JPH07258805A - Production of high-strength and high-conductivity copper alloy material for electronic equipment - Google Patents

Production of high-strength and high-conductivity copper alloy material for electronic equipment

Info

Publication number
JPH07258805A
JPH07258805A JP6075424A JP7542494A JPH07258805A JP H07258805 A JPH07258805 A JP H07258805A JP 6075424 A JP6075424 A JP 6075424A JP 7542494 A JP7542494 A JP 7542494A JP H07258805 A JPH07258805 A JP H07258805A
Authority
JP
Japan
Prior art keywords
strength
temperature
weight ratio
copper alloy
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6075424A
Other languages
Japanese (ja)
Other versions
JP2732355B2 (en
Inventor
Hironobu Sawato
広信 沢渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP6075424A priority Critical patent/JP2732355B2/en
Priority to KR1019950003411A priority patent/KR0160342B1/en
Publication of JPH07258805A publication Critical patent/JPH07258805A/en
Application granted granted Critical
Publication of JP2732355B2 publication Critical patent/JP2732355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a metallic material for electronic equipment, well balanced among various properties of strength, electric conductivity, bendability, solderability, etc., at a high level. CONSTITUTION:This copper alloy has a composition which consists of 0.05-0.40% Cr, 0.03-0.25% Zr, 0.10-1.80% Fe, 0.10-0.80% Ti, and the balance Cu with inevitable impurities or further contains either or both of 0.05-2.0% Zn and 0.01-1%, in total, of one or more elements among Sn, In, Mn, P, Mg, and Si and in which the weight ratio between Fe and Ti is regulated to 0.66-2.6 when Ti is 0.10-0.60% and to 1.1-2.6 when Ti is >0.60-0.80%. A stock of this copper alloy is successively subjected to the following treatments in the order named: (1) solution heat treatment at <950 deg.C; (2) cold working at 50-90% draft; (3) aging treatment at 300-580 deg.C; (4) cold working at 16-83% draft; (5) annealing at 350-700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、トランジスタや集積
回路(IC)等のような半導体機器のリ−ド材として好
適な、高い強度や電気伝導性等に加えて優れたエッチン
グ性及び曲げ加工性をも備えた電子機器用高力高導電性
銅合金材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable as a lead material for semiconductor devices such as transistors and integrated circuits (ICs), and has excellent etching properties and bending properties in addition to high strength and electrical conductivity. TECHNICAL FIELD The present invention relates to a method for producing a high-strength and high-conductivity copper alloy material for electronic devices, which also has properties.

【0002】[0002]

【従来技術とその課題】近年のICパッケ−ジの動向は
“軽薄短小化”に象徴されてきたが、最近、表面パッケ
−ジの普及によってその傾向は益々促進され、更にIC
チップの高機能化に伴う多ピン化及び低発熱化も同時に
進んでいる。一方、ICパッケ−ジの形態に係る具体的
な変遷過程を見ると、従来はDIPに代表されるピン挿
入型パッケ−ジが多用されてきたが、実装密度向上を目
的とした“表面実装”が主流になるにつれてSOJ,S
OP,QFP等の表面実装型への移行が進んでいる。そ
して、最近では、多ピン化に伴ってリ−ドピッチを縮小
したファインピッチQFPが増加し、更にTSOP,T
QFP等に代表される薄板化が進行している。
2. Description of the Related Art The trend of IC packages in recent years has been symbolized by "miniaturization, lightness, thinness, and miniaturization". Recently, the trend has been further promoted by the spread of surface packages, and
Along with the high functionality of chips, the number of pins and the reduction of heat generation are being advanced at the same time. On the other hand, looking at the concrete transition process relating to the form of the IC package, the pin insertion type package represented by DIP has been widely used in the past, but "surface mounting" for the purpose of improving the mounting density. Becomes mainstream, SOJ, S
The shift to surface mount types such as OP and QFP is progressing. In recent years, fine pitch QFP, which has a reduced lead pitch, has increased with the increase in the number of pins, and TSOP, T
Thinning plates represented by QFP and the like are in progress.

【0003】ところで、多ピン,狭ピッチのフレ−ムの
大半はエッチング加工により作られるのが一般的である
が、このエッチング加工では狙いとする板厚方向への食
刻のみならず板幅方向へのサイドエッチも起こることか
ら、リ−ド幅やリ−ド間隔に関する加工精度の観点から
素材板厚は薄いほど加工上有利となる。また、パッケ−
ジの薄肉化要求からもリ−ドフレ−ム材を薄くする必要
があり、そのため最近では板厚が0.15mmから0.125 mm、
更には0.10mmへと薄くなる傾向を示している。
By the way, most of the multi-pin, narrow-pitch frames are generally made by etching. In this etching, not only the intended etching in the plate thickness direction but also the plate width direction is performed. Since side etching also occurs, the thinner the material plate, the more advantageous in processing from the viewpoint of processing accuracy regarding the lead width and the lead interval. Also, the package
It is necessary to reduce the thickness of the lead frame material due to the demand for thinner wall thickness, so recently the plate thickness is 0.15 mm to 0.125 mm,
Furthermore, it has a tendency to become thinner to 0.10 mm.

【0004】しかし、このようなリ−ドフレ−ムの薄板
化やリ−ドの狭小化はリ−ド強度を低下させ、アセンブ
リ−工程中やデバイス実装時におけるリ−ドの変形を引
き起こす。そこで、このような問題を解決するためには
使用されるリ−ドフレ−ム材料の強度をできるだけ向上
させる必要がある。また、ICの高集積化や多ピン化が
進むと、これに伴い消費電力も大きくなってチップから
発生する熱の放散対策が無視できない重要な問題とな
る。
However, such thinning of the lead frame and narrowing of the lead reduce the lead strength and cause deformation of the lead during the assembly process and device mounting. Therefore, in order to solve such a problem, it is necessary to improve the strength of the lead frame material used as much as possible. Further, as the integration of ICs increases and the number of pins increases, power consumption also increases, and measures to dissipate heat generated from chips become an important issue that cannot be ignored.

【0005】このように、半導体機器のリ−ドフレ−ム
材には一般に次のような多岐多用な特性が要求されてい
る。 a) リ−ドが容易に変形することがない機械的強度を有
すること, b) リ−ドフレ−ムのパタ−ン形成に必要な優れたエッ
チング性及びプレス加工性を有すること, c) チップの発熱に対して効率良く熱放散させるための
高い熱伝導率を有すること, d) 電気的特性に優れていること, e) デバイス実装時における半田付け性に優れ、かつ半
田接合部の信頼性が高いこと, f) ボンディングのためのAgメッキ性に優れること, g) 加熱工程で表面が酸化することのない優れた耐酸化
性を有していること, h) 繰り返し曲げ性に優れていること, i) 価格が安価であること。
As described above, the lead frame material for semiconductor devices is generally required to have the following versatile characteristics. a) The mechanical strength of the lead does not easily deform, b) The excellent etching and press workability required for the pattern formation of the lead frame, and the chip. Has high thermal conductivity to dissipate heat efficiently with respect to heat generation, d) excellent electrical characteristics, e) excellent solderability during device mounting, and solder joint reliability High, f) excellent Ag plating property for bonding, g) excellent oxidation resistance that the surface does not oxidize in the heating process, and h) excellent repeated bendability. I) The price is low.

【0006】しかしながら、これら各種の要求特性に対
し、従来より使用されてきたリン青銅等の銅合金や42
アロイ(42wt%Ni-Fe)には何れも一長一短があり、前記
特性の全てを満足し得るものはなかった。特に、リ−ド
の多ピン化,小型化の進展に伴って形状の複雑化やピン
の狭小化が進み、リ−ドフレ−ム材料に一層良好な強
度,エッチング性及び曲げ加工性が求められていること
を考慮すれば、上記従来材はこれらの点で十分な性能を
有しているとは言い難かった。
However, copper alloys such as phosphor bronze, which have been conventionally used, and 42 have been used for these various required characteristics.
All alloys (42 wt% Ni-Fe) have advantages and disadvantages, and none of them satisfy all of the above characteristics. In particular, as the number of leads increases and the miniaturization progresses, the shape becomes more complicated and the pins become narrower, so that the lead frame material is required to have better strength, etching properties, and bending workability. In consideration of the above, it was difficult to say that the above-mentioned conventional material has sufficient performance in these points.

【0007】このようなことから、本発明が目的とした
のは、半導体機器のリ−ドフレ−ム材等として要求され
る前記各特性の何れをも満たす材料、特にビッカ−ス硬
さで約200以上の強度(引張強度で65kgf/mm2
上)を有すると共に50%IACS(42アロイの約15倍
程度)以上の導電率を示し、かつ曲げ加工性及びエッチ
ング性にも十分に優れた金属材料の安定提供手段を確立
することである。
Therefore, the object of the present invention is to achieve a material satisfying all of the above-mentioned characteristics required as a lead frame material for semiconductor devices, especially a Vickers hardness. A metal that has a strength of 200 or more (tensile strength of 65 kgf / mm 2 or more), a conductivity of 50% IACS (about 15 times that of 42 alloy) or more, and is excellent in bending workability and etching property. It is to establish a stable supply means of materials.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意検討を行ったところ、まず次のような
結論に達した。即ち、元々熱伝導度で42アロイをはる
かに上回る銅をベ−スとした銅合金は熱放散性において
他のリ−ドフレ−ム材料に比べ非常に有利である上、電
気的特性,Agめっき性,半田付け性,耐酸化性,延性等
の面でも比較的良好な特性を確保することができる。従
って、これらの特性を損なうことなく薄板化に対応可能
な強度と繰り返し曲げ性,エッチング性等を付与して従
来の銅合金の持つ欠点を改良できれば、半導体機器のリ
−ドフレ−ム材や導電性ばね材等として優れた材料を実
現できると考えられる。
Means for Solving the Problems The inventors of the present invention have made extensive studies in order to achieve the above object, and have reached the following conclusions. That is, a copper alloy based on copper, which originally has a thermal conductivity far exceeding 42 alloy, is very advantageous in terms of heat dissipation as compared with other lead frame materials, and also has electrical characteristics and Ag plating. It is possible to secure comparatively good characteristics in terms of solderability, solderability, oxidation resistance, and ductility. Therefore, if it is possible to improve the drawbacks of the conventional copper alloy by imparting strength capable of accommodating thin plate, repetitive bendability, etching property, etc. without deteriorating these characteristics, it is possible to use a lead frame material or a conductive material for semiconductor equipment. It is considered that an excellent material such as a flexible spring material can be realized.

【0009】そこで、固溶型銅合金に比べ導電率を低下
させずに高強度化が可能な、析出型銅合金の一つである
Cu−Cr−Zr合金に着目して研究を行った結果、「Cu−Cr
−Zr合金にTi及びFeを添加するか、 更にはZn,Sn,In,
Mn,P,MgあるいはSiのの1種又は2種以上をも添加す
ると共に、 それら各成分の含有量割合を厳密に調整した
銅合金を素材とし、 その溶体化処理条件を規制して結晶
粒径を制御した上で、更に特定条件での冷間加工,時
効,最終冷間加工及び最終焼鈍を施すと、 強度,導電
率,曲げ加工性,ばね特性,Agめっき性,半田接合部の
信頼性等の諸性質が一段と改善された材料を得ることが
できる」という知見を得ることができた。
Therefore, it is one of the precipitation-type copper alloys which can be made stronger without lowering the conductivity as compared with the solid solution type copper alloy.
As a result of research focusing on Cu-Cr-Zr alloy,
-Add Ti and Fe to the Zr alloy, or add Zn, Sn, In,
One or two or more of Mn, P, Mg or Si are added, and a copper alloy whose content ratio of each of these components is strictly adjusted is used as a raw material. Strength, conductivity, bendability, spring characteristics, Ag plating property, solder joint reliability can be obtained by controlling the diameter and then performing cold working, aging, final cold working and final annealing under specific conditions. It was possible to obtain the knowledge that "a material having various improved properties such as properties can be obtained."

【0010】本発明は、上記知見事項等を基にしてなさ
れたもので、 「Cr:0.05〜0.40%(以降、 成分割合を表す%は重量割
合とする),Zr:0.03〜0.25%, Fe:0.10〜1.80%,
Ti:0.10〜0.80% を含むか、 あるいは更に Zn:0.05〜2.0 %,Sn,In,Mn,P,Mg及びSiの1種以
上:総量で0.01〜1% のうちの1種又は2種以上を含有すると共に、 “0.10%
≦Ti≦0.60%”ではFe/Ti重量比が0.66〜2.6 を満足
し、 また“0.60%<Ti≦0.80%”ではFe/Ti重量比が1.
1 〜2.6 を満足していて残部がCu及び不可避的不純物か
ら成る銅合金の素材に、 1) 950℃未満の温度での溶体化処理, 2) 50〜90%の加工度での冷間加工, 3) 300〜580℃の温度での時効処理, 4) 16〜83%の加工度での冷間加工, 5) 350〜700℃の温度での焼鈍, なる処理をこの順に順次施すことによって、 強度,導電
率,曲げ加工性及び半田接合部の信頼性等の諸性質を高
いレベルでバランスさせた電子機器用高力高導電性銅合
金材を安定して製造できるようにした点」に大きな特徴
を有している。
The present invention has been made on the basis of the above findings and the like. "Cr: 0.05 to 0.40% (hereinafter,% representing a component ratio is a weight ratio), Zr: 0.03 to 0.25%, Fe : 0.10 to 1.80%,
Ti: 0.10 to 0.80% or further Zn: 0.05 to 2.0%, one or more of Sn, In, Mn, P, Mg and Si: 0.01 to 1% in total amount, or two or more. In addition to containing "0.10%
When ≦ Ti ≦ 0.60% ”, the Fe / Ti weight ratio satisfies 0.66 to 2.6, and when“ 0.60% <Ti ≦ 0.80% ”, the Fe / Ti weight ratio is 1.
A copper alloy material satisfying 1 to 2.6 with the balance being Cu and unavoidable impurities, 1) solution heat treatment at a temperature of less than 950 ° C, 2) cold working at a workability of 50 to 90% , 3) Aging treatment at a temperature of 300 to 580 ° C, 4) Cold working at a working degree of 16 to 83%, 5) Annealing at a temperature of 350 to 700 ° C. , That enables stable production of high-strength and high-conductivity copper alloy materials for electronic devices that balance various properties such as strength, conductivity, bending workability, and reliability of solder joints at a high level. " It has a great feature.

【0011】次に、本発明において銅合金素材の成分組
成及び処理条件を前記の如くに数値限定した理由を、そ
の作用と共に詳述する。 A) 成分組成 (a) Cr Cr,Zr,Ti及びFe等を含む本発明に係る銅合金におい
て、Crは合金の溶体化処理に次ぐ時効処理によって母相
中に析出し、その強度及び電気伝導性を向上させる作用
を発揮するが、Cr含有量が0.05%未満では前記作用によ
る所望の効果が得られない。一方、Cr含有量が0.30%付
近を超えると溶体化処理後にも未溶解Crが母相中に残留
するようになり、更にCr含有量が0.40%を超えると粗大
介在物として存在するようになって(圧延垂直断面をエ
ッチングした時にヒゲバリ状粗大介在物として現れ
る)、合金のエッチング性及び繰り返し曲げ性を劣化す
る。従って、Cr含有量は0.05〜0.40%と定めた。
Next, the reason why the component composition of the copper alloy material and the treatment conditions are numerically limited as described above in the present invention will be described in detail together with its action. A) Component composition (a) Cr In the copper alloy according to the present invention containing Cr, Zr, Ti, Fe, etc., Cr precipitates in the matrix by the aging treatment following the solution treatment of the alloy, and its strength and electrical conductivity However, if the Cr content is less than 0.05%, the desired effect due to the above action cannot be obtained. On the other hand, if the Cr content exceeds 0.30%, undissolved Cr will remain in the matrix even after solution treatment, and if the Cr content exceeds 0.40%, it will exist as coarse inclusions. (It appears as a mustache-like coarse inclusion when the vertical section of rolling is etched), which deteriorates the etching property and the repetitive bendability of the alloy. Therefore, the Cr content is set to 0.05 to 0.40%.

【0012】(b) Zr 本発明に係る銅合金において、Zrは時効処理によりCuと
化合物を形成して母相中に析出しこれを強化する作用を
発揮するが、Zr含有量が0.03%未満では前記作用による
所望の効果が得られず、一方、0.25%を超えて含有させ
ると溶体化処理後にも未溶解Zrが母相中に残留し電気伝
導度及び曲げ加工性を低下させることから、Zr含有量は
0.03〜0.25%と定めた。
(B) Zr In the copper alloy according to the present invention, Zr forms a compound with Cu by aging treatment and precipitates in the matrix phase to exert the action of strengthening it, but the Zr content is less than 0.03%. In the desired effect due to the above action is not obtained, on the other hand, if it is contained in excess of 0.25%, undissolved Zr remains in the mother phase even after solution treatment and decreases the electrical conductivity and bending workability, Zr content is
It was set to 0.03 to 0.25%.

【0013】(c) Ti及びFe 本発明に係る銅合金において、Ti及びFeは合金を時効処
理した時に母相中にTiとFeの金属間化合物を形成し、そ
の結果として合金強度を更に向上させる作用を発揮する
が、これらの含有量がそれぞれ0.01%未満では前記作用
による所望の効果が得られない。一方、Ti含有量が0.80
%を超えたり、Fe含有量が1.80%を超える場合には、Ti
とFeを主成分とする未溶解介在物が5μm以上の大きさ
となってエッチング性を著しく阻害する。ここで、注目
すべきは、合金の強度と電気伝導性に及ぼすTi含有量,
Fe含有量の影響であり、合金の強度と電気伝導性はTiと
Feの含有量の和が一定であってもFe/Ti重量比により大
きく変化するという点である。即ち、「0.10%≦Ti≦0.
60%」の範囲ではFe/Ti重量比が0.66未満である場合
に、また「0.60%<Ti≦0.80%」の範囲ではFe/Ti重量
比が1.1 未満であると何れも電気伝導性は著しく低下す
る。これに対し、合金の強度は「0.10%≦Ti≦0.80%」
の全Ti含有量範囲においてFe/Ti重量比がが2.6 を超え
ると減少する。つまり、Fe/Ti重量比に関して電気伝導
性と強度は相反する関係にあり、両者を高位にバランス
させる最適なFe/Ti重量比は、「0.10%≦Ti≦0.60%」
では0.66〜2.6 に、また「0.60%<Ti≦0.80%」では1.
1 〜2.6 ということになる。以上のことを踏まえて、合
金の強度,電気伝導性及びエッチング性を満足させるべ
くTi含有量は0.10〜0.80%、Fe含有量は0.10〜1.8 %と
それぞれ定め、かつ「0.10%≦Ti≦0.60%」ではFe/Ti
重量比を0.66〜2.6 に、また「0.60%<Ti≦0.80%」で
はFe/Ti重量比を1.1 〜2.6 にそれぞれ限定した。
(C) Ti and Fe In the copper alloy according to the present invention, Ti and Fe form an intermetallic compound of Ti and Fe in the matrix when the alloy is aged, and as a result, the alloy strength is further improved. However, if the content of each of these is less than 0.01%, the desired effect due to the above action cannot be obtained. On the other hand, the Ti content is 0.80
% Or the Fe content exceeds 1.80%, Ti
And undissolved inclusions containing Fe as the main component have a size of 5 μm or more, and significantly impair the etching property. Here, it should be noted that the Ti content, which affects the strength and electrical conductivity of the alloy,
It is the effect of Fe content, and the strength and electrical conductivity of the alloy are
The point is that even if the sum of the Fe contents is constant, it greatly changes depending on the Fe / Ti weight ratio. That is, `` 0.10% ≤ Ti ≤ 0.
If the Fe / Ti weight ratio is less than 0.66 in the "60%" range, and the Fe / Ti weight ratio is less than 1.1 in the "0.60% <Ti ≤ 0.80%" range, the electrical conductivity will be remarkably high. descend. On the other hand, the strength of the alloy is "0.10% ≤Ti≤0.80%"
It decreases when the Fe / Ti weight ratio exceeds 2.6 in the entire Ti content range. In other words, regarding the Fe / Ti weight ratio, electrical conductivity and strength are in a contradictory relationship, and the optimum Fe / Ti weight ratio that balances the two in a high order is “0.10% ≦ Ti ≦ 0.60%”
For 0.66 to 2.6, and for 0.60% <Ti ≤ 0.80% 1.
It means 1 to 2.6. Based on the above, the Ti content was set to 0.10 to 0.80% and the Fe content was set to 0.10 to 1.8% in order to satisfy the strength, electrical conductivity and etching property of the alloy, and "0.10% ≤Ti≤0.60 % ”Is Fe / Ti
The weight ratio was limited to 0.66 to 2.6, and in the case of "0.60% <Ti≤0.80%", the Fe / Ti weight ratio was limited to 1.1 to 2.6.

【0014】(d) Zn 本発明に係る合金においてZnは半田の耐熱剥離性を向上
させる作用を発揮し、そのため必要に応じて含有せしめ
られる成分であるが、その含有量が0.05%以下では前記
作用による所望の効果が得られず、一方、2.0 %を超え
て含有させると導電率の低下を招くことから、Zn含有量
は0.05〜2.0 %と定めた。
(D) Zn In the alloy according to the present invention, Zn has a function of improving the heat-resistant peeling property of the solder, and therefore, it is a component which may be contained if necessary, but if the content is 0.05% or less, The desired effect due to the action cannot be obtained, and on the other hand, if the content exceeds 2.0%, the conductivity is lowered, so the Zn content was set to 0.05 to 2.0%.

【0015】(e) Sn,In,Mn,P,Mg及びSi 本発明に係る合金において、Sn,In,Mn,P,Mg及びSi
は何れも合金の導電率を大きく低下させずに主として固
溶強化により強度を向上させる作用を発揮するため、必
要に応じてこれらの1種又は2種以上が添加されるが、
それらの含有量が総量で0.01%未満であると前記作用に
よる所望の効果が得られない。一方、これらの含有量が
総量で1.0 %を超えると合金の導電率及び曲げ加工性が
劣化するようになる。従って、Sn,In,Mn,P,Mgある
いはSiの含有量は総量で0.01〜1%と定めた。
(E) Sn, In, Mn, P, Mg and Si In the alloy according to the present invention, Sn, In, Mn, P, Mg and Si
Each of them has an effect of improving strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy, so one or more of these are added as necessary,
If the total content of them is less than 0.01%, the desired effect due to the above action cannot be obtained. On the other hand, if the total content of these exceeds 1.0%, the electrical conductivity and bendability of the alloy deteriorate. Therefore, the total content of Sn, In, Mn, P, Mg or Si is set to 0.01 to 1%.

【0016】B) 処理条件 (a) 溶体化処理 溶体化処理は、Cr,Zr,Ti及びFeを母相中に強制固溶さ
せてその後の時効により母相上に析出させ高い強度と導
電率を確保する工程であり、基本的には溶体化処理温度
の高い方がCr,Zr,Ti及びFeの固溶量が増加するので時
効による析出強化が大になると期待されるものである。
しかし、溶体化温度が高すぎると結晶粒が粗大化して曲
げ加工性が劣化するという問題が生じる。しかるに、本
発明に係る組成の合金について種々調査したところ、溶
体化温度が950℃未満では平均結晶粒径が60μm未
満の整粒組織となって最終的に十分満足できる曲げ加工
性を確保できるのに対して、溶体化温度が950℃以上
になると70μm以上の粗大粒を一部に含む2次再結晶
となって曲げ加工性を著しく劣化させることが明らかと
なった。そのため、本発明では溶体化を950℃未満で
実施することと定めた。なお、本発明に係る組成の合金
では溶体化処理時の冷却速度が速いほど高強度が得られ
やすいので、溶体化後の冷却は具体的には水冷とするこ
とが望ましい。
B) Treatment Conditions (a) Solution Treatment The solution treatment is to forcibly dissolve Cr, Zr, Ti and Fe in the mother phase and then precipitate them on the mother phase by aging to obtain high strength and conductivity. It is expected that the precipitation strengthening by aging will be large because the solid solution amount of Cr, Zr, Ti and Fe increases at higher solution treatment temperature.
However, if the solution heat treatment temperature is too high, the crystal grains become coarse and bending workability deteriorates. However, as a result of various investigations on the alloy having the composition according to the present invention, when the solution treatment temperature is lower than 950 ° C., a grain size controlled structure having an average crystal grain size of less than 60 μm is formed, and finally a sufficiently satisfactory bending workability can be secured. On the other hand, it became clear that when the solution treatment temperature becomes 950 ° C. or higher, secondary recrystallization containing coarse particles of 70 μm or larger in part becomes secondary recrystallization, and bending workability is significantly deteriorated. Therefore, in the present invention, it was determined that the solution treatment should be performed at a temperature lower than 950 ° C. In the alloy having the composition according to the present invention, the higher the cooling rate during the solution treatment, the higher the strength is likely to be obtained. Therefore, it is desirable that the cooling after the solution treatment is specifically water cooling.

【0017】(b) 冷間加工(1回目) 溶体化処理後に冷間加工を行う理由は、高強度化を図る
ために“加工硬化”と“時効工程での析出物の析出速
度”をより促進させることにある。そして、この冷間加
工の加工度を50〜90%と限定したのは、加工度が5
0%未満では冷間加工によって得られる上記効果が不十
分であって65kgf/mm2 以上の引張強度が得られず、一
方、90%を超える加工度にすると曲げ加工性が劣化す
るためである。
(B) Cold working (first time) The reason for performing cold working after solution treatment is to improve "work hardening" and "precipitation rate of precipitates in aging process" in order to increase strength. It is to promote. And the reason why the workability of this cold working is limited to 50 to 90% is that the workability is 5%.
If it is less than 0%, the above effect obtained by cold working is insufficient and a tensile strength of 65 kgf / mm 2 or more cannot be obtained. On the other hand, if the workability exceeds 90%, the bending workability deteriorates. .

【0018】(c) 時効処理 時効処理は材料の強度及び導電性を向上させるために不
可欠の工程であるが、時効条件が最適化されていないと
所望の強度及び導電率が得られない。即ち、時効温度が
300℃未満であると析出反応が殆ど促進されないので
所望の時効処理効果を確保できず、一方、時効温度が5
80℃を超えると軟化が進行して強度低下を招くことか
ら、本発明では時効処理温度を300〜580℃と限定
した。
(C) Aging treatment Although an aging treatment is an essential step for improving the strength and conductivity of the material, the desired strength and conductivity cannot be obtained unless the aging conditions are optimized. That is, if the aging temperature is less than 300 ° C., the precipitation reaction is hardly promoted, so that the desired aging treatment effect cannot be secured, while the aging temperature is 5
If the temperature exceeds 80 ° C., softening proceeds and the strength decreases, so the aging treatment temperature is limited to 300 to 580 ° C. in the present invention.

【0019】なお、上記時効処理は“等温焼鈍(等温時
効)”あるいは“高温から低温に温度を2回以上連続し
て変化させる焼鈍(多段時効)”の何れによって実施し
ても差支えはないが、示差走査熱量分析測定より本発明
に係る合金の析出温度領域は320〜440℃及び50
0〜580℃であることから、このデ−タを基礎にして
時効条件を以下のように定めるのが良い。イ ) 等温時効を施す場合 等温時効の場合は時効処理温度を350〜580℃に設
定するのが良い。これは、350℃未満では最低12時
間以上の時効時間が必要となるために現場操業上におい
て実際的でなく、一方、580℃を超えると析出物の粗
大化による軟化が進行して強度の低下が生じるためであ
る。ロ ) 多段時効を施す場合 多段時効の場合は、導電率をある程度回復させるために
初段時効は高温とされ、また析出の駆動力を2段目以降
にも残すべく時効時間を短くする。しかも、2段目の時
効温度を初段時効温度より低温にすることにより析出物
サイズ及び分布を細かく制御し、更なる時効硬化の促進
を狙う。なお、この場合も時効処理温度が300℃未満
の温度では析出反応が殆ど進行しないで析出物サイズ及
び分布の制御に長時間を要するので現場操業上実際的で
なく、一方、580℃を超える高温で時効すると軟化に
よる強度の低下が発生するので、時効処理温度を300
〜580℃に設定するのが良い。
The aging treatment may be carried out by either "isothermal annealing (isothermal aging)" or "annealing in which the temperature is continuously changed twice from high temperature to low temperature (multi-step aging)". According to the differential scanning calorimetry measurement, the precipitation temperature range of the alloy according to the present invention is 320 to 440 ° C. and 50.
Since it is 0 to 580 ° C., it is preferable to set the aging conditions as follows based on this data. A) When applying isothermal aging In the case of isothermal aging, the aging treatment temperature is preferably set to 350 to 580 ° C. If the temperature is lower than 350 ° C, an aging time of at least 12 hours or more is required, which is not practical in the field operation. On the other hand, if the temperature is higher than 580 ° C, softening due to coarsening of precipitates progresses and the strength decreases. Is caused. (B) When performing multi-step aging In the case of multi-step aging, the first step aging is performed at a high temperature in order to recover the conductivity to some extent, and the aging time is shortened so that the driving force for precipitation is retained in the second step and thereafter. Moreover, the size and distribution of the precipitates are finely controlled by making the aging temperature of the second step lower than the aging temperature of the first step, aiming at further promotion of age hardening. Even in this case, if the aging temperature is lower than 300 ° C, the precipitation reaction hardly progresses and it takes a long time to control the size and distribution of the precipitates, which is not practical in the field operation. When aging at 300 ° C, softening causes a decrease in strength.
It is better to set it up to 580 ° C.

【0020】(d) 冷間圧延(2回目) 時効処理後の冷間加工は、加工硬化と析出物の微細化に
より更に著しい強度上昇が確保されるために実施する。
しかし、この際の加工度が16%未満では引張強度で6
5kgf/mm2 以上の高強度を得ることができず、一方、8
3%を超える加工度を与えた場合には曲げ加工性が劣化
する。
(D) Cold rolling (second time) Cold working after aging treatment is carried out in order to secure a further remarkable increase in strength due to work hardening and refinement of precipitates.
However, when the workability at this time is less than 16%, the tensile strength is 6
It is not possible to obtain high strength of 5kgf / mm 2 or more, while 8
When the workability exceeds 3%, the bending workability deteriorates.

【0021】(e) 歪取り焼鈍 最終冷間加工の後、ばね性を向上させると共に延性を回
復させるために350〜700℃の温度で歪取り焼鈍が
施される。なお、この際の焼鈍温度が350℃未満であ
ると十分なばね性と延性を得るために長時間を要するた
め現場操業上において実際的ではなく、一方、700℃
を超える温度域では析出物の再溶解が著しくなり、焼鈍
時間を0.1 〜1秒の精度で制御しない限り強度及び導電
率が著しく低下するためやはり実際的でなくなる。
(E) Strain relief annealing After the final cold working, strain relief annealing is performed at a temperature of 350 to 700 ° C. in order to improve the spring property and restore the ductility. If the annealing temperature at this time is less than 350 ° C, it takes a long time to obtain sufficient springiness and ductility, which is not practical in the field operation.
In the temperature range exceeding 10 ° C., the re-dissolution of precipitates becomes remarkable, and unless the annealing time is controlled with an accuracy of 0.1 to 1 second, the strength and the electric conductivity are remarkably lowered, which is also impractical.

【0022】なお、上記製造条件の規定は本発明に係る
“溶体化処理以降の工程”に関してのものであり、それ
以前の工程における条件は任意のもので構わない。即
ち、例え本発明で規定する処理(溶体化処理→冷間加工
→時効処理→冷間加工→焼鈍)の前に実施される溶体化
処理,熱間加工,中間焼鈍,冷間加工等の条件について
は何ら規定する必要はない。
It should be noted that the above-mentioned definition of the manufacturing conditions relates to the "process after the solution treatment" according to the present invention, and the conditions in the processes before that may be arbitrary. That is, conditions such as solution treatment, hot working, intermediate annealing, cold working performed before the treatment (solution treatment → cold working → aging treatment → cold working → annealing) prescribed in the present invention. Need not be specified.

【0023】続いて、本発明の効果を実施例によって更
に具体的に説明する。
Next, the effects of the present invention will be described more specifically by way of examples.

【実施例】電気銅を原料として高周波溶解炉で表1及び
表2に示す各種成分組成の銅合金を1200℃で溶製
し、インゴットに鋳造した。そして、このインゴットを
面削した後、950℃に1時間加熱し、熱間圧延によっ
て8mm厚の板材とした。
[Examples] Copper alloy having various component compositions shown in Tables 1 and 2 was melted at 1200 ° C in a high frequency melting furnace using electrolytic copper as a raw material, and cast into an ingot. Then, the ingot was chamfered, heated at 950 ° C. for 1 hour, and hot-rolled into a plate material having a thickness of 8 mm.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】次に、この熱延板に表3及び表4に示す条
件の溶体化処理,冷間圧延,時効処理,最終冷間圧延及
び歪取り焼鈍を順次施し、 0.125mmの板とした。
Next, the hot rolled sheet was subjected to solution treatment, cold rolling, aging treatment, final cold rolling and strain relief annealing under the conditions shown in Tables 3 and 4 in order to obtain a 0.125 mm plate.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】次いで、得られたこれら各板材につき、結
晶粒度(平均結晶粒径)を調査すると共に、リ−ドフレ
−ム材としての評価項目として“引張強度", "伸び",
"電気伝導性", "繰り返し曲げ性", "半田付け性", "半
田耐熱剥離性", "Agめっき性"及び "エッチング性" を
調べた。
Next, the crystal grain size (average crystal grain size) of each of the obtained plate materials was investigated, and "tensile strength", "elongation", and "elongation" were evaluated as evaluation items as a lead frame material.
"Electrical conductivity", "Repeatable bendability", "Soldering property", "Soldering resistance against peeling", "Ag plating property" and "Etching property" were investigated.

【0030】ここで、“引張強度" と "伸び" は引張試
験によって測定し、 "電気伝導性"は導電率(%IACS) に
より評価した。なお、引張強度と導電率の評価基準は、
引張強度については65kgf/mm2 以上を可とし、導電率
については50%IACS以上を可とした。"繰り返し曲げ
性" は、「(曲げ半径)/(板厚)=1」の曲げ条件で
同一方向の90度繰り返し曲げ試験を行い、往復を1回
と数える方法で破断するまでの回数を数えて評価した。
なお、繰り返し曲げ性の評価基準は、曲げ回数4回以上
を可(○)とし、曲げ回数4回未満を否(×)とした。
Here, "tensile strength" and "elongation" were measured by a tensile test, and "electrical conductivity" was evaluated by electric conductivity (% IACS). The evaluation criteria of tensile strength and conductivity are
A tensile strength of 65 kgf / mm 2 or more was acceptable, and a conductivity of 50% IACS or more was acceptable. "Repeatable bendability" is a 90 degree repetitive bending test in the same direction under the bending condition of "(bending radius) / (sheet thickness) = 1", and the number of times to break is counted by counting the number of reciprocations as one. Evaluated.
In addition, the evaluation criteria of the repetitive bendability were that the number of bending times 4 or more was acceptable (◯), and the number of bending times less than 4 was unacceptable (x).

【0031】"半田濡れ性" は、ソルダ−チェッカ−を
用いメニスコグラフによる表面張力法でゼロクロス時間
を測定して評価した。なお、半田は 60%Sn-40%Pbを用
い、半田浴槽温度は230±5℃に設定したが、この
時、ゼロクロス時間が1秒未満を可(○)とし、1秒以
上を否(×)と評価した。"半田耐熱剥離性" は、試料
に約5μm厚の 90%Sn-10%Pb半田メッキを施してから1
50℃の大気中で1000時間まで保持し、この間10
0時間毎に取り出して「(曲げ半径)/(板厚)=1」
の曲げ条件で90度曲げを往復一回行い、曲げ部のめっ
き剥離の有無を調べて評価した。なお、半田耐熱剥離性
の評価基準は、剥離開始時間が500時間を超える場合
は可(○)とし、500時間以下を否(×)とした。
The "solder wettability" was evaluated by measuring the zero cross time by the surface tension method using a meniscograph using a solder checker. The solder used was 60% Sn-40% Pb, and the solder bath temperature was set to 230 ± 5 ° C. At this time, the zero-cross time was less than 1 second (○), and 1 second or more was rejected (× ) Was evaluated. "Soldering resistance against heat peeling" is 1 after applying 90% Sn-10% Pb solder plating of about 5 μm thickness to the sample.
Hold for up to 1000 hours in air at 50 ° C for 10
Take out every 0 hours and "(bending radius) / (plate thickness) = 1"
90 degree bending was performed once under reciprocal bending conditions, and the presence or absence of plating peeling at the bent portion was examined and evaluated. In addition, the evaluation criteria of the solder heat resistant peeling property were acceptable (◯) when the peeling start time exceeded 500 hours, and judged as bad (x) when the peeling start time was 500 hours or less.

【0032】"銀めっき性" は、試料表面に厚さ約5μ
mの銀めっきを施し、この試料を大気中にて350℃で
3分間加熱した後、銀めっき表面の膨れの有無を観察し
て評価した。なお、銀めっき性の評価基準は、膨れの発
生しなかった場合を可(○)とし、膨れが発生した場合
を否(×)とした。そして、 "エッチング性" は試料を
塩化第二鉄でエッチングして最大介在物サイズを走査型
電子顕微鏡で測定する方法で評価した。なお、エッチン
グ性の評価基準は、最大介在物サイズが1μm未満を良
好(◎),1μm以上5μm未満を可(○),5μm以
上を否(×)とした。これらの評価結果を、表5及び表
6に示す。
The "silver plating property" is about 5 μm thick on the sample surface.
m was plated with silver, the sample was heated in the air at 350 ° C. for 3 minutes, and then the presence or absence of blistering on the surface of the silver plating was observed and evaluated. In addition, the evaluation standard of the silver-plating property was that the case where no blistering occurred was acceptable (◯), and the case where the blistering occurred was not acceptable (x). The "etchability" was evaluated by etching the sample with ferric chloride and measuring the maximum inclusion size with a scanning electron microscope. The evaluation criteria for the etching property were that the maximum inclusion size was less than 1 μm (good), 1 μm or more and less than 5 μm was acceptable (◯), and 5 μm or more was not (x). The evaluation results are shown in Tables 5 and 6.

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】さて、表5及び表6に示される結果からは
次のことが明らかである。即ち、本発明の規定条件を満
たす試験番号1〜26では、得られる板材は何れも65kg
f/mm2 以上の引張強度,50%IACS以上の導電性を有
し、更に繰り返し曲げ性,半田付け性,半田耐熱剥離
性,Agめっき性及びエッチング性の全てに優れているこ
とが分かる。
From the results shown in Tables 5 and 6, the following is clear. That is, in the test numbers 1 to 26 satisfying the specified conditions of the present invention, the obtained plate materials are all 65 kg.
It can be seen that it has a tensile strength of f / mm 2 or more, a conductivity of 50% IACS or more, and is excellent in repeated bending property, soldering property, solder heat-resistant peeling property, Ag plating property and etching property.

【0036】これに対して、比較例27はCr含有量が本発
明で規定する上限値を超えているために得られる板材中
の介在物が5μm以上と粗大化しており、エッチング性
及び繰り返し曲げ性を劣化している。比較例29は、Zr含
有量が本発明で規定する上限値を超えているために得ら
れる板材の繰り返し曲げ性が劣っている。また、比較例
28,30及び32は、Cr,ZrあるいはFeの含有量が本発明で
規定する下限値未満であるために得られる板材の強度が
65kgf/mm2 に達していない。
On the other hand, in Comparative Example 27, since the Cr content exceeds the upper limit specified in the present invention, the inclusions in the obtained plate material are coarsened to 5 μm or more, and the etching property and the repeated bending The sex is deteriorated. In Comparative Example 29, since the Zr content exceeds the upper limit value specified in the present invention, the repetitive bendability of the obtained plate material is poor. Also, a comparative example
In Nos. 28, 30 and 32, the strength of the obtained plate material did not reach 65 kgf / mm 2 because the content of Cr, Zr or Fe was less than the lower limit value specified in the present invention.

【0037】比較例31は、Ti及びFeの各含有量が本発明
で規定する上限値を超えているために得られる板材の伝
導率が50%IACS未満に減少し、更に繰り返し曲げ性,
Agめっき性及びエッチング性が劣化している。比較例3
3,36及び38は、Fe/Ti重量比が本発明で規定する下限
値未満であるために得られる板材の伝導率が50%IACS
未満に低下しており、一方、比較例34,35及び37はFe/
Ti重量比が本発明で規定する上限値を上回っているので
得られる板材の強度が65kgf/mm2 未満と低い。
In Comparative Example 31, since the respective contents of Ti and Fe exceeded the upper limits specified in the present invention, the conductivity of the obtained plate material was reduced to less than 50% IACS, and further the bending property,
Ag plating property and etching property are deteriorated. Comparative example 3
Nos. 3, 36, and 38 have Fe / Ti weight ratios below the lower limit specified in the present invention, so that the conductivity of the plate material obtained is 50% IACS.
To less than Fe, while in Comparative Examples 34, 35 and 37, Fe /
Since the Ti weight ratio exceeds the upper limit specified in the present invention, the strength of the plate material obtained is low at less than 65 kgf / mm 2 .

【0038】また、比較例39は、Zn含有量が本発明で規
定する上限値を上回っているので得られる板材の導電率
が低くなっている。これに対して、比較例40〜43はZn含
有量が本発明で規定する下限値を下回っているか含有さ
れていないため、他の成分の影響はあるものの得られる
板材の半田耐熱剥離時間が500時間以下と劣った結果
となっている。比較例41〜47は、Sn,In,Mn,P,Mg及
びSiの総量が本発明で規定する上限値を上回っており、
得られる板材の導電率が低下している。
Further, in Comparative Example 39, the Zn content exceeds the upper limit defined by the present invention, and thus the electrical conductivity of the obtained plate material is low. On the other hand, in Comparative Examples 40 to 43, since the Zn content is below the lower limit value defined in the present invention or is not contained, the solder heat-resistant peeling time of the obtained plate material is 500 although there is an influence of other components. The result is inferior as it is less than the time. In Comparative Examples 41 to 47, the total amount of Sn, In, Mn, P, Mg and Si exceeds the upper limit value defined in the present invention,
The electrical conductivity of the obtained plate material is lowered.

【0039】そして、比較例48,49及び52は溶体化処理
温度が上限を超え結晶粒が粗大化したために得られる板
材の繰り返し曲げ性が劣化している。比較例50は、1回
目冷間圧延の加工度が本発明で規定する上限値を超えて
いて得られる板材の繰り返し曲げ性が劣化している。比
較例51では、1回目冷間圧延の加工度が本発明で規定す
る下限値を下回ったために得られる板材の強度の低下が
見られると同時に、2回目冷間圧延の加工度が上限値を
超えているため得られる板材は繰り返し曲げ性が劣化し
ている。比較例53及び54は、時効温度が本発明で規定す
る上限値を超えているため板材の軟化が進行し、得られ
る板材の強度が低下している。比較例55は、焼鈍温度が
700℃を超えているため再溶解が極度に進行し、得ら
れる板材の強度及び導電率が共に低下している。
In Comparative Examples 48, 49 and 52, the solution treatment temperature exceeded the upper limit and the crystal grains were coarsened, so that the repetitive bendability of the obtained plate material was deteriorated. In Comparative Example 50, the workability of the first cold rolling exceeds the upper limit defined by the present invention, and the repetitive bendability of the obtained plate material is deteriorated. In Comparative Example 51, the workability of the first cold rolling was lower than the lower limit defined by the present invention, and thus the strength of the obtained sheet material was decreased, and at the same time, the workability of the second cold rolling was higher than the upper limit. Since it exceeds the limit, the plate material obtained is repeatedly deteriorated in bendability. In Comparative Examples 53 and 54, the aging temperature exceeds the upper limit value specified in the present invention, so that the softening of the plate material progresses and the strength of the obtained plate material is lowered. In Comparative Example 55, since the annealing temperature exceeded 700 ° C., remelting proceeded extremely, and the strength and conductivity of the obtained plate material were both reduced.

【0040】[0040]

【効果の総括】以上に説明した如く、この発明によれ
ば、引張強度,伸び,電気伝導性,曲げ加工性,エッチ
ング性,Agめっき性,半田付け性及び半田耐熱剥離性が
高く、表面特性や信頼性にも優れた“リ−ドフレ−ム材
等の電子機器用として好適な高力高導電性銅合金材”を
安定して製造することが可能となり、電子機器の性能向
上に大きく寄与し得るなど、産業上極めて有用な効果が
もたらされる。
[Summary of Effects] As described above, according to the present invention, the tensile strength, elongation, electrical conductivity, bending workability, etching property, Ag plating property, solderability, and solder heat resistance peeling property are high, and the surface characteristics are high. And highly reliable "high-strength and high-conductivity copper alloy material suitable for electronic equipment such as lead frame material" can be stably manufactured, which greatly contributes to the performance improvement of electronic equipment. It has an extremely useful effect in industry.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて Cr:0.05〜0.40%, Zr:0.03〜0.25%, Fe:0.
10〜1.80%,Ti:0.10〜0.80%を含有すると共に、「0.
10%≦Ti≦0.60%」ではFe/Ti重量比が0.66〜2.6 を満
足し、また「0.60%<Ti≦0.80%」ではFe/Ti重量比が
1.1 〜2.6 を満足していて残部がCu及び不可避的不純物
から成る銅合金の素材に、 1) 950℃未満の温度での溶体化処理, 2) 50〜90%の加工度での冷間加工, 3) 300〜580℃の温度での時効処理, 4) 16〜83%の加工度での冷間加工, 5) 350〜700℃の温度での焼鈍, なる処理をこの順に順次施すことを特徴とする、電子機
器用高力高導電性銅合金材の製造方法。
1. A weight ratio of Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, and "0.
In the case of “10% ≦ Ti ≦ 0.60%”, the Fe / Ti weight ratio satisfies 0.66 to 2.6, and in the case of “0.60% <Ti ≦ 0.80%”, the Fe / Ti weight ratio is
A copper alloy material satisfying 1.1 to 2.6 with the balance being Cu and inevitable impurities, 1) solution heat treatment at a temperature below 950 ° C, 2) cold working at a workability of 50 to 90% , 3) aging treatment at a temperature of 300 to 580 ° C., 4) cold working at a working degree of 16 to 83%, 5) annealing at a temperature of 350 to 700 ° C. A method for producing a high-strength and high-conductivity copper alloy material for electronic devices, which is characterized.
【請求項2】 重量割合にて Cr:0.05〜0.40%, Zr:0.03〜0.25%, Fe:0.
10〜1.80%,Ti:0.10〜0.80%, Zn:0.05〜2.0 % を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti
重量比が0.66〜2.6 を満足し、また「0.60%<Ti≦0.80
%」ではFe/Ti重量比が1.1 〜2.6 を満足していて残部
がCu及び不可避的不純物から成る銅合金の素材に、 1) 950℃未満の温度での溶体化処理, 2) 50〜90%の加工度での冷間加工, 3) 300〜580℃の温度での時効処理, 4) 16〜83%の加工度での冷間加工, 5) 350〜700℃の温度での焼鈍, なる処理をこの順に順次施すことを特徴とする、電子機
器用高力高導電性銅合金材の製造方法。
2. The weight ratio of Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0%, and Fe / Ti in 0.10% ≤ Ti ≤ 0.60%
The weight ratio satisfies 0.66 to 2.6, and "0.60% <Ti ≤ 0.80
% ", The Fe / Ti weight ratio satisfies 1.1 to 2.6, and the balance is a copper alloy material consisting of Cu and inevitable impurities. 1) Solution treatment at a temperature lower than 950 ° C, 2) 50 to 90 % Cold working, 3) aging treatment at a temperature of 300 to 580 ° C, 4) cold working at a working degree of 16 to 83%, 5) annealing at a temperature of 350 to 700 ° C, The method for producing a high-strength and high-conductivity copper alloy material for electronic devices, which comprises sequentially performing the following processes in this order.
【請求項3】 重量割合にて Cr:0.05〜0.40%, Zr:0.03〜0.25%, Fe:0.
10〜1.80%,Ti:0.10〜0.80%を含み、更にSn,In,M
n,P,Mg及びSiの1種以上:総量で0.01〜1% を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti
重量比が0.66〜2.6 を満足し、また「0.60%<Ti≦0.80
%」ではFe/Ti重量比が1.1 〜2.6 を満足していて残部
がCu及び不可避的不純物から成る銅合金の素材に、 1) 950℃未満の温度での溶体化処理, 2) 50〜90%の加工度での冷間加工, 3) 300〜580℃の温度での時効処理, 4) 16〜83%の加工度での冷間加工, 5) 350〜700℃の温度での焼鈍, なる処理をこの順に順次施すことを特徴とする、電子機
器用高力高導電性銅合金材の製造方法。
3. A weight ratio of Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, including Ti: 0.10 to 0.80%, Sn, In, M
One or more of n, P, Mg and Si: contains 0.01 to 1% in total, and Fe / Ti in the case of "0.10% ≤Ti≤0.60%"
The weight ratio satisfies 0.66 to 2.6, and "0.60% <Ti ≤ 0.80
% ", The Fe / Ti weight ratio satisfies 1.1 to 2.6, and the balance is a copper alloy material consisting of Cu and inevitable impurities. 1) Solution treatment at a temperature lower than 950 ° C, 2) 50 to 90 % Cold working, 3) aging treatment at a temperature of 300 to 580 ° C, 4) cold working at a working degree of 16 to 83%, 5) annealing at a temperature of 350 to 700 ° C, The method for producing a high-strength and high-conductivity copper alloy material for electronic devices, which comprises sequentially performing the following processes in this order.
【請求項4】 重量割合にて Cr:0.05〜0.40%, Zr:0.03〜0.25%, Fe:0.
10〜1.80%,Ti:0.10〜0.80%, Zn:0.05〜2.0 %
を含み、更にSn,In,Mn,P,Mg及びSiの1種以上:総
量で0.01〜1%を含有すると共に、「0.10%≦Ti≦0.60
%」ではFe/Ti重量比が0.66〜2.6 を満足し、また「0.
60%<Ti≦0.80%」ではFe/Ti重量比が1.1 〜2.6 を満
足していて残部がCu及び不可避的不純物から成る銅合金
の素材に、 1) 950℃未満の温度での溶体化処理, 2) 50%以上90%以下の加工度での冷間加工, 3) 300〜580℃の温度での時効処理, 4) 16〜83%の加工度での冷間加工, 5) 350〜700℃の温度での焼鈍, なる処理をこの順に順次施すことを特徴とする、電子機
器用高力高導電性銅合金材の製造方法。
4. The weight ratio of Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, Zn: 0.05 to 2.0%
And one or more of Sn, In, Mn, P, Mg, and Si: 0.01 to 1% in total, and "0.10% ≤Ti≤0.60
%, The Fe / Ti weight ratio satisfies 0.66 to 2.6, and "0.
When 60% <Ti ≤ 0.80% ", Fe / Ti weight ratio satisfies 1.1-2.6 and the balance is copper alloy material consisting of Cu and unavoidable impurities. 1) Solution treatment at temperature below 950 ℃ , 2) Cold working at a working degree of 50% or more and 90% or less, 3) Aging treatment at a temperature of 300 to 580 ° C, 4) Cold working at a working degree of 16 to 83%, 5) 350 ~ A method for producing a high-strength and high-conductivity copper alloy material for electronic equipment, characterized in that annealing at a temperature of 700 ° C. and subsequent treatments are sequentially performed in this order.
JP6075424A 1994-03-22 1994-03-22 Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment Expired - Fee Related JP2732355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6075424A JP2732355B2 (en) 1994-03-22 1994-03-22 Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
KR1019950003411A KR0160342B1 (en) 1994-03-22 1995-02-22 Production of high-strength and high-conductivity copper alloy material for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6075424A JP2732355B2 (en) 1994-03-22 1994-03-22 Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment

Publications (2)

Publication Number Publication Date
JPH07258805A true JPH07258805A (en) 1995-10-09
JP2732355B2 JP2732355B2 (en) 1998-03-30

Family

ID=13575815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6075424A Expired - Fee Related JP2732355B2 (en) 1994-03-22 1994-03-22 Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment

Country Status (1)

Country Link
JP (1) JP2732355B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
CN100338244C (en) * 2003-12-12 2007-09-19 中国科学院金属研究所 Copper, iron and chrome ternary copper base alloy
CN101928846A (en) * 2009-06-18 2010-12-29 日立电线株式会社 Method for fabricating a copper alloy and copper alloy
JP2012012644A (en) * 2010-06-30 2012-01-19 Hitachi Cable Ltd Method for manufacturing copper alloy, and copper alloy
CN110066939A (en) * 2018-01-22 2019-07-30 中国科学院金属研究所 A kind of high-strength high-conductivity copper-chromium-zirconium alloy and its low-temperature deformation preparation method
CN114807672A (en) * 2022-03-23 2022-07-29 中南大学 Cu-Zn-Cr-Zr-Fe-Si alloy and preparation method thereof
CN115323216A (en) * 2022-07-28 2022-11-11 昆明冶金研究院有限公司北京分公司 High-performance copper alloy strip and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162553A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd Manufacture of high strength and high conductivity copper alloy having good bendability
JPH0499159A (en) * 1990-08-02 1992-03-31 Nikko Kyodo Co Ltd Production of high-strength and high-conductivity copper alloy for electronic equipment excellent in stress relaxation property and bendability
JPH059502A (en) * 1991-06-28 1993-01-19 Mitsubishi Materials Corp Production of soft magnetic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162553A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd Manufacture of high strength and high conductivity copper alloy having good bendability
JPH0499159A (en) * 1990-08-02 1992-03-31 Nikko Kyodo Co Ltd Production of high-strength and high-conductivity copper alloy for electronic equipment excellent in stress relaxation property and bendability
JPH059502A (en) * 1991-06-28 1993-01-19 Mitsubishi Materials Corp Production of soft magnetic powder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
CN100338244C (en) * 2003-12-12 2007-09-19 中国科学院金属研究所 Copper, iron and chrome ternary copper base alloy
CN101928846A (en) * 2009-06-18 2010-12-29 日立电线株式会社 Method for fabricating a copper alloy and copper alloy
JP2011001593A (en) * 2009-06-18 2011-01-06 Hitachi Cable Ltd Method for producing copper alloy, and copper alloy
JP2012012644A (en) * 2010-06-30 2012-01-19 Hitachi Cable Ltd Method for manufacturing copper alloy, and copper alloy
CN110066939A (en) * 2018-01-22 2019-07-30 中国科学院金属研究所 A kind of high-strength high-conductivity copper-chromium-zirconium alloy and its low-temperature deformation preparation method
CN110066939B (en) * 2018-01-22 2020-09-18 中国科学院金属研究所 High-strength high-conductivity copper-chromium-zirconium alloy and low-temperature deformation preparation method thereof
CN114807672A (en) * 2022-03-23 2022-07-29 中南大学 Cu-Zn-Cr-Zr-Fe-Si alloy and preparation method thereof
CN114807672B (en) * 2022-03-23 2023-09-08 中南大学 Cu-Zn-Cr-Zr-Fe-Si alloy and method for producing same
CN115323216A (en) * 2022-07-28 2022-11-11 昆明冶金研究院有限公司北京分公司 High-performance copper alloy strip and preparation method thereof

Also Published As

Publication number Publication date
JP2732355B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
KR950004935B1 (en) Copper alloy for electronic instruments
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JPS6386838A (en) Copper alloy for semiconductor lead
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JPH09157775A (en) Copper alloy for electronic equipment
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS61287156A (en) Blank for lead frame
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JP2673781B2 (en) Method for producing high strength and high conductivity copper alloy material for electronic equipment
JP2732490B2 (en) Manufacturing method of high strength and high conductivity copper alloy for electronic equipment
JPH0987814A (en) Production of copper alloy for electronic equipment
KR0175968B1 (en) Copper alloy suited for electrical components and high strength electric conductivity
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JPH07258807A (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
KR0160342B1 (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
JPH07258808A (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
JPH07258775A (en) High tensile strength and high conductivity copper alloy for electronic equipment
JPH034612B2 (en)
JP2764787B2 (en) High strength and high conductivity copper alloy for electronic equipment
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JPH07258776A (en) High strength and high electrical conductivity copper alloy for electronic appliance

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees