JPH07268573A - Production of high strength and high conductivity copper alloy for electronic equipment - Google Patents

Production of high strength and high conductivity copper alloy for electronic equipment

Info

Publication number
JPH07268573A
JPH07268573A JP5634894A JP5634894A JPH07268573A JP H07268573 A JPH07268573 A JP H07268573A JP 5634894 A JP5634894 A JP 5634894A JP 5634894 A JP5634894 A JP 5634894A JP H07268573 A JPH07268573 A JP H07268573A
Authority
JP
Japan
Prior art keywords
temperature
strength
cold rolling
copper alloy
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5634894A
Other languages
Japanese (ja)
Other versions
JP2732490B2 (en
Inventor
Yasuo Tomioka
靖夫 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP6056348A priority Critical patent/JP2732490B2/en
Publication of JPH07268573A publication Critical patent/JPH07268573A/en
Application granted granted Critical
Publication of JP2732490B2 publication Critical patent/JP2732490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength and high conductivity copper alloy for electronic equipment, excellent in strength, electric conductivity, etching characteristic, and bendability. CONSTITUTION:A Cu alloy, which has a composition consisting of 0.05-0.4% Cr, 0.03-0.25% Zr, and the balance Cu with inevitable impurities and further containing, if necessary, 0.06-2.0% Zn or 0.01-1.0%, in total, of one or more elements selected from among Ti, Fe, Ni, Sn, In, Mn, P, Mg, and Si, together with Zn, is used. This Cu alloy is worked and treated by the process consisting of the following stages: (a) solution heat treatment either by annealing at >=700 deg.C and water cooling from the temp. or by regulating hot rolling finishing temp. to >=700 deg.C and performing water cooling at >=100 deg.C/min cooling rate directly after that: (b) cold rolling at >=50% draft: (c) aging treatment at 300-700 deg.C: (d) cold rolling at 30-70% draft: (e) stress relief annealing at 350-700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器用高力高導電
性銅合金の製造方法に関するものであり、さらに詳しく
述べるならば、トランジスタや集積回路(IC)などの
ような半導体機器のリード材に好適な、高い強度、導電
性等に加えて優れたエッチング性及び曲げ加工性を備え
た銅合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength and high-conductivity copper alloy for electronic equipment. More specifically, it is a lead for semiconductor equipment such as transistors and integrated circuits (ICs). The present invention relates to a method for producing a copper alloy suitable for a material, which has high strength, conductivity, and the like, and which has excellent etching property and bending workability.

【0002】[0002]

【従来の技術】ICパッケージの動向として軽薄短小化
が言われているが、最近では表面パッケージの普及によ
り、その傾向は益々促進されている。さらにICチップ
の高機能化に伴う多ピン化、低熱抵抗化によるパッケー
ジ形態の変遷としては、従来多様されてきたDIPに代
表されるピン挿入型パッケージから実装密度向上を目的
とした表面実装が主流になるにつれて、SOJ,SO
P,QFPなどの表面実装パッケージへ移行している。
最近では多ピン化に伴いリードピッチを縮小したファイ
ンピッチQFPが増加し、さらにTSOP,TQFPな
どに代表されるパッケージの薄板化が進行している。
2. Description of the Related Art The trend toward IC packages is said to be lighter, thinner, shorter and smaller, but these trends are being promoted more and more recently due to the spread of surface packages. Furthermore, as the transition of the package form due to the increase in the number of pins and the lowering of thermal resistance accompanying the higher functionality of IC chips, the mainstream is the surface mounting for the purpose of improving the mounting density from the pin-insertion type packages typified by the conventionally diversified DIP. SOJ, SO
It is shifting to surface mount packages such as P and QFP.
In recent years, the fine pitch QFP with a reduced lead pitch has been increased along with the increase in the number of pins, and further the thinning of packages represented by TSOP, TQFP and the like has been progressing.

【0003】多ピン、狭ピッチのフレームはエッチング
加工によりつくられるのが大半であるが、エッチングは
板厚方向だけではなく、板幅方向へサイドエッチも起こ
ることから、リード幅やリード間隔の加工限界は板厚に
依存し、板厚は薄いほど加工上有利となる。また、パッ
ケージの薄肉化の要求から、リードフレーム材を薄くす
る必要があり、その結果、板厚は最近では0.15mm
→0.125mm→0.10mmと薄くなっている。こ
のようなリードフレームの薄板化、リードの狭小化はフ
レーム全体やリードの剛性を低下させ、アセンブリー工
程中でのインナーリードの変形、デバイス実装時のアウ
ターリードの変形を引き起こしている。
Most of the multi-pin, narrow-pitch frames are produced by etching. Since etching causes side etching not only in the plate thickness direction but also in the plate width direction, processing of the lead width and the lead interval is performed. The limit depends on the plate thickness, and the thinner the plate thickness, the more advantageous for processing. In addition, due to the demand for thinner package, it is necessary to make the lead frame material thinner. As a result, the plate thickness is 0.15 mm recently.
→ 0.125 mm → 0.10 mm and thin. Such thinning of the lead frame and narrowing of the leads reduce the rigidity of the entire frame and the leads, causing deformation of the inner leads during the assembly process and deformation of the outer leads during device mounting.

【0004】このような半導体機器のリードフレーム材
には一般に次のような特性が要求されている。 (1)インナーリードあるいはアウターリードが容易に
変形することがない機械的強度を有すること。 (2)リードフレームのパターン形成において、優れた
エッチン性及びプレス加工性を有すること。 (3)リードフレームの発熱に対して、効率良く熱放散
することが可能な高い熱伝導率を有すること。ICの高
集積化、多ピン化に伴い消費電力が大きくなるため発生
する熱の放散対策がIC設計上の重要な問題となる。銅
は、もともと熱伝導度で42アロイをはるかに上回る特
性をもっているので、銅合金は熱放散性において有利で
ある。 (4)電気的特性に優れていること。 (5)実装における半田付け性に優れること及び半田接
合部の信頼性が高いこと (6)ボンディングのためのAgメッキ性に優れるこ
と。 (7)加熱工程で銅合金表面が酸化しにくい耐熱酸化性
に優れていること。 (8)繰り返し曲げ性に優れていること。 (9)適正な価格であること。 以上半導体機器のリードフレーム材について要求される
性能について説明したが、本発明は同様な性能が要求さ
れる他の電子機器用材料としても使用される。
The following characteristics are generally required for the lead frame material of such a semiconductor device. (1) The inner lead or the outer lead must have mechanical strength so that it is not easily deformed. (2) It has excellent etchability and press workability in the pattern formation of the lead frame. (3) It has a high thermal conductivity capable of efficiently dissipating the heat of the lead frame. As the power consumption increases as the IC is highly integrated and the number of pins increases, measures to dissipate heat generated are important problems in IC design. Copper alloys are advantageous in terms of heat dissipation because they have properties that far exceed the 42 alloy in thermal conductivity. (4) Excellent electrical characteristics. (5) Excellent solderability in mounting and high reliability of solder joints (6) Excellent Ag plating property for bonding. (7) The copper alloy surface has excellent resistance to thermal oxidation and is resistant to oxidation in the heating step. (8) It has excellent repetitive bendability. (9) The price is appropriate. Although the performance required for the lead frame material of the semiconductor device has been described above, the present invention can also be used as a material for other electronic devices that require similar performance.

【0005】しかしながら、これらの各種の要求特性に
対し、従来より使用されているりん青銅、コバール(商
品名)及び42合金には何れも一長一短があり、前記特
性の全てを満足し得るものではなかった。特に、リード
の多ピン化、小型化の進展に伴って形状の複雑化やピン
の狭小化が進み、材料に一層良好なリード強度、エッチ
ング性及び曲げ加工性が求められていることを考慮すれ
ば、上記従来材はこれらの点で十分な性能を有している
とは言い難かった。
However, phosphor bronze, Kovar (trade name) and 42 alloy, which have been conventionally used, have merits and demerits with respect to these various required characteristics, and cannot satisfy all of the above characteristics. It was In particular, considering that the number of lead pins is increasing and the miniaturization is progressing, the shape is becoming more complex and the pins are becoming narrower, and it is necessary to consider the material to have better lead strength, etching property, and bending workability. For example, it has been difficult to say that the conventional material has sufficient performance in these points.

【0006】また、電子機器用Cu−Cr−Zr系合金
自体は公知であって、例えば特開平5−17789号公
報によると、その製法としては半連続鋳造鋳塊を熱間圧
延し、両面面削後冷間圧延する方法が採用されている。
しかし、この処理法では十分な特性が得られない。
Further, Cu-Cr-Zr type alloys for electronic equipment are known per se. For example, according to Japanese Unexamined Patent Publication No. 5-17789, a semi-continuous casting ingot is hot-rolled to prepare both side surfaces. A method of cold rolling after cutting is adopted.
However, this treatment method does not provide sufficient characteristics.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明
は、Cu−Cr−Zr系合金について、銅系材料の優れ
た電気的特性、熱の伝導性を生かすと同時に、半導体機
器のリード材として十分に満足できる強度、ばね特性、
エッチング性、及び曲げ加工性をも兼備した銅合金の製
造方法を提供することを目的とする。
Therefore, the present invention provides Cu-Cr-Zr-based alloys with the excellent electrical characteristics and thermal conductivity of copper-based materials, and at the same time, is sufficient as a lead material for semiconductor devices. Satisfying strength, spring characteristics,
It is an object of the present invention to provide a method for producing a copper alloy that also has etching properties and bending workability.

【0008】[0008]

【課題を解決するための手段】本発明は、(a)重量割
合でCr:0.05〜0.4%、及びZr:0.03〜
0.25%を含有すると共に、残部がCu及び不可避的
不純物からなる銅合金、(b)Cr:0.05〜0.4
%、Zr:0.03〜0.25%,Zn:0.06〜
2.0%を含有すると共に、残部がCu及び不可避的不
純物からなる銅合金、あるいはc)Cr:0.05〜
0.4%、Zr:0.03〜0.25%、及びZn:
0.06〜2.0%を含有し、更にTi,Fe,Ni,
Sn,In,Mn,P,Mg及びSiの1種以上:総量
で0.01〜1.0%をも含有すると共に、残部がCu
及び不可避的不純物からなる電子機器用高力高導電性銅
合金の製造方法において、 (イ)次の何れかの方法による溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷 (b)熱間圧延終了温度を700℃以上とし、その直後
に100℃/分以上の冷却速度で行う水冷、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用高力高導電
性銅合金の製造方法に関する。以下、本発明の構成を説
明する。まず、本発明の銅合金の組成を説明する。
According to the present invention, (a) by weight, Cr: 0.05 to 0.4% and Zr: 0.03 to.
A copper alloy containing 0.25% and the balance Cu and unavoidable impurities, (b) Cr: 0.05 to 0.4
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
A copper alloy containing 2.0% and the balance Cu and unavoidable impurities, or c) Cr: 0.05 to
0.4%, Zr: 0.03-0.25%, and Zn:
0.06 to 2.0%, Ti, Fe, Ni,
One or more of Sn, In, Mn, P, Mg and Si: 0.01 to 1.0% in total is contained, and the balance is Cu.
And a method for producing a high-strength and high-conductivity copper alloy for electronic devices comprising unavoidable impurities, (a) solution treatment by any of the following methods: (a) annealing at a temperature of 700 ° C. or higher, (B) Water cooling performed at a hot rolling finish temperature of 700 ° C. or higher and immediately thereafter at a cooling rate of 100 ° C./min or higher, (b) cold rolling with a workability of 50% or higher, (c) 300 to 700 An electron characterized by sequentially performing steps of aging treatment at a temperature of ℃, (d) cold rolling with a working degree of 30 to 70%, and (e) strain relief annealing at a temperature of 350 to 700 ° C. The present invention relates to a method for producing a high strength and high conductivity copper alloy for equipment. The configuration of the present invention will be described below. First, the composition of the copper alloy of the present invention will be described.

【0009】Cr Crは、本合金を時効処理したときに単独で母相中に析
出して合金の強度及び耐熱性を向上させる作用を発揮す
るが、その含有量が0.05%未満では析出が不十分で
あるために所望の効果が期待できず、一方0.4%を超
えてCrを含有させると溶体化処理後にも未固溶Crが
母相中にCr相として残留し、その結果、圧延垂直断面
をエッチングした時にヒゲバリ状介在物として存在し、
エッチング性を著しく阻害する。以上の理由によりCr
含有量は0.05〜0.4%と定めた。
Cr When Cr is aged, the Cr alone precipitates in the parent phase to improve the strength and heat resistance of the alloy, but if the content is less than 0.05%, it precipitates. The desired effect cannot be expected due to insufficient Cr content. On the other hand, when Cr is contained in excess of 0.4%, undissolved Cr remains as Cr phase in the mother phase even after solution treatment. , Present as whisker-like inclusions when the rolled vertical section is etched,
Etchability is significantly impaired. For the above reasons, Cr
The content was set to 0.05 to 0.4%.

【0010】Zr Zrには、時効処理によりCuと化合物を形成して母相
中に析出しこれを強化する作用があるが、その含有量が
0.03%未満では析出が不十分であるために所望の効
果が得られず、一方0.25%を超えてZrを含有させ
ると、溶体化処理後にも未固溶Zrが母相中にZr相と
して残留するようになってエッチング性、導電率及び加
工性の著しい低下を招くことから、Zr含有量は0.0
3〜0.25%と定めた。
Zr Zr has an action of forming a compound with Cu and precipitating in the matrix phase by aging treatment to strengthen this, but if the content is less than 0.03%, the precipitation is insufficient. However, if Zr is contained in excess of 0.25%, undissolved Zr will remain as Zr phase in the matrix even after solution treatment, resulting in poor etching and conductivity. The Zr content is 0.0
It was set to 3 to 0.25%.

【0011】Zn Znは、半田の耐熱剥離性を向上させる作用を有してい
るため必要により添加される成分であるが、その含有量
が0.06%未満では前記作用による所望の効果が得ら
れず、一方2.0%を超えてZnを含有させると導電率
が劣化することから、Zn含有量は0.06〜2.0%
と定めた。
Zn Zn is a component that is added as necessary because it has the function of improving the heat-resistant peeling property of solder, but if the content is less than 0.06%, the desired effect due to the above-mentioned action is obtained. However, if the Zn content exceeds 2.0%, the conductivity deteriorates. Therefore, the Zn content is 0.06 to 2.0%.
I decided.

【0012】Ti,Fe,Ni,Sn,In,Mn,
P,Mg及びSi これらの成分は、何れも合金の導電性を大きく低下させ
ずに析出強化や固溶強化により向上させる作用を有して
おり、従って必要により1種または2種以上の添加がな
されるが、その含有量が総量で0.01%未満であると
前記作用による所望の効果が得られず、一方、総量で
l.0%を超える含有量になると合金の導電性及び加工
性を著しく劣化する。このため、単独添加あるいは2種
以上の場合添加がなされるTi,Fe,Ni,Sn,I
n,Mn,P,Mg及びSiの含有量は総量で0.01
〜1.0%と定めた。続いて、上記組成の銅合金の製造
工程を説明する。
Ti, Fe, Ni, Sn, In, Mn,
Each of P, Mg and Si has the effect of improving the conductivity of the alloy by precipitation strengthening or solid solution strengthening without significantly lowering the conductivity of the alloy. Therefore, if necessary, one or more of them may be added. However, if the total content is less than 0.01%, the desired effect due to the above-described action cannot be obtained, while the total content is less than 0.01%. If the content exceeds 0%, the conductivity and workability of the alloy will be significantly deteriorated. Therefore, Ti, Fe, Ni, Sn, I which are added individually or in the case of two or more kinds are added.
The total content of n, Mn, P, Mg and Si is 0.01
It was determined to be ~ 1.0%. Then, the manufacturing process of the copper alloy of the said composition is demonstrated.

【0013】溶体化処理 溶体化処理は、Cr、Zr及びTi等を母相中に固溶す
ることにより、後の時効処理で高強度の材料を得るとと
もにエッチング性を良好にするためである。溶体化処理
温度が高いほうがCr、Zr及びTi等のマトリックス
中へ固溶量が増し、時効後の強度が高くなりかつエッチ
ング性が良好になる。従って溶体化処理温度を700℃
以上とすることにより高強度を確保する。溶体化処理の
際の冷却速度が遅い場合には強化作用のないCrの不均
一析出物が発生し、強度の低下を招きまたエッチング性
を阻害するため、冷却速度は速いことが望まれる。
Solution treatment The solution treatment is for solid-solving Cr, Zr, Ti and the like in the matrix to obtain a high-strength material in the subsequent aging treatment and to improve the etching property. When the solution treatment temperature is higher, the amount of solid solution in the matrix of Cr, Zr, Ti or the like increases, the strength after aging becomes higher and the etching property becomes better. Therefore, the solution treatment temperature should be 700 ℃.
High strength is secured by the above. When the cooling rate during the solution treatment is slow, a nonuniform strengthening precipitate of Cr is generated, which causes a decrease in strength and impairs the etching property. Therefore, a high cooling rate is desired.

【0014】本合金の場合、溶体化処理を行う方法とし
て次の2通りが可能である。そのひとつは、好ましくは
2mm以下程度の板厚で焼鈍、水冷を連続的に行うライ
ンを用いる方法であり、この場合、前記理由により焼鈍
温度を700℃以上とし、焼鈍温度から水冷する必要が
ある。もうひとつの方法は、熱間圧延後水冷を行うこと
によって溶体化処理を兼ねる方法である。この際、前記
理由により熱間圧延の終了温度を700℃以上とし、そ
の直後に100℃/分以上の冷却速度で水冷を行えば強
度の低下を抑えられることがわかった。この方法では熱
間圧延直後に冷間圧延を行うことができるので、工程短
縮となり製造コストの点で有利である。溶体化処理後の
硬さはHv45〜90の範囲であることが好ましい。
In the case of the present alloy, the following two methods are possible as the method for carrying out the solution treatment. One of them is a method of using a line for continuously annealing and water-cooling with a plate thickness of preferably about 2 mm or less. In this case, it is necessary to set the annealing temperature to 700 ° C. or more and water-cool from the annealing temperature for the above reason. . The other method is to perform solution treatment by performing water cooling after hot rolling. At this time, it was found that the strength reduction can be suppressed by setting the end temperature of the hot rolling to 700 ° C. or higher for the above reason and immediately followed by water cooling at a cooling rate of 100 ° C./min or higher. In this method, since cold rolling can be performed immediately after hot rolling, the process is shortened, which is advantageous in terms of manufacturing cost. The hardness after the solution treatment is preferably in the range of Hv45 to 90.

【0015】冷間圧延 本発明においては、溶体化処理後に冷間圧延を行って、
加工硬化と、次の時効工程での析出物の析出を促進する
ことにより、高強度を得る。第1回目の冷間圧延は50
%以上の加工度で行う。冷間圧延の加工度を50%以上
とするのは、50%未満では上述の効果が不十分とな
り、所望の強度が得られないためである。冷間圧延後の
硬さはHv130〜160の範囲であることが好まし
い。
Cold Rolling In the present invention, cold rolling is performed after the solution treatment,
High strength is obtained by promoting work hardening and precipitation of precipitates in the subsequent aging step. The first cold rolling is 50
Perform at a processing rate of at least%. The workability of cold rolling is set to 50% or more because if the content is less than 50%, the above-described effect becomes insufficient and desired strength cannot be obtained. The hardness after cold rolling is preferably in the range of Hv 130 to 160.

【0016】時効処理 時効処理は、強度及び導電性を向上させるために本Cu
−Cr−Zr系合金では必要である。時効処理温度を3
00〜700℃とする理由は、300℃未満では時効処
理に時間がかかり経済的ではなく、700℃を超える
と、Cr及びZrが固溶してしまい、時効硬化型の合金
と特徴である強度及び導電性が得られないためである。
時効処理後の硬さはHv160〜200の範囲内である
ことが好ましい。
The aging aging treatment, this in order to improve the strength and conductivity Cu
Required for -Cr-Zr alloys. Aging treatment temperature is 3
The reason why the temperature is set to 00 to 700 ° C is that it is not economical because the aging treatment is time-consuming and is less than 300 ° C, and if it exceeds 700 ° C, Cr and Zr are solid-dissolved, which is a characteristic feature of an age hardening alloy. It is also because conductivity cannot be obtained.
The hardness after the aging treatment is preferably in the range of Hv160 to 200.

【0017】2回目冷間圧延 本発明においては時効処理後冷間圧延を行うことによ
り、加工硬化をもたらし、又前段の時効処理で生成した
析出物の微細化を図りさらに著しい強度上昇を起こさせ
る。この際の加工度を30%以上とするのは30%未満
では強度の上昇が見られず、また加工度を70%以下と
するのは、70%を超えると、最終製品の曲げ加工の際
曲げ部に肌荒れが発生するためである。第2回冷間圧延
後の硬さはHv180〜220の範囲内にあることが好
ましい。さらに、2回目冷間圧延の加工度は1回目冷間
圧延より少なく30〜40%の範囲とすることが好まし
い。
Second Cold Rolling In the present invention, cold rolling after aging treatment causes work hardening, and further refines the precipitate formed in the preceding aging treatment to further increase the strength significantly. . At this time, if the workability is 30% or more, no increase in strength is observed at less than 30%, and if the workability is 70% or less, if it exceeds 70%, the final product is bent. This is because rough skin occurs at the bent portion. The hardness after the second cold rolling is preferably in the range of Hv 180 to 220. Further, the workability of the second cold rolling is preferably less than that of the first cold rolling, and is preferably in the range of 30 to 40%.

【0018】歪取焼鈍 本発明においては、以上の加工及び熱処理状態からばね
性を向上させかつ延性を回復させるために、350〜7
00℃で歪取焼鈍を行う。歪取焼鈍温度を350℃〜7
00℃とした理由は、350℃未満では十分なばね性と
延性が得られないためであり、700℃を超えると析出
物の再固溶が生じ、強度が著しく低下するためである。
In the present invention, 350 to 7 are used in the present invention in order to improve the spring property and recover the ductility from the above working and heat treatment conditions.
Strain relief annealing is performed at 00 ° C. Strain relief annealing temperature is 350 ° C to 7
The reason why the temperature is set to 00 ° C. is that sufficient spring properties and ductility cannot be obtained at temperatures lower than 350 ° C., and re-dissolution of precipitates occurs at temperatures higher than 700 ° C., resulting in a marked decrease in strength.

【0019】[0019]

【作用】以上説明したように、本発明においては溶体化
処理によりCr,Zrの未固溶分を実質的になくし、か
つその後の高い加工度での1回目冷間圧延を可能にす
る。次に時効処理と2回目の冷間圧延により、時効析出
物を微細化しかつ加工硬化状態を得ることにより強度を
上昇させる。最後に歪取焼鈍により加工歪を除去する。
As described above, in the present invention, the solution treatment substantially eliminates the undissolved contents of Cr and Zr, and enables the subsequent first cold rolling with a high workability. Next, the aging treatment and the second cold rolling are performed to refine the aging precipitates and obtain a work-hardened state to increase the strength. Finally, the work strain is removed by strain relief annealing.

【0020】[0020]

【実施例】続いて、本発明の効果を、特に好ましい組成
範囲を示す実施例により更に具体的に説明する。まず、
電気銅あるいは無酸素銅を主原料とし、銅クロム母合
金、銅ジルコニウム母合金、亜鉛、チタン、ニッケル、
スズ、インジウム、マンガン、マグネシウム及び銅リン
母合金を副原料とし、高周波溶解炉にて図1、2の表に
示す各種成分組成の銅合金を真空中あるいはAr雰囲気
中で溶製し、厚さ30mmのインゴットに鋳造した。次
に、これら各インゴットを熱間加工及び溶体化処理、1
回目の冷間圧延、時効処理、最終の冷間圧延、歪取焼鈍
を表1、2に示す条件で順次行い、0.15mmの板と
した。なお、溶体化処理は表1、2の方法で行い、その
中で焼鈍−水冷は厚みが1.5mmの板について行った
処理であり、また熱圧−水冷は厚みが8mmの板につい
て表中の熱間圧延仕上温度について行った処理である。
熱圧−水冷の場合は熱間圧延後直ちに冷間圧延を行っ
た。
EXAMPLES Next, the effects of the present invention will be described more specifically with reference to examples showing particularly preferable composition ranges. First,
Mainly made of electrolytic copper or oxygen-free copper, copper chromium master alloy, copper zirconium master alloy, zinc, titanium, nickel,
Using tin, indium, manganese, magnesium, and copper-phosphorus master alloys as auxiliary materials, a high-frequency melting furnace is used to melt copper alloys of various composition shown in the tables of FIGS. It was cast into a 30 mm ingot. Next, each of these ingots is subjected to hot working and solution treatment, 1
The cold rolling, aging treatment, final cold rolling, and strain relief annealing of the second time were sequentially performed under the conditions shown in Tables 1 and 2 to obtain a 0.15 mm plate. The solution treatment is performed by the method shown in Tables 1 and 2, of which annealing-water cooling is performed on a plate having a thickness of 1.5 mm, and hot-pressing-water cooling is performed on a plate having a thickness of 8 mm. This is the processing performed for the hot rolling finishing temperature of No.
In the case of hot pressure-water cooling, cold rolling was performed immediately after hot rolling.

【0021】そして、得られた板材から各種の試験片を
採取して材料試験を行い、電子機器材料としての特性を
評価した。なお、評価した特性は、強度、伸び、導電
性、エッチング性、曲げ性、及び半田耐熱剥離性であ
る。強度及び伸びは引張試験により測定し、導電性は導
電率(%IACS)を求めた。
Then, various test pieces were sampled from the obtained plate material and a material test was conducted to evaluate the characteristics as a material for electronic equipment. The evaluated properties are strength, elongation, conductivity, etching property, bendability, and solder heat resistance peeling property. The strength and elongation were measured by a tensile test, and the conductivity was determined by the conductivity (% IACS).

【0022】「エッチング」については、液温35℃、
45°ボーメ塩化第二鉄を用いて試料に幅10mm,長
さ10mmの孔を開け、圧延方向に対し直角のエッチン
グ面をSEMで観察することによりエッチング性の評価
を行った。平滑なエッチング面が見られた場合を○、エ
ッチング面に5μm以上の突起物が見られた場合を×と
した。
Regarding "etching", the liquid temperature is 35.degree.
The etching property was evaluated by making a hole with a width of 10 mm and a length of 10 mm in the sample using 45 ° Baume ferric chloride and observing an etching surface perpendicular to the rolling direction with an SEM. The case where a smooth etching surface was observed was evaluated as ◯, and the case where a projection of 5 μm or more was observed on the etching surface was evaluated as x.

【0023】曲げ加工性については、図5に示すように
10mmの試験片を内側曲げ半径0.4mm(板厚)で
圧延方向と直角に、片側に90°の曲げを繰り返し行
い、破断までの曲げ回数(往復で1回とする)を測定し
た。試験はn=5で行い、その平均値で評価を行った。
Regarding the bending workability, as shown in FIG. 5, a 10 mm test piece was repeatedly bent at an inner bending radius of 0.4 mm (sheet thickness) at a right angle to the rolling direction and 90 ° on one side until it was broken. The number of times of bending (reciprocating once) was measured. The test was performed with n = 5, and the average value was used for evaluation.

【0024】半田耐熱剥離性の調査は、素材に5μm厚
の半田(90%Sn−10%Pb)メッキを施した後、
150℃の高温槽に1000時間まで保持し、この間1
00時間毎に取り出して90°曲げ往復1回を施して半
田剥離の開始時間を調べる方法によった。なお1000
時間まで剥離のなかったものは調査結果を「1000
h」と表示した。
The heat resistance peeling resistance was investigated by plating the material with 5 μm thick solder (90% Sn-10% Pb).
Hold in a high temperature tank at 150 ° C for up to 1000 hours, during which 1
It was taken out every 00 hours and subjected to 90 ° bending reciprocation once to examine the start time of solder peeling. 1000
If the peeling did not occur until the time, the investigation result was "1000.
h ”was displayed.

【0025】これらの調査結果を図3、4の表に示す。
これらの表に示される結果からは次のことが明らかであ
る。即ち、本発明合金1〜16は、いずれも強度、導電
性、曲げ性、応力緩和特性が共に優れており、また、そ
の他の特性についても十分に良好な評価が得られるもの
である。
The results of these investigations are shown in the tables of FIGS.
From the results shown in these tables, the following is clear. That is, all of the alloys 1 to 16 of the present invention are excellent in strength, conductivity, bendability, and stress relaxation characteristics, and sufficiently good evaluations of other characteristics can be obtained.

【0026】これに対して、比較合金は17はCr含有
量が十分でないため強度が劣っており、また比較合金1
8、19はZr,Cr含有量がそれぞれ上限値を超えて
いるためエッチング性及び曲げ性が劣っている。次に、
比較合金20はZn含有量が上限値を超えているため導
電性が劣っている。比較合金21は溶体化処理温度が下
限値より低いために、また比較合金22は溶体化処理時
の冷却速度が低いため強度が劣っている。比較合金22
は溶体化処理後の加工度が、また比較合金24は最終冷
間圧延の加工度が下限値を下回っているため強度が劣っ
ている。比較合金24は歪取焼鈍の温度が上限値を超え
ているために、強度が劣っている例である。
On the other hand, Comparative Alloy 17 is inferior in strength due to insufficient Cr content, and Comparative Alloy 1
In Nos. 8 and 19, the Zr and Cr contents exceeded the respective upper limits, so that the etching properties and bendability were poor. next,
Since the Zn content of the comparative alloy 20 exceeds the upper limit, the conductivity of the comparative alloy 20 is poor. Comparative alloy 21 is inferior in strength because the solution treatment temperature is lower than the lower limit value, and comparative alloy 22 is low in cooling rate during the solution treatment. Comparative alloy 22
Indicates that the workability after the solution treatment and the workability during the final cold rolling of the comparative alloy 24 are below the lower limit values, and thus the strength is poor. Comparative alloy 24 is an example in which the strength is inferior because the temperature of the stress relief annealing exceeds the upper limit value.

【0027】なお、本発明の実施例合金No.4のTi
に代えて、0.08%のNi,0.07%のIn,0.
05のMn,0.02%のP,0.05%のMg,0.
06%のSiをそれぞれ単独添加した合金につき、本発
明合金4と同じ熱処理及び加工を行ったとこど同様の結
果が得られた。
The alloy No. of the example of the present invention was used. 4 Ti
In place of 0.08% Ni, 0.07% In, 0.
0.05 Mn, 0.02% P, 0.05% Mg, 0.
Similar results were obtained when the same heat treatment and processing as those of the alloy 4 of the present invention were performed on the alloys to which 06% of Si was individually added.

【0028】[0028]

【発明の効果】本発明の製造方法を採用することによ
り、強度、導電性、エッチング性及び曲げ性の良好な銅
合金を得ることが可能となり、電子機器類の小型化、薄
肉化に大きく寄与し得るなど、産業上極めて有用な効果
がもたらされる。
By adopting the manufacturing method of the present invention, it becomes possible to obtain a copper alloy having good strength, conductivity, etching property and bendability, which greatly contributes to downsizing and thinning of electronic devices. It has an extremely useful effect in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金の組成ならびに製造条件を示す表で
ある。
FIG. 1 is a table showing the composition and production conditions of the alloy of the present invention.

【図2】比較合金の組成ならびに製造条件を示す表であ
る。
FIG. 2 is a table showing the composition and manufacturing conditions of comparative alloys.

【図3】表1の合金の特性を示す表である。FIG. 3 is a table showing characteristics of the alloys in Table 1.

【図4】表2の合金の特性を示す表である。FIG. 4 is a table showing the properties of the alloys of Table 2.

【図5】曲げ試験方法の説明図である。FIG. 5 is an explanatory diagram of a bending test method.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月8日[Submission date] June 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金の組成ならびに製造条件を示す図表
である。
FIG. 1 is a chart showing the composition and manufacturing conditions of an alloy of the present invention.

【図2】比較合金の組成ならびに製造条件を示す図表で
ある。
FIG. 2 is a chart showing the composition and production conditions of a comparative alloy.

【図3】表1の合金の特性を示す図表である。FIG. 3 is a chart showing the properties of the alloys of Table 1.

【図4】表2の合金の特性を示す図表である。FIG. 4 is a chart showing the properties of the alloys of Table 2.

【図5】曲げ試験方法の説明図である。FIG. 5 is an explanatory diagram of a bending test method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、Cr:0.05〜0.4%
及びZr:0.03〜0.25%を含有すると共に、残
部がCu及び不可避的不純物からなる電子機器用高力高
導電性銅合金の製造方法において、 (イ)次の何れかの方法による溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷 (b)熱間圧延終了温度を700℃以上とし、その直後
に100℃/分以上の冷却速度で行う水冷、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用高力高導電
性銅合金の製造方法。
1. Cr: 0.05-0.4% by weight
And Zr: 0.03 to 0.25% and the balance is Cu and unavoidable impurities in the method for producing a high-strength and high-conductivity copper alloy for electronic devices, comprising: (a) one of the following methods: Solution treatment: (a) annealing at a temperature of 700 ° C. or higher, water cooling from that temperature (b) water-cooling performed at a hot rolling finish temperature of 700 ° C. or higher and immediately thereafter at a cooling rate of 100 ° C./min or higher, (B) cold rolling with a workability of 50% or more, (c) aging treatment at a temperature of 300 to 700 ° C., (d) cold rolling with a workability of 30 to 70%, and (e) 350 to 700 ° C. A method for producing a high-strength and high-conductivity copper alloy for electronic equipment, which comprises sequentially performing steps of strain relief annealing at a temperature.
【請求項2】 重量割合で、Cr:0.05〜0.4
%、Zr:0.03〜0.25%,Zn:0.06〜
2.0%を含有すると共に、残部がCu及び不可避的不
純物からなる電子機器用高力高導電性銅合金の製造方法
において、 (イ)次の何れかの方法による溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷 (b)熱間圧延終了温度を700℃以上とし、その直後
に100℃/分以上の冷却速度で行う水冷、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用高力高導電
性銅合金の製造方法。
2. A weight ratio of Cr: 0.05 to 0.4.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
A method for producing a high-strength and high-conductivity copper alloy for electronic devices, which comprises 2.0% and the balance Cu and unavoidable impurities, and (a) solution treatment by any of the following methods: (a) Annealing at a temperature of 700 ° C. or higher, water cooling from the temperature (b) Hot rolling end temperature is 700 ° C. or higher, and immediately after that, water cooling performed at a cooling rate of 100 ° C./min or higher, (b) Working ratio of 50% The above cold rolling, (c) aging treatment at a temperature of 300 to 700 ° C., (d) cold rolling at a working ratio of 30 to 70%, and (e) strain relief annealing at a temperature of 350 to 700 ° C., A method for producing a high-strength and high-conductivity copper alloy for electronic equipment, which is characterized by sequentially performing the following steps.
【請求項3】 重量割合で、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.06
〜2.0%を含有し、更にTi,Fe,Ni,Sn,I
n,Mn,P,Mg及びSiの1種以上:総量で0.0
1〜1.0%をも含有すると共に、残部がCu及び不可
避的不純物からなる電子機器用高力高導電性銅合金の製
造方法において、 (イ)次の何れかの方法による溶体化処理: (a)700℃以上の温度での焼鈍、該温度からの水冷 (b)熱間圧延終了温度を700℃以上とし、その直後
に100℃/分以上の冷却速度で行う水冷、 (ロ)加工度50%以上の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30〜70%の冷間圧延、及び (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用高力高導電
性銅合金の製造方法。
3. A weight ratio of Cr: 0.05 to 0.4.
%, Zr: 0.03 to 0.25%, and Zn: 0.06.
.About.2.0%, further containing Ti, Fe, Ni, Sn, I
One or more of n, Mn, P, Mg and Si: 0.0 in total
In a method for producing a high-strength and high-conductivity copper alloy for electronic devices, which also contains 1 to 1.0%, and the balance being Cu and unavoidable impurities, (a) solution treatment by any of the following methods: (A) Annealing at a temperature of 700 ° C. or higher, water cooling from that temperature (b) Water cooling performed at a hot rolling end temperature of 700 ° C. or higher and immediately thereafter at a cooling rate of 100 ° C./min or higher, (b) processing Cold rolling with a degree of 50% or more, (c) aging treatment at a temperature of 300 to 700 ° C., (d) cold rolling with a working degree of 30 to 70%, and (e) strain at a temperature of 350 to 700 ° C. A method for producing a high-strength and high-conductivity copper alloy for electronic devices, which comprises sequentially performing steps of annealing and annealing.
JP6056348A 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment Expired - Fee Related JP2732490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6056348A JP2732490B2 (en) 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6056348A JP2732490B2 (en) 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Publications (2)

Publication Number Publication Date
JPH07268573A true JPH07268573A (en) 1995-10-17
JP2732490B2 JP2732490B2 (en) 1998-03-30

Family

ID=13024733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6056348A Expired - Fee Related JP2732490B2 (en) 1994-03-25 1994-03-25 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JP2732490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
JP2011210730A (en) * 2009-01-26 2011-10-20 Furukawa Electric Co Ltd:The Wire conductor for wiring, method for manufacturing the same, electric wire for wiring, and copper alloy element wire
EP2677050A1 (en) * 2011-02-18 2013-12-25 Mitsubishi Shindoh Co., Ltd. Cu-Zr-BASED COPPER ALLOY PLATE AND PROCESS FOR MANUFACTURING SAME
JP2014015656A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JPWO2018123708A1 (en) * 2016-12-27 2018-12-27 古河電気工業株式会社 Lead frame material, manufacturing method thereof, and semiconductor package

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139742A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Manufacture of high-strength and high-conductivity copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139742A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Manufacture of high-strength and high-conductivity copper alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
EP1873272A4 (en) * 2005-04-15 2008-09-24 Jfe Prec Corp Alloy material for dissipating heat from semiconductor device and method for production thereof
US7955448B2 (en) 2005-04-15 2011-06-07 Jfe Precision Corporation Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
JP2011210730A (en) * 2009-01-26 2011-10-20 Furukawa Electric Co Ltd:The Wire conductor for wiring, method for manufacturing the same, electric wire for wiring, and copper alloy element wire
EP2677050A1 (en) * 2011-02-18 2013-12-25 Mitsubishi Shindoh Co., Ltd. Cu-Zr-BASED COPPER ALLOY PLATE AND PROCESS FOR MANUFACTURING SAME
EP2677050A4 (en) * 2011-02-18 2014-08-20 Mitsubishi Shindo Kk Cu-Zr-BASED COPPER ALLOY PLATE AND PROCESS FOR MANUFACTURING SAME
US9644251B2 (en) 2011-02-18 2017-05-09 Mitsubishi Shindoh Co., Ltd. Cu—Zr-based copper alloy plate and process for manufacturing same
JP2014015656A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JPWO2018123708A1 (en) * 2016-12-27 2018-12-27 古河電気工業株式会社 Lead frame material, manufacturing method thereof, and semiconductor package
KR20190096964A (en) * 2016-12-27 2019-08-20 후루카와 덴끼고교 가부시키가이샤 Lead frame material, manufacturing method thereof and semiconductor package

Also Published As

Publication number Publication date
JP2732490B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP3803981B2 (en) Method for producing copper alloy having high strength and high conductivity
JP2522629B2 (en) Copper alloy for electric parts and electronic parts and method for producing the same
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP2001164328A (en) Copper alloy for connector and producing method therefor
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JPH07268573A (en) Production of high strength and high conductivity copper alloy for electronic equipment
JPH09157775A (en) Copper alloy for electronic equipment
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JP2673781B2 (en) Method for producing high strength and high conductivity copper alloy material for electronic equipment
JPH0978162A (en) Copper alloy for electronic equipment and its production
JPH10183274A (en) Copper alloy for electronic equipment
JP4132451B2 (en) High strength and high conductivity copper alloy with excellent heat resistance
JPH034612B2 (en)
KR0160342B1 (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JPH07258808A (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
JPH07258807A (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
JPH04202642A (en) Fe-ni alloy having high strength and low thermal expansion and excellent in plating suitability, solderability, and repeated bendability and its production
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees