JPH06108212A - Production of precipitation type copper alloy - Google Patents

Production of precipitation type copper alloy

Info

Publication number
JPH06108212A
JPH06108212A JP28355192A JP28355192A JPH06108212A JP H06108212 A JPH06108212 A JP H06108212A JP 28355192 A JP28355192 A JP 28355192A JP 28355192 A JP28355192 A JP 28355192A JP H06108212 A JPH06108212 A JP H06108212A
Authority
JP
Japan
Prior art keywords
copper alloy
heat treatment
treatment
precipitation
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28355192A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28355192A priority Critical patent/JPH06108212A/en
Publication of JPH06108212A publication Critical patent/JPH06108212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a precipitation type Cu alloy material having high workability, strength, and electric conductivity by improving the solution heat treatment, recrystallization treatment, and aging treatment for a precipitation hardening Cu alloy containing Cr, Sn, etc. CONSTITUTION:A cast ingot of a Cu alloy which has a composition consisting of, by weight, 0.1-0.35% Cr, 0.05-0.5% Sn, and the balance Cu or further containing 0.05-5.0% Zn or further containing 0.0005-1.0%, in total, of one or >=2 kinds among specific small amounts of Si, Mn, Mg, V, Ti, B, and P is subjected to hot working starting at 880-1050 deg.C and then cooled rapidly to undergo cold working. Subsequently, heat treatment, in which holding is done at 360-650 deg.C for 45-1800sec or holding is done at 880-1020 deg.C for 5-60sec, and a high density pulse current applying treatment are simultaneously performed. Then, cold working is done, and, at the time of performing aging heat treatment, an electric field of (1 to 10)KV/cm is impressed simultaneously. By this method, an electronic and electrical equipment material combining superior workability with a high strength and electric conductivity can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた加工性と高い強
度と導電性を併せ持ち、尚且つ高い信頼性を有する析出
型銅合金の製造法に関するもので、該銅合金はコネクタ
ー、端子材、ばね材及びリードフレーム材等の電子電気
機器用材として適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a precipitation-type copper alloy having excellent workability, high strength and conductivity, and high reliability. It is suitable as a material for electronic and electrical equipment such as a spring material and a lead frame material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年の
電子電気産業における軽薄短小化は、そこで使われる機
器の小型化・軽量化・高集積化を促し、それに伴い、そ
の構成部品の小型化・軽量化・高性能化が、一段と望ま
れている。この要求に対して、構成部品の基盤を成す構
造材や、コネクター、リードフレーム材等も、小型・軽
量化の為に薄肉化と高集積化が進み、これに伴って発熱
の問題が無視できないものとなり、従って良好な熱伝導
性を有する材料が必要と成ってきていた。
2. Description of the Related Art Light, thin, short, and small devices in the electronic and electrical industries in recent years have promoted downsizing, weight reduction, and higher integration of equipment used therein, and accordingly, downsizing of their components.・ Lighter weight and higher performance are required. In response to this demand, structural materials that form the basis of component parts, connectors, lead frame materials, etc. are becoming thinner and highly integrated due to their smaller size and lighter weight, and the problem of heat generation cannot be ignored. Therefore, there has been a need for materials having good thermal conductivity.

【0003】このような状況に対して、高強度導電性材
料として、「Cu−Ni−Si」(特開昭58-124254 号
公報)「Cu−Cr−Sn」(特開昭63-69933号公報)
等の析出硬化型銅合金が、広く用いられてきている。こ
れらの合金は、共通して高温での溶体化処理とその後に
行われる加工処理と時効処理により、本来もっている特
性を現出させているものである。
Under these circumstances, as a high-strength conductive material, "Cu-Ni-Si" (JP-A-58-124254) and "Cu-Cr-Sn" (JP-A-63-69933). Gazette)
Precipitation hardenable copper alloys such as the above have been widely used. These alloys, in common, exhibit their original properties by a solution treatment at high temperature, followed by a processing treatment and an aging treatment.

【0004】しかしながら、析出成分をマトリックス中
に固溶成分として保持させる溶体化処理においては、溶
体化の為の高温での材料保持中に、組織における再結晶
化現象が過度に進み、再結晶粒の粗大化を招き、材料の
持つ延性や応力付加時の表面性状等を劣化させる影響を
示している。その為に、溶体化処理時に再結晶化現象を
制御する事が必要となり、材料を連続して溶体化処理を
行う連続溶体化処理技術(特開平3-56650 号公報)が行
われてきており、ある程度の効果を示していたが十分と
はいえなかった。
However, in the solution treatment for holding the precipitated component as a solid solution component in the matrix, the recrystallization phenomenon in the structure proceeds excessively while the material is held at a high temperature for solution treatment, and recrystallized grains It shows the influence of deterioration of the ductility of the material and the surface properties when stress is applied. For this reason, it is necessary to control the recrystallization phenomenon during solution treatment, and continuous solution treatment technology (Japanese Patent Laid-Open No. 3-56650) has been performed in which the material is continuously solution treated. , It showed some effect, but it was not enough.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の技術を
踏まえて、今後さらに増大するであろう電子電気機器部
品の性能要求に対応して、より高い諸特性の獲得を目指
して、Cr,Sn元素を主成分とする析出硬化型銅合金
における従来の溶体化処理技術と再結晶化処理技術及び
時効処理技術の開発を行い、より高性能な析出型銅合金
を現出させる製造法を開発したものである。
Based on the above technique, the present invention aims to obtain higher various characteristics in response to the performance requirements of electronic and electrical equipment parts which will increase further in the future. , We have developed the conventional solution heat treatment technology, recrystallization treatment technology and aging treatment technology for precipitation hardening type copper alloys containing Sn element as the main component, and have developed a manufacturing method for producing higher performance precipitation type copper alloys. It was developed.

【0006】即ち本発明製造法の一つは、Cr: 0.1〜
0.35wt%、Sn:0.05〜0.5 wt%を含み、又はさらにZ
n:0.05〜5.0 wt%を含み、残部Cuと不可避的不純物
とからなる銅合金鋳塊に、 880〜1050℃の温度域から開
始する熱間加工を施し、急速冷却処理を行って冷間加工
を加えた後、時効熱処理を行う際に同時に1〜10kV/cm
の電場を印加することを特徴とするものである。
That is, one of the production methods of the present invention is as follows: Cr: 0.1-
0.35 wt%, Sn: 0.05-0.5 wt%, or further Z
n: 0.05 to 5.0 wt%, copper alloy ingot composed of the balance Cu and unavoidable impurities is subjected to hot working starting from a temperature range of 880 to 1050 ° C, and is subjected to rapid cooling treatment and cold working. 1 to 10 kV / cm at the same time when aging heat treatment is performed after adding
Is applied.

【0007】また本発明の他の製造法は、Cr: 0.1〜
0.35wt%、Sn:0.05〜0.5 wt%を含み、又はさらにZ
n:0.05〜5wt%を含み、残部Cuと不可避的不純物と
からなる銅合金鋳塊に、 880〜1050℃の温度域から開始
する熱間加工を施し、急速冷却処理を行って冷間加工を
加えた後、 350〜650 ℃で45〜1800秒間保持する熱処理
と高密度パルス電流付加処理とを同時に行い、その後冷
間加工を行った後、時効熱処理を行う際に同時に1〜10
kV/cm の電場を印加することを特徴とするものである。
Another manufacturing method of the present invention is Cr: 0.1-
0.35 wt%, Sn: 0.05-0.5 wt%, or further Z
n: 0.05 to 5 wt%, a copper alloy ingot composed of the balance Cu and unavoidable impurities is subjected to hot working starting from a temperature range of 880 to 1050 ° C, and rapid cooling treatment is performed to perform cold working. After the addition, the heat treatment of holding at 350 to 650 ℃ for 45 to 1800 seconds and the high-density pulse current addition treatment are performed at the same time, and after cold working, the aging heat treatment is performed simultaneously for 1 to 10 seconds.
It is characterized by applying an electric field of kV / cm.

【0008】また本発明のさらに他の製造法は、Cr:
0.1〜0.35wt%、Sn:0.05〜0.5wt%を含み、又はさ
らにZn:0.05〜5wt%を含み、残部Cuと不可避的不
純物とからなる銅合金鋳塊に、 880〜1050℃の温度域か
ら開始する熱間加工を施し、急速冷却処理を行って冷間
加工を加えた後、 880〜1020℃で5〜60秒間保持する熱
処理と高密度パルス電流付加処理とを同時に行い、その
後冷間加工を行った後、時効熱処理を行う際に同時に1
〜10kV/cm の電場を印加することを特徴とするものであ
る。
Still another method of the present invention is Cr:
0.1 to 0.35 wt%, Sn: 0.05 to 0.5 wt%, or Zn: 0.05 to 5 wt%, and a balance of Cu and inevitable impurities in a copper alloy ingot, from a temperature range of 880 to 1050 ° C. After performing hot working to start, rapid cooling treatment and cold working, heat treatment of holding at 880 to 1020 ° C for 5 to 60 seconds and high-density pulse current addition treatment are simultaneously performed, and then cold working At the same time when performing the aging heat treatment after performing
It is characterized by applying an electric field of ~ 10 kV / cm.

【0009】また上記各発明の銅合金が、さらにSi:
0.005〜0.1 wt%、Mn:0.01〜0.5 wt%、Mg: 0.0
05〜0.5 wt%、V: 0.005〜0.1 wt%、Ti:0.01〜0.
25wt%、B:0.005 〜0.05wt%、P:0.0005〜0.01wt%
からなる群より1種又は2種以上を合計0.0005〜1.0 wt
%含んだものであっても、本発明の上記3つの製造法が
適用可能である。
The copper alloy of each of the above inventions further comprises Si:
0.005-0.1 wt%, Mn: 0.01-0.5 wt%, Mg: 0.0
05-0.5 wt%, V: 0.005-0.1 wt%, Ti: 0.01-0.
25wt%, B: 0.005-0.05wt%, P: 0.0005-0.01wt%
0.0005 to 1.0 wt in total of 1 or 2 or more from the group consisting of
%, The above three production methods of the present invention can be applied.

【0010】[0010]

【作用】以下に本発明における析出型銅合金の製造法に
ついて、その作用及び限定理由について述べる。
The function and the reason for limitation of the method for producing a precipitation-type copper alloy according to the present invention will be described below.

【0011】先ず、Cr元素は、本銅合金中において
は、単独の析出物として存在するもので、これが、均質
且つ微細に分散する事により、材料強度を向上させると
共に、その導電性を高める働きをするものである。しか
して、その含有量を 0.1〜0.35wt%と限定したのは、
0.1wt%未満ではその効果が乏しく、過ぎてはCu−C
rの共晶物を生成し、材料強度、熱間加工性やめっき密
着性を害する為に限定したものである。
First, the Cr element exists as a single precipitate in the present copper alloy, and when it is dispersed uniformly and finely, it improves the material strength and the conductivity thereof. Is what you do. Therefore, the reason for limiting the content to 0.1 to 0.35 wt% is
If it is less than 0.1 wt%, its effect is poor, and if it is too much, Cu-C
It is limited in order to form a eutectic of r and impair the material strength, hot workability and plating adhesion.

【0012】Sn元素の働きの一つは、Sn元素自体が
銅合金中に固溶成分として作用する事による材料強度や
材料延性の向上と曲げ加工性の向上が挙げられる。二つ
目の働きとしては、従来より知られている高温状態から
の冷却時のCr元素の析出現象における冷却速度に関す
る依存性の緩和効果を示す事である。しかしてその含有
量を0.05〜0.5 wt%としたのは、0.05wt%未満では上記
効果が弱く、 0.5wt%を越えての含有では、本合金系の
特徴とするところの高い導電性は著しく損ってしまう為
に限定したものである。
One of the functions of the Sn element is that the Sn element itself acts as a solid solution component in the copper alloy to improve material strength and material ductility and bending workability. The second function is to show the effect of relaxing the dependency of the cooling rate on the precipitation phenomenon of Cr element during cooling from a conventionally known high temperature state. Therefore, the content of 0.05 to 0.5 wt% is because the above effect is weak when the content is less than 0.05 wt% and the high conductivity which is the characteristic of the alloy system is remarkable when the content exceeds 0.5 wt%. It is limited because it is lost.

【0013】次にZn元素の添加は、Sn合金やSn−
Pb合金等のような異種金属との接合時に、その接合強
度の環境温度に対する時間劣化を抑制する効果を示すも
のであり、また、耐マイグレーション性の改善に効果を
示す。しかしてその含有量を0.05〜5wt%としたのは、
0.05wt%未満ではその効果が少なく、5wt%を越えて含
有されると、上記効果は維持されるも、導電性を損い、
コネクタ等の接続やリードフレームにおけるICチップ
の作動に伴う発熱の放熱性が不十分となる事と、Zn元
素はCu,Cr,Sn元素等に比較して、それらの融点
以下の低い温度で昇華する為に、元素歩留りや作業性の
低下が起る為に限定したものである。
Next, the addition of Zn element is carried out by adding Sn alloy or Sn--
It shows the effect of suppressing the time deterioration of the bonding strength with respect to the ambient temperature at the time of bonding with a dissimilar metal such as Pb alloy, and also has the effect of improving the migration resistance. Therefore, the content of 0.05 to 5 wt% is
If it is less than 0.05 wt%, its effect is small, and if it exceeds 5 wt%, the above effect is maintained, but the conductivity is impaired.
Insufficient heat dissipation of the heat generated by the connection of the connector and the operation of the IC chip in the lead frame, and the Zn element is sublimated at a temperature lower than the melting point of Cu, Cr, Sn elements, etc. Therefore, it is limited because the element yield and the workability are deteriorated.

【0014】またSi,Mg,Mn,V,Ti,B,P
の元素からなる群については、これらは何れも前記請求
範囲内において製造工程における加工性の向上に寄与
し、特にMg,Mn元素では、Zn元素と同じように、
Sn合金やSn−Pb合金等のような異種金属との接合
時に、その接合強度の環境温度に対する時間劣化を抑制
する働きを示し、併せて、固溶成分として、強度やばね
性の向上に寄与するものである。そしてSi,V,T
i,B及びP元素は、本発明の特徴とする所の熱処理と
高密度パルス電流付加処理の同時処理時に、過度の条件
による再結晶粒の粗大化を抑制し、これにより曲げ加工
時の表面状態を平滑に保ち、表面割れ等の欠陥を予防す
る事で、曲げ加工性を良くするものである。しかしてこ
れら添加元素は、各々上限を越えて含有せしめると、鋳
造性が悪化し、健全な鋳塊を得る事が困難になるばかり
でなく、熱間加工性についても悪影響を与えるようにな
り、さらにめっきの密着性や導電性を損うものである。
Si, Mg, Mn, V, Ti, B, P
For the group consisting of the elements of, all of these contribute to the improvement of the workability in the manufacturing process within the scope of the claims, and particularly in the case of Mg and Mn elements, like the Zn element,
At the time of joining with dissimilar metals such as Sn alloys and Sn-Pb alloys, it shows a function of suppressing time deterioration of the joining strength against environmental temperature, and also contributes to the improvement of strength and springiness as a solid solution component. To do. And Si, V, T
The elements i, B, and P suppress the coarsening of recrystallized grains due to excessive conditions during the simultaneous heat treatment and high-density pulse current addition treatment, which are the features of the present invention, and thus the surface during bending is reduced. By keeping the state smooth and preventing defects such as surface cracks, the bending workability is improved. However, if these additive elements are contained in amounts exceeding the respective upper limits, the castability deteriorates, not only it becomes difficult to obtain a sound ingot, but also the hot workability is adversely affected. Furthermore, the adhesion and conductivity of the plating are impaired.

【0015】次に、本発明による製造法の骨子となる熱
処理工程の条件について、その作用と限定理由を以下に
述べる。
Next, regarding the condition of the heat treatment step, which is the essence of the manufacturing method according to the present invention, its action and the reason for limitation will be described below.

【0016】本発明の製造法では先ず合金中の析出物が
固溶するのに十分な温度、即ち 880〜1050℃から開始す
る熱間加工とその終了時に水冷等により急速冷却する事
により、析出物の少ない過飽和固溶体を形成せしめ、後
に適当な冷間加工を施す。
In the manufacturing method of the present invention, first, the precipitation is carried out by hot working starting from a temperature sufficient to form a solid solution of precipitates in the alloy, that is, from 880 to 1050 ° C. and rapidly cooling with water cooling etc. at the end of the hot working. A supersaturated solid solution containing few substances is formed, and appropriate cold working is performed later.

【0017】次に続く時効熱処理においては、当該銅合
金を非接触状態に挟んで電極板を対向させ、該電極板に
電圧を印加することにより電極板間に電場を形成し、即
ち銅合金を電場内に保持した状態で時効熱処理を行う。
このように時効熱処理と同時に電場を印加すると、理由
は未だ定かではないが、析出過程にあまり影響を及ぼさ
ずに、材料の回復・再結晶過程を温度的には、より高温
側に、時間的には長時間側に遅らせる働きがある。その
結果、材料の示す延性を高めながらも、その相反特性で
ある材料強度の温度に対する抵抗性を維持しつつ、導電
性をより向上させる事が可能となるものである。そして
印加する電場の強さは、 1.0〜10kV/cmと定めた。これ
は電場の強さが1kV/cm 未満ではその効果が見られず、
10kV/cmを越えると効果が停滞し、いたずらにエネルギ
ーを消費するので材料のコスト高を招いてしまう。
In the subsequent aging heat treatment, the copper alloy is sandwiched in a non-contact state so that the electrode plates face each other, and a voltage is applied to the electrode plates to form an electric field between the electrode plates, that is, the copper alloy is formed. Aging heat treatment is carried out while being held in an electric field.
If the electric field is applied at the same time as the aging heat treatment in this way, the reason is not yet clear, but the material recovery / recrystallization process does not affect the precipitation process so much. Has a function of delaying for a long time. As a result, it is possible to further improve the conductivity while increasing the ductility of the material while maintaining the resistance of the material strength, which is the reciprocal characteristic, to temperature. The strength of the applied electric field was set at 1.0 to 10 kV / cm. This is because the effect is not seen when the electric field strength is less than 1 kV / cm,
If it exceeds 10 kV / cm, the effect will be stagnant and energy will be consumed unnecessarily, resulting in high material cost.

【0018】また上記時効熱処理の条件としては、 250
〜550 ℃の温度に10〜360 分程度保持すればよく、これ
により良好な特性をもたらす。
The condition of the aging heat treatment is 250
The temperature should be kept at ~ 550 ℃ for about 10 ~ 360 minutes, which gives good characteristics.

【0019】また本発明では上記時効熱処理の前に、高
密度パルス電流付加処理を組合わせた熱処理を施すこと
もできる。即ち 350〜650 ℃の温度域で45〜1800秒間保
持する熱処理、又は 880〜1020℃の温度域で5〜60秒間
保持する熱処理時に高密度パルス電流付加処理を行うこ
とにより、前工程で析出してしまった析出物の粗大化を
防止し、現在固溶状態にある析出成分の固溶状態を維持
し、さらに当該熱処理中における合金の結晶組織の再結
晶化を併せて行うことができ、これに続く冷間加工や時
効熱処理などにより優れた特性を有する銅合金を生成せ
しめるものである。
Further, in the present invention, a heat treatment combined with a high-density pulse current addition treatment may be applied before the aging heat treatment. That is, by performing high-density pulse current addition treatment during heat treatment for holding in the temperature range of 350 to 650 ° C for 45 to 1800 seconds or in the temperature range of 880 to 1020 ° C for 5 to 60 seconds, the precipitation in the previous step occurs. It is possible to prevent coarsening of the deposited precipitates, maintain the solid solution state of the precipitation components that are currently in solid solution state, and further recrystallize the crystal structure of the alloy during the heat treatment. The subsequent cold working and aging heat treatment produce a copper alloy having excellent properties.

【0020】そして当該熱処理条件としては、上記のよ
うに 350〜650 ℃の温度域で45〜1800秒間の材料保持、
又は80〜1020℃の温度域で5〜60秒間の材料保持が、高
密度パルス電流の付加処理下において、既存析出物の粗
大化抑制や未析出成分の析出抑制に大きな効果があると
同時に、合金組織の迅速な再結晶化にも寄与する条件で
ある。しかしながら、これを越える温度や時間の組合わ
せでは、既存析出物の粗大化が起ると共に、未析出成分
の析出が起り、強度や曲げ加工性等の諸特性を低下させ
る原因となる。又、低い温度と短い時間との組合わせで
は、高密度電流パルス付加処理を行っても、結晶粒の再
結晶化が進まず組織の不均一性が増すと共に、マトリッ
クスに固溶している析出成分の析出が逆に発生してしま
う為である。
The heat treatment conditions are as follows: holding the material in the temperature range of 350 to 650 ° C. for 45 to 1800 seconds;
Alternatively, holding the material for 5 to 60 seconds in the temperature range of 80 to 1020 ° C. has a great effect on the suppression of coarsening of existing precipitates and the suppression of precipitation of non-precipitated components under the additional treatment of high-density pulse current, at the same time, This is a condition that also contributes to rapid recrystallization of the alloy structure. However, a combination of temperature and time exceeding this causes coarsening of existing precipitates and precipitation of unprecipitated components, which causes various properties such as strength and bending workability to deteriorate. Also, in the case of a combination of low temperature and short time, even if high-density current pulse addition treatment is performed, recrystallization of crystal grains does not proceed and the non-uniformity of the structure increases, and the precipitation of solid solution in the matrix occurs. This is because the precipitation of the components occurs in reverse.

【0021】高密度電流パルス付加処理は、合金組織の
再結晶現象を促進する働きをするもので、前記熱処理と
組合わせて用いる事により、前工程で析出してしまった
析出物の粗大化の抑制と現在固溶状態にある析出成分の
固溶状態の維持とをはかりながら、合金組織における結
晶組織の再結晶化をより効率良く短時間に行う事ができ
るものである。その条件としては、電流密度10〜104
/mm2 、パルス幅20〜250 μs 、パルス周期1〜103 Hz
の範囲内において、有効な効果を示す。
The high-density current pulse addition treatment has a function of promoting the recrystallization phenomenon of the alloy structure, and when used in combination with the above heat treatment, coarsening of precipitates deposited in the previous step It is possible to more efficiently recrystallize the crystal structure of the alloy structure in a short time while controlling the suppression and maintaining the solid solution state of the precipitation component which is presently in the solid solution state. The conditions are current density 10 to 10 4 A
/ Mm 2 , pulse width 20 to 250 μs, pulse period 1 to 10 3 Hz
Within the range of, effective effects are shown.

【0022】さらに、以上の製造法をより効率良く行
い、合金特性を高める為に、本発明製造法による合金の
熱間加工においては、合金鋳塊を 880〜1050℃の温度に
加熱してから、熱間加工を行い終了後迅速に冷却する事
が望ましい。特に、 400℃前後の温度範囲迄は、水冷等
の手段により急速冷却する事が、次工程以後での合金特
性を良好にするものである。
Further, in order to carry out the above manufacturing method more efficiently and enhance the alloy characteristics, in the hot working of the alloy according to the manufacturing method of the present invention, the alloy ingot is heated to a temperature of 880 to 1050 ° C. It is desirable to carry out hot working and cool quickly after completion. In particular, rapid cooling by means such as water cooling up to a temperature range of about 400 ° C. improves the alloy properties in the subsequent steps.

【0023】又、最終の冷間加工後 300〜550 ℃の温度
範囲での調質焼鈍や張力と曲げ歪付加による材料形状矯
正を行うテンションレベラー、 400〜850 ℃の温度範囲
で、材料の調質と形状矯正を行うテンションレベラーア
ニーリング等を組合わせる事により、よりバランスのと
れた高い特性を得る事ができる。
Further, after the final cold working, a tension leveler for tempering annealing in the temperature range of 300 to 550 ° C. or straightening the material shape by adding tension and bending strain, and adjusting the temperature of the material in the temperature range of 400 to 850 ° C. By combining quality and tension leveler annealing for shape correction, it is possible to obtain more balanced and high characteristics.

【0024】[0024]

【実施例】表1に示す組成の銅合金を溶解鋳造した後、
次のα,β又はγに示すいずれかの方法で熱処理と熱間
及び冷間加工を施して供試材を作製した。
EXAMPLE After melting and casting a copper alloy having the composition shown in Table 1,
Heat treatment and hot and cold working were performed by any of the following methods α, β, or γ to prepare test materials.

【0025】[0025]

【表1】 [Table 1]

【0026】・製造法α 銅合金鋳塊に1020℃で熱間圧延を施し、その終了後、直
に水中に投入して材料冷却を行う。これを研削により厚
さ5mmの板とし、さらにこの板に冷間加工を加えて、厚
さ 0.5mmの板とした後に、表5に示すように表2のいず
れかの条件で電場時効熱処理を行い、これに表面酸洗を
施し、その後加工率40%の冷間加工を行って、厚さ 0.3
mmの板に仕上げ、しかる後に 375℃で60分間保持の条件
で調質焼鈍を加えて供試材を作製する。
Manufacturing method α The copper alloy ingot is hot-rolled at 1020 ° C., and after completion of the hot rolling, the material is cooled by directly putting it in water. This was ground into a plate with a thickness of 5 mm, and this plate was cold-worked to a plate with a thickness of 0.5 mm, and then subjected to an electric field aging heat treatment under one of the conditions shown in Table 2 as shown in Table 5. The surface is pickled and cold-worked at a working rate of 40% to obtain a thickness of 0.3
After finishing to a plate of mm, the sample is prepared by tempering annealing at 375 ° C for 60 minutes.

【0027】・製造法β 銅合金鋳塊に1020℃で熱間圧延を施し、その終了後、直
に水中に投入して材料冷却を行う。これを研削により厚
さ5mmの板とし、さらにこの板に冷間加工を加えて、厚
さ 0.5mmの板とした後に、表3及び表4に示す条件を表
5のように組合わせて析出抑制再結晶化熱処理を行い、
急冷して常温に材料を戻した後、これに表面酸洗研削を
施し、加工率40%の冷間加工を行って、厚さ 0.3mmの板
に仕上げる。しかる後に表5に示すように表2のいずれ
かの条件で電場時効熱処理を施して、その後板厚 0.2mm
迄の冷間圧延を行い、 350℃、60分間保持の条件で調質
焼鈍を加えて供試材を作製する。
Manufacturing method β The copper alloy ingot is hot-rolled at 1020 ° C., and after completion of the hot rolling, the material is cooled by directly putting it in water. This was ground into a plate with a thickness of 5 mm, and this plate was cold-worked to form a plate with a thickness of 0.5 mm, and the conditions shown in Tables 3 and 4 were combined as shown in Table 5 to cause precipitation. Suppressing recrystallization heat treatment,
After quenching and returning the material to room temperature, it is subjected to surface pickling grinding and cold working at a working rate of 40% to finish a plate with a thickness of 0.3 mm. After that, as shown in Table 5, electric field aging heat treatment was applied under one of the conditions shown in Table 2, and then the plate thickness was 0.2 mm.
Cold-rolling up to this point and temper annealing at 350 ° C for 60 minutes to prepare the test material.

【0028】・製造法γ 銅合金鋳塊に 950℃で熱間圧延を施し、その終了後、直
に水中に投入して材料冷却を行う。これを研削により厚
さ5mmの板とし、さらにこの板に冷間加工を加えて、厚
さ 0.5mmの板とした後に、表3及び表4に示す条件を表
5のように組合わせて析出抑制再結晶化熱処理を行い、
急冷して常温に材料を戻した後、これに表面酸洗研削を
施し、加工率40%の冷間加工を行って、厚さ 0.3mmの板
に仕上げる。しかる後に表5に示すように表2のいずれ
かの条件で、電場時効熱処理を加えて供試材を作製す
る。
Manufacturing Method γ The copper alloy ingot is hot-rolled at 950 ° C., and immediately after that, the material is cooled by directly putting it in water. This was ground into a plate with a thickness of 5 mm, and this plate was cold-worked to form a plate with a thickness of 0.5 mm, and the conditions shown in Tables 3 and 4 were combined as shown in Table 5 to cause precipitation. Suppressing recrystallization heat treatment,
After quenching and returning the material to room temperature, it is subjected to surface pickling grinding and cold working at a working rate of 40% to finish a plate with a thickness of 0.3 mm. Thereafter, as shown in Table 5, an electric field aging heat treatment is applied under any of the conditions shown in Table 2 to prepare a test material.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】これら供試材について、それぞれ引張強
度、伸び、導電性、曲げ加工性、半田剥離性及びめっき
密着性を以下の方法で測定し、それらの結果を表6に示
した。
Tensile strength, elongation, conductivity, bending workability, solder releasability and plating adhesion of each of these test materials were measured by the following methods, and the results are shown in Table 6.

【0034】引張強度及び伸びについては、JIS−Z
2241に基づいて測定し、導電性はJIS−H050
5に基づき導電率を求めた。曲げ加工性は、JIS−Z
2248のVブロック法により試験を行い、試験片の表
面に割れを生じる最小曲げ半径(R)を同試験片の厚さ
(t)で割った値(R/t)で示した。耐熱半田剥離性
は、供試材より幅5mmの短冊状の試験片を切出し、これ
に60/40共晶半田をロジン系フラックスを用いて半田浸
漬した後で、 170℃の温度で500, 750, 1000時間の加熱
試験を行ってから、 180度の密着曲げを行い、半田の剥
離の有無を観察した。そして 500時間迄に既に剥離が認
められるものを「×」とし、 750時間迄に剥離したもの
を「△」、1000時間で剥離したものを「○」、1000時間
でも剥離していないものを「◎」と表記した。めっき密
着性は、シアン化浴を用いてAgを 5.0μm の厚さにめ
っきしてから450 ℃で10分間加熱した後に、テープ剥離
試験を行い、その剥離の有無を観察した。
Regarding the tensile strength and elongation, JIS-Z
2241. Conductivity is measured according to JIS-H050.
The conductivity was determined based on No. 5. Bending workability is JIS-Z
The test was conducted by the V-block method of 2248, and the minimum bending radius (R) at which the surface of the test piece was cracked was divided by the thickness (t) of the test piece and shown by a value (R / t). Heat-resistant solder releasability is measured by stripping a strip-shaped test piece with a width of 5 mm from the test material and immersing 60/40 eutectic solder in it with rosin flux, and then 500, 750 at 170 ℃. Then, after conducting a heating test for 1000 hours, contact bending of 180 degrees was performed, and the presence or absence of peeling of the solder was observed. If peeling was already recognized by 500 hours, it was marked as "x", if it was peeled by 750 hours was marked as "△", if it was peeled after 1000 hours was marked as "○", and if it was not peeled even after 1000 hours was marked as "○". ◎ ”. For the plating adhesion, after plating Ag to a thickness of 5.0 μm in a cyanide bath and heating at 450 ° C. for 10 minutes, a tape peeling test was performed to observe the presence or absence of peeling.

【0035】[0035]

【表6】 [Table 6]

【0036】表6から明らかなように本発明の製造法に
よる銅合金No.1〜No.9の諸特性は、従来製造法によ
るNo.16と較べて強度や伸びにおいて同等あるいはそれ
以上であり、さらに導電性や曲げ加工性についてはより
優れており、かつ半田剥離性やめっき密着性においても
良好であることが判る。
As is clear from Table 6, the properties of the copper alloys No. 1 to No. 9 produced by the production method of the present invention are equal to or more than the strength and elongation of No. 16 produced by the conventional production method. Further, it can be seen that the electroconductivity and bending workability are more excellent, and the solder releasability and plating adhesion are also good.

【0037】これに対して本発明の条件から外れた比較
例によるものは、特性が大きく劣っている。即ち合金成
分のいずれかの含有量が多過ぎる比較例によるNo.10,
11,15の銅合金は強度は十分なるも導電性、曲げ加工
性、めっき密着性等に劣っている。また熱処理条件にお
ける熱処理温度の低い比較例によるNo.14の銅合金は長
時間の処理にもかかわらず再結晶組織の不均一性が生じ
て曲げ加工性やめっき密着性が劣化している。他方熱処
理温度の高過ぎる比較例によるNo.12の銅合金は結晶粒
の粗大化が起ったり析出物の再固溶が生じたりして強度
や曲げ加工性が劣っている。さらに電場強さの弱い比較
例によるNo.13の銅合金は諸特性が低下しているのが判
る。
On the other hand, the samples according to the comparative examples which are out of the conditions of the present invention are greatly inferior in characteristics. That is, the content of any one of the alloy components was too high, the No. 10 according to the comparative example,
The 11,15 copper alloys have sufficient strength, but are inferior in conductivity, bending workability, plating adhesion and the like. In addition, the copper alloy of No. 14 according to the comparative example, which has a low heat treatment temperature under the heat treatment conditions, has a nonuniform recrystallized structure even after a long time treatment, resulting in deterioration of bending workability and plating adhesion. On the other hand, the copper alloy No. 12 according to the comparative example, which has a too high heat treatment temperature, is inferior in strength and bending workability due to coarsening of crystal grains and re-dissolution of precipitates. Further, it can be seen that the properties of the No. 13 copper alloy according to the comparative example having a weak electric field strength are deteriorated.

【0038】[0038]

【発明の効果】本発明製造法によれば、優れた加工性と
高い強度及び導電率を併せ持ち、さらに高い信頼性を有
するコネクター、端子材、ばね材及びリードフレーム材
等の電子電気機器材料が得られるもので工業上顕著な効
果を奏する。
According to the manufacturing method of the present invention, a material for electronic and electrical equipment such as a connector, a terminal material, a spring material and a lead frame material, which has excellent workability, high strength and conductivity, and has high reliability. The obtained product has a remarkable industrial effect.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cr: 0.1〜0.35wt%、Sn:0.05〜0.
5 wt%を含み、又はさらにZn:0.05〜5.0 wt%を含
み、残部Cuと不可避的不純物とからなる銅合金鋳塊
に、 880〜1050℃の温度域から開始する熱間加工を施
し、急速冷却処理を行って冷間加工を加えた後、時効熱
処理を行う際に同時に1〜10kV/cm の電場を印加するこ
とを特徴とする析出型銅合金の製造法。
1. Cr: 0.1-0.35 wt%, Sn: 0.05-0.
A copper alloy ingot containing 5 wt% or further Zn: 0.05 to 5.0 wt% and the balance Cu and inevitable impurities was subjected to hot working starting from a temperature range of 880 to 1050 ° C. A method for producing a precipitation-type copper alloy, which comprises applying an electric field of 1 to 10 kV / cm at the same time when performing an aging heat treatment after performing a cooling treatment and cold working.
【請求項2】 請求項1記載の銅合金が、さらにSi:
0.005〜0.1 wt%、Mn:0.01〜0.5 wt%、Mg: 0.0
05〜0.5 wt%、V: 0.005〜0.1 wt%、Ti:0.01〜0.
25wt%、B: 0.005〜0.05wt%、P:0.0005〜0.01wt%
からなる群より1種又は2種以上を合計0.0005〜1.0 wt
%含んだものである請求項1記載の析出型銅合金の製造
法。
2. The copper alloy according to claim 1, further comprising Si:
0.005-0.1 wt%, Mn: 0.01-0.5 wt%, Mg: 0.0
05-0.5 wt%, V: 0.005-0.1 wt%, Ti: 0.01-0.
25wt%, B: 0.005-0.05wt%, P: 0.0005-0.01wt%
0.0005 to 1.0 wt in total of 1 or 2 or more from the group consisting of
%, The method for producing a precipitation-type copper alloy according to claim 1.
【請求項3】 Cr: 0.1〜0.35wt%、Sn:0.05〜0.
5 wt%を含み、又はさらにZn:0.05〜5wt%を含み、
残部Cuと不可避的不純物とからなる銅合金鋳塊に、 8
80〜1050℃の温度域から開始する熱間加工を施し、急速
冷却処理を行って冷間加工を加えた後、 350〜650 ℃で
45〜1800秒間保持する熱処理と高密度パルス電流付加処
理とを同時に行い、その後冷間加工を行った後、時効熱
処理を行う際に同時に1〜10kV/cm の電場を印加するこ
とを特徴とする析出型銅合金の製造法。
3. Cr: 0.1-0.35 wt%, Sn: 0.05-0.
5 wt% or further Zn: 0.05-5 wt%,
To the copper alloy ingot which consists of the balance Cu and unavoidable impurities, 8
Perform hot working starting from the temperature range of 80 to 1050 ℃, perform rapid cooling treatment and add cold working, then at 350 to 650 ℃
It is characterized in that a heat treatment of holding for 45 to 1800 seconds and a high-density pulse current addition treatment are performed at the same time, and after cold working, an electric field of 1 to 10 kV / cm is simultaneously applied when performing aging heat treatment. Manufacturing method of precipitation-type copper alloy.
【請求項4】 請求項3記載の銅合金が、さらにSi:
0.005〜0.1 wt%、Mn:0.01〜0.5 wt%、Mg: 0.0
05〜0.5 wt%、V: 0.005〜0.1 wt%、Ti:0.01〜0.
25wt%、B: 0.005〜0.05wt%、P:0.0005〜0.01wt%
からなる群より1種又は2種以上を合計0.0005〜1.0 wt
%含んだものである請求項3記載の析出型銅合金の製造
法。
4. The copper alloy according to claim 3, further comprising:
0.005-0.1 wt%, Mn: 0.01-0.5 wt%, Mg: 0.0
05-0.5 wt%, V: 0.005-0.1 wt%, Ti: 0.01-0.
25wt%, B: 0.005-0.05wt%, P: 0.0005-0.01wt%
0.0005 to 1.0 wt in total of 1 or 2 or more from the group consisting of
%, The method for producing a precipitation-type copper alloy according to claim 3.
【請求項5】 Cr: 0.1〜0.35wt%、Sn:0.05〜0.
5 wt%を含み、又はさらにZn:0.05〜5wt%を含み、
残部Cuと不可避的不純物とからなる銅合金鋳塊に、 8
80〜1050℃の温度域から開始する熱間加工を施し、急速
冷却処理を行って冷間加工を加えた後、 880〜1020℃で
5〜60秒間保持する熱処理と高密度パルス電流付加処理
とを同時に行い、その後冷間加工を行った後、時効熱処
理を行う際に同時に1〜10kV/cm の電場を印加すること
を特徴とする析出型銅合金の製造法。
5. Cr: 0.1-0.35 wt%, Sn: 0.05-0.
5 wt% or further Zn: 0.05-5 wt%,
To the copper alloy ingot which consists of the balance Cu and unavoidable impurities, 8
After performing hot working starting from the temperature range of 80 to 1050 ℃, performing rapid cooling treatment and cold working, heat treatment to hold at 880 to 1050 ℃ for 5 to 60 seconds and high-density pulse current addition treatment. The method for producing a precipitation-type copper alloy is characterized in that an electric field of 1 to 10 kV / cm is applied at the same time when aging heat treatment is performed after simultaneously performing the cold working and the cold working.
【請求項6】 請求項5記載の銅合金が、さらにSi:
0.005〜0.1 wt%、Mn:0.01〜0.5 wt%、Mg: 0.0
05〜0.5 wt%、V: 0.005〜0.1 wt%、Ti:0.01〜0.
25wt%、B: 0.005〜0.05wt%、P:0.0005〜0.01wt%
からなる群より1種又は2種以上を合計0.0005〜1.0 wt
%含んだものである請求項5記載の析出型銅合金の製造
法。
6. The copper alloy according to claim 5, further comprising Si:
0.005-0.1 wt%, Mn: 0.01-0.5 wt%, Mg: 0.0
05-0.5 wt%, V: 0.005-0.1 wt%, Ti: 0.01-0.
25wt%, B: 0.005-0.05wt%, P: 0.0005-0.01wt%
0.0005 to 1.0 wt in total of 1 or 2 or more from the group consisting of
%, The method for producing a precipitation-type copper alloy according to claim 5.
JP28355192A 1992-09-30 1992-09-30 Production of precipitation type copper alloy Pending JPH06108212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28355192A JPH06108212A (en) 1992-09-30 1992-09-30 Production of precipitation type copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28355192A JPH06108212A (en) 1992-09-30 1992-09-30 Production of precipitation type copper alloy

Publications (1)

Publication Number Publication Date
JPH06108212A true JPH06108212A (en) 1994-04-19

Family

ID=17666993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28355192A Pending JPH06108212A (en) 1992-09-30 1992-09-30 Production of precipitation type copper alloy

Country Status (1)

Country Link
JP (1) JPH06108212A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482276B2 (en) * 2000-04-10 2002-11-19 The Furukawa Electric Co., Ltd. Copper alloy with punchability, and a manufacturing method thereof
WO2007040148A1 (en) * 2005-09-30 2007-04-12 The Furukawa Electric Co., Ltd. Copper alloy for electrical connecting device
WO2008090973A1 (en) * 2007-01-26 2008-07-31 The Furukawa Electric Co., Ltd. Rolled sheet material
JP2008202144A (en) * 2007-01-26 2008-09-04 Furukawa Electric Co Ltd:The Rolled sheet material
CN102918172A (en) * 2010-02-24 2013-02-06 株式会社豊山 High-strength and highly conductive copper alloy, and method for manufacturing same
CN104046834A (en) * 2014-06-19 2014-09-17 华北水利水电大学 Method for improving comprehensive performance of CuCr1 (CuCr1Zr) alloy
CN109252116A (en) * 2018-11-01 2019-01-22 上海理工大学 Magnesium-aluminum alloys aging heat treatment method is assisted using electrostatic field
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482276B2 (en) * 2000-04-10 2002-11-19 The Furukawa Electric Co., Ltd. Copper alloy with punchability, and a manufacturing method thereof
WO2007040148A1 (en) * 2005-09-30 2007-04-12 The Furukawa Electric Co., Ltd. Copper alloy for electrical connecting device
KR100902201B1 (en) * 2005-09-30 2009-06-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy for electrical connecting device
WO2008090973A1 (en) * 2007-01-26 2008-07-31 The Furukawa Electric Co., Ltd. Rolled sheet material
JP2008202144A (en) * 2007-01-26 2008-09-04 Furukawa Electric Co Ltd:The Rolled sheet material
CN102918172A (en) * 2010-02-24 2013-02-06 株式会社豊山 High-strength and highly conductive copper alloy, and method for manufacturing same
CN104046834A (en) * 2014-06-19 2014-09-17 华北水利水电大学 Method for improving comprehensive performance of CuCr1 (CuCr1Zr) alloy
CN109252116A (en) * 2018-11-01 2019-01-22 上海理工大学 Magnesium-aluminum alloys aging heat treatment method is assisted using electrostatic field
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP2006009137A (en) Copper alloy
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
TWI647320B (en) Cu-Ni-Si copper alloy strip and manufacturing method thereof
JPH06108212A (en) Production of precipitation type copper alloy
JP2005163127A (en) Method of producing copper alloy sheet for high strength electrical/electronic component
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH06145930A (en) Production of precipitation type copper alloy
JPH0681090A (en) Production of precipitation type copper alloy
JPH11323463A (en) Copper alloy for electrical and electronic parts
JPH0617209A (en) Manufacture of copper alloy for electrical and electronic apparatus
JP2672241B2 (en) Method for producing copper alloy material excellent in strength and bendability
JPH034612B2 (en)
JPH06100984A (en) Spring material excellent in shape freezability and spring limit value and its production
JPS58213847A (en) Copper alloy for electric and electronic parts and its manufacture
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2001032028A (en) Copper alloy for electronic parts, and its manufacture
JPH04231445A (en) Production of electrifying material