JPH06100984A - Spring material excellent in shape freezability and spring limit value and its production - Google Patents

Spring material excellent in shape freezability and spring limit value and its production

Info

Publication number
JPH06100984A
JPH06100984A JP25306192A JP25306192A JPH06100984A JP H06100984 A JPH06100984 A JP H06100984A JP 25306192 A JP25306192 A JP 25306192A JP 25306192 A JP25306192 A JP 25306192A JP H06100984 A JPH06100984 A JP H06100984A
Authority
JP
Japan
Prior art keywords
weight
spring
temperature range
content
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25306192A
Other languages
Japanese (ja)
Inventor
Satoru Nishimura
哲 西村
Kosaku Shioda
浩作 潮田
Michio Endo
道雄 遠藤
Takahide Ono
恭秀 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25306192A priority Critical patent/JPH06100984A/en
Publication of JPH06100984A publication Critical patent/JPH06100984A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a spring material having superior spring limit value and high Young's modulus and electric conductivity by constituting the composition of a metal sheet of specific weight percentages of Cu, Al, Mn, Ti, Cr, and Mo and the balance Fe. CONSTITUTION:The metal sheet has a composition consisting of, by weight, 20-85% Cu, 0.3-11% Al, 0.05-3.0% Mn, 0.005-3.5% Ti, 0.1-10% Cr, 0.001-1.5% Mo, and the balance Fe with inevitable impurities. The ratio of Cr content to Fe content is regulated to 5.5-13.5%. As alloy components, 0.005-8%, in total, of one or more elements among Zr, Si, Ni, Zn, Sn, Nb, P, La, Ce, Y, V, Ca, Be, Mg, and Hf and 0.005-2%, in total, of C and/or B are further incorporated. By this method, the spring material excellent in manufacturing environment and reliability can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バネ限界値と形状凍結
性(すなわち高ヤング率を有すること)のバランスに優
れ、電気伝導性と信頼性に優れたバネ用材料、たとえば
薄板(コネクタ又はコンタクトなどに使用)又は線材
(ピンに使用)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spring material, such as a thin plate (connector or connector), which has an excellent balance between a spring limit value and shape fixability (that is, has a high Young's modulus) and which is excellent in electrical conductivity and reliability. Used for contacts) or wire (used for pins).

【0002】[0002]

【従来の技術】バネ用薄板材料としては、たとえばJI
SC1720−PのCu−1.81Be−0.05Fe
合金、特開平1−162736号公報に記載されている
Cu−Ti(2.5〜5.0重量%)合金などがあり、
いずれもバネ限界値に優れるが高ヤング率と電気伝導性
を同時に兼ね備えていない。
2. Description of the Related Art As a thin plate material for springs, for example, JI
Cu-1.81Be-0.05Fe of SC1720-P
Alloys, Cu-Ti (2.5 to 5.0% by weight) alloys described in JP-A-1-162736, and the like,
All have excellent spring limit values, but do not combine high Young's modulus and electrical conductivity at the same time.

【0003】さらにJISC1720−PのCu−1.
81Be−0.05Fe合金は、Beを添加するため製
造環境の問題とコストが高い問題があり、これらの問題
を解決できる材料の出現が望まれている。
Further, JIS-1720-P Cu-1.
The 81Be-0.05Fe alloy has a problem of a manufacturing environment and a problem of high cost because Be is added thereto, and a material capable of solving these problems is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明はこれらのバネ
用薄板又は線材として優れた特性と低コストを実現しう
る材料及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a material capable of realizing excellent properties and low cost as a thin plate or wire for springs, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のような構成をなすものである。すなわ
ち、本発明の特徴は重量%で、Cu:20〜85%,A
l:0.3〜11%,Mn:0.05〜3.0%,T
i:0.005〜3.5%,Cr:0.1〜10%,M
o:0.001〜1.5%を含有し、残部が不可避的不
純物およびFeからなる合金を700〜1000℃の温
度範囲で熱間圧延し、該熱間加工材を圧下率50〜95
%で一次冷間加工を施し、次いで450〜1000℃の
温度範囲で焼鈍した後圧下率5〜85%で二次冷間加工
を施し、さらに溶体化処理後急冷を行い、続いて150
〜650℃の温度範囲で時効処理を施すことにより、優
れたバネ限界値と高ヤング率を得ると同時に優れた電気
伝導性を有するバネ用材料を得るところにある。
In order to achieve the above object, the present invention has the following constitution. That is, the feature of the present invention is, by weight%, Cu: 20 to 85%, A
1: 0.3 to 11%, Mn: 0.05 to 3.0%, T
i: 0.005-3.5%, Cr: 0.1-10%, M
o: An alloy containing 0.001 to 1.5% and the balance being unavoidable impurities and Fe is hot-rolled in a temperature range of 700 to 1000 ° C., and the hot-worked material has a reduction ratio of 50 to 95.
%, Followed by annealing in the temperature range of 450 to 1000 ° C., secondary cold working at a reduction rate of 5 to 85%, further solution treatment followed by rapid cooling, and then 150
By aging treatment in the temperature range of up to 650 ° C., a spring material having an excellent spring limit value and a high Young's modulus and at the same time an excellent electric conductivity can be obtained.

【0006】[0006]

【作用】以下本構成要件の限定理由を説明する。まず、
合金の化学組成の限定理由は以下の通りである。バネ限
界値とヤング率を向上させるためにはCuの含有量が高
いほど好ましいが、接点バネ薄板の電気伝導性の要求に
対してはCuの含有量を制御して目的とする電気伝導性
とバネ限界値・ヤング率のバランスを得ることが望まし
い。Cu含有量は図1に示すように20重量%未満では
バネ用薄板又は線材として必要な電気伝導性が得らずバ
ネ限界値とヤング率への効果しか得られないのでこれを
下限とする。また上限を85重量%とするのは、Feを
主とするCu以外の総含有量が15重量%未満では、本
合金の特徴とする高ヤング率と優れたバネ限界値とのバ
ランスが得られなくなるからである。従ってCuを20
〜85重量%の範囲とする。
[Function] Hereinafter, the reason for limiting the constituent requirements will be described. First,
The reasons for limiting the chemical composition of the alloy are as follows. In order to improve the spring limit value and Young's modulus, the higher the Cu content is, the more preferable it is. However, in order to meet the electric conductivity requirement of the contact spring thin plate, the Cu content should be controlled to achieve the desired electric conductivity. It is desirable to obtain a balance between the spring limit value and Young's modulus. If the Cu content is less than 20% by weight as shown in FIG. 1, the electrical conductivity required for a thin plate or wire for spring cannot be obtained and only the effect on the spring limit value and Young's modulus can be obtained, so this is the lower limit. Further, the upper limit is set to 85% by weight, when the total content of Fe and other than Cu is less than 15% by weight, a balance between the high Young's modulus characteristic of the present alloy and an excellent spring limit value is obtained. Because it will disappear. Therefore, Cu is 20
To 85% by weight.

【0007】次にAlを0.3〜11.0重量%に規定
するのは0.3%未満では熱間加工性向上への効果が少
なく11.0重量%超では熱間加工性向上への効果が飽
和する上に伝導性の低下が大きくなるからである。さら
にMnはAlとの複合効果で熱間加工性を向上させ、
0.05重量%未満では効果が少なく、3重量%超では
効果が飽和するため、0.05〜3重量%の範囲に規定
する。またTiを0.005〜3.5重量%に規定する
のは0.005%未満では導電性への効果が少なく、
3.5重量%超では導電性への効果が飽和する上に鋳
造、冷間加工などの製造性を阻害するからである。
Next, the content of Al in the range of 0.3 to 11.0% by weight is that if it is less than 0.3%, the effect on improving the hot workability is small, and if it exceeds 11.0% by weight, the hot workability is improved. This is because the effect of is saturated and the decrease in conductivity becomes large. Furthermore, Mn improves the hot workability by the combined effect of Al and
If it is less than 0.05% by weight, the effect is small, and if it exceeds 3% by weight, the effect is saturated. Therefore, it is specified in the range of 0.05 to 3% by weight. Further, the Ti content is specified to 0.005 to 3.5% by weight when less than 0.005%, the effect on conductivity is small,
This is because if it exceeds 3.5% by weight, the effect on conductivity is saturated and the productivity such as casting and cold working is impaired.

【0008】Crを0.1〜10重量%に、また、Mo
を0.001〜1.5重量%にそれぞれ規定するのはバ
ネ用薄板又は線材としての隙間腐食性を半田・Agメッ
キ性を劣化させずにCrとMoの複合効果で向上させる
ためであり、Moの含有量が0.001重量%未満では
隙間腐食性への効果が少なく、1.5重量%超では隙間
腐食性への効果が飽和する上にコストが大きくなる。な
おCr含有量をFe含有量に対し重量比で5.5〜1
3.5%に規定すると、素材の耐食性を前記Moとの複
合効果によってより一層向上することができる。すなわ
ち5.5%未満ではその効果が不十分で、また13.5
%を超えても耐食性への効果が飽和する上に半田・Ag
メッキ性などを劣化させるのでこの範囲にする。
Cr in 0.1 to 10% by weight, and Mo
Is defined as 0.001 to 1.5% by weight, respectively, in order to improve the crevice corrosion resistance as a thin plate for spring or wire material by the combined effect of Cr and Mo without deteriorating the solder / Ag plating property, If the Mo content is less than 0.001% by weight, the effect on crevice corrosion is small, and if it exceeds 1.5% by weight, the effect on crevice corrosion is saturated and the cost increases. The Cr content is 5.5 to 1 by weight ratio with respect to the Fe content.
When it is defined to be 3.5%, the corrosion resistance of the material can be further improved by the combined effect with Mo. That is, if it is less than 5.5%, the effect is insufficient, and 13.5.
%, The effect on corrosion resistance is saturated and solder / Ag
It is in this range because it deteriorates the plating property.

【0009】また、鋳造組織制御やバネ限界値・強度向
上、加工性、各種メッキ性ならびに半田耐候性(半田付
けした後の150℃で1000時間以上の長時間加熱剥
離性)などの改善の必要に応じて、更に、Zr,Si,
Ni,Zn,Sn,Nb,P,La,Ce,Y,V,C
a,Be,Mg及びHfの1種又は2種以上を合計で
0.005〜8重量%、C及びBの1種又は2種を合計
で0.005〜2重量%添加する。
Further, it is necessary to improve casting structure control, spring limit value / strength enhancement, workability, various plating properties, and solder weather resistance (peeling property at 150 ° C. for 1000 hours or more after soldering). In addition, Zr, Si,
Ni, Zn, Sn, Nb, P, La, Ce, Y, V, C
One or more of a, Be, Mg and Hf are added in a total amount of 0.005 to 8% by weight, and one or two of C and B are added in a total amount of 0.005 to 2% by weight.

【0010】特にFe含有量に対するCr含有量の重量
比を6%、Mo含有量のそれを0.01%を超える成分
では、上記各成分を0.005重量%以上の範囲内で添
加し、本発明のCrおよびMoを含むFe相とCu相が
均一に微細分散された金属組織を得ることができるが、
このことは加工、熱処理後、板厚方向で10μm以下の
大きさの結晶粒を有する金属組織を得る上で重要であ
る。
Particularly, in the case of a component in which the weight ratio of the Cr content to the Fe content exceeds 6% and the Mo content thereof exceeds 0.01%, the above-mentioned respective components are added within the range of 0.005% by weight or more, It is possible to obtain a metallic structure in which the Fe phase containing Cr and Mo and the Cu phase of the present invention are uniformly finely dispersed,
This is important for obtaining a metal structure having crystal grains of 10 μm or less in the plate thickness direction after processing and heat treatment.

【0011】次に、本発明のバネ用材料を製造する方法
について説明する。前述の化学成分を有する溶融金属を
インゴット又はスラブに造塊後、所望の板厚又は直径の
材料に700〜1000℃の温度域で熱間加工し、さら
に引続いて、圧下率50〜95%の一次冷間加工を行
う。これはバネ用薄板又線材に必要な板厚又は直径を得
ることゝ、50%以上の圧延を実施することでその後の
焼鈍処理による加工性の付与を行うためである。上記焼
鈍方法は、材料の強度を重視して一次冷間加工で蓄積し
た加工歪みの解放だけを目的とし、徐加熱−比較的低温
での保持−徐冷却の各処理を順似施す。かゝる処理条件
は0.05〜5000℃/分の加熱速度、450〜10
00℃の保持温度、および0.05〜5000℃/分の
冷却速度が適している。
Next, a method for manufacturing the spring material of the present invention will be described. After ingoting the molten metal having the above-mentioned chemical components into an ingot or slab, it is hot worked into a material having a desired plate thickness or diameter in a temperature range of 700 to 1000 ° C., and subsequently, a rolling reduction of 50 to 95%. Primary cold working is performed. This is to obtain the plate thickness or diameter required for the thin plate for spring or wire rod, and to perform the rolling by 50% or more to impart the workability by the subsequent annealing treatment. The above-mentioned annealing method is intended only to release the processing strain accumulated in the primary cold working, with emphasis on the strength of the material, and the steps of gradual heating, holding at a relatively low temperature, and gradual cooling are performed in order. Such treatment conditions are heating rate of 0.05 to 5000 ° C./min, 450 to 10
A holding temperature of 00 ° C. and a cooling rate of 0.05 to 5000 ° C./min are suitable.

【0012】また、一次冷間加工で蓄積した加工歪みに
よって再結晶を生じさせ、異方性の小さい材料を得るよ
うにしてもよい。いずれの場合でも、その後二次冷間加
工を5〜85%で行い、700〜1000℃の温度範囲
で溶体化処理後急冷を行い、さらに時効処理を行うこと
が必要である。二次冷間加工が5%未満の圧下率では時
効析出に必要な転位密度が不足であり、85%を越える
と加工性が劣化する。従って二次冷間加工の圧下率を上
記範囲に規定する。なお、焼鈍条件として450〜10
00℃の温度範囲で保定後、0.05〜0.5℃/分未
満の冷却速度で冷却する場合、又は450〜700℃未
満の温度範囲で保定後、0.5〜5000℃/分の冷却
する場合は、必要により下記に示す溶体化処理を施す。
すなわち、700〜1000℃の温度範囲で保定後0.
5〜5000℃/分の冷却速度で急冷する焼鈍を行う場
合は溶体化処理を省略することができる。溶体化処理及
び急冷は冷延材の含有成分を過飽和に固溶せしめてより
効果的に時効処理を施すために行われるもので、700
〜1000℃の温度範囲で10秒〜2時間の保持が好ま
しい。なお、急冷は水又は不活性ガスの冷却媒体を使用
し、0.5〜5,000℃/分の冷却速度が適してい
る。
Further, recrystallization may be caused by the processing strain accumulated in the primary cold working to obtain a material having small anisotropy. In any case, after that, it is necessary to perform secondary cold working at 5 to 85%, perform solution treatment in the temperature range of 700 to 1000 ° C., perform rapid cooling, and then perform aging treatment. If the reduction ratio of the secondary cold working is less than 5%, the dislocation density required for aging precipitation is insufficient, and if it exceeds 85%, the workability deteriorates. Therefore, the reduction ratio of the secondary cold working is specified in the above range. The annealing condition is 450 to 10
After retaining in the temperature range of 00 ° C, when cooling at a cooling rate of 0.05 to less than 0.5 ° C / min, or after retaining in the temperature range of 450 to less than 700 ° C, 0.5 to 5000 ° C / min. When cooling, the solution treatment shown below is performed if necessary.
That is, after retention in the temperature range of 700 to 1000 ° C.
The solution treatment can be omitted when annealing is performed in which the material is rapidly cooled at a cooling rate of 5 to 5000 ° C./min. The solution treatment and the quenching are performed in order to dissolve the components of the cold rolled material into a supersaturated solid solution and more effectively perform the aging treatment.
Hold for 10 seconds to 2 hours in the temperature range of ˜1000 ° C. is preferable. The quenching uses a cooling medium of water or an inert gas, and a cooling rate of 0.5 to 5,000 ° C./min is suitable.

【0013】時効処理はバネ限界値と電気伝導性を向上
させるために、製造工程上必須のものであり、化学組成
と前工程条件により適性な温度を選定すべきである。そ
の条件としてはバネ限界値ならび導電性の関係より、低
温過ぎると析出物の周りに歪みが生じて導電性や伸びの
低下が生じたり、また、目的の導電性を得るために設備
制約や製造効率に影響が生じてコスト増になる。また高
温過ぎると析出量が少なくなり高いバネ限界値が得られ
ない。従って、時効処理の最適条件は250〜650℃
の温度範囲で10〜500分保持の時効処理を行うこと
である。
Aging treatment is indispensable in the manufacturing process in order to improve the spring limit value and electric conductivity, and an appropriate temperature should be selected depending on the chemical composition and the conditions of the previous process. As the condition, due to the relationship between the spring limit value and the conductivity, strain will occur around the precipitates if the temperature is too low and the conductivity and elongation will decrease, and equipment restrictions and manufacturing to obtain the desired conductivity will occur. Efficiency is affected and costs are increased. On the other hand, if the temperature is too high, the amount of precipitation will decrease and a high spring limit value cannot be obtained. Therefore, the optimum condition for aging treatment is 250 to 650 ° C.
That is, the aging treatment is performed for 10 to 500 minutes in the temperature range.

【0014】上記金属薄板はコイル状またはスリット状
に加工された後Ni,Cu,Ag,Auなどのメッキま
たはそれら合金メッキおよび半田、Snメッキなどが施
される。あるいは上記金属板が、予めバネ部品として加
工された後に、上記メッキ処理が施される。いずれの場
合でもメッキは以下の条件で行う。メッキはかかる素板
にアルカリ系脱脂剤を用いて電解また浸漬脱脂を行い、
さらに酸洗により表面を活性化した後に所望の金属浴ま
たは合金浴を用いて電気または浸漬メッキを行う。な
お、上記金属線材も同様のメッキ処理が行われる。
The thin metal plate is processed into a coil shape or a slit shape and then plated with Ni, Cu, Ag, Au or the like, or alloy plating thereof, solder, Sn plating and the like. Alternatively, the metal plate is processed as a spring component in advance, and then the plating process is performed. In either case, plating is performed under the following conditions. Plating is performed by electrolytic or immersion degreasing on such a base plate using an alkaline degreasing agent,
Further, after the surface is activated by pickling, electric or immersion plating is performed using a desired metal bath or alloy bath. The above metal wire is also subjected to the same plating treatment.

【0015】メッキ層の厚みは通常0.01〜10μm
程度の範囲であるが、密着性、厚み均一性、半田耐候性
ならびに経済性から見て0.20〜5.0μmの範囲が
良好である。0.20μm以下では半田耐候性(半田の
150℃で1000時間あるいは1500時間の低温長
時間加熱で剥離する現象)やピンホールの存在により信
頼性が劣化する。また5.0μmを超えると密着性およ
び厚みの均一性が劣化する。
The thickness of the plating layer is usually 0.01 to 10 μm.
The range is about 0.2 to 5.0 μm in terms of adhesion, thickness uniformity, solder weather resistance and economy. When the thickness is 0.20 μm or less, the solder weather resistance (a phenomenon in which the solder is peeled off by heating at 150 ° C. for 1000 hours or 1500 hours at low temperature for a long time) and the presence of pinholes deteriorate reliability. On the other hand, if it exceeds 5.0 μm, the adhesion and the uniformity of thickness are deteriorated.

【0016】[0016]

【実施例】【Example】

実施例1 表1,2に示す本発明の成分範囲の合金(供試材A〜F
とS〜II)と比較例の成分範囲の合金(供試材G〜R)
をそれぞれ、高周波誘導加熱装置で真空溶解を行い、連
続鋳造でスラブを製造した後950℃で熱間圧延を行
い、1.8mm板厚の金属板を得た。
Example 1 Alloys in the composition range of the present invention shown in Tables 1 and 2 (Sample materials A to F)
And S-II) and alloys in the composition range of the comparative example (test materials G-R)
Each was vacuum-melted with a high-frequency induction heating device, and a slab was manufactured by continuous casting, followed by hot rolling at 950 ° C. to obtain a metal plate having a plate thickness of 1.8 mm.

【0017】[0017]

【表1】 [Table 1]

【表2】 [Table 2]

【0018】次に上記熱延板に85%の一次冷間圧延を
行い、引続き1000℃/分の加熱速度で950℃まで
昇温し、この温度で60分保定した後、窒素ガスで15
00℃/分の冷却速度で冷却する焼鈍を施した。次いで
25%の二次冷間圧延を行った後、480℃で3時間の
時効処理を施した。又、供試材BとCの合金を前記の同
様の一次冷間圧延まで行い、焼鈍条件として、1000
℃/分の加熱速度650℃まで昇温し、この温度で60
秒保定した後100℃/分の冷却速度で窒素ガス冷却を
施した。次いで25%の二次冷間圧延を行った後、95
0℃で2分間保持の溶体化処理を施し、その後1500
℃/分の冷却速度で窒素ガス冷却を行い、引続き480
℃で3時間の時効処理を施した。得られた金属薄板の材
質特性を表3及び表4の試料番号1〜35に示す。ま
た、比較例としてBe−Cu,Cu−Ti、リン青銅又
はCDA195等の合金も用いその特性を加えた。なお
合金IとKは熱間圧延割れのため、評価不可能であっ
た。
Next, the hot-rolled sheet was subjected to a primary cold rolling of 85%, subsequently heated to 950 ° C. at a heating rate of 1000 ° C./min, held at this temperature for 60 minutes, and then heated with nitrogen gas for 15 minutes.
Annealing was performed to cool at a cooling rate of 00 ° C / min. Then, 25% secondary cold rolling was performed, and then aging treatment was performed at 480 ° C. for 3 hours. Further, the alloys of the test materials B and C were subjected to the same primary cold rolling as described above, and the annealing condition was set to 1000
Heating rate up to 650 ° C at 60 ° C / min and 60 at this temperature
After holding for 2 seconds, cooling with nitrogen gas was performed at a cooling rate of 100 ° C./min. Then, after performing 25% secondary cold rolling,
Solution treatment of holding for 2 minutes at 0 ° C, then 1500
Nitrogen gas was cooled at a cooling rate of ℃ / min, and continued to 480
An aging treatment was performed at 3 ° C. for 3 hours. The material properties of the obtained metal thin plates are shown in sample numbers 1 to 35 in Tables 3 and 4. Further, as a comparative example, an alloy such as Be-Cu, Cu-Ti, phosphor bronze or CDA195 was used and its characteristics were added. The alloys I and K could not be evaluated because of hot rolling cracks.

【0019】表3および表4中のバネ限界値はモーメン
ト方式により測定し、強度はJIS13B引張試験(引
張り速度:10mm/min )により、またヤング率は共振
法、導電率は4端子法によりそれぞれ求めた。耐食性と
して隙間腐食は切断面を含む0.125mm板厚、10mm
幅、30mm長さの試料をポリカーボネート製の樹脂の間
に挟み込みJIS−Z2371に準じて塩水噴霧試験を
96時間行い、試料全面での赤錆発生面積率により判定
し、また通常の耐食性は前記方法で素材の裸状態で行っ
た。
The spring limit values in Tables 3 and 4 are measured by the moment method, the strength is measured by the JIS13B tensile test (pulling speed: 10 mm / min), the Young's modulus is measured by the resonance method, and the conductivity is measured by the four-terminal method. I asked. As corrosion resistance, crevice corrosion is 0.125 mm including cut surface, plate thickness is 10 mm
A sample with a width of 30 mm is sandwiched between polycarbonate resins and a salt spray test is performed for 96 hours according to JIS-Z2371, and the area of red rust on the entire surface of the sample is judged to be the same. I went with the material naked.

【0020】メッキ性での半田濡れ性については濡れ面
積率で95%以上を合格とした。またAgメッキ耐熱性
はCuストライクメッキを約0.3μm施した後、Ag
を約3μmメッキし、しかる後大気中430℃で3分加
熱して、メッキ表面での膨れの発生により判定した。製
造性は鋳造時のノズル詰り状況と冷間加工性(2.0mm
から0.125mmまで中間焼鈍を行わず、15バス以内
で冷間加工した場合のエッジとセンターでの割れ状況)
で判定した。さらにコスト評価はMo添加をしない時の
平均原料価格に対して、1.3倍以下を良好と判定し
た。
Regarding solder wettability in terms of plating property, a wetted area rate of 95% or more was passed. The heat resistance of Ag plating is about 0.3 μm after Cu strike plating.
Was plated for about 3 μm, and then heated in air at 430 ° C. for 3 minutes, and judged by occurrence of swelling on the plated surface. Manufacturability includes nozzle clogging during casting and cold workability (2.0 mm
From 0.1 to 0.125 mm without intermediate annealing, when cold working within 15 baths, cracks at the edge and center)
It was judged by. Furthermore, the cost evaluation was judged to be good when 1.3 times or less of the average raw material price when Mo was not added.

【0021】ここで試料番号7はCu添加量が20重量
%以下の場合であり、リン青銅並みの低い導電率であ
る。また試料番号8はCu添加量が85重量%以上の場
合でFeなどのヤング率に有効に働く元素の添加量が少
ないためにヤング率が低く、試料番号9,10はAl,
Mn添加量が多いため導電性が低い。また試料番号1
2,14はTi,Mo添加量が多いためコストが高い。
試料番号11はTi含有量が0.005%以下のため導
電性が低く、試料番号12はTi含有量が3.5%以上
で製造性が劣る。試料番号13はMoが低いため隙間腐
食性が不良、試料番号14はコストが高い。また試料番
号15はCrが低いため耐食性が低く、試料番号16は
半田濡れ性、Agメッキ耐熱性が劣る。このように比較
例に比べ本発明の特性が優れていることは明らかであ
る。
Here, Sample No. 7 is the case where the added amount of Cu is 20% by weight or less, and the conductivity is as low as phosphor bronze. Sample No. 8 has a low Young's modulus because the amount of addition of elements such as Fe that effectively acts on Young's modulus is small when the amount of Cu added is 85% by weight or more.
Since the amount of Mn added is large, the conductivity is low. Sample number 1
Nos. 2 and 14 have a large amount of Ti and Mo added, and thus the cost is high.
Sample No. 11 has a Ti content of 0.005% or less and thus has low conductivity, and Sample No. 12 has a Ti content of 3.5% or more and is inferior in productivity. Sample No. 13 has a low Mo content because of low Mo, and Sample No. 14 has a high cost. Further, since the sample number 15 has low Cr, the corrosion resistance is low, and the sample number 16 is inferior in solder wettability and heat resistance of Ag plating. Thus, it is clear that the characteristics of the present invention are superior to those of the comparative example.

【0022】[0022]

【表3】 [Table 3]

【表4】 [Table 4]

【0023】実施例2 表1,2に示す本発明の成分範囲の合金、供試材B,S
をそれぞれ前記と同様の溶解、連続鋳造後熱間圧延を行
い板厚2.0mmの金属板を得た。この金属板に一次冷間
圧延後板厚が0.15mmになるよう圧下率を考慮した上
で表面研削を行い、次いで一次冷間圧延を圧下率35,
55及び85%の3水準で行った。しかる後、これらの
金属板に焼鈍を950℃で60秒施し、処理後窒素がス
で100℃/分の急冷を行った。引続き二次冷間圧延を
3,8,25,65及び90%の5水準で行って板厚
0.146,0.138,0.120,0.068及び
0.053mmの金属薄板とした。次いで各金属薄板に5
50℃で3時間の時効処理を施した。
Example 2 Alloys and test materials B and S in the composition range of the present invention shown in Tables 1 and 2
Melting and continuous casting were carried out in the same manner as above and hot rolling was performed to obtain a metal plate having a plate thickness of 2.0 mm. This metal plate was subjected to surface grinding after considering the reduction ratio so that the plate thickness after the primary cold rolling would be 0.15 mm, and then the primary cold rolling was performed with a reduction ratio of 35,
Performed at three levels of 55 and 85%. Thereafter, these metal plates were annealed at 950 ° C. for 60 seconds, and after the treatment, they were rapidly cooled with nitrogen gas at 100 ° C./min. Subsequently, secondary cold rolling was carried out at 5 levels of 3, 8, 25, 65 and 90% to obtain metal thin plates having plate thicknesses of 0.146, 0.138, 0.120, 0.068 and 0.053 mm. Then add 5 to each sheet of metal.
Aging treatment was performed at 50 ° C. for 3 hours.

【0024】上記の金属板の材質特性を表5,6,7及
び8に示す。評価は実施例1と同様にバネ限界値・強度
と導電率について測定を行い、加工性は密着曲げによっ
た。以下の結果より一次冷間圧延率の低いものや、二次
冷間圧延率90%超のものは加工性が不良であり、さら
に二次冷間圧延率の5%未満のものは導電性が低いこと
が判明した。
The material characteristics of the above metal plate are shown in Tables 5, 6, 7 and 8. The evaluation was carried out by measuring the spring limit value / strength and the electric conductivity in the same manner as in Example 1, and the workability was based on contact bending. From the results below, those with a low primary cold rolling rate and those with a secondary cold rolling rate of more than 90% have poor workability, and those with a secondary cold rolling rate of less than 5% have electrical conductivity. Turned out to be low.

【0025】[0025]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【0026】[0026]

【発明の効果】本発明は、上述したように現在バネ用材
料として用いられているBe−Cu合金、Cu−Ti合
金、リン青銅にかわる優れたバネ限界値・高ヤング率と
優れた導電性を有すると同時に信頼性ならびに製造環境
も良好なバネ用材料を提供するものでその工業的効果は
顕著である。
As described above, the present invention replaces Be-Cu alloys, Cu-Ti alloys and phosphor bronze currently used as spring materials with excellent spring limit values, high Young's modulus and excellent conductivity. In addition to providing the spring material having good reliability and manufacturing environment, its industrial effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe相中のCu含有量(%)とバネ限界値、ヤ
ング率及び導電性との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a Cu content (%) in an Fe phase, a spring limit value, a Young's modulus, and conductivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 恭秀 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhide Ohno 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Nippon Steel Corporation Advanced Technology Research Laboratories

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Cu:20〜85%,Al:
0.3〜11%,Mn:0.05〜3.0%,Ti:
0.005〜3.5%,Cr:0.1〜10%,Mo:
0.001〜1.5%を含有し、残部が不可避的不純物
及びFeからなる金属薄板からなることを特徴とするバ
ネ限界値と形状凍結性に優れたバネ用材料。
1. By weight%, Cu: 20-85%, Al:
0.3-11%, Mn: 0.05-3.0%, Ti:
0.005-3.5%, Cr: 0.1-10%, Mo:
A spring material having an excellent spring limit value and shape fixability, characterized by containing 0.001 to 1.5% and the balance being a thin metal plate composed of unavoidable impurities and Fe.
【請求項2】 Fe含有量に対するCr含有量の比が
5.5〜13.5%である請求項1記載のバネ用材料。
2. The spring material according to claim 1, wherein the ratio of the Cr content to the Fe content is 5.5 to 13.5%.
【請求項3】 合金成分として、更に、Zr,Si,N
i,Zn,Sn,Nb,P,La,Ce,Y,V,C
a,Be,Mg及びHfの1種又は2種以上を合計で
0.005〜8重量%、C及びBの1種又は2種を合計
で0.005〜2重量%含有する請求項1記載のバネ用
材料。
3. Zr, Si, N as an alloy component
i, Zn, Sn, Nb, P, La, Ce, Y, V, C
A total of 0.005 to 8% by weight of one or two or more of a, Be, Mg and Hf, and a total of 0.005 to 2% by weight of one or two of C and B. Material for spring.
【請求項4】 前記金属薄板の表面に、Ni,Cu,A
g又はAu或いはそれらの合金の金属メッキ、半田又は
Snメッキが単層又は複層で0.01〜10μm施され
てなる請求項1,2又は3記載のバネ用材料。
4. Ni, Cu, A on the surface of the thin metal plate
The spring material according to claim 1, 2 or 3, wherein metal plating of g or Au or an alloy thereof, solder or Sn plating is applied in a single layer or a multilayer of 0.01 to 10 µm.
【請求項5】 有効量の請求項1,2または3に記載の
合金を溶解、造塊後、700〜1000℃の温度範囲で
熱間加工し、該熱間加工材を圧下率50〜95%で一次
冷間加工し、次いで450〜1000℃の温度範囲で保
定した後0.05〜5000℃/分の冷却速度で急冷す
る焼鈍を施した後圧下率5〜85%で二次冷間加工し、
続いて150〜650℃の温度範囲で時効処理を施すこ
とを特徴とするバネ限界値と形状凍結性に優れたバネ用
材料の製造方法。
5. An effective amount of the alloy according to claim 1, 2 or 3 is melted and agglomerated, followed by hot working in a temperature range of 700 to 1000 ° C., and the hot working material is rolled to a rolling reduction of 50 to 95. % Primary cold work, then hold in the temperature range of 450 to 1000 ° C., and then perform rapid annealing at a cooling rate of 0.05 to 5000 ° C./min. Processed,
Subsequently, a method for producing a spring material having an excellent spring limit value and shape fixability, which is characterized by performing an aging treatment in a temperature range of 150 to 650 ° C.
【請求項6】 熱間加工、一次冷間加工に続いて450
〜1000℃の温度範囲で保定した後、0.05〜0.
5℃/分の冷却速度で急冷する焼鈍を施し、二次冷間加
工後700〜1000℃の温度範囲で溶体化処理した後
0.5〜500℃/分の冷却速度で冷却し、さらに時効
処理を行う請求項5記載の製造方法。
6. Hot working, primary cold working and then 450
After holding in the temperature range of 1000 ° C to 1000 ° C, 0.05 to 0.
Annealing is performed at a cooling rate of 5 ° C / min, secondary cold working is performed, and solution treatment is performed in a temperature range of 700 to 1000 ° C, followed by cooling at a cooling rate of 0.5 to 500 ° C / min, and further aging. The manufacturing method according to claim 5, wherein treatment is performed.
【請求項7】 熱間加工、一次冷間加工に続いて450
〜700℃の温度範囲で保定した後、0.5超〜500
0℃/分の冷却速度で冷却する焼鈍を施し、二次冷間加
工後700〜1000℃の温度範囲で溶体化処理した後
0.5〜500℃の冷却速度で冷却し、さらに時効処理
を行う請求項5記載の製造方法。
7. Hot working, primary cold working followed by 450
After holding in the temperature range of ~ 700 ° C, over 0.5 ~ 500
Annealing is performed at a cooling rate of 0 ° C / min, secondary cold working is performed, and solution treatment is performed in a temperature range of 700 to 1000 ° C, followed by cooling at a cooling rate of 0.5 to 500 ° C, and further aging treatment. The manufacturing method according to claim 5, which is performed.
【請求項8】 Fe含有量に対するCr含有量の重量比
が5.5〜13.5%である請求項5,6又は7記載の
製造方法。
8. The production method according to claim 5, 6 or 7, wherein the weight ratio of the Cr content to the Fe content is 5.5 to 13.5%.
【請求項9】 合金成分として、更に、Zr,Si,N
i,Zn,Sn,Nb,P,La,Ce,Y,V,C
a,Be,Mg及びHfの1種又は2種以上を合計で
0.005〜8重量%、C及びBの1種又は2種を合計
で0.005〜2重量%含有する請求項5,6又は7記
載の製造方法。
9. An alloy component further comprising Zr, Si, N
i, Zn, Sn, Nb, P, La, Ce, Y, V, C
6. A total of 0.005 to 8% by weight of one or more of a, Be, Mg and Hf, and 0.005 to 2% by weight of one or two of C and B. The manufacturing method according to 6 or 7.
【請求項10】 前記時効処理を施した後で加工材表面
にNi,Cu,Ag、又はAu或いはそれらの合金の金
属メッキ、半田又はSnメッキを厚さ0.01〜10μ
mの単層又は複層で施す請求項5,6,7,8又は9記
載の製造方法。
10. After the aging treatment, the surface of the processed material is plated with metal such as Ni, Cu, Ag, or Au or their alloys, solder or Sn plating to a thickness of 0.01 to 10 μm.
The method according to claim 5, 6, 7, 8 or 9, wherein the production is performed in a single layer or a multi-layer of m.
JP25306192A 1992-09-22 1992-09-22 Spring material excellent in shape freezability and spring limit value and its production Withdrawn JPH06100984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25306192A JPH06100984A (en) 1992-09-22 1992-09-22 Spring material excellent in shape freezability and spring limit value and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25306192A JPH06100984A (en) 1992-09-22 1992-09-22 Spring material excellent in shape freezability and spring limit value and its production

Publications (1)

Publication Number Publication Date
JPH06100984A true JPH06100984A (en) 1994-04-12

Family

ID=17245950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25306192A Withdrawn JPH06100984A (en) 1992-09-22 1992-09-22 Spring material excellent in shape freezability and spring limit value and its production

Country Status (1)

Country Link
JP (1) JPH06100984A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022803A1 (en) * 2002-09-04 2004-03-18 Dept Corporation Metallic material for electronic part, electronic part, electronic equipment, method of working metallic material, process for producing electronic part and electronic optical part
JP2007084928A (en) * 2005-08-26 2007-04-05 Hitachi Cable Ltd Backing plate made of copper alloy, and method for producing the copper alloy
WO2011125558A1 (en) * 2010-03-31 2011-10-13 Jx日鉱日石金属株式会社 Cu-ni-si alloy with excellent bendability
WO2012073777A1 (en) * 2010-12-03 2012-06-07 三菱マテリアル株式会社 Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
WO2021128969A1 (en) * 2019-12-27 2021-07-01 宁波博威合金材料股份有限公司 Titanium bronze alloy strip material containing ce and b and method for preparation thereof
CN116555620A (en) * 2023-04-24 2023-08-08 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022803A1 (en) * 2002-09-04 2004-03-18 Dept Corporation Metallic material for electronic part, electronic part, electronic equipment, method of working metallic material, process for producing electronic part and electronic optical part
JP2007084928A (en) * 2005-08-26 2007-04-05 Hitachi Cable Ltd Backing plate made of copper alloy, and method for producing the copper alloy
WO2011125558A1 (en) * 2010-03-31 2011-10-13 Jx日鉱日石金属株式会社 Cu-ni-si alloy with excellent bendability
JP2011214087A (en) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Cu-ni-si based alloy with excellent bendability
CN102666891A (en) * 2010-03-31 2012-09-12 Jx日矿日石金属株式会社 Cu-ni-si based alloy with excellent bendability
WO2012073777A1 (en) * 2010-12-03 2012-06-07 三菱マテリアル株式会社 Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
WO2021128969A1 (en) * 2019-12-27 2021-07-01 宁波博威合金材料股份有限公司 Titanium bronze alloy strip material containing ce and b and method for preparation thereof
CN116555620A (en) * 2023-04-24 2023-08-08 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof
CN116555620B (en) * 2023-04-24 2024-04-30 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JPH0841612A (en) Copper alloy and its preparation
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
TW201035336A (en) Ni-si-co base copper alloy, and method for producing the same
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JPH0790520A (en) Production of high-strength cu alloy sheet bar
WO1986002102A1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH06100984A (en) Spring material excellent in shape freezability and spring limit value and its production
JP6111028B2 (en) Corson alloy and manufacturing method thereof
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP7262947B2 (en) Al-Mg-Si alloy plate
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JPH06100983A (en) Metal foil for tab tape having high young's modulus and high yield strength and its production
JPH05214489A (en) Steel sheet for spring excellent in spring limit value and shape freezability and its production
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH06108212A (en) Production of precipitation type copper alloy
JPS6231060B2 (en)
JPH06145930A (en) Production of precipitation type copper alloy
JP2672241B2 (en) Method for producing copper alloy material excellent in strength and bendability
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP3387962B2 (en) Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
JP2599526B2 (en) Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same
JPH0424420B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130