JP6149528B2 - Lead material - Google Patents

Lead material Download PDF

Info

Publication number
JP6149528B2
JP6149528B2 JP2013126447A JP2013126447A JP6149528B2 JP 6149528 B2 JP6149528 B2 JP 6149528B2 JP 2013126447 A JP2013126447 A JP 2013126447A JP 2013126447 A JP2013126447 A JP 2013126447A JP 6149528 B2 JP6149528 B2 JP 6149528B2
Authority
JP
Japan
Prior art keywords
copper plate
conductor
lead member
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013126447A
Other languages
Japanese (ja)
Other versions
JP2015002099A (en
Inventor
昭伸 千葉
昭伸 千葉
博志 上谷
博志 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013126447A priority Critical patent/JP6149528B2/en
Priority to CN201410270204.7A priority patent/CN104241581B/en
Publication of JP2015002099A publication Critical patent/JP2015002099A/en
Application granted granted Critical
Publication of JP6149528B2 publication Critical patent/JP6149528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、非水電解液蓄電デバイスに使用されるリード部材に関する。   The present invention relates to a lead member used for a nonaqueous electrolyte storage device.

電子機器の小型化と共に電源としての電池の小型化、軽量化が求められている。また、高エネルギー密度化、高エネルギー効率化に対する要求もあり、このような要求を満たすものとして、リチウムイオン電池などの非水電解質電池への期待が高まっている。   Along with downsizing of electronic devices, downsizing and lightening of a battery as a power source are required. In addition, there are also demands for higher energy density and higher energy efficiency, and expectations for non-aqueous electrolyte batteries such as lithium ion batteries are increasing to meet such demands.

図3は、従来の非水電解質電池の構成例を示す斜視図である。図3(A)は積層電極群を外装ケースから取り外した状態を示した図で、図3(B)は積層電極群を外装ケースに装着した状態を示した図である。非水電解質電池101は、積層電極群102、正極リード103、負極リード104、樹脂フィルム(樹脂シート)105,106、並びに外包体としての外装ケース107を備える。   FIG. 3 is a perspective view showing a configuration example of a conventional nonaqueous electrolyte battery. FIG. 3A is a view showing a state in which the laminated electrode group is removed from the outer case, and FIG. 3B is a view showing a state in which the laminated electrode group is attached to the outer case. The nonaqueous electrolyte battery 101 includes a laminated electrode group 102, a positive electrode lead 103, a negative electrode lead 104, resin films (resin sheets) 105 and 106, and an outer case 107 as an outer package.

上記の負極リード104として、例えば、銅板にニッケル被覆層が形成された導体を有し、導体の両面に絶縁樹脂フィルムを貼り合わし、さらに、ニッケル被覆層の表面粗さRaを0.03〜0.5μmとしたものが知られている(例えば、特許文献1参照)。これにより、導体と絶縁樹脂フィルムとの密着性を向上させることができる。   For example, the negative electrode lead 104 has a conductor in which a nickel coating layer is formed on a copper plate, an insulating resin film is bonded to both sides of the conductor, and the surface roughness Ra of the nickel coating layer is set to 0.03 to 0. One having a thickness of 0.5 μm is known (for example, see Patent Document 1). Thereby, the adhesiveness of a conductor and an insulating resin film can be improved.

特開2010−170979号公報JP 2010-170979 A

上記の非水電解質電池は、例えば、電気自動車の車載用電源として用いられる場合、大きな電流が必要となるため、通常、単電池同士を電気的に接続して構成される。すなわち、複数の単電池の正極リード同士及び負極リード同士がそれぞれ超音波溶接などの方法により接続される。   For example, when the non-aqueous electrolyte battery is used as a vehicle-mounted power source for an electric vehicle, a large current is required, and thus, the cells are usually configured by electrically connecting the cells. That is, the positive electrode leads and the negative electrode leads of the plurality of single cells are connected by a method such as ultrasonic welding.

車載用途では、振動や熱などが断続的に加わる過酷な環境で使用されるため、より高い信頼性が要求される。特に、電気的な接点となる銅板同士の溶接強度を表す超音波溶接性(単に溶接性ともいう)は重要となる。この溶接性(溶接強度)を改善する一つの方法として、表面粗さを小さくする(つまり、表面の平滑性を高める)ことが有効であると考えられる。   For in-vehicle use, higher reliability is required because it is used in a harsh environment in which vibration or heat is intermittently applied. In particular, ultrasonic weldability (also simply referred to as weldability) representing the welding strength between copper plates that serve as electrical contacts is important. As one method for improving the weldability (weld strength), it is considered effective to reduce the surface roughness (that is, increase the smoothness of the surface).

しかしながら、上記特許文献1に記載の技術では、銅板の表面粗さは0.1μmで比較的大きく、銅板に施されたニッケル被覆層の表面粗さRaも0.03〜0.5μmで比較的大きい。銅板の表面粗さRaが比較的大きい場合には、平滑性を得るために、ニッケル被覆層をある程度厚くする必要がある。また、銅板の表面が硬いほど溶接強度が向上するため望ましいが、特許文献1には、このような鋼板の表面硬度について何ら開示されていない。   However, in the technique described in Patent Document 1, the surface roughness of the copper plate is relatively large at 0.1 μm, and the surface roughness Ra of the nickel coating layer applied to the copper plate is also relatively 0.03 to 0.5 μm. large. When the surface roughness Ra of the copper plate is relatively large, in order to obtain smoothness, it is necessary to thicken the nickel coating layer to some extent. In addition, although the harder the surface of the copper plate is, the better the welding strength is. However, Patent Document 1 does not disclose any surface hardness of such a steel plate.

本発明は、上述のような実情に鑑みてなされたもので、ニッケル被覆層を厚くすることなく、溶接性(溶接強度)等に優れたリード部材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a lead member having excellent weldability (welding strength) and the like without increasing the thickness of the nickel coating layer.

本発明によるリード部材は、銅板にニッケル被覆層が形成された導体を有し、導体の両面に絶縁樹脂フィルムを貼り合わせてなるリード部材であって、銅板の表面粗さRaが、圧延の長さ方向に0.03μm以下で且つ圧延の幅方向に0.05μm以下であり、銅板の表面のビッカース硬度が、60HV以上であり、ニッケル被覆層の厚さが、3.0μm以下である。   A lead member according to the present invention is a lead member having a conductor in which a nickel coating layer is formed on a copper plate, and having an insulating resin film bonded to both sides of the conductor, and the surface roughness Ra of the copper plate has a long rolling length. It is 0.03 μm or less in the length direction and 0.05 μm or less in the width direction of rolling, the Vickers hardness of the surface of the copper plate is 60 HV or more, and the thickness of the nickel coating layer is 3.0 μm or less.

また、銅板の表面粗さRaが、圧延の長さ方向及び圧延の幅方向共に、0.02μm以上であることが好ましい。
また、銅板の表面のビッカース硬度が、該銅板の内部のビッカース硬度よりも5HV以上大きいことが好ましい。
また、銅板の表面のビッカース硬度が、100HV以下であることが好ましい。
また、導体の厚さが、0.1mm以上であることが好ましい。
Further, the surface roughness Ra of the copper plate is preferably 0.02 μm or more in both the rolling length direction and the rolling width direction.
Moreover, it is preferable that the Vickers hardness of the surface of a copper plate is 5HV or more larger than the Vickers hardness inside this copper plate.
Moreover, it is preferable that the Vickers hardness of the surface of a copper plate is 100 HV or less.
Moreover, it is preferable that the thickness of a conductor is 0.1 mm or more.

本発明によれば、銅板の表面粗さRaを、圧延の長さ方向に0.03μm以下で且つ圧延の幅方向に0.05μm以下とし、銅板表面のビッカース硬度を、60HV以上とし、ニッケル被覆層の厚さを、3.0μm以下とすることにより、ニッケル被覆層を厚くすることなく、溶接性(溶接強度)等を向上させることができる。   According to the present invention, the surface roughness Ra of the copper plate is 0.03 μm or less in the rolling length direction and 0.05 μm or less in the rolling width direction, the Vickers hardness of the copper plate surface is 60 HV or more, and the nickel coating By setting the layer thickness to 3.0 μm or less, weldability (welding strength) and the like can be improved without increasing the thickness of the nickel coating layer.

本発明によるリード部材の一例を示す図である。It is a figure which shows an example of the lead member by this invention. 本発明によるリード部材の溶接性及び耐電解液性の評価試験の結果を示す図である。It is a figure which shows the result of the evaluation test of the weldability of the lead member by this invention, and electrolyte solution resistance. 従来の非水電解質電池の構成例を示す斜視図である。It is a perspective view which shows the structural example of the conventional nonaqueous electrolyte battery.

以下、添付図面を参照しながら、本発明のリード部材に係る好適な実施の形態について説明する。
図1は、本発明によるリード部材の一例を示す図である。図中、1はリード部材、2は導体、3は絶縁樹脂フィルム、4は外装ケース、5は多層フィルムを示す。このリード部材1は、非水電解質電池に用いられる負極側のタブリードとして例示され、銅板(銅箔)にニッケル被覆層(ニッケルメッキ)が形成された平形の導体2を有し、図1(A),(B)に示すように、導体2の両面に絶縁樹脂フィルム3を貼り合わせてなる。
Hereinafter, preferred embodiments of the lead member of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a view showing an example of a lead member according to the present invention. In the figure, 1 is a lead member, 2 is a conductor, 3 is an insulating resin film, 4 is an exterior case, and 5 is a multilayer film. This lead member 1 is exemplified as a tab lead on the negative electrode side used in a nonaqueous electrolyte battery, and has a flat conductor 2 in which a nickel coating layer (nickel plating) is formed on a copper plate (copper foil). ), (B), the insulating resin film 3 is bonded to both sides of the conductor 2.

非水電解質電池の導体は、正極板及び負極板にそれぞれ接続され外部への接続導体となる。図1の導体2は、上記したように、負極側に接続されるもので、電解質(例えば、リチウム化合物)の過充電等で析出したリチウムに腐食されず、リチウムとの合金を形成されにくく、且つ高電位で溶解されにくい電極板と同じニッケルメッキ銅で形成される。なお、正極側に接続される導体は、電解液との接触により溶解が生じないように、電極板と同じアルミあるいはその合金で形成される。   The conductor of the nonaqueous electrolyte battery is connected to the positive electrode plate and the negative electrode plate, respectively, and serves as a connection conductor to the outside. As described above, the conductor 2 in FIG. 1 is connected to the negative electrode side, and is not corroded by lithium deposited due to overcharge of an electrolyte (for example, a lithium compound), so that it is difficult to form an alloy with lithium. In addition, it is formed of the same nickel-plated copper as the electrode plate that is not easily dissolved at a high potential. In addition, the conductor connected to the positive electrode side is formed of the same aluminum as the electrode plate or an alloy thereof so that dissolution does not occur due to contact with the electrolytic solution.

絶縁樹脂フィルム3は、リード部材1が外装ケース4にヒートシールされて封着される部分に設けられ、1層または2層の樹脂層を有する樹脂フィルムを導体2の両面を挟むように接着または融着により貼り付けて形成される。この絶縁樹脂フィルム3としては、例えば、マレイン酸変性ポリオレフィンの樹脂フィルムが用いられる。また、絶縁樹脂フィルム3が2層で形成される場合、図1(B)に示すように、導体2と接する内側の接着層3aに低融点の材質、外側の絶縁層3bに外装ケース4とのヒートシールの際に溶融しない高融点の材質が用いられる。   The insulating resin film 3 is provided in a portion where the lead member 1 is heat sealed to the exterior case 4 and sealed, and a resin film having one or two resin layers is bonded or sandwiched between both sides of the conductor 2 Affixed by fusion. As this insulating resin film 3, for example, a resin film of maleic acid-modified polyolefin is used. When the insulating resin film 3 is formed of two layers, as shown in FIG. 1B, the inner adhesive layer 3a in contact with the conductor 2 has a low melting point material, and the outer insulating layer 3b has an outer case 4 and A high melting point material that does not melt during heat sealing is used.

外装ケース4は、図1(C)に示すように、最内層のフィルム5aと最外層のフィルム5bとの間に金属箔層5cをサンドイッチ状に貼り合わせた密封性の高い多層フィルム5を袋状にして形成されている。多層フィルム5は、アルミ、銅、ステンレス等の金属からなる金属箔層5cを含む3〜5層の積層体で形成される。最内層のフィルム5aは、電解液で溶解されず封着部分から電解液が漏出しないように、例えば、絶縁樹脂フィルム3と同様のマレイン酸変性ポリオレフィンの樹脂フィルムが用いられる。また、最外層のフィルム5bは、金属箔層5cを外傷等から保護するためのもので、ポリエチレンテレフタレート(PET)等で形成されている。   As shown in FIG. 1 (C), the outer case 4 is a bag having a highly sealed multilayer film 5 in which a metal foil layer 5c is sandwiched between the innermost film 5a and the outermost film 5b. It is formed in a shape. The multilayer film 5 is formed of a 3 to 5 layered product including a metal foil layer 5c made of metal such as aluminum, copper, and stainless steel. As the innermost layer film 5a, for example, a maleic acid-modified polyolefin resin film similar to the insulating resin film 3 is used so that the electrolyte solution is not dissolved by the electrolyte solution and does not leak out from the sealed portion. The outermost film 5b is for protecting the metal foil layer 5c from damages and is formed of polyethylene terephthalate (PET) or the like.

本発明の主たる目的は、ニッケル被覆層を厚くすることなく、溶接性(溶接強度)等に優れたリード部材を提供することにある、このための構成として、本発明のリード部材1は、導体2の銅板(ニッケル被覆前の銅板)の表面粗さRaが、圧延の長さ方向(以下、MD方向という)に0.03μm以下で且つ圧延の幅方向(以下、TD方向という)に0.05μm以下であり、銅板(ニッケル被覆前の銅板)の表面のビッカース硬度が、60HV以上であり、ニッケル被覆層の厚さが、3.0μm以下とした。この銅板は、バフ研磨またはスキンパス等の方法による表面処理を含む圧延加工により生成される。   The main object of the present invention is to provide a lead member excellent in weldability (welding strength) and the like without increasing the thickness of the nickel coating layer. As a configuration for this purpose, the lead member 1 of the present invention is a conductor. The surface roughness Ra of the copper plate 2 (copper plate before nickel coating) is 0.03 μm or less in the rolling length direction (hereinafter referred to as MD direction) and 0.03 in the width direction of rolling (hereinafter referred to as TD direction). The Vickers hardness of the surface of the copper plate (copper plate before nickel coating) was 60 HV or more, and the thickness of the nickel coating layer was 3.0 μm or less. This copper plate is produced by a rolling process including surface treatment by a method such as buffing or skin pass.

なお、本発明でいうMD(Machine Direction)方向とは、圧延ロールの回転(長さ)方向(銅板の長手方向)であり、TD(Transverse Direction)方向とは、圧延ロールの幅方向(銅板の幅方向)である。また、表面粗さRaは、JIS B0601で定義される算術平均粗さである。   The MD (Machine Direction) direction referred to in the present invention is the rotation (length) direction of the rolling roll (longitudinal direction of the copper plate), and the TD (Transverse Direction) direction is the width direction of the rolling roll (copper plate direction). Width direction). The surface roughness Ra is an arithmetic average roughness defined by JIS B0601.

上記構成によれば、ニッケル被覆前の銅板の表面粗さRaを小さくすることで、ニッケル被覆層を厚くしなくても導体表面の平滑性が良好となるため、導体同士の溶接強度を向上させることができる。また、銅板表面のビッカース硬度を大きくすることで、さらに、導体同士の溶接強度の向上を図ることができる。また、導体表面を平滑にすることで、絶縁樹脂フィルムが密着し易くなるため、毛細管現象により電解液が吸い上がりにくく、耐電解液性の向上を図ることができる。   According to the above configuration, by reducing the surface roughness Ra of the copper plate before nickel coating, the smoothness of the conductor surface is improved without increasing the thickness of the nickel coating layer, thereby improving the welding strength between the conductors. be able to. Further, by increasing the Vickers hardness of the copper plate surface, it is possible to further improve the welding strength between the conductors. In addition, since the insulating resin film is easily adhered by smoothing the conductor surface, the electrolytic solution is hardly sucked up by the capillary phenomenon, and the resistance to the electrolytic solution can be improved.

また、銅板の表面粗さRaは、MD方向及びTD方向共に、0.02μm以上であることが好ましい。表面粗さRaを小さくするには圧延ローラ目を細かくすればよい。しかしながら、表面粗さRaを0.02μmより小さくする場合、圧延処理に加え、さらに、エッチング等の他の処理を追加する必要があるため現実的には難しい。従って、表面粗さRaを0.02μm以上とすることで、圧延ローラ目の調整だけですみ、他の追加処理が不要となる。   Further, the surface roughness Ra of the copper plate is preferably 0.02 μm or more in both the MD direction and the TD direction. In order to reduce the surface roughness Ra, the rolling roller may be made finer. However, when the surface roughness Ra is made smaller than 0.02 μm, it is practically difficult because it is necessary to add another process such as etching in addition to the rolling process. Therefore, by setting the surface roughness Ra to 0.02 μm or more, it is only necessary to adjust the rolling roller mesh, and no other additional processing is required.

また、銅板の表面のビッカース硬度が、銅板の内部のビッカース硬度よりも5HV以上大きいことが好ましい。具体的には、銅板として、焼きなまし処理を施したO材(ビッカース硬度45〜55HV)を用いており、表面だけが60HV以上のビッカース硬度となるように、加工している。ここで、銅板の表面硬度は、圧延による加工率を変化させることで制御することができる。低い加工率では表層部のみが硬化するため、表面だけが60HV以上となるように加工率を設定すればよい。   Moreover, it is preferable that the Vickers hardness of the surface of a copper plate is 5HV or more larger than the Vickers hardness inside a copper plate. Specifically, an annealed O material (Vickers hardness of 45 to 55 HV) is used as the copper plate, and processing is performed so that only the surface has a Vickers hardness of 60 HV or higher. Here, the surface hardness of the copper plate can be controlled by changing the processing rate by rolling. Since only the surface layer portion is cured at a low processing rate, the processing rate may be set so that only the surface is 60 HV or higher.

また、銅板の表面硬度を100HVより大きくすることも可能であるが、圧延の加工率を上げて表面硬度を上げ過ぎると、内部硬度も上がり、銅板としてO材の仕様を満足することができなくなる。このため、銅板の表面のビッカース硬度は、100HV以下であることが好ましい。   Also, the surface hardness of the copper plate can be made larger than 100 HV. However, if the surface hardness is increased by increasing the rolling processing rate, the internal hardness also increases, and the copper plate cannot satisfy the specifications of the O material. . For this reason, it is preferable that the Vickers hardness of the surface of a copper plate is 100 HV or less.

また、図1において、導体2の厚さ、つまり、銅板の厚さとニッケル被覆層の厚さとを合計した厚さが、0.1mm以上であることが好ましく、より好ましくは、0.15mm以上である。これは、車載用途の場合、前述したように、高い信頼性が要求されるため、導体をある程度厚くする必要があるためである。   Further, in FIG. 1, the thickness of the conductor 2, that is, the total thickness of the copper plate and the nickel coating layer is preferably 0.1 mm or more, more preferably 0.15 mm or more. is there. This is because, in the case of in-vehicle use, as described above, high reliability is required, and thus the conductor needs to be thickened to some extent.

図2は、本発明によるリード部材の溶接性及び耐電解液性の評価試験の結果を示す図である。以下では、リード部材の導体(ニッケルメッキ銅板)について、実施例1〜3、比較例1の各試料を作製し、溶接性(溶接強度)及び耐電解液性を評価した。実施例1の導体は、銅板の表面粗さRaがMD方向に0.02μm、TD方向に0.03μm、銅板の表面硬度が60HV、銅板自体の硬度(銅板内部の硬度)が55HVである。実施例2の導体は、銅板の表面粗さRaがMD方向に0.03μm、TD方向に0.05μm、銅板の表面硬度が65HV、銅板自体の硬度(銅板内部の硬度)が55HVである。実施例3の導体は、銅板の表面粗さRaがMD方向に0.02μm、TD方向に0.03μm、銅板の表面硬度が100HVである。また、比較例1の導体は、銅板の表面粗さRaがMD及びTD共に0.07μm、銅板の表面硬度が50HV、銅板自体の硬度(銅板内部の硬度)も50HVである。   FIG. 2 is a diagram showing the results of an evaluation test of weldability and electrolytic solution resistance of a lead member according to the present invention. Below, about the conductor (nickel plating copper plate) of a lead member, each sample of Examples 1-3 and the comparative example 1 was produced, and weldability (welding strength) and electrolyte solution resistance were evaluated. In the conductor of Example 1, the surface roughness Ra of the copper plate is 0.02 μm in the MD direction, 0.03 μm in the TD direction, the surface hardness of the copper plate is 60 HV, and the hardness of the copper plate itself (the hardness inside the copper plate) is 55 HV. In the conductor of Example 2, the surface roughness Ra of the copper plate is 0.03 μm in the MD direction, 0.05 μm in the TD direction, the surface hardness of the copper plate is 65 HV, and the hardness of the copper plate itself (the hardness inside the copper plate) is 55 HV. In the conductor of Example 3, the surface roughness Ra of the copper plate is 0.02 μm in the MD direction, 0.03 μm in the TD direction, and the surface hardness of the copper plate is 100 HV. In the conductor of Comparative Example 1, the surface roughness Ra of the copper plate is 0.07 μm for both MD and TD, the surface hardness of the copper plate is 50 HV, and the hardness of the copper plate itself (the hardness inside the copper plate) is 50 HV.

(溶接性試験)
厚さ0.15mmの導体(ニッケルメッキ銅板)と、厚さ0.15mmのニッケル板(ニッケル箔)とを超音波溶接した各試料に対して、180°剥離試験を行った。剥離されたときの力(剥離力)を測定し、剥離力が80N以上であれば合格を示す「○」、80N未満であれば不合格を示す「×」とした。本試験では、実施例1のニッケルメッキの厚みは1.0μm、実施例2のニッケルメッキの厚みは2.0μm、実施例3のニッケルメッキの厚みは1.0μm、比較例1のニッケルメッキの厚みは2.0μmとした。
(Weldability test)
A 180 ° peel test was performed on each sample obtained by ultrasonic welding a 0.15 mm thick conductor (nickel plated copper plate) and a 0.15 mm thick nickel plate (nickel foil). When peeled, the force (peeling force) was measured. If the peeling force was 80 N or more, “◯” was shown, and if it was less than 80 N, “X” was shown. In this test, the nickel plating thickness of Example 1 was 1.0 μm, the nickel plating thickness of Example 2 was 2.0 μm, the nickel plating thickness of Example 3 was 1.0 μm, and the nickel plating thickness of Comparative Example 1 was The thickness was 2.0 μm.

なお、試験には、ブランソン社製の超音波溶着機(モデル名:2000Xdt 20:2.5/20MA−Xaed stand、公称周波数:20kHz、最大出力:2500W)を使用した。また、試験条件は、溶接時間:0.1秒、振幅:75%、溶接圧力:0.2MPaとした。   For the test, an ultrasonic welder (model name: 2000Xdt 20: 2.5 / 20MA-Xaed stand, nominal frequency: 20 kHz, maximum output: 2500 W) manufactured by Branson was used. The test conditions were welding time: 0.1 second, amplitude: 75%, welding pressure: 0.2 MPa.

(耐電解液性試験)
厚さ0.15mmの導体(ニッケルメッキ銅板)と、厚さ0.10mmの絶縁樹脂フィルムとを接着した各試料を、電解液(水添加、電解液濃度:1000ppm)に浸漬し、大気下で65℃の恒温槽に4週間保管した後に、180°剥離試験を行った。剥離されたときの力(剥離力)を測定し、4週間後の剥離力が初期の70%以上であれば合格を示す「○」、70%未満であれば不合格を示す「×」とした。本試験では、実施例1〜3及び比較例1のニッケルメッキの厚みは全て2.3μmとした。
(Electrolytic solution resistance test)
Each sample in which a conductor (nickel-plated copper plate) having a thickness of 0.15 mm and an insulating resin film having a thickness of 0.10 mm are bonded is immersed in an electrolytic solution (water added, electrolytic solution concentration: 1000 ppm), and in the atmosphere. After storing in a 65 ° C. constant temperature bath for 4 weeks, a 180 ° peel test was performed. The force when peeled (peeling force) is measured, and if the peel force after 4 weeks is 70% or more of the initial value, “O” indicates pass, and if it is less than 70%, it indicates “fail”. did. In this test, the thicknesses of the nickel platings of Examples 1 to 3 and Comparative Example 1 were all 2.3 μm.

なお、絶縁樹脂フィルムとしては、厚さ0.5mmのポリエチレンからなる接着層と、厚さ0.5mmの無水マレイン酸変性ポリプロピレンからなる絶縁層とが架橋接着されたものを使用した。また、電解液としては、エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の溶液に、六フッ化リン酸リチウム塩を1mol添加したものを使用した。   As the insulating resin film, a film in which an adhesive layer made of polyethylene having a thickness of 0.5 mm and an insulating layer made of maleic anhydride-modified polypropylene having a thickness of 0.5 mm were crosslinked and used was used. Moreover, as electrolyte solution, what added 1 mol of lithium hexafluorophosphate to the solution of ethylene carbonate: diethyl carbonate: dimethyl carbonate = 1: 1: 1 was used.

(評価結果)
本発明による導体は、銅板の表面粗さRaが、圧延の長さ方向(MD方向)に0.03μm以下で且つ圧延の幅方向(TD方向)に0.05μm以下であり、銅板の表面のビッカース硬度が、60HV以上であり、ニッケルメッキの厚さが、3.0μm以下とした。実施例1〜3の導体は、これらの条件を全て満たしており、溶接性及び耐電解液性共に良好である。一方、比較例1の導体は、ニッケルメッキの厚みは3.0μm以下であるが、銅板の表面粗さRaはMD方向に0.03μmより大きく且つTD方向に0.05μmより大きく、銅板の表面のビッカース硬度は60HVより小さい。このため、溶接性及び耐電解液性共に不良となっている。
(Evaluation results)
In the conductor according to the present invention, the surface roughness Ra of the copper plate is 0.03 μm or less in the rolling length direction (MD direction) and 0.05 μm or less in the rolling width direction (TD direction). The Vickers hardness was 60 HV or more, and the nickel plating thickness was 3.0 μm or less. The conductors of Examples 1 to 3 satisfy all of these conditions, and both the weldability and the electrolytic solution resistance are good. On the other hand, the conductor of Comparative Example 1 has a nickel plating thickness of 3.0 μm or less, but the surface roughness Ra of the copper plate is larger than 0.03 μm in the MD direction and larger than 0.05 μm in the TD direction. Vickers hardness of less than 60 HV. For this reason, both weldability and electrolyte solution resistance are poor.

1…リード部材、2…導体、3…絶縁樹脂フィルム、3a…接着層、3b…絶縁層、4…外装ケース、5…多層フィルム、5a…最内層フィルム、5b…最外層フィルム、5c…金属箔層。 DESCRIPTION OF SYMBOLS 1 ... Lead member, 2 ... Conductor, 3 ... Insulating resin film, 3a ... Adhesive layer, 3b ... Insulating layer, 4 ... Exterior case, 5 ... Multilayer film, 5a ... Innermost layer film, 5b ... Outermost layer film, 5c ... Metal Foil layer.

Claims (5)

銅板にニッケル被覆層が形成された導体を有し、該導体の両面に絶縁樹脂フィルムを貼り合わせてなるリード部材であって、
前記銅板の表面粗さRaが、圧延の長さ方向に0.03μm以下で且つ圧延の幅方向に0.05μm以下であり、
前記銅板の表面のビッカース硬度が、60HV以上であり、
前記ニッケル被覆層の厚さが、3.0μm以下であるリード部材。
A lead member having a conductor in which a nickel coating layer is formed on a copper plate, and an insulating resin film bonded to both sides of the conductor,
The surface roughness Ra of the copper plate is 0.03 μm or less in the rolling length direction and 0.05 μm or less in the rolling width direction,
Vickers hardness of the surface of the copper plate is 60HV or more,
A lead member having a thickness of the nickel coating layer of 3.0 μm or less.
前記銅板の表面粗さRaが、圧延の長さ方向及び圧延の幅方向共に、0.02μm以上である請求項1に記載のリード部材。   2. The lead member according to claim 1, wherein the surface roughness Ra of the copper plate is 0.02 μm or more in both the rolling length direction and the rolling width direction. 前記銅板の表面のビッカース硬度が、該銅板の内部のビッカース硬度よりも5HV以上大きい請求項1または2に記載のリード部材。   The lead member according to claim 1 or 2, wherein the surface of the copper plate has a Vickers hardness of 5 HV or more greater than the Vickers hardness inside the copper plate. 前記銅板の表面のビッカース硬度が、100HV以下である請求項1〜3のいずれか1項に記載のリード部材。   The lead member according to any one of claims 1 to 3, wherein the surface of the copper plate has a Vickers hardness of 100 HV or less. 前記導体の厚さが、0.1mm以上である請求項1〜4のいずれか1項に記載のリード部材。   The lead member according to claim 1, wherein the conductor has a thickness of 0.1 mm or more.
JP2013126447A 2013-06-17 2013-06-17 Lead material Active JP6149528B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013126447A JP6149528B2 (en) 2013-06-17 2013-06-17 Lead material
CN201410270204.7A CN104241581B (en) 2013-06-17 2014-06-17 Lead component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126447A JP6149528B2 (en) 2013-06-17 2013-06-17 Lead material

Publications (2)

Publication Number Publication Date
JP2015002099A JP2015002099A (en) 2015-01-05
JP6149528B2 true JP6149528B2 (en) 2017-06-21

Family

ID=52229274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126447A Active JP6149528B2 (en) 2013-06-17 2013-06-17 Lead material

Country Status (2)

Country Link
JP (1) JP6149528B2 (en)
CN (1) CN104241581B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005006615B4 (en) * 2004-02-24 2009-08-13 Yugenkaisha Shinjo Seisakusho Piercing nut

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766330B2 (en) * 2015-09-11 2020-10-14 日立金属株式会社 Battery lead material and battery lead material manufacturing method
JP6493352B2 (en) * 2016-10-13 2019-04-03 トヨタ自動車株式会社 Secondary battery
KR102098096B1 (en) 2016-11-14 2020-04-07 주식회사 엘지화학 Battery Cell Comprising Tab and Lead Having Compact Joined Structure
DE102016225252A1 (en) * 2016-12-16 2018-06-21 Robert Bosch Gmbh Electrical energy storage, in particular battery cell, with space-optimized electrode interconnection
JP6619094B2 (en) * 2016-12-27 2019-12-11 日立金属株式会社 Negative electrode lead material and method of manufacturing negative electrode lead material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123499A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Bonding wire and integrated circuit device using it
JP5011586B2 (en) * 2005-09-30 2012-08-29 Dowaメタルテック株式会社 Copper alloy sheet with improved bending workability and fatigue characteristics and its manufacturing method
JP4197718B2 (en) * 2006-11-17 2008-12-17 株式会社神戸製鋼所 High strength copper alloy sheet with excellent oxide film adhesion
JP4157898B2 (en) * 2006-10-02 2008-10-01 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP5684462B2 (en) * 2008-12-22 2015-03-11 昭和電工パッケージング株式会社 Positive electrode tab lead and battery
JP4972115B2 (en) * 2009-03-27 2012-07-11 Jx日鉱日石金属株式会社 Rolled copper foil
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
JP5562176B2 (en) * 2010-08-24 2014-07-30 藤森工業株式会社 Electrode lead wire member for non-aqueous battery
JP2012174335A (en) * 2011-02-17 2012-09-10 Sumitomo Electric Ind Ltd Lead member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005006615B4 (en) * 2004-02-24 2009-08-13 Yugenkaisha Shinjo Seisakusho Piercing nut

Also Published As

Publication number Publication date
JP2015002099A (en) 2015-01-05
CN104241581B (en) 2017-01-11
CN104241581A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6149528B2 (en) Lead material
TW523948B (en) Battery, tab of battery and method of manufacture thereof
JP5369583B2 (en) Battery packaging material
JP2010086831A (en) Packing material for electrochemical cell
JP2012022821A (en) Metal terminal coating resin film for secondary battery
KR102275359B1 (en) Resin film, metal terminal member, and secondary cell
JP2007095423A (en) Lithium ion battery tab, its manufacturing method, and lithium ion battery using the same
JP5849433B2 (en) Secondary battery electrode terminals
JP5899880B2 (en) Electrochemical cell packaging material and electrochemical cell using the same
JP5082170B2 (en) Lithium ion battery tab
JP6738189B2 (en) Exterior material for power storage device and power storage device
JP2017168342A (en) Sheath material for power storage device and power storage device
JP2017117705A (en) Lead member and battery employing the lead member
KR20140116795A (en) Tab lead
JP5769467B2 (en) Thin film primary battery
JP6405856B2 (en) Lead member and lead member manufacturing method
JP5194922B2 (en) Packaging materials for electrochemical cells
JP5668785B2 (en) Battery packaging materials
JP5463846B2 (en) Lead member for nonaqueous electrolyte power storage device and nonaqueous electrolyte power storage device
JP5414832B2 (en) Method for producing composite packaging material for polymer battery
JP5948893B2 (en) Battery case packaging and non-aqueous electrolyte secondary battery
JP2001243939A (en) Thin type secondary battery, lead terminal for thin type secondary battery and their manufacturing method
JP6331315B2 (en) Method for manufacturing battery exterior body and battery manufacturing method
JP2015072803A (en) Outer packaging body for battery and battery using the same
JP2013222525A (en) Method for manufacturing terminal lead with insulation resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160526

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6149528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250