, the inclusions cannot be distinguished from the above precipitates, so all the particles of 1 μm or more are contained. Count as an inclusion. In this case, coarse precipitates are also included in the inclusions. However, since coarse precipitates are particles that cause defects similar to inclusions, there is no problem even if they are counted without distinction, and the smaller the coarse particles, the better.

なお、析出物や介在物の粒径は、例えば最終冷間圧延前の合金条を圧延方向に平行に切断し、厚み方向の断面の析出物を走査型電子顕微鏡や透過型電子顕微鏡により10視野程度観察して求めることができる。析出物の大きさが5〜50nmの場合は50万倍〜70万倍の倍率で、100〜2000nmの場合は5〜10万倍で撮影を行うとよい。そして、撮影した写真の画像を画像解析装置(例えば、株式会社ニレコ製、商品名ルーゼックス)を用いて、大きさ5nm以上の個々の析出物すべてについて、長径a、短径b,及び面積を測定し、それらの平均値から析出物や介在物の粒径を計算することができる。   The grain size of the precipitates and inclusions is, for example, by cutting the alloy strip before the final cold rolling in parallel with the rolling direction, and viewing the precipitates in the cross section in the thickness direction with a scanning electron microscope or a transmission electron microscope. It can be obtained by observing the degree. When the size of the precipitate is 5 to 50 nm, the magnification is 500,000 to 700,000 times, and when it is 100 to 2000 nm, the image is taken at 5 to 100,000 times. Then, using the image analysis apparatus (for example, Nireco Co., Ltd., trade name Luzex), the major axis a, the minor axis b, and the area are measured for all the individual precipitates having a size of 5 nm or more. The particle size of the precipitates and inclusions can be calculated from the average value thereof.

析出物の粒径を上記範囲に管理する方法としては、時効熱処理条件の調整が挙げられる。時効熱処理の温度は300〜600℃であることが好ましい。時効処理温度が300℃よりも低いと、析出物の粒径が微細(20nm未満)になるか、又は析出しないことがある。一方、時効処理温度が600℃を超えると、析出物の粒径が100nmを超えやすい。
ただし,時効前の加工度を大きくすると粗大な析出物になりやすく,また最終加工度が小さいと高強度が得られない。本発明においては,析出物が粗大にならないことが重要であり,そのため、時効前の加工度は30−50%程度とするのが好ましい。また,時効時間は1〜100時間程度とすることが好ましい。時効時間が1時間未満であると、析出物が析出し難い。また時効時間が100時間を越えると,Cu母相中に蓄積された転位が移動し、回復が生じて強度の低下を招く傾向にある。より好ましくは、時効時間は10〜100時間程度である。
As a method for controlling the particle size of the precipitate within the above range, adjustment of aging heat treatment conditions can be mentioned. The temperature of the aging heat treatment is preferably 300 to 600 ° C. When the aging treatment temperature is lower than 300 ° C., the particle size of the precipitate may become fine (less than 20 nm) or may not precipitate. On the other hand, when the aging temperature exceeds 600 ° C., the particle size of the precipitate tends to exceed 100 nm.
However, if the degree of work before aging is increased, coarse precipitates are likely to be formed, and if the final degree of work is small, high strength cannot be obtained. In the present invention, it is important that precipitates do not become coarse, and therefore, the degree of processing before aging is preferably about 30-50%. The aging time is preferably about 1 to 100 hours. If the aging time is less than 1 hour, precipitates are difficult to deposit. On the other hand, when the aging time exceeds 100 hours, the dislocations accumulated in the Cu matrix move and tend to recover, leading to a decrease in strength. More preferably, the aging time is about 10 to 100 hours.

[第2添加元素]
本発明において、質量率で、さらにMg,Snの群から選ばれる1種以上の第2添加元素を総量で0.01%以上0.1%以下含有してもよい。第2添加元素はCu母相及びAg相中に固溶し、固溶強化によって合金を強化する。但し、Snを含有すると、合金の導電率が低下し、Mgを含有すると粗大な析出物(Mg酸化物)が析出する傾向にある。従って、合金箔に要求される強度に応じて、SnやMgを添加してもよいし、添加しなくともよい。
第2添加元素の含有量が総量で0.01%未満であると、固溶強化の効果が少なく、0.1%を超えると導電率の低下が顕著となることがある。
[第3添加元素]
本発明において、質量率で、さらにGd,Y,Yb,Nd,In,Pd,Teの群から選ばれる1種以上の第3添加元素を総量で0.01%以上0.1%以下含有してもよい。第3添加元素はCu母相及びAg相中に固溶し、耐熱性を向上させる。第3添加元素の含有量の総量が0.01%未満であると、添加元素がAg相に充分に固溶せず、耐熱性の向上効果が少なくなる。一方、総量が0.1%を超えると合金の導電率を著しく低下させる傾向にある。
ここで、第3添加元素はAg相に50質量%以上分配されることが好ましい。Ag相への添加元素の分配量が50%未満の場合、Ag相の純度が高くなるため、耐熱性の向上効果が少なくなると共に、Cu母相への添加元素の分配量が大きくなるため、導電率が低下する傾向にある。
[Second additive element]
In this invention, you may contain 0.01% or more and 0.1% or less of the 1st or more 2nd additional element chosen from the group of Mg and Sn further by mass ratio. The second additive element dissolves in the Cu matrix and Ag phase, and strengthens the alloy by solid solution strengthening. However, when Sn is contained, the electrical conductivity of the alloy is lowered, and when Mg is contained, coarse precipitates (Mg oxides) tend to precipitate. Therefore, Sn or Mg may or may not be added depending on the strength required for the alloy foil.
If the content of the second additive element is less than 0.01% in total, the effect of solid solution strengthening is small, and if it exceeds 0.1%, the decrease in conductivity may be significant.
[Third additive element]
In the present invention, the composition further contains one or more third additive elements selected from the group of Gd, Y, Yb, Nd, In, Pd, and Te in a total amount of 0.01% or more and 0.1% or less. May be. The third additive element is dissolved in the Cu matrix and Ag phase to improve heat resistance. When the total content of the third additive element is less than 0.01%, the additive element is not sufficiently dissolved in the Ag phase, and the effect of improving heat resistance is reduced. On the other hand, if the total amount exceeds 0.1%, the conductivity of the alloy tends to be remarkably lowered.
Here, it is preferable that 50 mass% or more of 3rd additive elements are distributed to Ag phase. When the distribution amount of the additive element to the Ag phase is less than 50%, the purity of the Ag phase is high, so the effect of improving the heat resistance is reduced, and the distribution amount of the additive element to the Cu matrix is increased. The conductivity tends to decrease.

なお、第1〜第3添加元素の大部分はCu母相に分配され、Ag相にはわずかに固溶すると考えられる。複相合金の耐熱性を向上させるためには,延伸したAg相が熱によって球状化(pinching-off)するのを抑制することが重要である。本発明においては、第1〜第3添加元素による微細な析出物がCu母相に均一分散することで,延伸したAg相の球状化を抑制することができる。均一に分散した析出物は,転位の移動を抑制する効果(pinning)を有し、Ag相とCu母相の界面において界面のpinningの効果があると考えられる。つまり、各添加元素を一定量以上加えると、材料を冷間加工する途中での熱処理や、冷間加工後の熱処理において、添加元素が単体又は化合物の形態で析出するため、析出強化により強度が上昇するとともに再結晶温度も上昇する。
また、第1〜第3添加元素の一部はAg相に析出し、Ag相の再結晶温度を高くすることでAg相を強化するため、これによっても耐熱性が向上する。
In addition, it is thought that most of the first to third additive elements are distributed to the Cu matrix and slightly dissolved in the Ag phase. In order to improve the heat resistance of the multiphase alloy, it is important to prevent the stretched Ag phase from being pinched-off by heat. In the present invention, spheroidization of the stretched Ag phase can be suppressed by uniformly dispersing fine precipitates by the first to third additive elements in the Cu matrix. The uniformly dispersed precipitate has an effect of suppressing dislocation migration (pinning), and is considered to have an interface pinning effect at the interface between the Ag phase and the Cu matrix. In other words, when a certain amount or more of each additive element is added, the additive element precipitates in the form of a simple substance or a compound in the heat treatment during the cold working of the material and in the heat treatment after the cold working. As the temperature rises, the recrystallization temperature also rises.
In addition, part of the first to third additive elements precipitates in the Ag phase, and the Ag phase is strengthened by increasing the recrystallization temperature of the Ag phase. This also improves the heat resistance.

なお、各添加元素がAg相に分配される割合は、例えば以下のように求めることができる。まず、インゴットの断面を機械研磨し、EDS(エネルギー分散型X線分析)若しくはWDS(波長分散型X線分析)を搭載したSEM(走査型電子顕微鏡)、又はFE−SEM(電解放出型走査電子顕微鏡)を用い、晶出物及び母相のX線分析を行う。これによりCu母相及びAg相にそれぞれ含有される添加元素の濃度分析を行う。ここで、予め、添元素を含まない標準試料のピーク値を基準として、各相の濃度を求める。精度の高い分析を行うためには、EDSよりWDSの方が好ましく、またFE−SEMのように電解放出型の電子線源を用いる方が好ましい。ただし、正確な定量分析を行う場合は、湿式分析が望ましい。
なお、実際には、所定の視野中のインゴットについて、マトリクス中の添加元素濃度とAg相中の添加元素濃度の比を求めることができる。
In addition, the ratio by which each additive element is distributed to Ag phase can be calculated | required as follows, for example. First, the cross section of the ingot is mechanically polished, SDS (scanning electron microscope) equipped with EDS (energy dispersive X-ray analysis) or WDS (wavelength dispersive X-ray analysis), or FE-SEM (electrolytic emission scanning electron) Using a microscope), X-ray analysis of the crystallized product and the mother phase is performed. Thereby, the concentration analysis of the additive element contained in each of the Cu matrix and the Ag phase is performed. Here, the concentration of each phase is obtained in advance with reference to the peak value of a standard sample not containing an additive element. In order to perform highly accurate analysis, WDS is preferable to EDS, and it is more preferable to use a field emission electron beam source such as FE-SEM. However, wet analysis is desirable for accurate quantitative analysis.
Actually, the ratio of the additive element concentration in the matrix and the additive element concentration in the Ag phase can be obtained for an ingot in a predetermined field of view.

[不可避的不純物]
上記銅合金中の不可避的不純物の含有量は、JIS H2123に規格する無酸素型銅C1011ほど清浄である必要はない。例えば、炉材や原料などから通常混入する範囲の成分を含有してもよい。なお、銅合金中に、上記したようにGd,Y,Yb,Nd,In,Pd,Teの群から選ばれる1種の元素を総量で0.01%以下含有してもよく、この範囲の含有量であれば、曲げ性、導電性、強度を損なうことも少ない。特に、銅合金中にY,Yb,又はNdを上記範囲で含有すると、耐熱性が上昇する。
[Inevitable impurities]
The content of inevitable impurities in the copper alloy need not be as clean as oxygen-free copper C1011 standardized in JIS H2123. For example, you may contain the component of the range normally mixed from a furnace material, a raw material, etc. The copper alloy may contain a total of 0.01% or less of one element selected from the group of Gd, Y, Yb, Nd, In, Pd, and Te as described above. If it is contained, the bendability, conductivity, and strength are hardly impaired. In particular, when Y, Yb, or Nd is contained in the above range in the copper alloy, the heat resistance is increased.

<銅合金箔の製造方法>
本発明の高強度高導電性耐熱銅合金箔は、上記組成の銅合金を溶解鋳造した後、冷間加工と該冷間加工後の時効熱処理とを少なくとも1回以上行うことにより好適に製造方法できる。
時効熱処理条件は、上記した析出物の粒径を調整する際の条件範囲とすることが好ましい。熱処理を行うと、Ag相に固溶した添加元素がAg相中に析出してAg相をさらに強化し、耐熱性をさらに向上させることができる。また、上記温度範囲で熱処理を行うと導電率が約50%以上の値まで回復する。つまり、後述する冷間加工の加工度が大きくなるほど、導電率の低下が大きくなるが、熱処理条件を上記範囲とすることで、導電率を回復することができる。
熱処理温度が300℃未満であると、添加元素によるAg相の析出強化が不充分となり、又、導電率が回復しない傾向にある。又、熱処理温度が600℃を超えると導電率は大幅に回復するが、材料が軟化し耐熱性が低下する傾向にある。
<Method for producing copper alloy foil>
The high-strength, high-conductivity heat-resistant copper alloy foil of the present invention is preferably produced by melt-casting a copper alloy having the above composition and then performing cold working and aging heat treatment after the cold working at least once. it can.
It is preferable that the aging heat treatment condition is within a condition range when adjusting the particle size of the precipitate. When the heat treatment is performed, the additive element dissolved in the Ag phase is precipitated in the Ag phase to further strengthen the Ag phase and further improve the heat resistance. Further, when heat treatment is performed in the above temperature range, the electrical conductivity is recovered to a value of about 50% or more. That is, as the degree of cold working, which will be described later, increases, the decrease in conductivity increases, but the conductivity can be recovered by setting the heat treatment conditions in the above range.
When the heat treatment temperature is less than 300 ° C., precipitation strengthening of the Ag phase by the additive element becomes insufficient, and the conductivity tends not to recover. Further, when the heat treatment temperature exceeds 600 ° C., the electrical conductivity is greatly recovered, but the material tends to soften and the heat resistance tends to decrease.

前記冷間加工の総加工度を90%以上とする。なお、本発明において,既に述べたように、第1添加元素と第二相(Ag相)の析出物を時効熱処理で同時に析出させた場合、加工度が低くても強度が大きく向上する。例えば、本発明の場合、特許文献2記載の合金の製造に要する加工度(95%)より小さい加工度で同程度の強度を得ることもでき、この場合は工業上のメリット(加工時間の短縮)が得られる。又,加工度が大きいほど強度が高くなるので、特許文献2と同等の加工度(95%)とした場合、Ag相が微細となって強度がより一層向上する。
本発明においては、複相合金の特性から、加工度が増大するほど強度が上昇する傾向にあり、総加工度が90%以上であれば、約700MPa以上の強度を確保することができる。なお、総加工度とは、面削後から冷間圧延終了までの加工度である。
The total degree of cold working is 90% or more. In the present invention, as already described, when the precipitates of the first additive element and the second phase (Ag phase) are simultaneously deposited by aging heat treatment, the strength is greatly improved even if the degree of work is low. For example, in the case of the present invention, the same degree of strength can be obtained with a workability smaller than the workability (95%) required for manufacturing the alloy described in Patent Document 2, and in this case, industrial merit (reduction of work time) ) Is obtained. Further, since the strength increases as the degree of processing increases, when the degree of processing is equal to that of Patent Document 2 (95%), the Ag phase becomes finer and the strength is further improved.
In the present invention, due to the characteristics of the multiphase alloy, the strength tends to increase as the workability increases. If the total workability is 90% or more, a strength of about 700 MPa or more can be secured. The total workability is the workability from chamfering to the end of cold rolling.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。   In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.試料の製造
各実施例及び比較例について、電気銅を真空溶解し、表1、2に示す所定の組成の元素をそれぞれ添加してインゴットを鋳造した。インゴットを均質化焼鈍(800℃,3時間)後、熱間圧延を施し、さらに面削した。これを以下の総加工度で冷間圧延した後、時効熱処理し、再度冷間圧延を行って板厚0.020mm(20μm)の試験片とした。
なお、各実施例の総加工度:99.7%、時効熱処理温度:450℃×15hとした。
1. Manufacture of a sample About each Example and the comparative example, electrolytic copper was melted | dissolved in vacuum and the element of the predetermined composition shown in Table 1, 2 was added, respectively, and the ingot was cast. The ingot was homogenized and annealed (800 ° C, 3 hours), then hot-rolled and further faced. This was cold-rolled at the following total working degree, then subjected to aging heat treatment, and then cold-rolled again to obtain a test piece having a thickness of 0.020 mm (20 μm).
In addition, the total processing degree of each Example was 99.7%, and the aging heat treatment temperature was 450 ° C. × 15 h.

2.試料の評価
(1)Ag相の厚み、並びに析出物及び介在物の粒径
各実施例及び比較例につき、インゴットの断面を機械研磨し、光学顕微鏡により晶出物観察するか、又はSEM(走査型電子顕微鏡)若しくはFE−SEM(電解放出型走査電子顕微鏡)を用いて晶出物のBSE像を撮影した。これにより二相合金の確認を行った。
又、上記インゴットの断面を機械研磨し、EDS(エネルギー分散型X線分析)、WDS(波長分散型X線分析)を搭載したSEM(走査型電子顕微鏡)、又はFE−SEM(電解放出型走査電子顕微鏡)を用いて上記晶出物の元素分析を行った。晶出物の点分析を行うか、又は母相と晶出物の元素マップを得た。これにより、Ag相を確認した。
確認したAg相のうち、(圧延直角方向の長さ/圧延材の厚み方向の長さ)で表されるアスペクト比が2以上のものをFE−SEM写真から寸法測定して探し出し、Ag相の厚み(厚み方向の長さ)をFE−SEM写真(10点のSEM写真)から求め、平均した。
2. Sample Evaluation (1) Ag Phase Thickness and Particle Size of Precipitates and Inclusions For each example and comparative example, the ingot cross section was mechanically polished and crystallized material was observed with an optical microscope, or SEM (scanning) BSE image of the crystallized product was photographed using a scanning electron microscope) or FE-SEM (electrolytic emission scanning electron microscope). This confirmed the two-phase alloy.
Also, the cross section of the ingot is mechanically polished, SDS (scanning electron microscope) equipped with EDS (energy dispersive X-ray analysis), WDS (wavelength dispersive X-ray analysis), or FE-SEM (electrolytic emission scanning). The crystallized product was subjected to elemental analysis using an electron microscope. A point analysis of the crystallized product was performed, or an elemental map of the parent phase and the crystallized product was obtained. This confirmed the Ag phase.
Among the confirmed Ag phases, those having an aspect ratio of 2 or more represented by (length in the direction perpendicular to the rolling / length in the thickness direction of the rolled material) are searched for by measuring the dimensions from the FE-SEM photograph, The thickness (length in the thickness direction) was determined from FE-SEM photographs (10 SEM photographs) and averaged.

又、(圧延直角方向の長さ/圧延材の厚み方向の長さ)で表されるアスペクト比が2未満の晶出物を本発明の析出物及び介在物とみなし、その平均粒径を以下の方法で計算した。まず、最終冷間圧延前の合金条を圧延方向に平行に切断し、厚み方向の断面の析出物及び介在物を走査型電子顕微鏡により10視野撮影した。析出物及び介在物の大きさが5〜50nmの場合は50万倍〜70万倍の倍率で、100〜2000nmの場合は5〜10万倍で撮影を行った。そして、撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用いて、大きさ5nm以上の個々の析出物及び介在物すべてについて、長径a、短径b,及び面積を測定し、それらの平均値から析出物及び介在物の粒径を計算した。
なお、Cr,Fe、Fe−P等を主成分とする析出物はAg相に比べて変形し難く、球状(アスペクト比が2未満)とみなせる。
なお、析出物の粒径が1μm以上である場合、箔中に存在する酸化物系粒子等(粒径1μmを超える)とが画像解析で区別できないため、測定された析出物の粒径の値が大きくなる。
Further, a crystallized product having an aspect ratio of less than 2 represented by (length in the direction perpendicular to the rolling / length in the thickness direction of the rolled material) is regarded as the precipitate and inclusions of the present invention, and the average particle size is as follows: It was calculated by the method. First, the alloy strip before the final cold rolling was cut in parallel to the rolling direction, and the precipitates and inclusions in the cross section in the thickness direction were photographed with 10 fields of view with a scanning electron microscope. When the size of the precipitates and inclusions was 5 to 50 nm, the image was taken at a magnification of 500,000 to 700,000 times, and when it was 100 to 2000 nm, the images were taken at 5 to 100,000 times. Then, using the image analysis apparatus (product name: Luzex, manufactured by Nireco Co., Ltd.), the major axis a, the minor axis b, and the area of all the precipitates and inclusions having a size of 5 nm or more are obtained. Measured, and the particle size of the precipitates and inclusions was calculated from the average value.
Note that precipitates mainly composed of Cr, Fe, Fe-P, and the like are less likely to be deformed than the Ag phase and can be regarded as spherical (the aspect ratio is less than 2).
In addition, when the particle size of the precipitate is 1 μm or more, it is impossible to distinguish from oxide-based particles and the like existing in the foil (particle size exceeding 1 μm) by image analysis. Becomes larger.

(2)引張強さの測定
JIS Z2241に従い、各実施例及び比較例の試料の圧延平行方向について引張試験を行い、引張強さ(0.2%耐力(YS))を測定した。試料は上記JISに従って作製した。(圧延上がり後の)引張強さが700MPa以上であれば引張強さが優れていると判断することができる。
(3)導電率(EC)の測定
四端子法にて、試料の導電率を求めた。導電率が45%IACS以上であれば導電率が優れていると判断することができる。
なお、第1添加元素がCrの場合,圧延後の導電率が高い傾向にあり,60%IACS以上となった。一方,第1添加元素がFe-P,又はCrとFe-Pを同時添加した系においては,キュア後の導電率が大きく向上するため,圧延上りの導電率が45%IACS以上であれば良好である。後者の場合、キュア後に実際の製品として用いればよいからである。
(4)熱処理後の引張強さ及び導電率
CCLを製造する際に銅箔に樹脂を塗布して焼付ける熱処理を模すため、各試料を320℃で2時間熱処理した後の引張強さ及び導電率を上記と同様にして測定した。
(2) Measurement of tensile strength According to JIS Z2241, the tensile test was done about the rolling parallel direction of the sample of each Example and the comparative example, and tensile strength (0.2% yield strength (YS)) was measured. The sample was produced according to the above JIS. If the tensile strength (after rolling up) is 700 MPa or more, it can be determined that the tensile strength is excellent.
(3) Measurement of conductivity (EC) The conductivity of the sample was determined by the four-terminal method. If the electrical conductivity is 45% IACS or higher, it can be determined that the electrical conductivity is excellent.
When the first additive element is Cr, the conductivity after rolling tends to be high, which is 60% IACS or more. On the other hand, in the system where the first additive element is Fe-P or Cr and Fe-P is added at the same time, the conductivity after curing is greatly improved, so that the conductivity after rolling is 45% IACS or higher. It is. In the latter case, it may be used as an actual product after curing.
(4) Tensile strength and electrical conductivity after heat treatment In order to simulate the heat treatment of applying and baking a resin on a copper foil when producing CCL, the tensile strength after heat-treating each sample at 320 ° C for 2 hours and The conductivity was measured as described above.

得られた結果を表1、2に示す。なお、各表中の「−」は、成分を添加しなかったことを表す。   The obtained results are shown in Tables 1 and 2. In addition, "-" in each table | surface represents not having added the component.

Figure 0004859238
Figure 0004859238

Figure 0004859238
Figure 0004859238

表1から明らかなように、各実施例の場合、強度、導電性がいずれも優れ、性能上のバランスのよい銅合金箔を得ることができた。又、各実施例の場合、樹脂の焼付け処理を模した熱処理を行った後も、引張強さの低下は少なかった(YSが600MPa以上)。   As is clear from Table 1, in each example, a copper alloy foil having excellent strength and electrical conductivity and a good balance in performance could be obtained. In each of the examples, even after the heat treatment imitating the resin baking process, the decrease in tensile strength was small (YS was 600 MPa or more).

一方、添加元素を含まない比較例1、2の場合、熱処理後の引張強さ(焼鈍軟化特性)の低下が著しく(20%以上の低下)、耐熱性が著しく劣った。
Agの含有量が3%未満である比較例3の場合、二相合金が得られず、強度が大幅に低下した。又、比較例4〜5の場合、第1添加元素の含有量の総量が3%以上であり、析出物(Cr酸化物)が100nmを超えて粗大化し、導電率が低下した。
第1添加元素としてPのみを添加した比較例6の場合、析出物が析出せず、導電率が低下した。これはPが合金中に固溶したためと考えられる。
On the other hand, in the case of Comparative Examples 1 and 2 containing no additive element, the tensile strength (anneal softening property) after heat treatment was significantly decreased (20% or more decreased), and the heat resistance was extremely inferior.
In the case of Comparative Example 3 in which the Ag content was less than 3%, a two-phase alloy was not obtained, and the strength was greatly reduced. In Comparative Examples 4 to 5, the total content of the first additive element was 3% or more, and the precipitate (Cr oxide) was coarsened to exceed 100 nm, resulting in a decrease in conductivity.
In the case of Comparative Example 6 in which only P was added as the first additive element, no precipitate was deposited and the conductivity was lowered. This is presumably because P was dissolved in the alloy.

比較例7,8の場合、Fe-P系の粗大な析出物が生じた。この析出物は曲げ加工性に影響を与えるものである。なお、FeとPの化合物は,Pの添加が増加するに従って粗大になるため、各実施例においては,Pの添加量を0.01-0.1wt%に規定した結果、粗大析出物が生じなかった。
第1添加元素の含有量の総量が0.1%未満である比較例9,10の場合、圧延上り材と、320℃の熱処理後の材料との強度差が大きくなり、実際の使用安定性(焼鈍軟化特性)の点で不適となった。
第2添加元素であるMgの含有量が0.1%を超えた比較例11の場合、導電率が低下すると共に、100nmを超える粗大なMg酸化物が析出した。粗大な析出物があると、ピンホール等の欠陥が懸念される。
第2添加元素であるSnの含有量が0.1%を超えた比較例12の場合、導電率が低下した。
第2添加元素であるMg,Snの合計含有量が0.1%を超えた比較例13の場合、粗大なMg酸化物が析出し、さらに導電率が低下した。
In Comparative Examples 7 and 8, coarse Fe-P precipitates were formed. This precipitate affects bending workability. In addition, since the compound of Fe and P becomes coarse as the addition of P increases, in each Example, as a result of defining the addition amount of P to 0.01-0.1 wt%, no coarse precipitate was generated.
In the case of Comparative Examples 9 and 10 in which the total content of the first additive element is less than 0.1%, the strength difference between the rolled up material and the material after heat treatment at 320 ° C. becomes large, and the actual use stability is increased. Not suitable in terms of (anneal softening characteristics).
In the case of Comparative Example 11 in which the content of Mg as the second additive element exceeded 0.1%, the conductivity decreased and a coarse Mg oxide exceeding 100 nm precipitated. If there are coarse precipitates, there is a concern about defects such as pinholes.
In the case of Comparative Example 12 in which the content of Sn as the second additive element exceeded 0.1%, the electrical conductivity decreased.
In the case of Comparative Example 13 in which the total content of Mg and Sn as the second additive elements exceeded 0.1%, coarse Mg oxide was precipitated and the conductivity was further lowered.

第二相の厚さが1μmを超え、隣接する第二相の間隔も1μmを超えた比較例14、15、17の場合、強度が大幅に低下した。
隣接する第二相の間隔は1μm未満であったが第二相の厚さが1μmを超えた比較例16の場合も、同一のAg濃度を有する実施例15と比較して強度が大幅に低下した。
In Comparative Examples 14, 15, and 17 in which the thickness of the second phase exceeded 1 μm and the interval between adjacent second phases also exceeded 1 μm, the strength was greatly reduced.
In the case of Comparative Example 16 in which the interval between adjacent second phases was less than 1 μm but the thickness of the second phase exceeded 1 μm, the strength was significantly reduced as compared with Example 15 having the same Ag concentration. did.

Claims (3)

質量率で3%以上15%以下のAgを含む第二相とCu母相とからなる2相合金の圧延箔であって、質量率でCr,Fe及びFe−Pの群から選ばれる1種又は2種以上の第1添加元素を合計で0.1%以上3%未満含有し、かつ前記第1添加元素を主成分とする析出物が少なくともCu母相に析出し、残部がCu及び不可避的不純物からなり、箔の厚み方向から見た時、前記第二相の厚さが1μm以下であり,かつ隣接する第二相の間隔が1μm以下である層状組織を有し、前記析出物の粒径が20〜100nmである厚み20μm以下の高強度高導電性耐熱銅合金箔。 A rolled foil of a two-phase alloy composed of a second phase containing 3% to 15% Ag by mass and a Cu matrix, and one kind selected from the group of Cr, Fe and Fe-P by mass Alternatively, a precipitate containing at least 0.1% and less than 3% of the first additive element of two or more kinds and having the first additive element as a main component is precipitated at least in the Cu matrix, and the balance is Cu and inevitable manner consists impurities, when viewed from the thickness direction of the foil, the second phase is the thickness of the 1μm or less, and the spacing between adjacent second phases have a lamellar structure is 1μm or less, the precipitates A high-strength, high-conductivity heat-resistant copper alloy foil having a particle size of 20 to 100 nm and a thickness of 20 μm or less. 400-600℃程度で10時間以上時効処理して製造された請求項1に記載の高強度高導電性耐熱銅合金箔。 The high-strength, high-conductivity heat-resistant copper alloy foil according to claim 1, which is produced by aging treatment at about 400-600 ° C for 10 hours or more . 質量率で3%以上15%以下のAgを含む第二相とCu母相とからなる2相合金の圧延箔であって、質量率でCr,Fe及びFe−Pの群から選ばれる1種又は2種以上の第1添加元素を合計で0.1%以上3%未満含有し、かつ前記第1添加元素を主成分とする析出物が少なくともCu母相に析出し、残部がCu及び不可避的不純物からなり、箔の厚み方向から見た時、前記第二相の厚さが1μm以下であり,かつ隣接する第二相の間隔が1μm以下である層状組織を有し、前記析出物の粒径が20〜100nmである厚み20μm以下の高強度高導電性耐熱銅合金箔の製造方法であって、A rolled foil of a two-phase alloy composed of a second phase containing 3% to 15% Ag by mass and a Cu matrix, and one kind selected from the group of Cr, Fe and Fe-P by mass Alternatively, a precipitate containing at least 0.1% and less than 3% of the first additive element of two or more kinds and having the first additive element as a main component is precipitated at least in the Cu matrix, and the balance is Cu and inevitable Having a layered structure in which the thickness of the second phase is 1 μm or less and the interval between adjacent second phases is 1 μm or less when viewed from the thickness direction of the foil, A method for producing a high-strength, high-conductive, heat-resistant copper alloy foil having a particle size of 20 to 100 nm and a thickness of 20 μm or less,
400-600℃程度で10時間以上時効処理する高強度高導電性耐熱銅合金箔の製造方法。  A method for producing a high-strength, high-conductivity heat-resistant copper alloy foil that is aged at 400-600 ° C for 10 hours or longer.
JP2007091418A 2007-03-30 2007-03-30 High strength high conductivity heat resistant copper alloy foil Expired - Fee Related JP4859238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091418A JP4859238B2 (en) 2007-03-30 2007-03-30 High strength high conductivity heat resistant copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091418A JP4859238B2 (en) 2007-03-30 2007-03-30 High strength high conductivity heat resistant copper alloy foil

Publications (2)

Publication Number Publication Date
JP2008248325A JP2008248325A (en) 2008-10-16
JP4859238B2 true JP4859238B2 (en) 2012-01-25

Family

ID=39973616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091418A Expired - Fee Related JP4859238B2 (en) 2007-03-30 2007-03-30 High strength high conductivity heat resistant copper alloy foil

Country Status (1)

Country Link
JP (1) JP4859238B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348041B (en) 2011-07-29 2016-10-12 古河电气工业株式会社 Electrolyte used in cathode copper Alloy Foil, its preparation method, preparation, use secondary battery cathode collector body, secondary cell and the electrode thereof of this cathode copper Alloy Foil
KR20170061717A (en) * 2011-10-31 2017-06-05 후루카와 덴키 고교 가부시키가이샤 High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP5981165B2 (en) * 2011-12-27 2016-08-31 古河電気工業株式会社 Copper foil, negative electrode of secondary battery, secondary battery, and printed circuit board
KR101787513B1 (en) * 2013-01-29 2017-10-18 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, battery current collector comprising said electrolytic copper foil, electrode obtained using said current collector for secondary battery, and secondary battery obtained using said electrode
KR102445225B1 (en) * 2020-12-24 2022-09-21 한국재료연구원 Cu-Ag alloy with improved strength and conductivity and manufacturing method for the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714555B2 (en) * 1992-09-17 1998-02-16 科学技術庁金属材料技術研究所長 High strength and high conductivity copper alloy sheet material
JP3407054B2 (en) * 1993-03-25 2003-05-19 三菱マテリアル株式会社 Copper alloy with excellent heat resistance, strength and conductivity
JP4446479B2 (en) * 2005-01-31 2010-04-07 日鉱金属株式会社 Copper alloy for electronic equipment

Also Published As

Publication number Publication date
JP2008248325A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2007314847A (en) Copper alloy having high strength, high electroconductivity and superior bend formability, and manufacturing method therefor
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
WO2007138956A1 (en) Copper alloy having high strength, high electric conductivity and excellent bending workability
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
KR20110038143A (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
DE112011100481T5 (en) Soft copper alloy brazing material, soft copper alloy braided wire, soft copper alloy braided foil, soft copper alloy braided wire, and a cable using same, coaxial cable and mixed wire
JP6053959B2 (en) Copper alloy sheet, method for producing the same, and electric / electronic component comprising the copper alloy sheet
WO2011125153A1 (en) Cu-ni-si alloy for electronic material
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4859238B2 (en) High strength high conductivity heat resistant copper alloy foil
JP2006299287A (en) Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP2007113093A (en) High-strength, high-electric conductivity, and heat-resistant copper alloy, and producing method therefor
JP2009084593A (en) Cu-Cr-Si-BASED ALLOY FOIL
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
JP6190646B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
JP5952726B2 (en) Copper alloy
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP2011021225A (en) Copper alloy material for terminal/connector and method for producing the same
JP2008248275A (en) Precipitation type copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4859238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees