JP5045783B2 - Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment - Google Patents

Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment Download PDF

Info

Publication number
JP5045783B2
JP5045783B2 JP2010112266A JP2010112266A JP5045783B2 JP 5045783 B2 JP5045783 B2 JP 5045783B2 JP 2010112266 A JP2010112266 A JP 2010112266A JP 2010112266 A JP2010112266 A JP 2010112266A JP 5045783 B2 JP5045783 B2 JP 5045783B2
Authority
JP
Japan
Prior art keywords
copper alloy
atomic
electronic equipment
alloy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112266A
Other languages
Japanese (ja)
Other versions
JP2011241412A (en
JP2011241412A5 (en
Inventor
優樹 伊藤
一誠 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010112266A priority Critical patent/JP5045783B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP15193144.1A priority patent/EP3020836A3/en
Priority to SG2012078978A priority patent/SG185024A1/en
Priority to TW100116878A priority patent/TWI441931B/en
Priority to US13/695,666 priority patent/US10056165B2/en
Priority to EP15175001.5A priority patent/EP2952595B1/en
Priority to KR1020127025942A priority patent/KR101369693B1/en
Priority to MYPI2014002778A priority patent/MY189251A/en
Priority to PCT/JP2011/061036 priority patent/WO2011142450A1/en
Priority to EP11780706.5A priority patent/EP2570506B1/en
Priority to MYPI2012700829A priority patent/MY168183A/en
Priority to KR1020137031600A priority patent/KR101570919B1/en
Priority to EP15193147.4A priority patent/EP3009523B1/en
Priority to CN201180018491.7A priority patent/CN102822363B/en
Publication of JP2011241412A publication Critical patent/JP2011241412A/en
Publication of JP2011241412A5 publication Critical patent/JP2011241412A5/ja
Application granted granted Critical
Publication of JP5045783B2 publication Critical patent/JP5045783B2/en
Priority to US14/291,335 priority patent/US10032536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば端子、コネクタやリレー等の電子電気部品に適した電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材に関するものである。   The present invention relates to a copper alloy for electronic devices suitable for electronic and electrical parts such as terminals, connectors and relays, a method for producing a copper alloy for electronic devices, and a rolled copper alloy material for electronic devices.

従来、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用される端子、コネクタやリレー等の電子電気部品の小型化及び薄肉化が図られている。このため、電子電気部品を構成する材料として、ばね性、強度、導電率の優れた銅合金が要求されている。特に、非特許文献1に記載されているように、端子、コネクタやリレー等の電子電気部品として使用される銅合金としては、耐力が高く、かつ、ヤング率が低いものが望ましい。
そこで、ばね性、強度、導電率の優れた銅合金として、例えば特許文献1には、Beを含有したCu−Be合金が提供されている。このCu−Be合金は、母相中にCuBeを時効析出させることで導電率を低下させることなく強度を向上させた、析出硬化型の高強度合金である。
2. Description of the Related Art Conventionally, along with miniaturization of electronic devices and electrical devices, electronic electrical components such as terminals, connectors and relays used in these electronic devices and electrical devices have been miniaturized and thinned. For this reason, a copper alloy having excellent spring properties, strength, and conductivity is required as a material constituting the electronic / electrical component. In particular, as described in Non-Patent Document 1, it is desirable that the copper alloy used as an electronic component such as a terminal, a connector, or a relay has a high yield strength and a low Young's modulus.
Therefore, for example, Patent Document 1 provides a Cu—Be alloy containing Be as a copper alloy having excellent spring properties, strength, and electrical conductivity. This Cu—Be alloy is a precipitation hardening type high strength alloy in which strength is improved without decreasing the conductivity by aging precipitation of CuBe in the matrix phase.

しかしながら、このCu−Be合金は、高価な元素であるBeを含有していることから、原料コストが非常に高いものである。また、Cu−Be合金を製造する際には、毒性のあるBe酸化物が発生することになる。よって、製造工程において、Be酸化物が誤って外部に放出されないように、製造設備を特別な構成とし、厳しく管理する必要がある。このように、Cu−Be合金は、原料コスト及び製造コストがともに高く、非常に高価であるといった問題があった。また、前述のように、有害な元素であるBeを含有していることから、環境対策の面からも敬遠されていた。   However, since this Cu-Be alloy contains Be which is an expensive element, the raw material cost is very high. Moreover, when manufacturing a Cu-Be alloy, a toxic Be oxide is generated. Therefore, in the manufacturing process, it is necessary to make the manufacturing equipment specially configured and strictly control so that Be oxide is not accidentally released to the outside. As described above, the Cu—Be alloy has a problem that both the raw material cost and the manufacturing cost are high and very expensive. Further, as described above, since it contains Be, which is a harmful element, it has been avoided from the viewpoint of environmental measures.

Cu−Be合金を代替可能な材料として、例えば特許文献2には、Cu−Ni−Si系合金(いわゆるコルソン合金)が提供されている。このコルソン合金は、NiSi析出物を分散させる析出硬化型合金であり、比較的高い導電率と強度、応力緩和特性を有するものである。このため、自動車用端子や信号系小型端子用途として多用されており、近年、活発に開発が進んでいる。 As a material that can replace the Cu—Be alloy, for example, Patent Document 2 provides a Cu—Ni—Si alloy (so-called Corson alloy). This Corson alloy is a precipitation hardening type alloy in which Ni 2 Si precipitates are dispersed, and has relatively high electrical conductivity, strength, and stress relaxation characteristics. For this reason, it is widely used as a terminal for automobiles and signal system small terminals, and has been actively developed in recent years.

また、その他の合金として、非特許文献2に記載されているCu−Mg合金、や、特許文献3に記載されているCu−Mg−Zn−B合金等が開発されている。
これらのCu−Mg系合金では、図1に示すCu−Mg系状態図から分かるように、Mgの含有量が3.3原子%以上の場合、溶体化処理(500℃から900℃)と、析出処理を行うことで、CuとMgからなる金属間化合物を析出させることができる。すなわち、これらのCu−Mg系合金においても、上述のコルソン合金と同様に、析出硬化によって比較的高い導電率と強度を有することが可能となるのである。
As other alloys, a Cu—Mg alloy described in Non-Patent Document 2, a Cu—Mg—Zn—B alloy described in Patent Document 3, and the like have been developed.
In these Cu-Mg alloys, as can be seen from the Cu-Mg phase diagram shown in FIG. 1, when the Mg content is 3.3 atomic% or more, solution treatment (500 ° C. to 900 ° C.), By performing the precipitation treatment, an intermetallic compound composed of Cu and Mg can be precipitated. That is, these Cu—Mg alloys can also have relatively high electrical conductivity and strength by precipitation hardening, similar to the above-described Corson alloy.

特開平04−268033号公報Japanese Patent Laid-Open No. 04-268033 特開平11−036055号公報Japanese Patent Laid-Open No. 11-036055 特開平07−018354号公報Japanese Patent Laid-Open No. 07-018354

野村幸矢、「コネクタ用高性能銅合金条の技術動向と当社の開発戦略」、神戸製鋼技報Vol.54No.1(2004)p.2−8Yukiya Nomura, “Technical Trends of High Performance Copper Alloy Strips for Connectors and Our Development Strategy”, Kobe Steel Technical Report Vol. 54No. 1 (2004) p. 2-8 掘茂徳、他2名、「Cu−Mg合金における粒界型析出」、伸銅技術研究会誌Vol.19(1980)p.115−124M. Motokori and two others, “Grain boundary type precipitation in Cu—Mg alloys”, Vol. 19 (1980) p. 115-124

しかしながら、特許文献2に開示されたコルソン合金では、ヤング率が125−135GPaと比較的高い。ここで、オスタブがメスのばね接触部を押し上げて挿入される構造のコネクタにおいては、コネクタを構成する材料のヤング率が高いと、挿入時の接圧変動が激しいうえに、容易に弾性限界を超えて、塑性変形するおそれがあり好ましくない。   However, the Corson alloy disclosed in Patent Document 2 has a relatively high Young's modulus of 125-135 GPa. Here, in a connector with a structure in which a male tab pushes up a female spring contact portion and the Young's modulus of the material constituting the connector is high, the contact pressure fluctuation at the time of insertion is severe, and the elastic limit is easily set. This is not preferable because it may cause plastic deformation.

また、非特許文献2及び特許文献3に記載されたCu−Mg系合金では、コルソン合金と同様に金属間化合物を析出させていることから、ヤング率が高い傾向にあり、上述のように、コネクタとして好ましくないものであった。
さらに、母相中に多くの粗大な金属間化合物が分散されていることから、曲げ加工時にこれらの金属間化合物が起点となって割れ等が発生しやすいため、複雑な形状のコネクタを成形することができないといった問題があった。
In addition, in the Cu-Mg based alloy described in Non-Patent Document 2 and Patent Document 3, since the intermetallic compound is precipitated in the same manner as the Corson alloy, the Young's modulus tends to be high. It was not preferable as a connector.
In addition, since many coarse intermetallic compounds are dispersed in the matrix, these intermetallic compounds are the starting point during bending, and cracks are likely to occur. There was a problem that I couldn't.

この発明は、前述した事情に鑑みてなされたものであって、低ヤング率、高耐力、高導電性、優れた曲げ加工性を有し、端子、コネクタやリレー等の電子電気部品に適した電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, has a low Young's modulus, high proof stress, high conductivity, and excellent bending workability, and is suitable for electronic and electrical parts such as terminals, connectors, and relays. It aims at providing the copper alloy for electronic devices, the manufacturing method of the copper alloy for electronic devices, and the copper alloy rolling material for electronic devices.

この課題を解決するために、本発明者らは鋭意研究を行った結果、Cu−Mg合金を溶体化後に急冷することによって作製したCu−Mg過飽和固溶体の加工硬化型銅合金においては、低ヤング率、高耐力、高導電性、および、優れた曲げ加工性を有するとの知見を得た。   In order to solve this problem, the present inventors have conducted intensive research. As a result, in a work-hardening type copper alloy of a Cu—Mg supersaturated solid solution prepared by quenching a Cu—Mg alloy after forming a solution, a low Young It has been found that it has a high rate, high yield strength, high conductivity, and excellent bending workability.

本発明は、かかる知見に基いてなされたものであって、本発明の電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内とされており、熱間、冷間又は温間加工が施されたことを特徴としている。
This invention is made | formed based on this knowledge, Comprising: The copper alloy for electronic devices of this invention contains Mg in the range of 3.3 atomic% or more and 6.9 atomic% or less, and remainder is Cu and When it is a binary alloy of Cu and Mg consisting only of inevitable impurities, and the conductivity σ (% IACS) is Mg content A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
And is characterized by being hot, cold or warm .

また、本発明の電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされており、熱間、冷間又は温間加工が施されたことを特徴としている。
The copper alloy for electronic equipment according to the present invention includes a binary alloy of Cu and Mg containing Mg in a range of 3.3 atomic% to 6.9 atomic%, with the balance being only Cu and inevitable impurities. In the observation with a scanning electron microscope, the average number of intermetallic compounds having a particle size of 0.1 μm or more is 1 piece / μm 2 or less, and hot, cold or warm processing has been performed. It is a feature.

さらに、本発明の電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、 導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内とされており、走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされており、熱間、冷間又は温間加工が施されたことを特徴としている。
Furthermore, the copper alloy for electronic devices according to the present invention includes a binary alloy of Cu and Mg containing Mg in a range of 3.3 atomic% or more and 6.9 atomic% or less, with the balance being only Cu and inevitable impurities. When the conductivity σ (% IACS) is Mg content A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
In the scanning electron microscope observation, the average number of intermetallic compounds having a particle size of 0.1 μm or more is 1 piece / μm 2 or less, and it is hot, cold or warm working. It is characterized in that is applied.

上述の構成とされた電子機器用銅合金においては、CuとMgの2元系合金において、Mgを、固溶限度以上の3.3原子%以上6.9原子%以下の範囲で含有しており、かつ、導電率σが、Mgの含有量をA原子%としたときに、上記式の範囲内に設定されていることから、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされていることになる。
あるいは、CuとMgの2元系合金において、Mgを、固溶限度以上の3.3原子%以上6.9原子%以下の範囲で含有しており、かつ、走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされていることから、金属間化合物の析出が抑制されており、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされていることになる。
In the copper alloy for electronic devices configured as described above, in the binary alloy of Cu and Mg, Mg is contained in the range of 3.3 atomic% to 6.9 atomic% above the solid solution limit. In addition, since the conductivity σ is set within the range of the above formula when the Mg content is A atomic%, the Mg—supersaturated Cu—Mg supersaturated in the parent phase It will be a solid solution.
Alternatively, in the binary alloy of Cu and Mg, Mg is contained in the range of 3.3 atomic% or more and 6.9 atomic% or less above the solid solution limit, and in observation with a scanning electron microscope, Since the average number of intermetallic compounds having a diameter of 0.1 μm or more is 1 piece / μm 2 or less, precipitation of intermetallic compounds is suppressed, and Mg is supersaturated in the parent phase. -Mg supersaturated solid solution.

このようなCu−Mg過飽和固溶体からなる銅合金では、ヤング率が低くなる傾向にあり、例えばオスタブがメスのばね接触部を押し上げて挿入されるコネクタ等に適用しても、挿入時の接圧変動が抑制され、かつ、弾性限界が広いために容易に塑性変形するおそれがない。よって、端子、コネクタやリレー等の電子電気部品に特に適している。   In a copper alloy composed of such a Cu-Mg supersaturated solid solution, the Young's modulus tends to be low. For example, even if the male tab is applied to a connector inserted by pushing up a female spring contact portion, the contact pressure at the time of insertion Since the fluctuation is suppressed and the elastic limit is wide, there is no risk of plastic deformation easily. Therefore, it is particularly suitable for electronic and electrical parts such as terminals, connectors and relays.

また、Mgが過飽和に固溶していることから、母相中には、割れの起点となる粗大な金属間化合物が多く分散されておらず、曲げ加工性が向上することになる。よって、複雑な形状の端子、コネクタ、リレー等の電子電気部品等を成形することが可能となる。
さらに、Mgを過飽和に固溶させていることから、加工硬化によって強度を向上させることが可能となる。
また、CuとMgと不可避不純物からなるCuとMgの2元系合金とされていることから、他の元素による導電率の低下が抑制され、導電率が比較的高くなる。
In addition, since Mg is supersaturated in solid solution, a large amount of coarse intermetallic compound that is the starting point of cracking is not dispersed in the matrix phase, and bending workability is improved. Therefore, it is possible to mold electronic and electrical parts such as terminals, connectors, and relays having complicated shapes.
Further, since Mg is supersaturated, the strength can be improved by work hardening.
Moreover, since it is set as the binary system alloy of Cu and Mg which consists of Cu, Mg, and an unavoidable impurity, the fall of the electrical conductivity by another element is suppressed and electrical conductivity becomes comparatively high.

なお、粒径0.1μm以上の金属間化合物の平均個数は、電界放出型走査電子顕微鏡を用いて、倍率:5万倍、視野:約4.8μmで10視野の観察を行って算出する。
また、金属間化合物の粒径は、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
The average number particle size 0.1μm or more intermetallic compounds, using a field emission scanning electron microscope, magnification: 50,000 times field of view: calculated performs about 4.8 .mu.m 2 in 10 fields of observation .
The particle size of the intermetallic compound is such that the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain without contacting the grain boundary in the middle) and the minor axis (the direction intersecting the major axis at right angles) The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the grain boundary.

ここで、上述の電子機器用銅合金においては、ヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上、とされていることが好ましい。
ヤング率Eが125GPa以下、かつ、0.2%耐力σ0.2が400MPa以上である場合には、弾性エネルギー係数(σ0.2 /2E)が高くなり、容易に塑性変形しなくなるため、端子、コネクタ、リレー等の電子電気部品に特に適している。
Here, in the copper alloy for electronic devices described above, it is preferable that the Young's modulus E is 125 GPa or less and the 0.2% proof stress σ 0.2 is 400 MPa or more.
If the Young's modulus E is 125 GPa or less and the 0.2% proof stress σ 0.2 is 400 MPa or more, the elastic energy coefficient (σ 0.2 2 / 2E) increases, and plastic deformation does not easily occur. It is particularly suitable for electronic and electrical parts such as terminals, connectors and relays.

本発明の電子機器用銅合金の製造方法は、上述の電子機器用銅合金を製出する電子機器用銅合金の製造方法であって、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされた銅素材を、500℃以上900℃以下の温度にまで加熱する加熱工程と、加熱された前記銅素材を、200℃/min以上の冷却速度で、200℃以下にまで冷却する急冷工程と、急冷された銅素材を加工する加工工程と、を備えていることを特徴としている。   The manufacturing method of the copper alloy for electronic devices of this invention is a manufacturing method of the copper alloy for electronic devices which produces the above-mentioned copper alloy for electronic devices, Comprising: Mg is 3.3 atomic% or more and 6.9 atomic% A heating step for heating a copper material including a Cu and Mg binary alloy including Cu and inevitable impurities only to a temperature of 500 ° C. to 900 ° C. It is characterized by comprising a rapid cooling step for cooling a copper material to 200 ° C. or less at a cooling rate of 200 ° C./min or more and a processing step for processing the rapidly cooled copper material.

この構成の電子機器用銅合金の製造方法によれば、上述の組成のCuとMgの2元系合金とされた銅素材を500℃以上900℃以下の温度にまで加熱する加熱工程により、Mgの溶体化を行うことができる。ここで、加熱温度が500℃未満では、溶体化が不完全となり、母相中に金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を500℃以上900℃以下の範囲に設定している。
また、加熱された前記銅素材を、200℃/min以上の冷却速度で200℃以下にまで冷却する急冷工程を備えているので、冷却の過程で金属間化合物が析出することを抑制することが可能となり、銅素材をCu−Mg過飽和固溶体とすることができる。
According to the method for manufacturing a copper alloy for electronic equipment having this configuration, a heating process of heating a copper material, which is a binary alloy of Cu and Mg having the above-described composition, to a temperature of 500 ° C. to 900 ° C. Can be solutionized. Here, when the heating temperature is less than 500 ° C., solutionization is incomplete, and a large amount of intermetallic compounds may remain in the matrix. On the other hand, when the heating temperature exceeds 900 ° C., a part of the copper material becomes a liquid phase, and the structure and the surface state may become non-uniform. Therefore, the heating temperature is set in the range of 500 ° C. or higher and 900 ° C. or lower.
Moreover, since it has the rapid cooling process which cools the said heated copper raw material to 200 degrees C or less with the cooling rate of 200 degrees C / min or more, it can suppress that an intermetallic compound precipitates in the process of cooling. It becomes possible, and a copper raw material can be made into a Cu-Mg supersaturated solid solution.

さらに、急冷された銅素材(Cu−Mg過飽和固溶体)に対して加工を行う加工工程を備えているので、加工硬化による強度向上を図ることができる。ここで、加工方法には、特に限定はなく、例えば最終形態が板や条の場合は圧延、線や棒の場合は線引きや押出、バルク形状であれば鍛造やプレスを採用する。加工温度も特に限定されないが、析出が起こらないように、冷間または温間となる−200℃から200℃の範囲となることが好ましい。加工率は最終形状に近づけるよう適宜選択するが、加工硬化を考慮した場合には、20%以上が好ましく、30%以上とすることがより好ましい。
なお、加工工程の後に、いわゆる低温焼鈍を行ってもよい。この低温焼鈍によって、さらなる機械特性の向上を図ることが可能となる。
Furthermore, since the processing process which processes with respect to the rapidly cooled copper raw material (Cu-Mg supersaturated solid solution) is provided, the intensity | strength improvement by work hardening can be aimed at. Here, the processing method is not particularly limited. For example, rolling is used when the final form is a plate or strip, drawing or extrusion is used when it is a wire or bar, and forging or pressing is used when it is a bulk shape. The processing temperature is not particularly limited, but is preferably in the range of −200 ° C. to 200 ° C. which is cold or warm so that precipitation does not occur. The processing rate is appropriately selected so as to be close to the final shape. However, when work hardening is considered, it is preferably 20% or more, and more preferably 30% or more.
Note that so-called low-temperature annealing may be performed after the processing step. This low-temperature annealing can further improve the mechanical properties.

本発明の電子機器用銅合金圧延材は、上述の電子機器用銅合金からなり、端子、コネクタ、リレーを構成する銅素材として使用されることを特徴としている。
この構成の電子機器用銅合金圧延材によれば、弾性エネルギー係数(σ0.2 /2E)が高く、容易に塑性変形しない。
The rolled copper alloy material for electronic equipment of the present invention is made of the above-described copper alloy for electronic equipment and is used as a copper material constituting terminals, connectors, and relays .
According to the copper alloy rolled material for electronic equipment having this configuration, the elastic energy coefficient (σ 0.2 2 / 2E) is high and plastic deformation does not easily occur.

本発明によれば、低ヤング率、高耐力、高導電性、優れた曲げ加工性を有し、端子、コネクタやリレー等の電子電気部品に適した電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材を提供することができる。   According to the present invention, a copper alloy for electronic equipment, a copper alloy for electronic equipment, which has a low Young's modulus, high yield strength, high electrical conductivity, and excellent bending workability, and is suitable for electronic electrical parts such as terminals, connectors and relays The manufacturing method of this and the copper alloy rolling material for electronic devices can be provided.

Cu−Mg系状態図である。It is a Cu-Mg system phase diagram. 本実施形態である電子機器用銅合金の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper alloy for electronic devices which is this embodiment. 実施例3における走査型電子顕微鏡観察写真である。4 is a scanning electron microscope observation photograph in Example 3. FIG. 比較例5における走査型電子顕微鏡観察写真である。10 is a scanning electron microscope observation photograph in Comparative Example 5.

以下に、本発明の一実施形態である電子機器用銅合金について説明する。
本実施形態である電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされている。
そして、導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内とされている。
また、走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされている。
そして、この電子機器用銅合金は、ヤング率Eが125GPa以下とされ、0.2%耐力σ0.2が400MPa以上とされている。
Below, the copper alloy for electronic devices which is one Embodiment of this invention is demonstrated.
The copper alloy for electronic devices according to the present embodiment includes Mg in a range of 3.3 atomic% to 6.9 atomic%, and the remainder is composed of Cu and Mg binary alloy composed of only Cu and inevitable impurities. Has been.
And, when the electrical conductivity σ (% IACS) is Mg content A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
It is within the range.
In the observation with a scanning electron microscope, the average number of intermetallic compounds having a particle diameter of 0.1 μm or more is 1 / μm 2 or less.
The copper alloy for electronic equipment has a Young's modulus E of 125 GPa or less and a 0.2% proof stress σ 0.2 of 400 MPa or more.

(組成)
Mgは、導電率を大きく低下させることなく、強度を向上させるとともに再結晶温度を上昇させる作用効果を有する元素である。また、Mgを母相中に固溶させることにより、ヤング率が低く抑えられ、かつ、優れた曲げ加工性が得られる。
ここで、Mgの含有量が3.3原子%未満では、その作用効果を奏功せしめることはできない。一方、Mgの含有量が6.9原子%を超えると、溶体化のために熱処理を行った際に、CuとMgを主成分とする金属間化合物が残存してしまい、その後の加工等で割れが発生してしまうおそれがある。
このような理由から、Mgの含有量を、3.3原子%以上6.9原子%以下に設定している。
(composition)
Mg is an element that has the effect of improving the strength and raising the recrystallization temperature without greatly reducing the electrical conductivity. Further, by dissolving Mg in the matrix, the Young's modulus can be kept low and excellent bending workability can be obtained.
Here, if the content of Mg is less than 3.3 atomic%, the effect cannot be achieved. On the other hand, if the Mg content exceeds 6.9 atomic%, an intermetallic compound containing Cu and Mg as main components remains when heat treatment is performed for solution treatment. There is a risk of cracking.
For these reasons, the Mg content is set to 3.3 atomic% or more and 6.9 atomic% or less.

さらに、Mgの含有量が少ないと、強度が十分に向上せず、かつ、ヤング率を十分に低く抑えることができない。また、Mgは活性元素であることから、過剰に添加されることによって、溶解鋳造時に、酸素と反応して生成されたMg酸化物を巻きこむおそれがある。したがって、Mgの含有量を、3.7原子%以上6.3原子%以下の範囲とすることが、さらに好ましい。   Furthermore, if the content of Mg is small, the strength is not sufficiently improved and the Young's modulus cannot be sufficiently reduced. Moreover, since Mg is an active element, when it is added excessively, there is a possibility that Mg oxide generated by reacting with oxygen is involved during melt casting. Therefore, it is more preferable that the Mg content is in the range of 3.7 atomic% to 6.3 atomic%.

なお、不可避不純物としては、Sn,Fe,Co,Al,Ag,Mn,B,P,Ca,Sr,Ba,Sc,Y,希土類元素,Zr,Hf,V,Nb,Ta,Cr,Mo,W, Re,Ru,Os,Se,Te,Rh,Ir,Pd,Pt,Au,Cd,Ga,In, Li,Si,Ge,As,Sb,Ti,Tl,Pb,Bi,S,O,C,Ni,Be,N,H,Hg等が挙げられる。これらの不可避不純物は、総量で0.3質量%以下であることが望ましい。   Inevitable impurities include Sn, Fe, Co, Al, Ag, Mn, B, P, Ca, Sr, Ba, Sc, Y, rare earth elements, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Re, Ru, Os, Se, Te, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Si, Ge, As, Sb, Ti, Tl, Pb, Bi, S, O, C, Ni, Be, N, H, Hg, etc. are mentioned. These inevitable impurities are desirably 0.3% by mass or less in total.

(導電率σ)
CuとMgの2元系合金において、導電率σが、Mgの含有量をA原子%としたとき、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内である場合には、CuとMgを主成分とする金属間化合物がほとんど存在しないことになる。
すなわち、導電率σが上記式を超える場合には、CuとMgを主成分とする金属間化合物が多量に存在し、サイズも比較的大きいことから、曲げ加工性が大幅に劣化することになる。また、CuとMgを主成分とする金属間化合物が生成し、かつ、Mgの固溶量が少ないことから、ヤング率も上昇してしまうことになる。よって、導電率σが、上記式の範囲内となるように、製造条件を調整することになる。
なお、上述の作用効果を確実に奏功せしめるためには、導電率σ(%IACS)を、
σ≦1.7241/(−0.0292×A+0.6797×A+1.7)×100
の範囲内とすることが好ましい。この場合、CuとMgを主成分とする金属間化合物がより少量であるために、曲げ加工性がさらに向上することになる。
(Conductivity σ)
In the binary alloy of Cu and Mg, when the electrical conductivity σ is Mg content A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
If it is within the range, there will be almost no intermetallic compound mainly composed of Cu and Mg.
That is, when the electrical conductivity σ exceeds the above formula, a large amount of intermetallic compounds mainly composed of Cu and Mg are present and the size is relatively large, so that bending workability is greatly deteriorated. . In addition, since an intermetallic compound containing Cu and Mg as main components is generated and the amount of Mg solid solution is small, the Young's modulus is also increased. Therefore, the manufacturing conditions are adjusted so that the electrical conductivity σ is within the range of the above formula.
In order to ensure that the above-described effects are achieved, the conductivity σ (% IACS) is
σ ≦ 1.7241 / (− 0.0292 × A 2 + 0.6797 × A + 1.7) × 100
It is preferable to be within the range. In this case, since the amount of the intermetallic compound mainly composed of Cu and Mg is smaller, the bending workability is further improved.

(組織)
本実施形態である電子機器用銅合金においては、走査型電子顕微鏡で観察した結果、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされている。すなわち、CuとMgを主成分とする金属間化合物がほとんど析出しておらず、Mgが母相中に固溶しているのである。
ここで、溶体化が不完全であったり、溶体化後に金属間化合物が析出することにより、サイズの大きい金属間化合物が多量に存在すると、これらの金属間化合物が割れの起点となり、加工時に割れが発生したり、曲げ加工性が大幅に劣化することになる。また、CuとMgを主成分とする金属間化合物の量が多いと、ヤング率が上昇することになるため、好ましくない。
(Organization)
In the copper alloy for electronic devices according to this embodiment, as a result of observation with a scanning electron microscope, the average number of intermetallic compounds having a particle diameter of 0.1 μm or more is 1 / μm 2 or less. That is, almost no intermetallic compound mainly composed of Cu and Mg is precipitated, and Mg is dissolved in the matrix.
Here, if the solution formation is incomplete or the intermetallic compound is precipitated after the solution formation, and there is a large amount of a large intermetallic compound, these intermetallic compounds will be the starting point of cracking and cracking during processing. Or bending workability is greatly deteriorated. Further, if the amount of the intermetallic compound containing Cu and Mg as main components is large, the Young's modulus increases, which is not preferable.

組織を調査した結果、粒径0.1μm以上の金属間化合物が合金中に1個/μm以下の場合、すなわち、CuとMgを主成分とする金属間化合物が存在しないあるいは少量である場合、良好な曲げ加工性、低いヤング率が得られることになる。
さらに、上述の作用効果を確実に奏功せしめるためには、粒径0.05μm以上の金属間化合物の個数が合金中に1個/μm以下であることが、より好ましい。
As a result of investigating the structure, when the intermetallic compound having a particle size of 0.1 μm or more is 1 / μm 2 or less in the alloy, that is, the intermetallic compound mainly composed of Cu and Mg does not exist or is in a small amount Good bending workability and a low Young's modulus can be obtained.
Furthermore, in order to ensure that the above-described effects are achieved, it is more preferable that the number of intermetallic compounds having a particle size of 0.05 μm or more is 1 / μm 2 or less in the alloy.

なお、金属間化合物の平均個数は、電界放出型走査電子顕微鏡を用いて、倍率:5万倍、視野:約4.8μmで10視野の観察を行い、その平均値を算出する。
また、金属間化合物の粒径は、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
The average number of intermetallic compounds is calculated by observing 10 visual fields using a field emission scanning electron microscope at a magnification of 50,000 times and a visual field of about 4.8 μm 2 and calculating the average value.
The particle size of the intermetallic compound is such that the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain without contacting the grain boundary in the middle) and the minor axis (the direction intersecting the major axis at right angles) The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the grain boundary.

次に、このような構成とされた本実施形態である電子機器用銅合金の製造方法について、図2に示すフロー図を参照して説明する。
(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、Mgの添加には、Mg単体やCu−Mg母合金等を用いることができる。また、Mgを含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材及びスクラップ材を用いてもよい。
ここで、銅溶湯は、純度が99.99質量%以上とされたいわゆる4NCuとすることが好ましい。また、溶解工程では、Mgの酸化を抑制するために、真空炉、あるいは、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いることが好ましい。
そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法又は半連続鋳造法を用いることが好ましい。
Next, the manufacturing method of the copper alloy for electronic devices which is this embodiment configured as above will be described with reference to the flowchart shown in FIG.
(Melting / Casting Process S01)
First, the above-described elements are added to a molten copper obtained by melting a copper raw material to adjust the components, thereby producing a molten copper alloy. In addition, Mg simple substance, Cu-Mg master alloy, etc. can be used for addition of Mg. Moreover, you may melt | dissolve the raw material containing Mg with a copper raw material. Moreover, you may use the recycling material and scrap material of this alloy.
Here, the molten copper is preferably so-called 4NCu having a purity of 99.99% by mass or more. In the melting step, it is preferable to use a vacuum furnace or an atmosphere furnace in an inert gas atmosphere or a reducing atmosphere in order to suppress oxidation of Mg.
Then, the copper alloy molten metal whose components are adjusted is poured into a mold to produce an ingot. When mass production is considered, it is preferable to use a continuous casting method or a semi-continuous casting method.

(加熱工程S02)
次に、得られた鋳塊の均質化及び溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析で濃縮することにより発生した金属間化合物等が存在することになる。そこで、これらの偏析及び金属間化合物等を消失又は低減させるために、鋳塊を500℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりするのである。なお、この加熱工程S02は、非酸化性又は還元性雰囲気中で実施することが好ましい。
(Heating step S02)
Next, heat treatment is performed for homogenization and solution of the obtained ingot. Inside the ingot, there are intermetallic compounds and the like generated by the concentration of Mg due to segregation during the solidification process. Therefore, in order to eliminate or reduce these segregation and intermetallic compounds, etc., by performing a heat treatment to heat the ingot to 500 ° C. or more and 900 ° C. or less, Mg can be uniformly diffused in the ingot. Mg is dissolved in the matrix. In addition, it is preferable to implement this heating process S02 in a non-oxidizing or reducing atmosphere.

(急冷工程S03)
そして、加熱工程S02において500℃以上900℃以下にまで加熱された鋳塊を、200℃以下の温度にまで、200℃/min以上の冷却速度で冷却する。この急冷工程S03により、母相中に固溶したMgが金属間化合物として析出することが抑制されることになり、走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が1個/μm以下とされるのである。
(Rapid cooling step S03)
Then, the ingot heated to 500 ° C. or higher and 900 ° C. or lower in the heating step S02 is cooled to a temperature of 200 ° C. or lower at a cooling rate of 200 ° C./min or higher. This rapid cooling step S03 suppresses the precipitation of Mg dissolved in the matrix as an intermetallic compound, and the average number of intermetallic compounds having a particle diameter of 0.1 μm or more in a scanning electron microscope observation. Is 1 piece / μm 2 or less.

なお、粗加工の効率化と組織の均一化のために、前述の加熱工程S02の後に熱間加工を実施し、この熱間加工の後に上述の急冷工程S03を実施する構成としてもよい。この場合、加工方法に特に限定はなく、例えば最終形態が板や条の場合には圧延、線や棒の場合には線引きや押出や溝圧延等、バルク形状の場合には鍛造やプレス、を採用することができる。   In addition, in order to increase the efficiency of roughing and make the structure uniform, it is possible to perform a hot working after the heating step S02 and perform the rapid cooling step S03 after the hot working. In this case, there is no particular limitation on the processing method, for example, rolling when the final form is a plate or strip, drawing, extruding, groove rolling, etc. for a wire or bar, forging or pressing for a bulk shape. Can be adopted.

(加工工程S04)
加熱工程S02及び急冷工程S03を経た鋳塊を必要に応じて切断するとともに、加熱工程S02及び急冷工程S03等で生成された酸化膜等を除去するために必要に応じて表面研削を行う。そして、所定の形状へと加工を行う。
ここで、加工方法に特に限定はなく、例えば最終形態が板や条の場合には圧延、線や棒の場合には線引きや押出や溝圧延、バルク形状の場合には鍛造やプレス、を採用することができる。
(Processing step S04)
The ingot that has undergone the heating step S02 and the rapid cooling step S03 is cut as necessary, and surface grinding is performed as necessary to remove the oxide film and the like generated in the heating step S02, the rapid cooling step S03, and the like. Then, processing is performed into a predetermined shape.
Here, there is no particular limitation on the processing method. For example, rolling is used when the final form is a plate or strip, drawing, extrusion or groove rolling is used when it is a wire or bar, and forging or pressing is used when it is a bulk shape. can do.

なお、この加工工程S04における温度条件は特に限定はないが、冷間又は温間加工となる−200℃から200℃の範囲内とすることが好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、加工硬化によって強度を向上させるためには、20%以上とすることが好ましい。また。さらなる強度の向上を図る場合には、加工率を30%以上とすることがより好ましい。
さらに、図2に示すように、上述の加熱工程S02、急冷工程S03、加工工程S04を繰り返し実施してもよい。ここで、2回目以降の加熱工程S02は、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的とするものとなる。また、鋳塊ではなく、加工材が対象となる。
In addition, the temperature condition in this processing step S04 is not particularly limited, but is preferably in a range of −200 ° C. to 200 ° C. which is cold or warm processing. The processing rate is appropriately selected so as to approximate the final shape, but is preferably 20% or more in order to improve the strength by work hardening. Also. In order to further improve the strength, the processing rate is more preferably 30% or more.
Furthermore, as shown in FIG. 2, the above-described heating step S02, quenching step S03, and processing step S04 may be repeated. Here, the second and subsequent heating steps S02 are intended for thorough solutionization, recrystallization texture formation, or softening for improving workability. Moreover, it is not an ingot but a processed material.

(熱処理工程S05)
次に、加工工程S04によって得られた加工材に対して、低温焼鈍硬化を行うために、又は、残留ひずみの除去のために、熱処理を実施する。この熱処理条件については、製出される製品に求められる特性に応じて適宜設定することになる。
なお、この熱処理工程S05においては、溶体化されたMgが析出しないように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。例えば200℃で1分〜1時間程度、300℃で1秒〜1分程度とすることが好ましい。冷却速度は200℃/min以上とすることが好ましい。
(Heat treatment step S05)
Next, heat treatment is performed on the workpiece obtained in the machining step S04 in order to perform low-temperature annealing hardening or to remove residual strain. About this heat processing condition, it will set suitably according to the characteristic calculated | required by the product manufactured.
In the heat treatment step S05, it is necessary to set the heat treatment conditions (temperature, time, cooling rate) so that the solutionized Mg does not precipitate. For example, it is preferable that the temperature is about 1 minute to 1 hour at 200 ° C. and about 1 second to 1 minute at 300 ° C. The cooling rate is preferably 200 ° C./min or more.

また、熱処理方法は特に限定しないが、好ましくは100〜500℃で0.1秒〜24時間の熱処理を、非酸化性または還元性雰囲気中で行うのがよい。また、冷却方法は、特に限定しないが、水焼入など、冷却速度が200℃/min以上となる方法が好ましい。
さらに、上述の加工工程S04と熱処理工程S05とを、繰り返し実施してもよい。
The heat treatment method is not particularly limited, but preferably heat treatment at 100 to 500 ° C. for 0.1 second to 24 hours is performed in a non-oxidizing or reducing atmosphere. In addition, the cooling method is not particularly limited, but a method such as water quenching that allows the cooling rate to be 200 ° C./min or more is preferable.
Further, the above-described processing step S04 and heat treatment step S05 may be repeatedly performed.

このようにして、本実施形態である電子機器用銅合金が製出されることになる。そして、本実施形態である電子機器用銅合金は、そのヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上とされている。
また、導電率σ(%IACS)は、Mgの含有量をA原子%としたときに、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内に設定されることになる。
Thus, the copper alloy for electronic devices which is this embodiment is produced. And as for the copper alloy for electronic devices which is this embodiment, the Young's modulus E shall be 125 GPa or less, and 0.2% yield strength (sigma) 0.2 shall be 400 Mpa or more.
Further, the conductivity σ (% IACS) is determined when the Mg content is A atomic%.
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
It will be set within the range.

以上のような構成とされた本実施形態である電子機器用銅合金によれば、CuとMgの2元系合金において、Mgを、固溶限度以上の3.3原子%以上6.9原子%以下の範囲で含有しており、かつ、導電率σ(%IACS)が、Mgの含有量をA原子%としたとき、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内に設定されている。さらに、走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が1個/μm以下とされている。
According to the copper alloy for electronic devices according to the present embodiment configured as described above, in the binary alloy of Cu and Mg, Mg is 3.3 atomic% or more and 6.9 atoms or more which is not less than the solid solution limit. % And the conductivity σ (% IACS) is, when the Mg content is A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
It is set within the range. Further, in the observation with a scanning electron microscope, the average number of intermetallic compounds having a particle diameter of 0.1 μm or more is 1 piece / μm 2 or less.

すなわち、本実施形態である電子機器用銅合金は、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされているのである。
このようなCu−Mg過飽和固溶体からなる銅合金では、ヤング率が低くなる傾向にあり、例えばオスタブがメスのばね接触部を押し上げて挿入されるコネクタ等に適用しても、挿入時の接圧変動が抑制され、かつ、弾性限界が広いために容易に塑性変形するおそれがない。よって、端子、コネクタやリレー等の電子電気部品に特に適している。
That is, the copper alloy for electronic devices according to this embodiment is a Cu—Mg supersaturated solid solution in which Mg is supersaturated in the matrix.
In a copper alloy composed of such a Cu-Mg supersaturated solid solution, the Young's modulus tends to be low. For example, even if the male tab is applied to a connector inserted by pushing up a female spring contact portion, the contact pressure at the time of insertion Since the fluctuation is suppressed and the elastic limit is wide, there is no risk of plastic deformation easily. Therefore, it is particularly suitable for electronic and electrical parts such as terminals, connectors and relays.

また、Mgが過飽和に固溶していることから、母相中には、割れの起点となる粗大な金属間化合物が多く分散されておらず、曲げ加工性が向上することになる。よって、複雑な形状の端子、コネクタやリレー等の電子電気部品を成形することが可能となる。
さらに、Mgを過飽和に固溶させていることから、加工硬化させることで、強度が向上することになり、比較的高い強度を有することが可能となる。
また、CuとMgと不可避不純物からなるCuとMgの2元系合金とされていることから、他の元素による導電率の低下が抑制され、導電率を比較的高くすることができる。
In addition, since Mg is supersaturated in solid solution, a large amount of coarse intermetallic compound that is the starting point of cracking is not dispersed in the matrix phase, and bending workability is improved. Therefore, it is possible to mold electronic and electrical parts such as terminals, connectors, and relays having complicated shapes.
Furthermore, since Mg is super-saturated, the strength is improved by work hardening, and a relatively high strength can be obtained.
Moreover, since it is set as the binary system alloy of Cu and Mg which consists of Cu, Mg, and an unavoidable impurity, the fall of the electrical conductivity by another element is suppressed and electrical conductivity can be made comparatively high.

そして、電子機器用銅合金においては、ヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上、とされていることから、弾性エネルギー係数(σ0.2 /2E)が高くなって容易に塑性変形しなくなるため、端子、コネクタやリレー等の電子電気部品に特に適している。 And in the copper alloy for electronic devices, since Young's modulus E is 125 GPa or less and 0.2% yield strength σ 0.2 is 400 MPa or more, the elastic energy coefficient (σ 0.2 2 / 2E) is Since it becomes high and does not easily undergo plastic deformation, it is particularly suitable for electronic and electrical parts such as terminals, connectors, and relays.

また、本実施形態である電子機器用銅合金の製造方法によれば、上述の組成のCuとMgの2元系合金とされた鋳塊または加工材を500℃以上900℃以下の温度にまで加熱する加熱工程S02により、Mgの溶体化を行うことができる。
また、加熱工程S02によって500℃以上900℃以下にまで加熱された鋳塊または加工材を、200℃/min以上の冷却速度で200℃以下にまで冷却する急冷工程S03を備えているので、冷却の過程で金属間化合物が析出することを抑制することが可能となり、急冷後の鋳塊または加工材をCu−Mg過飽和固溶体とすることができる。
Moreover, according to the manufacturing method of the copper alloy for electronic devices which is this embodiment, the ingot or processed material made into the binary system alloy of Cu and Mg of the above-mentioned composition is made into the temperature of 500 to 900 degreeC. The Mg solution can be formed by the heating step S02 for heating.
In addition, since the ingot or work material heated to 500 ° C. or more and 900 ° C. or less by the heating step S02 is provided with a quenching step S03 for cooling to 200 ° C. or less at a cooling rate of 200 ° C./min or more, cooling It is possible to suppress the precipitation of intermetallic compounds during the process, and the ingot or processed material after quenching can be made into a Cu-Mg supersaturated solid solution.

さらに、急冷材(Cu−Mg過飽和固溶体)に対して加工を行う加工工程S04を備えているので、加工硬化による強度向上を図ることができる。
また、加工工程S04の後に、低温焼鈍硬化を行うために、又は、残留ひずみの除去のために、熱処理工程S05を実施しているので、さらなる機械特性の向上を図ることが可能となる。
Furthermore, since the processing step S04 for processing the quenching material (Cu-Mg supersaturated solid solution) is provided, the strength can be improved by work hardening.
In addition, since the heat treatment step S05 is performed after the processing step S04 in order to perform low-temperature annealing hardening or to remove residual strain, it is possible to further improve the mechanical characteristics.

上述のように、本実施形態である電子機器用銅合金によれば、低ヤング率、高耐力、高導電性、優れた曲げ加工性を有し、端子、コネクタやリレー等の電子電気部品に適した電子機器用銅合金を提供することができる。   As described above, according to the copper alloy for electronic devices according to the present embodiment, it has a low Young's modulus, high proof stress, high conductivity, and excellent bending workability, and is suitable for electronic and electrical parts such as terminals, connectors and relays. A suitable copper alloy for electronic equipment can be provided.

以上、本発明の実施形態である電子機器用銅合金について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子機器用銅合金の製造方法の一例について説明したが、製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
As mentioned above, although the copper alloy for electronic devices which is embodiment of this invention was demonstrated, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the above-described embodiment, an example of a method for manufacturing a copper alloy for electronic devices has been described. However, the manufacturing method is not limited to this embodiment, and an existing manufacturing method may be selected as appropriate. Good.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99質量%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、カーボン鋳型に注湯して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約20mm×幅約20mm×長さ約100〜120mmとした。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99% by mass or more was prepared, charged in a high-purity graphite crucible, and melted at high frequency in an atmosphere furnace having an Ar gas atmosphere. . Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and poured into a carbon mold to produce an ingot. The size of the ingot was about 20 mm thick x about 20 mm wide x about 100 to 120 mm long.

得られた鋳塊に対して、Arガス雰囲気中において、表1に記載の温度条件で4時間の加熱を行う加熱工程を実施し、その後、水焼き入れを実施した。
熱処理後の鋳塊を切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、表1に記載された加工率で冷間圧延を実施し、厚さ約0.5mm×幅約20mmの条材を製出した。
そして、得られた条材に対して、表1に記載された条件で熱処理を実施し、特性評価用条材を作成した。
The obtained ingot was subjected to a heating process in which heating was performed for 4 hours under the temperature conditions shown in Table 1 in an Ar gas atmosphere, followed by water quenching.
The ingot after the heat treatment was cut and surface grinding was performed to remove the oxide film. Thereafter, cold rolling was performed at a processing rate shown in Table 1 to produce a strip having a thickness of about 0.5 mm and a width of about 20 mm.
And the heat treatment was implemented with respect to the obtained strip material on the conditions described in Table 1, and the strip material for characteristic evaluation was created.

(加工性評価)
加工性の評価として、前述の冷間圧延時における耳割れの有無を観察した。目視で耳割れが全くあるいはほとんど認められなかったものを◎、長さ1mm未満の小さな耳割れが発生したものを○、長さ1mm以上3mm未満の耳割れが発生したものを△、長さ3mm以上の大きな耳割れが発生したものを×、耳割れに起因して圧延途中で破断したものを××とした。
なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。
(Processability evaluation)
As an evaluation of workability, the presence or absence of ear cracks during the cold rolling described above was observed. The case where no or almost no ear cracks were visually observed was ◎, the case where a small ear crack of less than 1 mm in length occurred was ○, the case where an ear crack of 1 mm or more and less than 3 mm occurred was Δ, and the length was 3 mm The case where the above-mentioned big ear crack generate | occur | produced was made into x, and what was fractured | ruptured in the middle of rolling due to the ear crack was made into xx.
In addition, the length of an ear crack is the length of the ear crack which goes to the width direction center part from the width direction edge part of a rolling material.

また、前述の特性評価用条材を用いて、機械的特性及び導電率を測定した、
(機械的特性)
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力σ0.2を測定した。
ヤング率Eは、前述の試験片にひずみゲージを貼り付け、荷重−伸び曲線の勾配から求めた。
なお、試験片は、引張試験の引張方向が特性評価用条材の圧延方向に対して平行になるように採取した。
In addition, using the above-described strip for property evaluation, the mechanical properties and conductivity were measured,
(Mechanical properties)
A No. 13B test piece defined in JIS Z 2201 was taken from the strip for characteristic evaluation, and 0.2% proof stress σ 0.2 was measured by an offset method of JIS Z 2241.
The Young's modulus E was determined from the gradient of the load-elongation curve by attaching a strain gauge to the above-mentioned test piece.
In addition, the test piece was extract | collected so that the tension direction of a tension test might become parallel with the rolling direction of the strip for characteristic evaluation.

(導電率)
特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
(conductivity)
A test piece having a width of 10 mm and a length of 60 mm was taken from the strip for characteristic evaluation, and the electrical resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract | collected so that the longitudinal direction might become parallel with the rolling direction of the strip for characteristic evaluation.

(曲げ加工性)
JBMA(日本伸銅協会技術標準)T307の3試験方法に準拠して曲げ加工を行った。圧延方向と試験片の長手方向が平行になるように、特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.5mmのW型の治具を用い、W曲げ試験を行った。
そして、曲げ部の外周部を目視で確認し、破断した場合は×、一部のみ破断が起きた場合は△、破断が起きず微細な割れのみが生じた場合は○、破断や微細な割れを確認できない場合を◎として判定を行った。
(Bending workability)
Bending was performed according to three test methods of JBMA (Japan Copper and Brass Association Technical Standard) T307. A plurality of test pieces having a width of 10 mm and a length of 30 mm are taken from the strip for characteristic evaluation so that the rolling direction and the longitudinal direction of the test piece are parallel to each other, a W-type having a bending angle of 90 degrees and a bending radius of 0.5 mm. The W-bending test was performed using the jig.
Then, visually check the outer periphery of the bent portion, x if it breaks, △ if only a portion breaks, ◯ if it does not break and only a minute crack occurs, rupture or a minute crack Judgment was made as ◎ when the case cannot be confirmed.

(組織観察)
各試料の圧延面に対して、鏡面研磨、イオンエッチングを行った。その金属間化合物の析出状態を確認するため、FE−SEM(電界放出型走査電子顕微鏡)を用い、1万倍の視野(約120μm/視野)で観察を行った。
次に、金属間化合物の密度(個/μm)を調査するために、金属間化合物の析出状態が特異ではない1万倍の視野(約120μm/視野)を選び、その領域で、5万倍で連続した10視野(約4.8μm/視野)の撮影を行った。金属間化合物の粒径については、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とした。そして、粒径0.1μmおよび0.05μmの金属間化合物の密度(個/μm)を求めた。
(Tissue observation)
Mirror polishing and ion etching were performed on the rolled surface of each sample. In order to confirm the precipitation state of the intermetallic compound, observation was performed using a FE-SEM (Field Emission Scanning Electron Microscope) with a 10,000 × field of view (approximately 120 μm 2 / field of view).
Next, in order to investigate the density of the intermetallic compound (pieces / μm 2 ), a 10,000 times field of view (about 120 μm 2 / field of view) in which the precipitation state of the intermetallic compound is not unique is selected. Ten continuous visual fields (approximately 4.8 μm 2 / visual field) were taken at 10,000 times magnification. As for the particle size of the intermetallic compound, the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain without contact with the grain boundary in the middle) and the minor axis (in the direction perpendicular to the major axis, the grain in the middle The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the boundary). And the density (pieces / micrometer < 2 >) of the intermetallic compound with a particle size of 0.1 micrometer and 0.05 micrometer was calculated | required.

条件、評価結果について、表1、2に示す。また、上述の組織観察の一例として、実施例3および比較例5のSEM観察写真を図3、図4にそれぞれ示す。   Tables 1 and 2 show the conditions and evaluation results. Moreover, as an example of the above-described structure observation, SEM observation photographs of Example 3 and Comparative Example 5 are shown in FIGS. 3 and 4, respectively.

Mgの含有量が本発明の範囲よりも低い比較例1においては、ヤング率が127GPaと比較的高いままであった。
また、Mgの含有量が本発明の範囲よりも高い比較例2、3においては、冷間圧延時に大きな耳割れが発生し、その後の特性評価を実施することが不可能であった。
In Comparative Example 1 in which the Mg content was lower than the range of the present invention, the Young's modulus remained relatively high at 127 GPa.
Moreover, in Comparative Examples 2 and 3 in which the Mg content is higher than the range of the present invention, large ear cracks occurred during cold rolling, and it was impossible to perform subsequent characteristic evaluation.

さらに、Ni,Si,Zn,Snを含有する銅合金、いわゆるコルソン合金とされた比較例4においては、溶体化のための加熱工程の温度を980℃とし、熱処理条件を400℃×4hとして金属間化合物の析出処理を行っている。この比較例4においては、耳割れの発生が抑制され、析出物が微細なことから曲げ加工性が確保されることになる。しかしながら、ヤング率が131GPaと高くなることが確認される。   Further, in Comparative Example 4 in which a copper alloy containing Ni, Si, Zn, and Sn, that is, a so-called Corson alloy, the temperature of the heating step for solution treatment was set to 980 ° C., and the heat treatment conditions were set to 400 ° C. × 4 h. Precipitation treatment of intermetallic compounds is performed. In Comparative Example 4, the occurrence of ear cracks is suppressed, and bending workability is ensured because the precipitates are fine. However, it is confirmed that the Young's modulus is as high as 131 GPa.

また、Mgの含有量が本発明の範囲であるが、導電率及び金属間化合物の個数が本発明の範囲から外れた比較例5においては、曲げ加工性に劣ることが確認される。曲げの劣化は、粗大な金属間化合物が割れの起点になるためと推測される。   Further, although the Mg content is within the range of the present invention, it is confirmed that in Comparative Example 5 in which the conductivity and the number of intermetallic compounds are out of the range of the present invention, the bending workability is inferior. The bending deterioration is presumed to be because a coarse intermetallic compound becomes the starting point of cracking.

これに対して、本発明例1−10においては、いずれもヤング率が115GPa以下と低く設定されており、弾力性に優れている。また、組成が同一で加工率が異なる本発明例3、8−10を比較すると、加工率を上昇させることにより、0.2%耐力を向上させることが可能であることが確認される。
以上のことから、本発明例によれば、低ヤング率、高耐力、高導電性、優れた曲げ加工性を有し、端子、コネクタやリレー等の電子電気部品に適した電子機器用銅合金を提供することができることが確認された。
On the other hand, in Inventive Example 1-10, the Young's modulus is set as low as 115 GPa or less, and the elasticity is excellent. In addition, when Invention Examples 3 and 8-10 having the same composition but different processing rates are compared, it is confirmed that 0.2% proof stress can be improved by increasing the processing rate.
From the above, according to the present invention example, a copper alloy for electronic equipment having a low Young's modulus, high yield strength, high electrical conductivity, and excellent bending workability, and suitable for electronic and electrical parts such as terminals, connectors and relays. It was confirmed that we can provide.

S02 加熱工程
S03 急冷工程
S04 加工工程
S02 Heating step S03 Rapid cooling step S04 Processing step

Claims (6)

Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、
導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内とされており、熱間、冷間又は温間加工が施されたことを特徴とする電子機器用銅合金。
Mg is included in a range of 3.3 atomic% to 6.9 atomic%, and the balance is a binary alloy of Cu and Mg consisting of only Cu and inevitable impurities,
When the electrical conductivity σ (% IACS) is Mg content A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
A copper alloy for electronic equipment, characterized in that it is within the range and is hot, cold or warm worked .
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、
走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされており、熱間、冷間又は温間加工が施されたことを特徴とする電子機器用銅合金。
Mg is included in a range of 3.3 atomic% to 6.9 atomic%, and the balance is a binary alloy of Cu and Mg consisting of only Cu and inevitable impurities,
In scanning electron microscope observation, the average number of intermetallic compounds having a particle size of 0.1 μm or more is 1 piece / μm 2 or less, and hot, cold or warm processing is performed. Copper alloy for electronic equipment.
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、
導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、
σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100
の範囲内とされており、
走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされており、熱間、冷間又は温間加工が施されたことを特徴とする電子機器用銅合金。
Mg is included in a range of 3.3 atomic% to 6.9 atomic%, and the balance is a binary alloy of Cu and Mg consisting of only Cu and inevitable impurities,
When the electrical conductivity σ (% IACS) is Mg content A atomic%,
σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100
Is within the scope of
In scanning electron microscope observation, the average number of intermetallic compounds having a particle size of 0.1 μm or more is 1 piece / μm 2 or less, and hot, cold or warm processing is performed. Copper alloy for electronic equipment.
請求項1から請求項3のいずれか一項に記載の電子機器用銅合金において、
ヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上、とされていることを特徴とする電子機器用銅合金。
In the copper alloy for electronic devices as described in any one of Claims 1-3,
A copper alloy for electronic equipment, wherein Young's modulus E is 125 GPa or less and 0.2% proof stress σ0.2 is 400 MPa or more.
請求項1から請求項4のいずれか一項に記載の電子機器用銅合金を製出する電子機器用銅合金の製造方法であって、
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされた銅素材を、500℃以上900℃以下の温度にまで加熱する加熱工程と、
加熱された前記銅素材を、200℃/min以上の冷却速度で、200℃以下にまで冷却する急冷工程と、
急冷された銅素材を加工する加工工程と、
を備えていることを特徴とする電子機器用銅合金の製造方法。
It is a manufacturing method of the copper alloy for electronic devices which produces the copper alloy for electronic devices as described in any one of Claims 1-4,
A copper material containing Mg in a range of 3.3 atomic% to 6.9 atomic% with the balance being Cu and Mg consisting only of Cu and unavoidable impurities is 500 ° C. or higher and 900 ° C. or lower. A heating step of heating to a temperature of
A rapid cooling step of cooling the heated copper material to 200 ° C. or less at a cooling rate of 200 ° C./min or more;
A processing step for processing a rapidly cooled copper material;
The manufacturing method of the copper alloy for electronic devices characterized by the above-mentioned.
請求項1から請求項4のいずれか一項に記載の電子機器用銅合金からなり、
端子、コネクタ、リレーを構成する銅素材として使用されることを特徴とする電子機器用銅合金圧延材。
It consists of the copper alloy for electronic devices as described in any one of Claims 1-4,
A copper alloy rolled material for electronic equipment, characterized by being used as a copper material constituting terminals, connectors, and relays.
JP2010112266A 2010-05-14 2010-05-14 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment Active JP5045783B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2010112266A JP5045783B2 (en) 2010-05-14 2010-05-14 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
MYPI2012700829A MY168183A (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
TW100116878A TWI441931B (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, and rolled copper alloy for electronic device
US13/695,666 US10056165B2 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP15175001.5A EP2952595B1 (en) 2010-05-14 2011-05-13 Copper alloy and material rolled thereof for electronic device and method for producing this alloy
KR1020127025942A KR101369693B1 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
MYPI2014002778A MY189251A (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
PCT/JP2011/061036 WO2011142450A1 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP15193144.1A EP3020836A3 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing it, and rolled copper alloy for electronic device
SG2012078978A SG185024A1 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
KR1020137031600A KR101570919B1 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP15193147.4A EP3009523B1 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing it, and rolled material from it
CN201180018491.7A CN102822363B (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
EP11780706.5A EP2570506B1 (en) 2010-05-14 2011-05-13 Copper alloy for electronic device, method for producing this alloy, and copper alloy rolled material for this device
US14/291,335 US10032536B2 (en) 2010-05-14 2014-05-30 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112266A JP5045783B2 (en) 2010-05-14 2010-05-14 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment

Publications (3)

Publication Number Publication Date
JP2011241412A JP2011241412A (en) 2011-12-01
JP2011241412A5 JP2011241412A5 (en) 2012-02-09
JP5045783B2 true JP5045783B2 (en) 2012-10-10

Family

ID=45408382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112266A Active JP5045783B2 (en) 2010-05-14 2010-05-14 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment

Country Status (1)

Country Link
JP (1) JP5045783B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016218A1 (en) 2013-07-31 2015-02-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
WO2015087624A1 (en) 2013-12-11 2015-06-18 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
KR20180043197A (en) 2015-09-09 2018-04-27 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10128019B2 (en) 2015-09-09 2018-11-13 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10453582B2 (en) 2015-09-09 2019-10-22 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10676803B2 (en) 2015-09-09 2020-06-09 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US11104977B2 (en) 2018-03-30 2021-08-31 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570506B1 (en) 2010-05-14 2016-04-13 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing this alloy, and copper alloy rolled material for this device
CN103534370B (en) 2011-08-29 2015-11-25 古河电气工业株式会社 Cu alloy material and manufacture method thereof
JP5903832B2 (en) 2011-10-28 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP5903838B2 (en) * 2011-11-07 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5903842B2 (en) 2011-11-14 2016-04-13 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material
JP6248389B2 (en) * 2012-12-05 2017-12-20 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6248387B2 (en) * 2012-12-05 2017-12-20 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6248386B2 (en) * 2012-12-05 2017-12-20 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6248388B2 (en) * 2012-12-05 2017-12-20 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6311299B2 (en) * 2013-12-11 2018-04-18 三菱マテリアル株式会社 Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722401B2 (en) * 1988-10-20 1998-03-04 株式会社神戸製鋼所 Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance
JPH11186273A (en) * 1997-12-19 1999-07-09 Ricoh Co Ltd Semiconductor device and manufacture thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016218A1 (en) 2013-07-31 2015-02-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
US10294547B2 (en) 2013-07-31 2019-05-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
WO2015087624A1 (en) 2013-12-11 2015-06-18 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
US10157694B2 (en) 2013-12-11 2018-12-18 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
KR20180043197A (en) 2015-09-09 2018-04-27 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10128019B2 (en) 2015-09-09 2018-11-13 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10453582B2 (en) 2015-09-09 2019-10-22 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10676803B2 (en) 2015-09-09 2020-06-09 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11104977B2 (en) 2018-03-30 2021-08-31 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Also Published As

Publication number Publication date
JP2011241412A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5045783B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5045784B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5712585B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5903838B2 (en) Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5903832B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
US10032536B2 (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
TWI513833B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
JP5983589B2 (en) Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP5903839B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP5703975B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5910004B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP5045782B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP2013104095A (en) Copper alloy for electronic equipment, method of manufacturing copper alloy for electronic equipment, plastically worked material of copper alloy for electronic equipment, and component for electronic equipment
JP6248389B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6248386B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2013104096A (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment, and part for electronic equipment
JP6248387B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150