JP2732490B2 - Manufacturing method of high strength and high conductivity copper alloy for electronic equipment - Google Patents

Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Info

Publication number
JP2732490B2
JP2732490B2 JP6056348A JP5634894A JP2732490B2 JP 2732490 B2 JP2732490 B2 JP 2732490B2 JP 6056348 A JP6056348 A JP 6056348A JP 5634894 A JP5634894 A JP 5634894A JP 2732490 B2 JP2732490 B2 JP 2732490B2
Authority
JP
Japan
Prior art keywords
temperature
copper alloy
solution treatment
strength
conductivity copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6056348A
Other languages
Japanese (ja)
Other versions
JPH07268573A (en
Inventor
靖夫 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KINZOKU KK
Original Assignee
NITSUKO KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KINZOKU KK filed Critical NITSUKO KINZOKU KK
Priority to JP6056348A priority Critical patent/JP2732490B2/en
Publication of JPH07268573A publication Critical patent/JPH07268573A/en
Application granted granted Critical
Publication of JP2732490B2 publication Critical patent/JP2732490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子機器用高力高導電
性銅合金の製造方法に関するものであり、さらに詳しく
述べるならば、トランジスタや集積回路(IC)などの
ような半導体機器のリード材に好適な、高い強度、導電
性等に加えて優れたエッチング性及び曲げ加工性を備え
た銅合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength, high-conductivity copper alloy for electronic equipment, and more particularly, to a lead for semiconductor equipment such as transistors and integrated circuits (ICs). The present invention relates to a method for producing a copper alloy suitable for a material and having excellent etching properties and bending workability in addition to high strength and conductivity.

【0002】[0002]

【従来の技術】ICパッケージの動向として軽薄短小化
が言われているが、最近では表面パッケージの普及によ
り、その傾向は益々促進されている。さらにICチップ
の高機能化に伴う多ピン化、低熱抵抗化によるパッケー
ジ形態の変遷としては、従来多様されてきたDIPに代
表されるピン挿入型パッケージから実装密度向上を目的
とした表面実装が主流になるにつれて、SOJ,SO
P,QFPなどの表面実装パッケージへ移行している。
最近では多ピン化に伴いリードピッチを縮小したファイ
ンピッチQFPが増加し、さらにTSOP,TQFPな
どに代表されるパッケージの薄板化が進行している。
2. Description of the Related Art It is said that the trend of IC packages is to make them lighter and thinner. However, recently, the tendency is increasingly promoted by the spread of surface packages. Furthermore, as the number of pins and the thermal resistance of IC chips have increased due to the higher functionality of IC chips, the trend of package form has shifted from pin insertion type packages typified by DIP, which has been widely diversified, to surface mounting for the purpose of increasing mounting density. SOJ, SO
It has shifted to surface mount packages such as P and QFP.
Recently, fine pitch QFPs with a reduced lead pitch have been increased along with the increase in the number of pins, and packages such as TSOP and TQFP have become thinner.

【0003】多ピン、狭ピッチのフレームはエッチング
加工によりつくられるのが大半であるが、エッチングは
板厚方向だけではなく、板幅方向へサイドエッチも起こ
ることから、リード幅やリード間隔の加工限界は板厚に
依存し、板厚は薄いほど加工上有利となる。また、パッ
ケージの薄肉化の要求から、リードフレーム材を薄くす
る必要があり、その結果、板厚は最近では0.15mm
→0.125mm→0.10mmと薄くなっている。こ
のようなリードフレームの薄板化、リードの狭小化はフ
レーム全体やリードの剛性を低下させ、アセンブリー工
程中でのインナーリードの変形、デバイス実装時のアウ
ターリードの変形を引き起こしている。
[0003] A frame having a large number of pins and a narrow pitch is mostly formed by etching, but etching involves not only the thickness direction but also side etching in the width direction, so that the lead width and lead spacing are processed. The limit depends on the plate thickness, and the smaller the plate thickness, the more advantageous in processing. In addition, due to the demand for thinner packages, it is necessary to reduce the thickness of the lead frame material.
→ 0.125 mm → 0.10 mm. Such thinning of the lead frame and narrowing of the leads reduce rigidity of the entire frame and the leads, causing deformation of the inner leads during the assembly process and deformation of the outer leads during device mounting.

【0004】このような半導体機器のリードフレーム材
には一般に次のような特性が要求されている。 (1)インナーリードあるいはアウターリードが容易に
変形することがない機械的強度を有すること。 (2)リードフレームのパターン形成において、優れた
エッチン性及びプレス加工性を有すること。 (3)リードフレームの発熱に対して、効率良く熱放散
することが可能な高い熱伝導率を有すること。ICの高
集積化、多ピン化に伴い消費電力が大きくなるため発生
する熱の放散対策がIC設計上の重要な問題となる。銅
は、もともと熱伝導度で42アロイをはるかに上回る特
性をもっているので、銅合金は熱放散性において有利で
ある。 (4)電気的特性に優れていること。 (5)実装における半田付け性に優れること及び半田接
合部の信頼性が高いこと (6)ボンディングのためのAgメッキ性に優れるこ
と。 (7)加熱工程で銅合金表面が酸化しにくい耐熱酸化性
に優れていること。 (8)繰り返し曲げ性に優れていること。 (9)適正な価格であること。 以上半導体機器のリードフレーム材について要求される
性能について説明したが、本発明は同様な性能が要求さ
れる他の電子機器用材料としても使用される。
The following characteristics are generally required for such lead frame materials for semiconductor devices. (1) The inner lead or the outer lead has a mechanical strength that is not easily deformed. (2) To have excellent etchability and press workability in forming a lead frame pattern. (3) It has a high thermal conductivity capable of efficiently dissipating heat generated by the lead frame. Since the power consumption increases as the IC density increases and the number of pins increases, measures to dissipate the heat generated are an important issue in IC design. Copper alloys have an advantage in heat dissipation because copper originally has properties of much higher than 42 alloys in thermal conductivity. (4) Excellent electrical characteristics. (5) Excellent solderability in mounting and high reliability of solder joints. (6) Excellent Ag plating for bonding. (7) The copper alloy surface is excellent in thermal oxidation resistance, which is not easily oxidized in the heating step. (8) It is excellent in repeated bending property. (9) Appropriate price. Although the performance required for the lead frame material of the semiconductor device has been described above, the present invention is also used as a material for other electronic devices requiring the same performance.

【0005】しかしながら、これらの各種の要求特性に
対し、従来より使用されているりん青銅、コバール(商
品名)及び42合金には何れも一長一短があり、前記特
性の全てを満足し得るものではなかった。特に、リード
の多ピン化、小型化の進展に伴って形状の複雑化やピン
の狭小化が進み、材料に一層良好なリード強度、エッチ
ング性及び曲げ加工性が求められていることを考慮すれ
ば、上記従来材はこれらの点で十分な性能を有している
とは言い難かった。
However, with respect to these various required characteristics, conventionally used phosphor bronze, Kovar (trade name) and 42 alloy all have advantages and disadvantages, and cannot satisfy all of the above characteristics. Was. In particular, it is necessary to take into account the fact that the shape of the lead is becoming more complicated and the pin is becoming narrower as the number of pins and the size of the lead are increased, and materials are required to have better lead strength, etching properties and bending workability. For example, it was difficult to say that the conventional material had sufficient performance in these respects.

【0006】 また、電子機器用Cu−Cr−Zr系合
金自体は公知であって、例えば特開平5−117789
号公報によると、その製法としては半連続鋳造鋳塊を熱
間圧延し、両面面削後冷間圧延する方法が採用されてい
る。しかし、この処理法では十分な特性が得られない。
Further, Cu—Cr—Zr alloys for electronic devices are known per se, and are disclosed, for example, in Japanese Patent Application Laid-Open No. 5-117789.
According to the publication, a method of hot-rolling a semi-continuous cast ingot, cold-rolling after double-sided surface grinding, is employed as a method for producing the same. However, sufficient properties cannot be obtained by this processing method.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明
は、Cu−Cr−Zr系合金について、銅系材料の優れ
た電気的特性、熱の伝導性を生かすと同時に、半導体機
器のリード材として十分に満足できる強度、ばね特性、
エッチング性、及び曲げ加工性をも兼備した銅合金の製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a Cu-Cr-Zr-based alloy that makes use of the excellent electrical characteristics and heat conductivity of a copper-based material, and at the same time, is sufficient as a lead material for semiconductor equipment. Strength, spring characteristics,
An object of the present invention is to provide a method for producing a copper alloy having both etching properties and bending workability.

【0008】[0008]

【課題を解決するための手段】本発明は、(a)重量割
合でCr:0.05〜0.4%、及びZr:0.03〜
0.25%を含有すると共に、残部がCu及び不可避的
不純物からなる銅合金、(b)Cr:0.05〜0.4
%、Zr:0.03〜0.25%,Zn:0.06〜
2.0%を含有すると共に、残部がCu及び不可避的不
純物からなる銅合金、あるいは(c)Cr:0.05〜
0.4%、Zr:0.03〜0.25%、及びZn:
0.06〜2.0%を含有し、更にTi,Fe,Ni,
Sn,In,Mn,P,Mg及びSiの1種以上:総量
で0.01〜1.0%をも含有すると共に、残部がCu
及び不可避的不純物からなる電子機器用高力高導電性銅
合金の製造方法において、 (イ)次の何れかの方法による溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷
連続的に行う溶体化処理;(b)熱間圧延終了温度を
700℃以上とし、その直後に100℃/分以上の冷却
速度で水冷を行う熱間圧延、 (ロ)加工度20〜60%の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30%以下の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、 からなる工程を順次行うことを特徴とするエッチング性
の優れた電子機器用高力高導電性銅合金の製造方法に関
する。上記溶体化処理は、Cr及びZrを固溶させ、さ
らにTi,Fe,Ni,Sn,In,Mn,P,Mg及
びSiの1種以上が含有される場合は、これらも固溶さ
せてCrのヒゲバリ状介在物の生成を阻止するために行
う。本発明において「エッチング性の優れた」とは、圧
延板にエッチングで開かれた孔のエッチング面に5μm
以上の突起物がないことである
According to the present invention, (a) Cr: 0.05 to 0.4% by weight and Zr: 0.03 to
A copper alloy containing 0.25% and a balance of Cu and inevitable impurities, (b) Cr: 0.05 to 0.4
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
Copper alloy containing 2.0% and the balance being Cu and unavoidable impurities, or (c) Cr: 0.05 to
0.4%, Zr: 0.03 to 0.25%, and Zn:
0.06 to 2.0%, and further contains Ti, Fe, Ni,
At least one of Sn, In, Mn, P, Mg and Si: containing not less than 0.01 to 1.0% in total, and the balance Cu
And a method for producing a high-strength and high-conductivity copper alloy for electronic equipment comprising unavoidable impurities, comprising: (a) solution treatment by any of the following methods: (a) annealing at a temperature of 700 ° C. or more; solution heat treatment performs water cooling continuously; (b) hot rolling end temperature of 700 ° C. or higher, hot rolling to perform water cooling at 100 ° C. / min or more cooling rate immediately thereafter, (b) working ratio 20 (C) aging treatment at a temperature of 300 to 700 ° C, (d) cold rolling at a workability of 30% or less, and (e) strain relief annealing at a temperature of 350 to 700 ° C Etching characterized by sequentially performing the steps of
The present invention relates to a method for producing a high-strength and high-conductivity copper alloy for electronic equipment , which has excellent characteristics . The solution treatment is to form a solid solution of Cr and Zr.
And Ti, Fe, Ni, Sn, In, Mn, P, Mg and
When one or more of Si and Si are contained,
To prevent the formation of balding inclusions of Cr
U. In the present invention, “excellent in etching properties” refers to pressure.
5 μm on the etched surface of the hole opened by etching
That is, there is no protrusion .

【0009】Cr Crは、本合金を時効処理したときに単独で母相中に析
出して合金の強度及び耐熱性を向上させる作用を発揮す
るが、その含有量が0.05%未満では析出が不十分で
あるために所望の効果が期待できず、一方0.4%を超
えてCrを含有させると溶体化処理後にも未固溶Crが
母相中にCr相として残留し、その結果、圧延垂直断面
をエッチングした時にヒゲバリ状介在物として存在し、
エッチング性を著しく阻害する。以上の理由によりCr
含有量は0.05〜0.4%と定めた。
Cr Cr precipitates alone in the matrix when the present alloy is subjected to aging treatment, and exhibits the effect of improving the strength and heat resistance of the alloy. Is insufficient, the desired effect cannot be expected. On the other hand, if the Cr content exceeds 0.4%, undissolved Cr remains in the mother phase as a Cr phase even after the solution treatment, and as a result, , Exists as a whisker-like inclusion when the rolled vertical cross section is etched,
Significantly inhibits etchability. For the above reasons, Cr
The content was determined to be 0.05 to 0.4%.

【0010】Zr Zrには、時効処理によりCuと化合物を形成して母相
中に析出しこれを強化する作用があるが、その含有量が
0.03%未満では析出が不十分であるために所望の効
果が得られず、一方0.25%を超えてZrを含有させ
ると、溶体化処理後にも未固溶Zrが母相中にZr相と
して残留するようになってエッチング性、導電率及び加
工性の著しい低下を招くことから、Zr含有量は0.0
3〜0.25%と定めた。
Zr Zr has a function of forming a compound with Cu by aging treatment and precipitating and strengthening it in the matrix, but if the content is less than 0.03%, the precipitation is insufficient. When Zr is contained in an amount exceeding 0.25%, undissolved Zr remains in the mother phase as a Zr phase even after the solution treatment, resulting in an etching property and a conductive property. Zr content is 0.0
It was determined to be 3 to 0.25%.

【0011】Zn Znは、半田の耐熱剥離性を向上させる作用を有してい
るため必要により添加される成分であるが、その含有量
が0.06%未満では前記作用による所望の効果が得ら
れず、一方2.0%を超えてZnを含有させると導電率
が劣化することから、Zn含有量は0.06〜2.0%
と定めた。
Zn Zn is a component that is added as necessary because it has a function of improving the heat-peeling resistance of solder. However, if the content is less than 0.06%, a desired effect by the above-described effect is obtained. On the other hand, when Zn is contained in excess of 2.0%, the electrical conductivity deteriorates, so that the Zn content is 0.06 to 2.0%.
It was decided.

【0012】Ti,Fe,Ni,Sn,In,Mn,
P,Mg及びSi これらの成分は、何れも合金の導電性を大きく低下させ
ずに析出強化や固溶強化により向上させる作用を有して
おり、従って必要により1種または2種以上の添加がな
されるが、その含有量が総量で0.01%未満であると
前記作用による所望の効果が得られず、一方、総量で
l.0%を超える含有量になると合金の導電性及び加工
性を著しく劣化する。このため、単独添加あるいは2種
以上の場合添加がなされるTi,Fe,Ni,Sn,I
n,Mn,P,Mg及びSiの含有量は総量で0.01
〜1.0%と定めた。続いて、上記組成の銅合金の製造
工程を説明する。
[0012]Ti, Fe, Ni, Sn, In, Mn,
P, Mg and Si Each of these components significantly reduces the conductivity of the alloy.
Has the effect of improving by precipitation strengthening and solid solution strengthening
Therefore, if necessary, one or more kinds of additions are not necessary.
However, if the content is less than 0.01% in total amount
The desired effect of the above-mentioned action is not obtained, while
l. When the content exceeds 0%, the conductivity and processing of the alloy
Remarkably deteriorates the performance. For this reason, single addition or two types
In the above case, Ti, Fe, Ni, Sn, I
The content of n, Mn, P, Mg and Si is 0.01 in total.
1.01.0%. Subsequently, production of copper alloy of the above composition
The steps will be described.

【0013】溶体化処理 溶体化処理は、Cr、Zr及びTi等を母相中に固溶す
ることにより、後の時効処理で高強度の材料を得るとと
もにエッチング性を良好にするためである。溶体化処理
温度が高いほうがCr、Zr及びTi等のマトリックス
中へ固溶量が増し、時効後の強度が高くなりかつエッチ
ング性が良好になる。従って溶体化処理温度を700℃
以上とすることにより高強度を確保する。溶体化処理の
際の冷却速度が遅い場合には強化作用のないCrの不均
一析出物が発生し、強度の低下を招きまたエッチング性
を阻害するため、冷却速度は速いことが望まれる。
Solution treatment The solution treatment is to obtain a high-strength material in a later aging treatment and to improve the etching property by dissolving Cr, Zr, Ti and the like in a matrix. The higher the solution treatment temperature, the higher the amount of solid solution in the matrix of Cr, Zr, Ti, etc., the higher the strength after aging and the better the etching property. Therefore, the solution treatment temperature was set to 700 ° C.
With the above, high strength is secured. If the cooling rate during the solution treatment is low, a non-uniform precipitate of Cr having no strengthening action is generated, which causes a decrease in strength and impairs the etching property. Therefore, a high cooling rate is desired.

【0014】本合金の場合、溶体化処理を行う方法とし
て次の2通りが可能である。そのひとつは、好ましくは
2mm以下程度の板厚で焼鈍、水冷を連続的に行うライ
ンを用いる方法であり、この場合、前記理由により焼鈍
温度を700℃以上とし、焼鈍温度から水冷する必要が
ある。もうひとつの方法は、熱間圧延後水冷を行うこと
によって溶体化処理を兼ねる方法である。この際、前記
理由により熱間圧延の終了温度を700℃以上とし、そ
の直後に100℃/分以上の冷却速度で水冷を行えば強
度の低下を抑えられることがわかった。この方法では熱
間圧延直後に冷間圧延を行うことができるので、工程短
縮となり製造コストの点で有利である。溶体化処理後の
硬さはHv45〜90の範囲であることが好ましい。
In the case of the present alloy, the following two methods are available for performing the solution treatment. One of them is a method using a line for continuously performing annealing and water cooling with a plate thickness of preferably about 2 mm or less. In this case, it is necessary to set the annealing temperature to 700 ° C. or higher and water-cool from the annealing temperature for the above-described reason. . Another method is a method of performing solution treatment by performing water cooling after hot rolling. At this time, it was found that the hot rolling end temperature was set at 700 ° C. or higher for the above-described reason, and immediately after that, water cooling was performed at a cooling rate of 100 ° C./min or higher, whereby a decrease in strength could be suppressed. In this method, since cold rolling can be performed immediately after hot rolling, the process is shortened, which is advantageous in terms of manufacturing cost. The hardness after the solution treatment is preferably in the range of Hv 45 to 90.

【0015】冷間圧延 本発明においては、溶体化処理後に冷間圧延を行って、
加工硬化と、次の時効工程での析出物の析出を促進する
ことにより、高強度を得る。第1回目の冷間圧延は50
%以上の加工度で行う。冷間圧延の加工度を50%以上
とするのは、50%未満では上述の効果が不十分とな
り、所望の強度が得られないためである。冷間圧延後の
硬さはHv130〜160の範囲であることが好まし
い。
[0015] In the cold rolling present invention, by performing the cold rolling after the solution treatment,
High strength is obtained by promoting work hardening and precipitation of precipitates in the next aging step. The first cold rolling is 50
%. The reason why the working ratio of the cold rolling is set to 50% or more is that if the working ratio is less than 50%, the above-described effects become insufficient and a desired strength cannot be obtained. The hardness after cold rolling is preferably in the range of Hv 130 to 160.

【0016】時効処理 時効処理は、強度及び導電性を向上させるために本Cu
−Cr−Zr系合金では必要である。時効処理温度を3
00〜700℃とする理由は、300℃未満では時効処
理に時間がかかり経済的ではなく、700℃を超える
と、Cr及びZrが固溶してしまい、時効硬化型の合金
と特徴である強度及び導電性が得られないためである。
時効処理後の硬さはHv160〜200の範囲内である
ことが好ましい。
Aging treatment The aging treatment is carried out in order to improve the strength and conductivity.
-Cr-Zr alloy is necessary. Aging temperature 3
The reason for setting the temperature to 00 to 700 ° C. is that if the temperature is lower than 300 ° C., the aging treatment takes a long time, which is not economical. If the temperature is higher than 700 ° C., Cr and Zr are solid-dissolved, and the strength characteristic of the age hardening type alloy is characteristic. And conductivity cannot be obtained.
The hardness after the aging treatment is preferably in the range of Hv 160 to 200.

【0017】2回目冷間圧延 本発明においては時効処理後冷間圧延を行うことによ
り、加工硬化をもたらし、又前段の時効処理で生成した
析出物の微細化を図りさらに著しい強度上昇を起こさせ
る。この際の加工度を30%以上とするのは30%未満
では強度の上昇が見られず、また加工度を70%以下と
するのは、70%を超えると、最終製品の曲げ加工の際
曲げ部に肌荒れが発生するためである。第2回冷間圧延
後の硬さはHv180〜220の範囲内にあることが好
ましい。さらに、2回目冷間圧延の加工度は1回目冷間
圧延より少なく30〜40%の範囲とすることが好まし
い。
Second Cold Rolling In the present invention, cold rolling is performed after the aging treatment, thereby causing work hardening, and also miniaturizing the precipitates formed in the previous aging treatment to further increase the strength. . When the working ratio is set to 30% or more at this time, no increase in strength is observed when the working ratio is less than 30%, and when the working ratio is set to 70% or less, when the working ratio exceeds 70%, bending of the final product is performed. This is because rough skin occurs at the bent portion. The hardness after the second cold rolling is preferably in the range of Hv 180 to 220. Further, the working ratio of the second cold rolling is preferably smaller than that of the first cold rolling and is in the range of 30 to 40%.

【0018】歪取焼鈍 本発明においては、以上の加工及び熱処理状態からばね
性を向上させかつ延性を回復させるために、350〜7
00℃で歪取焼鈍を行う。歪取焼鈍温度を350℃〜7
00℃とした理由は、350℃未満では十分なばね性と
延性が得られないためであり、700℃を超えると析出
物の再固溶が生じ、強度が著しく低下するためである。
[0018] In the stress relief annealing present invention, in order to recover the above processing and and ductility is improved elasticity from the heat treatment conditions, 350-7
Perform strain relief annealing at 00 ° C. Set the annealing temperature at 350 ° C to 7
The reason why the temperature is set to 00 ° C. is that if the temperature is lower than 350 ° C., sufficient resilience and ductility cannot be obtained. If the temperature exceeds 700 ° C., the precipitates are re-dissolved and the strength is significantly reduced.

【0019】[0019]

【作用】以上説明したように、本発明においては溶体化
処理によりCr,Zrの未固溶分を実質的になくし、か
つその後の高い加工度での1回目冷間圧延を可能にす
る。次に時効処理と2回目の冷間圧延により、時効析出
物を微細化しかつ加工硬化状態を得ることにより強度を
上昇させる。最後に歪取焼鈍により加工歪を除去する。
As described above, in the present invention, the solution treatment substantially eliminates the undissolved content of Cr and Zr and enables the first cold rolling at a high working ratio thereafter. Next, by aging treatment and second cold rolling, the aging precipitates are refined and a work-hardened state is obtained, thereby increasing the strength. Finally, work strain is removed by strain relief annealing.

【0020】[0020]

【実施例】続いて、本発明の効果を、特に好ましい組成
範囲を示す実施例により更に具体的に説明する。まず、
電気銅あるいは無酸素銅を主原料とし、銅クロム母合
金、銅ジルコニウム母合金、亜鉛、チタン、ニッケル、
スズ、インジウム、マンガン、マグネシウム及び銅リン
母合金を副原料とし、高周波溶解炉にて図1、2の表に
示す各種成分組成の銅合金を真空中あるいはAr雰囲気
中で溶製し、厚さ30mmのインゴットに鋳造した。次
に、これら各インゴットを熱間加工及び溶体化処理、1
回目の冷間圧延、時効処理、最終の冷間圧延、歪取焼鈍
を表1、2に示す条件で順次行い、0.15mmの板と
した。なお、溶体化処理は表1、2の方法で行い、その
中で焼鈍−水冷は厚みが1.5mmの板について行った
処理であり、また熱圧−水冷は厚みが8mmの板につい
て表中の熱間圧延仕上温度について行った処理である。
熱圧−水冷の場合は熱間圧延後直ちに冷間圧延を行っ
た。
EXAMPLES Next, the effects of the present invention will be described more specifically with reference to examples showing particularly preferable composition ranges. First,
The main raw material is electrolytic copper or oxygen-free copper, copper chromium mother alloy, copper zirconium mother alloy, zinc, titanium, nickel,
Using tin, indium, manganese, magnesium and copper phosphorus mother alloys as auxiliary raw materials, copper alloys of various component compositions shown in the tables of FIGS. 1 and 2 are melted in a vacuum or in an Ar atmosphere in a high frequency melting furnace. It was cast into a 30 mm ingot. Next, each of these ingots was subjected to hot working and solution treatment,
The first cold rolling, aging treatment, final cold rolling, and strain relief annealing were sequentially performed under the conditions shown in Tables 1 and 2 to obtain a 0.15 mm plate. The solution treatment was performed according to the methods shown in Tables 1 and 2. Among them, the annealing-water cooling was performed on a plate having a thickness of 1.5 mm, and the heat-pressure cooling was performed on a plate having a thickness of 8 mm. This is the process performed for the hot rolling finishing temperature of
In the case of hot pressure-water cooling, cold rolling was performed immediately after hot rolling.

【0021】そして、得られた板材から各種の試験片を
採取して材料試験を行い、電子機器材料としての特性を
評価した。なお、評価した特性は、強度、伸び、導電
性、エッチング性、曲げ性、及び半田耐熱剥離性であ
る。強度及び伸びは引張試験により測定し、導電性は導
電率(%IACS)を求めた。
Then, various test pieces were collected from the obtained plate material and subjected to a material test to evaluate characteristics as electronic device materials. The properties evaluated were strength, elongation, conductivity, etching properties, bending properties, and solder heat-peelability. The strength and elongation were measured by a tensile test, and the conductivity was determined by conductivity (% IACS).

【0022】「エッチング」については、液温35℃、
45°ボーメ塩化第二鉄を用いて試料に幅10mm,長
さ10mmの孔を開け、圧延方向に対し直角のエッチン
グ面をSEMで観察することによりエッチング性の評価
を行った。平滑なエッチング面が見られた場合を○、エ
ッチング面に5μm以上の突起物が見られた場合を×と
した。
Regarding the “etching”, a liquid temperature of 35 ° C.
A sample having a width of 10 mm and a length of 10 mm was formed in the sample using 45 ° Baume ferric chloride, and the etchability was evaluated by observing the etched surface perpendicular to the rolling direction by SEM. The case where a smooth etched surface was observed was evaluated as ○, and the case where a protrusion of 5 μm or more was observed on the etched surface was evaluated as ×.

【0023】曲げ加工性については、図5に示すように
10mmの試験片を内側曲げ半径0.4mm(板厚)で
圧延方向と直角に、片側に90°の曲げを繰り返し行
い、破断までの曲げ回数(往復で1回とする)を測定し
た。試験はn=5で行い、その平均値で評価を行った。
Regarding the bending workability, as shown in FIG. 5, a 10 mm test piece was repeatedly bent at 90 ° to one side in a direction perpendicular to the rolling direction at an inner bending radius of 0.4 mm (plate thickness), and until the fracture. The number of times of bending (to be one round trip) was measured. The test was performed with n = 5, and the average was used for evaluation.

【0024】半田耐熱剥離性の調査は、素材に5μm厚
の半田(90%Sn−10%Pb)メッキを施した後、
150℃の高温槽に1000時間まで保持し、この間1
00時間毎に取り出して90°曲げ往復1回を施して半
田剥離の開始時間を調べる方法によった。なお1000
時間まで剥離のなかったものは調査結果を「1000
h」と表示した。
The examination of the soldering heat-peelability was carried out after plating the material with 5 μm thick solder (90% Sn-10% Pb),
Hold in a high-temperature bath at 150 ° C for up to 1000 hours.
It was taken out every 00 hours and subjected to one round trip of 90 ° bending to check the start time of solder peeling. 1000
If there was no peeling by the time,
h ".

【0025】これらの調査結果を図3、4の表に示す。
これらの表に示される結果からは次のことが明らかであ
る。即ち、本発明合金1〜16は、いずれも強度、導電
性、曲げ性、応力緩和特性が共に優れており、また、そ
の他の特性についても十分に良好な評価が得られるもの
である。
The results of these investigations are shown in the tables of FIGS.
The following are clear from the results shown in these tables. That is, the alloys 1 to 16 of the present invention are all excellent in strength, conductivity, bendability, and stress relaxation properties, and can be sufficiently evaluated with respect to other properties.

【0026】これに対して、比較合金は17はCr含有
量が十分でないため強度が劣っており、また比較合金1
8、19はZr,Cr含有量がそれぞれ上限値を超えて
いるためエッチング性及び曲げ性が劣っている。次に、
比較合金20はZn含有量が上限値を超えているため導
電性が劣っている。比較合金21は溶体化処理温度が下
限値より低いために、また比較合金22は溶体化処理時
の冷却速度が低いため強度が劣っている。比較合金22
は溶体化処理後の加工度が、また比較合金24は最終冷
間圧延の加工度が下限値を下回っているため強度が劣っ
ている。比較合金24は歪取焼鈍の温度が上限値を超え
ているために、強度が劣っている例である。
On the other hand, the comparative alloy 17 was inferior in strength because of insufficient Cr content.
Samples Nos. 8 and 19 are inferior in etchability and bendability because the contents of Zr and Cr each exceed the upper limit. next,
The comparative alloy 20 is inferior in conductivity because the Zn content exceeds the upper limit. The strength of the comparative alloy 21 is inferior because the solution treatment temperature is lower than the lower limit value, and the comparative alloy 22 is inferior in strength because the cooling rate during the solution treatment is low. Comparative alloy 22
Is the workability after the solution treatment, and the comparative alloy 24 is inferior in strength because the workability of the final cold rolling is lower than the lower limit. The comparative alloy 24 is an example in which the strength is inferior because the temperature of the strain relief annealing exceeds the upper limit value.

【0027】なお、本発明の実施例合金No.4のTi
に代えて、0.08%のNi,0.07%のIn,0.
05のMn,0.02%のP,0.05%のMg,0.
06%のSiをそれぞれ単独添加した合金につき、本発
明合金4と同じ熱処理及び加工を行ったとこど同様の結
果が得られた。
The alloy No. of the embodiment of the present invention was used. 4 Ti
Instead of 0.08% Ni, 0.07% In, 0.
Mn of 0.05, 0.02% of P, 0.05% of Mg,
When the same heat treatment and processing as those of the alloy 4 of the present invention were performed on the alloy to which only 06% of Si was independently added, the same results were obtained.

【0028】[0028]

【発明の効果】本発明の製造方法を採用することによ
り、強度、導電性、エッチング性及び曲げ性の良好な銅
合金を得ることが可能となり、電子機器類の小型化、薄
肉化に大きく寄与し得るなど、産業上極めて有用な効果
がもたらされる。
By adopting the manufacturing method of the present invention, it is possible to obtain a copper alloy having good strength, conductivity, etching property and bendability, which greatly contributes to miniaturization and thinning of electronic equipment. And industrially very useful effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金の組成ならびに製造条件を示す図表
である。
FIG. 1 is a table showing the composition and production conditions of the alloy of the present invention.

【図2】比較合金の組成ならびに製造条件を示す図表で
ある。
FIG. 2 is a table showing the composition and manufacturing conditions of a comparative alloy.

【図3】表1の合金の特性を示す図表である。FIG. 3 is a table showing characteristics of the alloys in Table 1.

【図4】表2の合金の特性を示す図表である。FIG. 4 is a chart showing characteristics of the alloys in Table 2.

【図5】曲げ試験方法の説明図である。FIG. 5 is an explanatory diagram of a bending test method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C22F 1/00 630 8719−4K C22F 1/00 630A 8719−4K 630K 661 8719−4K 661A 681 8719−4K 681 682 8719−4K 682 683 8719−4K 683 685 8719−4K 685Z 686 8719−4K 686Z 691 8719−4K 691B 8719−4K 691C 692 8719−4K 692A 694 8719−4K 694A ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication // C22F 1/00 630 8719-4K C22F 1/00 630A 8719-4K 630K 661 8719-4K 661A 681 8719-4K 681 682 8719-4K 682 683 8719-4K 683 684 8719-4K 885Z 686 8719-4K 686Z 691 8719-4K 691B 8719-4K 691C 692 8719-4K 692A 694 8719-4K 94

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量割合で、Cr:0.05〜0.4%
及びZr:0.03〜0.25%を含有すると共に、残
部がCu及び不可避的不純物からなる電子機器用高力高
導電性銅合金の製造方法において、 (イ)Cr及びZrを固溶させてCrのヒゲバリ状介在
物の生成を阻止するために次の何れかの方法により行う
溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷
を連続的に行う溶体化処理;(b)熱間圧延終了温度を
700℃以上とし、その直後に100℃/分以上の冷却
速度で水冷を行う熱間圧延、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、 からなる工程を順次行うことにより、圧延板にエッチン
グで開かれた孔のエッチング面に5μm以上の突起物が
なくエッチング性に優れた電子機器用高力高導電性銅合
を製造する方法。
1. Cr: 0.05 to 0.4% by weight
And Zr: with containing from 0.03 to 0.25%, the balance in the manufacturing method of Cu and electronics high strength high conductivity copper alloy consisting of unavoidable impurities, dissolved therein in a solid state (i) Cr and Zr Cr-burr-like interposition
Solution treatment is performed by any of the following methods to prevent the formation of a product : (a) annealing at a temperature of 700 ° C. or more, and water cooling from the temperature
Continuously performing solution treatment; (b) hot rolling end temperature of 700 ° C. or higher, hot rolling to perform water cooling at 100 ° C. / min or more cooling rate immediately thereafter, (b) working ratio of 50% or more (C) aging treatment at a temperature of 300 to 700 ° C, (d) cold rolling at a workability of 30 to 70%, and (e) strain relief annealing at a temperature of 350 to 700 ° C. By sequentially performing the following steps,
Protrusions of 5μm or more on the etched surface of the hole
Method for producing high strength and high conductivity copper alloy for electronic equipment without etching property .
【請求項2】 重量割合で、Cr:0.05〜0.4
%、Zr:0.03〜0.25%,Zn:0.06〜
2.0%を含有すると共に、残部がCu及び不可避的不
純物からなる電子機器用高力高導電性銅合金の製造方法
において、 (イ)Cr及びZrを固溶させてCrのヒゲバリ状介在
物の生成を阻止するために次の何れかの方法により行う
溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷
連続的に行う溶体化処理;(b)熱間圧延終了温度を
700℃以上とし、その直後に100℃/分以上の冷却
速度で水冷を行う熱間圧延、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、 からなる工程を順次行うことにより、圧延板にエッチン
グで開かれた孔のエッチ ング面に5μm以上の突起物が
なくエッチング性に優れた電子機器用高力高導電性銅合
を製造する方法。
2. Cr: 0.05 to 0.4 by weight.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
Together containing 2.0%, in the manufacturing method of the balance electronics high strength high conductivity copper alloy consisting of Cu and unavoidable impurities, (b) by solid solution of Cr and Zr Cr Higebari like intervention
Solution treatment performed by any of the following methods to prevent the formation of products : (a) Solution treatment in which annealing at a temperature of 700 ° C. or more and water cooling from the temperature are continuously performed ; (b) hot rolling end temperature of 700 ° C. or higher, hot rolling to perform water cooling at 100 ° C. / min or more cooling rate immediately thereafter, (b) working ratio of 50% or more of cold rolling, (c) 300 Aging treatment at a temperature of ~ 700 ° C, (d) cold rolling at a working degree of 30-70%, and (e) strain relief annealing at a temperature of 350-700 ° C, thereby sequentially performing rolling. Etchin on plate
Projections of more than 5μm etch ring surface of the open pores in the grayed is
Method for producing high strength and high conductivity copper alloy for electronic equipment without etching property .
【請求項3】 重量割合で、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.06
〜2.0%を含有し、更にTi,Fe,Ni,Sn,I
n,Mn,P,Mg及びSiの1種以上:総量で0.0
1〜1.0%をも含有すると共に、残部がCu及び不可
避的不純物からなる電子機器用高力高導電性銅合金の製
造方法において、 (イ)Cr及びZrならびにTi,Fe,Ni,Sn,
In,Mn,P,Mg及びSiの1種以上を固溶させて
Crのヒゲバリ状介在物の生成を阻止するために次の何
れかの方法により行う溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷
連続的に行う溶体化処理;(b)熱間圧延終了温度を
700℃以上とし、その直後に100℃/分以上の冷却
速度で水冷を行う熱間圧延、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、 からなる工程を順次行うことにより、圧延板にエッチン
グで開かれた孔のエッチング面に5μm以上の突起物が
なくエッチング性に優れた電子機器用高力高導電性銅合
を製造する方法。
3. Cr: 0.05 to 0.4 by weight.
%, Zr: 0.03 to 0.25%, and Zn: 0.06
-2.0%, and further contains Ti, Fe, Ni, Sn, I
at least one of n, Mn, P, Mg and Si: 0.0 in total
A method for producing a high-strength, high-conductivity copper alloy for electronic equipment, which contains 1 to 1.0% and the balance consists of Cu and unavoidable impurities. (A) Cr and Zr and Ti, Fe, Ni, Sn ,
In one or more of In, Mn, P, Mg and Si
What should be done to prevent the formation of balding inclusions in Cr
Solution treatment performed by any of these methods : (a) solution treatment in which annealing at a temperature of 700 ° C. or more and water cooling from that temperature are performed continuously ; (b) hot rolling end temperature is 700 ° C. or more; Immediately thereafter, hot rolling in which water cooling is performed at a cooling rate of 100 ° C./min or more, (b) cold rolling with a working degree of 50% or more, (c) aging treatment at a temperature of 300 to 700 ° C., (d) working degree 30% to 70% cold rolling, and (e) stress relief annealing at a temperature of 350 to 700 ° C., step by sequentially performing consisting etching the rolled plate
Protrusions of 5μm or more on the etched surface of the hole
Method for producing high strength and high conductivity copper alloy for electronic equipment without etching property .
JP6056348A 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment Expired - Fee Related JP2732490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6056348A JP2732490B2 (en) 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6056348A JP2732490B2 (en) 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Publications (2)

Publication Number Publication Date
JPH07268573A JPH07268573A (en) 1995-10-17
JP2732490B2 true JP2732490B2 (en) 1998-03-30

Family

ID=13024733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6056348A Expired - Fee Related JP2732490B2 (en) 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JP2732490B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958560B1 (en) 2005-04-15 2010-05-17 제이에프이 세이미츠 가부시키가이샤 Alloy material for dissipating heat from semiconductor device and method for production thereof
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
JP4845069B2 (en) * 2009-01-26 2011-12-28 古河電気工業株式会社 Wire conductor for wiring, method for manufacturing wire conductor for wiring, wire for wiring and copper alloy wire
JP5060625B2 (en) * 2011-02-18 2012-10-31 三菱伸銅株式会社 Cu-Zr-based copper alloy plate and manufacturing method thereof
JP6146963B2 (en) * 2012-07-06 2017-06-14 古河電気工業株式会社 Copper alloy rolled foil for secondary battery current collector and method for producing the same
CN109937479B (en) * 2016-12-27 2023-01-13 古河电气工业株式会社 Lead frame material, method for manufacturing the same, and semiconductor package

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139742A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Manufacture of high-strength and high-conductivity copper alloy

Also Published As

Publication number Publication date
JPH07268573A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
KR950004935B1 (en) Copper alloy for electronic instruments
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
KR950013290B1 (en) Material for conductive parts of electronic and electric appliances
JP2002294364A (en) Copper alloy sheet or bar for electronic and electrical parts and production method therefor
JPS6386838A (en) Copper alloy for semiconductor lead
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP2732490B2 (en) Manufacturing method of high strength and high conductivity copper alloy for electronic equipment
KR950013291B1 (en) Material for conductive parts of electronic and electric appliances
JPH09157775A (en) Copper alloy for electronic equipment
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP3459520B2 (en) Copper alloy for lead frame
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JP2673781B2 (en) Method for producing high strength and high conductivity copper alloy material for electronic equipment
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH10183274A (en) Copper alloy for electronic equipment
JPH0978162A (en) Copper alloy for electronic equipment and its production
GB2287716A (en) Copper alloy suited for electrical components and having high strength and high electric conductivity
JP2514926B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH034612B2 (en)
JP2764787B2 (en) High strength and high conductivity copper alloy for electronic equipment
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPH07258807A (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees